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Abstract

Gene-body methylation (gbM) refers to sparse CG methylation of coding regions, in
particular of evolutionarily conserved house-keeping genes. It is found in both plants
and animals, but is directly and stably (epigenetically) inherited over multiple
generations in the former. Studies in Arabidopsis thaliana have demonstrated that
plants originating from different parts of the world exhibit large differences in gbM,
which presumably reflects an epigenetic memory of ancestral genetic and/or
environmental factors.

Here we look for evidence of such factors in F2 plants resulting from a cross
between a southern Swedish line with low gbM and a northern Swedish line with high
gbM, grown at two different temperatures. Using bisulfite-sequencing data with
nucleotide-level resolution on hundreds of individuals, we confirm that CG sites are
either methylated (nearly 100% methylation across sampled cells) or unmethylated
(approximately 0% methylation across sampled cells), and show that the higher level
of gbM in the northern line is due to more sites being methylated. Furthermore,
methylation variants almost always show Mendelian segregation, consistent with their
being directly and stably inherited through meiosis.

To explore how the differences between the parental lines could have arisen, we
focused on somatic deviations from the inherited state, distinguishing between gains
(relative to the inherited 0% methylation) and losses (relative to the inherited 100%
methylation) at each site in the F2 generation. We demonstrate that deviations
predominantly affect sites that differ between the parental lines, consistent with these
sites being more mutable. Gains and losses behave very differently in terms of the
genomic distribution, and are influenced by the local chromatin state. We find clear
evidence for different trans-acting genetic polymorphism affecting both gains and
losses, with those affecting gains showing strong environmental interactions (G×E).
Direct effects of the environment were minimal.

In conclusion, we show that genetic and environmental factors can change gbM at
a cellular level, and hypothesize that these factors can also lead to trans-generational
differences between individuals via the inclusion of such changes in the zygote.
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Author summary

Gene-body methylation, the sparse CG methylation of house-keeping genes, is found
in both plants and animals, but can be directly inherited in the former. Recently, we
discovered that Arabidopsis thaliana originating from different geographic regions
exhibit different patterns of gbM, presumably reflecting a trans-generational memory
of genetic or environmental factors. Here we look for evidence of such factors using a
genetic cross between two natural inbred lines: one with high, and one with low gbM.
We confirm that methylation states are stably inherited, but also see large somatic
deviations from the inherited state, in particular at sites that differ between the
parental lines. We demonstrate that these deviations are affected by genetic variants
in interaction with the environment, and hypothesize that geographic differences in
gbM arise through the inclusion of such deviations in the zygote.
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Introduction 1

DNA (cytosine) methylation is an epigenetic mark associated with transcriptional 2

regulation, in particular transposable element silencing. Unlike animals, where 3

methylation is mostly found on CG sites, cytosines in plants are methylated in 4

three-nucleotide contexts: CG, CHG, and CHH, where H=A, C or T. Non-CG 5

methylation is mainly present on transposable elements and is associated with the 6

repression of transcription. It cannot be directly inherited, is found on only a fraction 7

of cells, responds to the environment, and has been shown to be influenced by 8

trans-acting genetic modifiers in A. thaliana [1–5]. This is in sharp contrast to CG 9

methylation (mCG), which is maintained during DNA replication through the action 10

of METHYLTRANSFERASE1 (MET1), the homolog of mammalian DNMT1. Unlike 11

in animals, mCHG is not reset every generation in plants, but shows stable 12

trans-generational inheritance [6–9]. As in animals, mCG in plants is present not only 13

on transposable elements and other heterochromatic regions, but also on the coding 14

regions of a subset of genes, a phenomenon known as gene-body methylation 15

(gbM) [10–13]. Genes with gbM tend to be evolutionarily conserved and constitutively 16

expressed, i.e., they are ”house-keeping genes”, Although it has been argued that gbM 17

is under selection [14,15], its function is unclear [16–18]. 18

What is clear is that mCG levels vary greatly between natural inbred lines of 19

A. thaliana, and that the pattern of variation reflects the geographic origin of the lines 20

and is correlated with various climate variables [3, 19,20]. For instance, plants that 21

originate from the colder climate of northern Sweden show higher gbM levels than 22

plants from warmer regions [3]. There are two possible (non-exclusive) explanations 23

for these patterns. 24

The first is that plants retain an epigenetic memory of their ancestral climate. For 25

this to work, the environment has to affect DNA methylation. Numerous studies have 26

examined the effect of growth conditions on DNA methylation by growing plants in 27

different environments, and while there is clear evidence that non-CG methylation 28

responds strongly to the environment, mCG seems quite stable, at least at the 29

genome-wide level [3, 21–24], consistent with its apparent stability over large numbers 30

of generations [8, 9, 25]. 31

The second is that the geographic pattern of DNA methylation is due to genetic 32

variation. Indeed, genome-wide association studies (GWAS) have identified several 33

trans-acting loci affecting non-CG methylation [3–5,19,26], and it possible that mCG 34

could have been similarly affected by trans-acting modifiers. However, because mCG is 35

stably inherited, it is not a phenotype, and the present methylation state of an 36

individual would not reflect its current genotype but rather the history of its genome, 37

making genetic mapping of such modifiers different. It is therefore not surprising that 38

GWAS found no evidence for genetic variants influencing mCG [19]. 39

This paper looks for evidence of genetic variants influencing gbM using a reciprocal 40

F2 cross between a northern Swedish line with high gbM and southern Swedish line 41

with low gbM. To also look for environmental effects, the experiment was carried out 42

at two different temperatures, 4℃ and 16℃, and the cross was reciprocal to 43

investigate possible parent-of-origin effects, which are a priori plausible [27–29]. Our 44

hope was that our relatively large sample size (a total of over 600 F2 individuals were 45

bisulfite-sequenced) might allow us to detect changes in mCG despite its stable 46

inheritance. 47
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Results 48

Residual heterozygosity in one parental line 49

The bisulfite-sequencing data were used to genotype the F2 populations. While doing 50

so, we discovered that one of the parental lines had harbored residual heterozygosity: 51

there are at least two Mb-length regions segregating between the putatively reciprocal 52

F2 populations (S1 Fig). This is irrelevant within each cross, because a single F1 53

parent was used to generate each F2 population, however, it makes interpretation of 54

differences between the two cross-directions challenging, because they could be due to 55

parent-of-origin effects or genetic differences. For this reason, we will initially focus on 56

the cross in which the northern line was used as mother while the southern was used 57

as father (n = 308; S2 Fig), and discuss the (partially) reciprocal cross later. When 58

analyzing parental lines, which were grown in replicate (S1 Table), the segregating 59

regions were eliminated from the analysis. 60

Differences in gene-body methylation between the parental lines 61

Methylation estimates from bisulfite sequencing are noisy for a variety of experimental 62

reasons, the most obvious one being low sequence coverage of a possibly heterogeneous 63

population of cells. However, the parental lines were grown in replicate in both 64

temperatures, allowing us to estimate the grandparental state, confirm that gbM is 65

highly consistent between replicates, and that individual sites are either methylated 66

(nearly 100% methylation across sequencing reads) or unmethylated (approximately 67

0% methylation across sequencing reads), consistent with direct inheritance through 68

both mitosis and meiosis, leading to a cell population with minor deviations from the 69

inherited state, largely independent of temperature (Fig 1, S3 Fig). 70

The analysis also demonstrated that the previously reported difference in average 71

gbM level between these lines [3] is mostly due to more sites being methylated in the 72

north (rather than a quantitative difference across many sites). Of the roughly 25% of 73

sites that are methylated in at least one of the parental lines, approximately 45% differ 74

between the parental lines, and, of these, 70% are only methylated in the northern line 75

(Fig 1). 76

Inheritance of gene-body methylation in the F2 population 77

In the F2 population we do not have replication of entire genotypes, but we have 78

massive replication of the genotype at each site, because 1/4 of the 308 F2 individuals 79

are expected to be homozygous for northern ancestry (NN) at each site, 1/4 to be 80

homozygous for southern ancestry (SS), and 1/2 to be heterozygous (NS). Ancestry 81

can accurately be inferred using SNP haplotypes, and by combining this with the 82

methylation states in the F2 population we can also infer the epigenotype at each site 83

in the F1 parent — and confirm that gbM shows the expected Mendelian segregation 84

(S3 Fig, [30]). 85

The inferred F1 epigenotype can be compared with the inferred grand-parental 86

epigenotype to get an estimate of the epimutation rate. This is not straightforward 87

and requires a number of assumptions because differences could have arisen at any 88

point across two generations — and could also reflect heterozygosity in the 89

grand-parental generation, as well as various artefacts that are difficult to control for. 90

We obtain a per-generation, per-site rate of loss of gbM of ∼ 0.2%, and corresponding 91

rate of gain of ∼ 0.04%, although we caution that there are aspects of our data we 92

cannot explain (see Materials and Methods for details). 93
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Fig 1. The pattern of gbM across sites. The plots show the distribution of
average methylation levels across 650,595 gbM sites at 4℃ and 16℃, separately for the
two parental lines. The pie charts shows the fraction of sites classified as methylated
or unmethylated using 50% methylation as a cut-off (see Materials and Methods for
details). The top plots compare temperatures for each parental line; the bottom plots
compare parental lines for each temperature.

However, these epimutations did not occur in the F2 generation. While they may 94

have been affected by the F1 genotype, they do not reflect genetic variants segregating 95

in the F2 population, nor our temperature treatment. In order to take advantage of 96

the experimental design, we need to focus on changes that happened in the F2 97

generation itself, i.e., we need a proper phenotype. Thus we focus on somatic 98

deviations from the inherited state (as seen in the parents in Fig 1). These are by 99

definition phenotypes affected by genotype and environment, and while the deviation 100

at a particular site in a particular individual is very poorly estimated (primarily due 101

to insufficient sequencing coverage), this is compensated by the size of the F2 102

population. It is obvious from Fig 1 that gains (positive deviations from an inherited 103

state of 0% methylation) have a very different distribution from losses (negative 104

deviations from an inherited state of 100% methylation), and we therefore estimate 105

each separately, as explained in Fig 2. 106
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Fig 2. Quantifying somatic gains and losses. In the F2 population, each gbM
site is characterized by ancestry: NN, NS, and SS. Independently of this, there are
three types of sites: those for which F1 parent was homozygous unmethylated, those
for which it was heterozygous methylated/unmethylated (could be either on N or S
allele), and those for which it was was homozygous methylated. In the F2 population
we estimate gains only for individuals that should have inherited the homozygous
unmethylated state, and losses only for individuals that should have inherited the
homozygous methylated state. We do not use individuals heterozygous for
methylation. Different analyses then use different subsets of the gain/loss data as
detailed below.

Losses and gains reflect different processes 107

Somatic losses and gains differ in several aspects. First, estimated losses are on 108

average two orders of magnitude higher than estimated gains: 7.3% vs 0.09%, 109

respectively (S2 Table). Second, gains and losses show very different distributions 110

across the genome, similar to what has been observed for trans-generational 111

epimutations [31]. Gains are 2.8 times higher in peri-centromeric regions, while losses 112

are correlated with the enrichment of the H2A.Z chromatin mark on the gene 113

(r = 0.14; p < 0.01) (Fig 3). Third, losses vary much more across the four possible CG 114

contexts (CGA, CGT, CGC, CGG) than gains. In particular, losses are 22% higher on 115

CGT compared to the other contexts (S4 Fig). 116

Gains and losses are only weakly affected by temperature (Fig 3, S4 Fig). They do, 117

however, depend on local ancestry: on average losses are 2% higher on SS alleles 118

compared to NN alleles, while gains are higher 29% on NN alleles than SS alleles 119

(although the pattern varies greatly across the genome; see Fig 3). Potential causes for 120

these patterns will be discussed below. Finally, both gains and losses exhibited 121

positive auto-correlation along the genome (gains are correlated with gains at nearby 122

sites, and the same for losses). We do not observe any such effects on non-CG 123

methylation (S4 Fig). 124

Importantly, both gains and losses are higher for sites that differ between the two 125

parental lines: the increase is roughly 10-fold for gains and almost 2-fold for losses 126

(Fig 3D, S3 Table). Given this, and the other similarities to trans-generational 127

epimutations noted above, it is reasonable to hypothesize that both are generated by 128

the same mechanism, and that trans-generational epimutations are simply somatic 129

epimutations that end up being transmitted via gametes. 130
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Fig 3. Somatic deviations across the genome (A) Line plot for gene density.
(B) Heatmaps show genome-wide somatic deviations for gains and losses for genes in
F2 individuals at both temperatures (n=308). Each row is an individual. Gene
density and deviations were calculated in 500 kb windows across the genome. Vertical
solid lines represent chromosome breaks and dotted lines represent the centromere
positions. (C) Average gains and losses for each gene (in NN background) plotted
against average H2A.Z ChIP-seq level (in Col-0 [32]). (D) Average gains and losses
across the genome for homozygous NN and SS individuals. Deviations at sites that
differ between the parents are shown using dashed lines (see Fig 2).

Motivated by this, we investigated whether the observed gains and losses have the 131

properties one would näıvely expect of mitotically heritable epimutations. Specifically, 132

we tested whether cells switch state independently of each other (conditional on 133

estimated rates of switching) within and between individuals using a simulation 134

approach (see Materials and Methods). If deviations were largely due to somatically 135

inherited epimutations (perhaps effecting large sectors of the sequenced plants), 136

changes within plants would be positively correlated, and we might see inflated 137

variance between plants, with some plants being responsible for most of the average 138

deviation at a given site (see Fig 2). However, with the possible exception of gains on 139

sites that differ between the parents, we see no evidence of this phenomenon (S5 Fig). 140

The distribution of gains seems compatible with independent changes within and 141
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between plants, and there is no evidence for large sectors due to somatic inheritance 142

(n.b. our power to detect such sectors if extremely limited due to low sequencing 143

coverage per-individual). 144

The distribution of losses, on the other hand, is clearly incompatible with 145

independent mutations, but in the opposite direction: there is far too little variation 146

between individuals for losses to reflect random independent events (S5 Fig). 147

Genetic architecture of deviations 148

To investigate genetic and environmental factors influencing these deviations, we used 149

a standard F2 linkage mapping model that includes temperature as an environmental 150

factor and allows for genotype-by-environment interaction (G×E). As phenotypes, we 151

used deviations in 500 kb windows across the genome. Windows were used because 152

per-site deviations are far too noisy (since deviations are rare), and using genome-wide 153

deviations is inappropriate given clear evidence for heterogeneity across the genome 154

(Fig 3): the 500 kb size was empirically determined. The results provide further 155

evidence that gains and losses are different phenomena. For both phenotypes, we 156

identify significant trans-acting QTL, but they are not the same (Fig 4A, S4 Table). 157

Furthermore, gains are also affected by strong cis-acting factors. 158
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Fig 4. Genetic architecture of deviations. (A) Heatmaps showing linkage
mapping results for gains and losses in 500 kb windows together with plots summing
LOD scores across these windows. Peaks above gray region are significant using a 1%
FDR based on genome permutations. Vertical dotted lines identify centromeres and
solid lines separate chromosomes. (B) Bar plots summarizing variance partitioning
results for gains and losses. Results are binned by total variance explained, with thin
black lines showing the distribution of windows across bins.
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QTL affecting losses are far stronger and had more consistent effects across the 159

genome. We identify two major QTL accounting for about 5% of the variation each, 160

with similar effects in both temperatures, and with additive effects within and 161

between loci (i.e., no dominance or epistasis; see Fig 5, S6 Fig and S4 Table). The 162

northern and southern alleles have opposite effects at the two loci. 163
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Fig 5. QTL effect-size estimates. (A) The distribution of variance explained
across 500 kb windows for a gain QTL (left) and a loss QTL (right). The mean effects
(vertical lines) are similar, but the gain QTL has a highly skewed distribution, with
strong effect only on a subset of windows, where the loss QTL affects most of the
genome. (B) The distribution of cis effect sizes. (C) Genotypic effects for two gain
QTL and three loss QTL. Average gains and losses across windows significantly
associated with QTL are shown. (D) Reaction norms for predicted gains and losses in
individuals homozygous for the northern or southern alleles at all significant QTLs.

The two QTL for gains affect different windows (Fig 5). Each QTL explains a 164

couple of percent of the variation, and the north-south direction of effects is again 165

reversed between the loci. At each locus, the allele associated with greater gains is 166

recessive, and the effect of the chromosome 5 QTL is only seen at 4℃. There is no 167

evidence for epistasis. 168

In order to quantify the factors affecting the deviations, we partitioned the 169

variance in each 500 kb window using a linear model that includes local (cis-) 170

genotype (i.e., NN, SS, or NS), temperature, and the identified QTL as factors. The 171

results for gains and losses are again strikingly different (Fig 4B). For losses, the 172

majority of the variance is explained by the QTL, with a minor role for 173

QTL-by-temperature (QTL×T) interactions. For gains, QTL, QTL×T, and 174

cis-genotype appear to play roughly equal roles, and there is also evidence for 175

interactions between the cis-genotype and temperature. Temperature, in-and-of-itself, 176
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explains little of the variation, however, the G×E effects for gains are substantial. 177

This can also be seen in the predicted response for the parental QTL genotypes (Fig 178

5D), which agree with direct estimates (S7 Fig). 179

In an attempt to fine-map some of the QTL identified here, we turned to GWAS. 180

We used the population data from reference [3], where about 100 accessions were 181

grown at two temperatures, 10℃ and 16℃. We calculated genome-wide deviations for 182

each accessions by considering sites with less than 50% methylation as gains and sites 183

with more than 50% methylation as losses. Consistent with temperature having little 184

effect, deviations are highly correlated between the two temperatures (r = 0.74, S9 185

Fig). The average gains and losses across accessions are around 0.5% and 9%, 186

respectively, and we performed GWAS using these as phenotypes, but could not 187

identify any significant associations (S9 Fig). The same is true when 500 kb windows 188

rather than genome-wide averages are used. 189

Cis-effects on deviations 190

We have seen that deviations are associated with the local haplotype, i.e., they are 191

affected by cis-acting factors (Fig 4). The effect is particularly pronounced for gains, 192

but is also seen for losses. Generally speaking, the cis-effects work in the direction of 193

the observed differences, i.e., gains are more pronounced on the more methylated N 194

allele and losses are higher on the less methylated S allele (Fig 5B). 195

While it possible that these effects are due to genetics, it would imply that 196

cis-regulatory differences have evolved throughout the genome. It seems more likely 197

that the effects are a consequence of the epigenetic differences that we know exist. As 198

mentioned previously, deviations are associated with the underlying chromatin state 199

(Fig 3), suggesting the local epigenetic state influence them. 200

Motivated by this, we examined whether deviations are correlated with 201

methylation levels at the level of individual genes. And indeed, gains tended to be 202

higher on the allele with higher methylation level, while losses show the opposite 203

pattern (Fig 6A). Zooming in further, we find that both gains and losses are strongly 204

affected by nearby methylation at a nucleotide scale (Fig 6B). For gains in particular, 205

the effect seems to be limited to less than 30 bp. 206

Partially reciprocal cross 207

As noted above, this experiment was designed to include a reciprocal cross in order to 208

test for parent-of-origin effects on methylation, but undetected residual heterozygosity 209

in one of the parental lines made the cross only partially reciprocal, making 210

interpretation of differences challenging. For this reason, discussion thus far has been 211

limited to the cross in which the northern line was used as maternal parent. 212

In the reciprocal cross, we observe very similar patterns of deviations across the 213

genome (S8 Fig). Average losses are strongly correlated between the F2 populations at 214

the level of genes (Fig 7A), and the two significant QTL appear to be replicated 215

(although the significance of the one on chromosome 5 was weaker). In addition, we 216

identify a new QTL on chromosome 1 that directly overlapped the region segregating 217

between the F2 populations and is thus probably due to a genetic difference rather 218

than the direction of the cross (Fig 7B). 219

In stark contrast, average gains are not correlated between the two directions of 220

the cross (Fig 7A). Given this, it is not surprising that the corresponding QTL 221

mapping results are also discordant, with previously identified QTL being replaced by 222

different ones in (Fig 7B). The QTL do not overlap regions that segregate between the 223

F2 populations, and must thus either reflect epistatic interaction with putative causal 224

polymorphism in these regions, or parent-of-origin effects. 225
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Fig 6. Cis-effects on deviations (A) Across 10,160 genes with gbM, the difference
in gains between northern and southern alleles (estimated from homozygous
individuals) is correlated with the difference in gbM between the same alleles. Both
correlations (Spearman coefficients of 0.2 and -0.12 for gains and losses respectively)
are significant (p < 0.01). (B) Average gains and losses at a given CG site depends on
the distance to the nearest methylated CG site.

Discussion 226

The motivation for this study was to gain insight into how gbM is inherited — and 227

how it changes. While several studies have established that mCG is generally stably 228

inherited over large numbers of generations, albeit with a high (epi-)mutation 229

rate [1, 8, 9, 33], it is also clear that substantial geographic differences exist, differences 230

that cannot be explained via random mutations [3, 19]. We used a traditional diallel 231

F2 cross between two parental lines that differ considerably in gbM to investigate this 232

further. Our analysis provides very strong confirmation that mCG shows Mendelian 233

segregation [30], and our estimated per-site, per-generation epimutation rates of 234

∼ 0.04% for gain of methylation and ∼ 0.2% for loss of methylation are also consistent 235

with previous estimates (although there are odd phenomena that will be discussed 236

below) [33]. 237

What is novel about our study is that we focus on somatic deviations from the 238

inherited methylation state, either gains (for sites inherited as unmethylated) or losses 239

(for sites inherited as methylated). Not only do these provide more observations than 240

trans-generational epimutations (since we survey more cells than plants), but, more 241
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Fig 7. Somatic deviations in the partially reciprocal cross. (A) Average gains
and losses per gene (in NN background) for both directions of the cross. (B)
Aggregate linkage mapping results (sum of LOD scores for 500 kb window) for both
directions of the cross. The results for the NN×SS direction were already shown in Fig
4A. The 99% significance thresholds were determined using 1000 genome rotations
(see Materials and Methods). Regions that segregate between the two F2 populations
are shown using grey vertical bands.

importantly, they are by definition phenotypes — they occurred in the current 242

generation, and could have been affected by the genetic background and 243

environmental exposure of each individual. These effects can be investigated using 244

standard methods of quantitative genetics. 245

We find that gains and losses behave very differently, presumably reflecting 246

different molecular mechanisms. Gains occur at low rates (higher than the estimated 247

trans-generational rate of gains, but same order of magnitude), independently within 248

and between individuals, perfectly consistent with their being somatic epimutations. 249

We also see that somatic gains of methylation are positively correlated with nearby 250

(within 30 bp) methylation, just as has been observed for trans-generational gains of 251

methylation (cf. Fig 6B with Fig 3 in reference [34]). It is thus reasonable to 252

hypothesize that the QTL we identify correspond to bona fide modifiers of the 253

epimutation rate — which makes it very interesting that they show strong G×E 254

effects (Fig 4), as well as possible parent-of-origin effects (Fig 7). If the mechanisms 255

that give rise to the somatic gains we observe also give rise to trans-generational gains, 256

the pattern of gbM variation observed in nature [3, 19] could reflect a complex 257

interplay between trans-acting genetic factors and the environment. 258
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Somatic losses, on the other hand, at first look nothing like epimutations. They 259

occur at rates two orders-of-magnitude higher than trans-generational epimutations, 260

and are furthermore positively correlated between individuals, which is clearly not 261

consistent with random mutations. One explanation is that they reflect experimental 262

artefacts due to bisulfite sequencing, which typically shows less than 100% 263

methylation when used on fully methylated control DNA [35]. However, while this is 264

likely to contribute, artefacts would not give rise to highly significant QTL. These 265

must have a biological basis, but not necessarily one related to epimutations. It 266

important to remember that mCG is automatically lost during DNA replication (the 267

newly synthesized strand is unmethylated, leading to hemi-methylated DNA), and 268

that the maintenance of mCG across mitosis is therefore an active process, catalyzed 269

by MET1 [1]. Anything that caused an imbalance between the rate of cell division and 270

MET1 activity could lead to somatic losses, and these could well be unrelated to 271

trans-generational epimutations. 272

This said, the somatic losses we observe are probably not completely unrelated to 273

epimutations. At least two lines of evidence speak against this. First, both losses and 274

gains are much more pronounced on sites that differ between the parental lines (Fig 275

3), consistent with a shared mutational mechanism. Second, just as was the case for 276

gains, losses show a dependence on local methylation that is similar to what has been 277

seen for trans-generational loss-of-methylation mutations (cf. Fig 6B with Fig 3 in 278

reference [34]). 279

Considering all this, we believe that the losses we observe reflect a mixture of 280

(biased) experimental noise and biological factors that are distinct from those affecting 281

gains. In addition to the differences in the fine-scale pattern also observed in 282

reference [34], the QTL we identify for losses have larger effect than those for gains, 283

and show no evidence of G×E or parent-of-origin effects. 284

In conclusion, we have shown that while gbM methylation is apparently mostly 285

directly inherited, it can be influenced by trans-acting genetic modifiers that are 286

different for gains and losses, and that show strong G×E effects for the former. 287

Whether such modifiers can explain the natural geographic variation in gbM remains 288

to be demonstrated, but is a plausible hypothesis. Finally, we emphasize that much 289

remains unknown about gbM. We do not understand its function (if any), and we do 290

not even fully understand how it is established and maintained. For the latter 291

question, better data (e.g., strand-specific methylation haplotype data from single cells 292

not obtained using bisulfite-sequencing) in large pedigrees will be needed. 293

Materials and methods 294

Plant growth 295

We chose two natural inbred lines from Sweden that had been shown to differ 296

considerable in gbM [3]: one line from Lövvik in northern Sweden (ID 6046, 297

lat. 62.800323, long. 18.075722) with average gbM of 16% and another from 298

Drakamöllan in southern Sweden (ID 6191, lat. 55.758856, long. 14.132822) with 299

average gbM of 12.5%. We generated recombinant hybrid progeny of these two lines 300

by collecting seeds from selfed F1 individuals for the reciprocal directions (S1 Fig). 301

Selfed parental lines were grown along with F2 individuals from two families at two 302

temperatures (16℃ and 4℃) in a randomized block design (S1 Table). We grew plants 303

on soil and stratified for 5 days at 4℃ in the dark before transferring them to long day 304

chambers with 16 hours of light and 8 hours of darkness. When plants attained the 305

9-true-leaf stage of development, one or two leaves were collected and flash-frozen in 306

liquid nitrogen. 307
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DNA extraction and bisulfite sequencing 308

Genomic DNA was extracted from frozen tissue using the NuclearMag Plant kit 309

(Machery-Nagel). We adopted a tagmentation-based protocol to generate multiplexed 310

DNA libraries for whole-genome bisulfite sequencing (T-WGBS; [35]). We optimized 311

the protocol for low DNA inputs (20 ng) and high-throughput (96-well plates). We 312

used in-house Tn5 transposase generated at Vienna BioCenter Core Facilities. The 313

tagmentation, oligonucleotide replacement and gap repair were done according to the 314

T-WGBS protocol. 315

We used EZ-96 DNA Methylation-Gold Mag Prep kit (Zymo Research) for bisulfite 316

conversion from tagmented DNA. We PCR-amplified bisulfite-treated DNA with 15-16 317

cycles with KAPA HiFi Uracil polymerase (Kapa Biosystems). We used Illumina 318

TruSeq unique index adapters for PCR amplification and multiplexing of the libraries. 319

Amplified libraries were validated using Fragment Analyzer™ Automated CE System 320

(Advanced Analytical) and multiplexed (96X) in equimolar concentration. Libraries 321

were sequenced on Illumina HiSeq™2000 Analyzers or HiSeqV4 using the 322

manufacturer’s standard cluster generation and sequencing protocols in 100-125bp 323

paired-end mode. 324

Sequencing data analysis 325

Sequenced BS-seq reads were analyzed using a well-documented nf-core pipeline 326

(github.com/nf-core/methylseq). First, BS-seq reads were trimmed for adaptors 327

using cutadapt (default parameters), and we clipped 15 bp at the beginning of the 328

reads due to uneven base composition. Second, the trimmed reads were mapped to the 329

TAIR10 (Col-0) reference assembly using bismark relaxing mismatches to 0.5 [36]. 330

Third, methylation calling was performed using methylpy on the aligned bam files. We 331

used custom scripts to calculate weighted averages of methylation [37] at annotated 332

genes and transposable elements using the ARAPORT11 annotation 333

(www.arabidopsis.org/download/index-auto.jsp?dir=%2Fdownload_files% 334

2FGenes%2FAraport11_genome_release). All scripts used were packaged in python 335

and are available on github (github.com/Gregor-Mendel-Institute/pyBsHap.git). 336

Bisulfite conversion rate estimation 337

It is common practice to use the chloroplast genome (cpDNA) to estimate conversion 338

rates for BS-seq libraries, since cpDNA is unmethylated [38]. The non-conversion rate 339

was calculated as the fraction of methylated cytosines from reads mapped to the 340

cpDNA. The estimated conversion rate for the libraries is on average 0.3%. We then 341

ignored methylation on sites that did not have significantly higher methylation than 342

expected due to non-conversion (using a binomial test with probability of 0.3%; 343

p-value of 0.05). 344

Gene body methylation 345

We calculated methylation levels on all exonic CG sites. We excluded genes with 346

significant non-CG methylation in either of the parental lines from the analysis (S10 347

Fig), but did not rely on any other epigenetic marks. In doing so, the average mCHG 348

and mCHH levels per gene were scaled, and outlier genes were identified using twice 349

the standard deviation. 350
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SNP calling and genetic map reconstruction using bisulfite 351

treated libraries 352

The mapped bam files from bismark were modified for base positions that are 353

influenced by bisulfite treatment (C → T and G → A) using Revelio 354

(github.com/bio15anu/revelio.git) [39]. We genotyped 10.7 million previously 355

identified SNP sites [40] using bcftools with default parameters [41]. The scripts for 356

the pipeline were packaged and hosted on github 357

(github.com/Gregor-Mendel-Institute/nf-haplocaller). 358

Next, we inferred the underlying ancestry at each SNP marker segregating between 359

parents in F2 individuals using a multinomial hidden Markov model (adapted from 360

reference [42]) packaged in the SNPmatch package 361

(github.com/Gregor-Mendel-Institute/SNPmatch.git). Bisulfite sequencing gives 362

uneven coverage across the genome, but such data can be used to infer ancestry with 363

high accuracy, in particular in F2 individuals were ancestry tracts are very long. We 364

filtered out SNP markers having identical genotype data across individuals using R/qtl 365

package [43]. This resulted in a total of 3983 SNP markers used for linkage mapping. 366

Residual heterozygosity in reciprocal cross 367

We calculated percentage of heterozygous SNP calls for parental lines sequenced as 368

part of the 1001 Genomes project [40]. At least four genomic regions more than 369

300 kb had residual heterozygosity in the southern parent (S1 FigB). 370

As a consequence, for any given site in these regions, different southern alleles could 371

be segregating in the reciprocal crosses, i.e., rather than N and S alleles segregating in 372

both, we could have N and S1 in one direction, and N and S2 in the other. To 373

identify such regions, we identified all SNP segregating in each F2 population, then 374

compared them using SNPmatch [44]. As expected, this revealed that a subset of the 375

putatively heterozygous regions differed between the directions of the cross (S1 Fig). 376

Estimating somatic deviations 377

Each F2 family (NN×SS and SS×NN) is the offspring of a single F1 individual, a 378

hybrid with NS-ancestry at every site. Every mCG site would either be methylated 379

(11), unmethylated (00) or heterozygous (01) in this F1 individual (Fig 2). Due to the 380

stable inheritance of mCG, we expect the parental methylation state to have been 381

passed on, and this was readily confirmed. Somatic gains and losses were calculated as 382

weighted averages across sites classified as having been inherited homozygous 383

unmethylated or methylated, respectively [37]. This was either done per gene or in 384

windows of 500 kb. 385

In individuals heterozygous for methylation state (NS), we expect to see 50% 386

methylation since we lack the power to do allele-specific methylation (given 100 bp 387

reads, and our data supports this (S3 Fig). 388

The python scripts used for these analyses were packaged and are hosted on github 389

(github.com/Gregor-Mendel-Institute/pyBsHap). 390

Modeling somatic deviations 391

Let sij be the number of reads with ancestral methylation at site i in individual j, and
let fij be the number of reads with non-ancestral methylation. We calculate deviation
from the ancestral state as xij = fij/nij , where nij = sij + fij . We also define the
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average deviation at site i,

x̄i. =
N∑
j=1

xij/N ;

the average deviation for individual j,

x̄.j =
M∑
i=1

xij/M ;

and the total average deviation

x̄ =
M∑
i=1

x̄i./M =
N∑
j=1

x̄.j/N.

We wish to test the null-model that deviations are due to independent mutation in 392

each cell, mutations that occur with site- and individual-specific probabilities. For site 393

i in individual j, reads were simulated by drawing from a binomial distribution with 394

parameters nij and pij = x̄i. + x̄.j . We then calculated the variance across individuals 395

for each site, and compared simulation results with data. If there were large sectors of 396

epimutations in some individuals (i.e., non-independence of states within individuals), 397

the between-individual variance should be inflated. We observe the opposite for losses, 398

whereas gains are broadly consistent with the null model. 399

QTL mapping and variance partitioning 400

We performed linkage mapping using the R/qtl package [43]. We use both simple 401

interval mapping (using the ‘scanone’ function) and composite interval mapping (using 402

the ‘cim’ function) via Haley-Knott regression. We included growth temperature as a 403

cofactor when performing linkage mapping as full model. We identified QTLs having 404

an interaction with temperature by comparing full model with the additive model. 405

QTLs were identified by adding LOD scores across genomic regions. The significance 406

threshold was calculated by permuting (n = 1000) LOD scores and performing 407

genome-rotations to retain the LD structure. 408

We estimated variance explained for identified QTLs, cis genotype, temperature, 409

and their interactions using a linear mixed model. We used the ‘lmer’ function from 410

‘lme4’ package in R [45] to implement the model 411

y = Gcis + T +
∑
i

GQTLi
+Gcis × T +

∑
i

GQTLi
× T + ϵ, (1)

where y is the somatic deviation at a given genomic region, Gcis is the genotype at the 412

cis marker, GQTLi
is the genotype at QTL marker i, and T is the growth temperature. 413

Genome-wide association mapping (GWAS) 414

GWAS was performed using a linear mixed model implemented using LIMIX [46]. We 415

used the SNP matrix (n = 3,916,814) from the 1001 Genomes Project filtered for 416

SNPs with minor allele frequency greater than 5% in the Swedish populations [40]. 417

Estimating epimutation rates 418

We used the average methylation across replicate individuals of each parental line to 419

infer the methylation state of the grand-parental individual (Fig 1 and S1 Fig). 420
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Analogously, we used a weighted average across F2 individuals homozygous for each 421

ancestry (NN or SS) to infer the methylation state of the F1 individual (separately for 422

the N and S chromosomes, see S1 Fig). 423

Any trans-generational epimutations that occurred during these two generations 424

would give rise to differences between the inferred grand-parental and F1 states, and it 425

should be possible to use this to estimate the epimutation rate. However, such 426

differences could also result from estimation error, and we realized that one important 427

source of such error would be sites heterozygous for methylation in the grand-parental 428

generation. Such sites would lead to segregating methylation among the parental 429

replicates, and lead to random assignment of grand-parental methylation state using 430

our 50% rule. They are expected to be extremely rare, and indeed there is no evidence 431

of them in Fig 1. However,when comparing the distribution of methylation levels 432

across sites in the averaged parental individuals compared to the averaged F2 433

individuals, we do see an enrichment of sites with intermediate methylation in the 434

former (S11 Fig), presumably reflecting grand-parental heterozygosity. Another 435

potential source of error is cryptic copy number variation, which could lead to 436

pseudo-heterozygosity and again intermediate levels of methylation [47]. 437

In order to guard against these errors, we filtered out all sites with ambiguous 438

methylation state in either the grand-parental or F1 generation, conservatively 439

retaining only sites consistent with the genome-wide distributions of gains and losses 440

(average somatic gains per site are less than 0.2 and average somatic losses per site are 441

less than 0.35, see S5 Fig). Almost all sites removed using this approach are due to 442

insufficient coverage in the parental generation (which does not affect the calculations 443

of somatic gains and losses in the rest of the paper). 444

With this filtered data, we estimate epimutation rates by comparing the inferred 445

methylation state of the grandparent with that of the F1. Any difference effectively 446

means that the F1 allele must have changed state either in early development, or via 447

an epimutation from parent to F1, or from grandparent to parent, i.e., the changes 448

reflect two generations. 449

We calculated epimutation rates separately for the northern and southern lineage, 450

and also for the two F1 individuals resulting from the two directions of the reciprocal 451

cross (S12 Fig, S13 Fig, S5 Table). The average per-site, per-generation epimutation 452

rates are ∼ 0.04% and ∼ 0.2% respectively (S5 Table), but there are several anomalies 453

that caution against over-interpretation of these estimates. First, losses on the 454

northern lineage are three times higher in the NN×SS direction of the cross than in 455

the SS×NN direction, and gains on the southern lineages are two times higher in the 456

NN×SS direction of the cross than in the SS×NN direction. Second, when filtering for 457

ambiguous methylation the F1 generation, we detected evidence of rapid change in 458

this generation, consistent with the action of trans-acting modifiers. Third, the 459

overlap in mutated sites between the two crosses is orders of magnitude higher than 460

could be expected under any model of random mutations. The far greater sharing 461

along the northern lineage suggests that the same parental individual was used as 462

mother in one direction of the cross and father in the other (this would result in 463

sharing of half of all epimutations that occurred in the first of the two generations of 464

the pedigree, see S13 Fig). These observations provide further evidence (see also 465

reference [34]) that a model of random epimutations is not sufficient, and suggest that 466

further experiments are badly needed. 467

Finally, we calculated epimutation rates for sites differentially methylated between 468

the parental lines (S14 Fig, S6 Table). Consistent with the patterns in somatic 469

deviations (Fig 3), epimutation rates are much higher for these sites: ten-fold for gains 470

and two-fold for losses. 471
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Data availability 472

The raw sequencing data and the methylation calls are uploaded to NCBI GEO 473

database under GSE215839. All the scripts and the intermediate data files used for 474

the analysis are uploaded on Github 475

(github.com/Gregor-Mendel-Institute/pisupati-gbm-paper-2022.git). 476
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Supporting information 627

S1 Table. Individuals sequenced.

Genotype 16℃ 4℃ Total
Parent N 7 16 23
Parent S 9 16 25

F2 (NN×SS) 134 174 308
F2 (SS×NN) 132 174 306

S2 Table. Average somatic deviations in F2 individuals.

Gains Losses
16℃ 0.00092 0.0744
4℃ 0.001 0.0724
Mean 0.00097 0.073

S3 Table. Deviations in NN and SS backgrounds, separately for sites that are
identical vs differ between N and S.

Gains Losses
Identical Differ Identical Differ

NN 0.0011 0.0152 0.0738 0.1428
SS 0.00085 0.01470 0.0753 0.1558

S4 Table. Linkage mapping results for deviations in NN×SS cross.

Top SNP 95% CI in Mb Candidate genes (position)

Gains
Chr1:5038757 Chr1:4.0-5.5 RDR1 (5.1), SHH1 (5.2), IDNL1 (5.4),

SUVH7 (6.1)
Chr5:15932197 Chr5:15.8-17.6 VIM3 (15.8), AGO10 (17.6), SUVR2 (17.7)

Losses
Chr1:21740818 Chr1:8.0-23.6 VIM1 (21.4), NRPD1 (23.3)

Chr4:5929511 Chr4:5.1-6.3 RDR2 (6.8), SUVH9 (7.8), MET2 (8.1)

Chr5:16445720 Chr5:16.1-17.0 VIM3 (15.8), AGO10 (17.6), SUVR2 (17.7)

S5 Table. Epimutation rates using data from S12 Fig.

Gains (%) Losses (%)
Line NN×SS SS×NN NN×SS SS×NN
N 0.03 0.04 0.30 0.11
S 0.06 0.03 0.27 0.23

S6 Table. Epimutation rates using data from S14 Fig.

Gains (%) Losses (%)
Line NN×SS SS×NN NN×SS SS×NN
N 0.55 0.38 0.71 0.20
S 0.40 0.27 0.68 0.61
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A.

B.

Grandparent N Grandparent S

F1 (NNxSS) F1 (SSxNN)

F2 (NNxSS) F2 (SSxNN)Parent N Parent S

Sampled
for BS-seq

S1 Fig. Experimental design and residual heterozygosity. (A) Reciprocal F2
design. (B) The left panel shows evidence for residual heterozygosity in the parental
lines in the 1001 Genomes data. The right panel shows region where different SNPs
are segregating in the reciprocal F2 populations.
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D.

A. B.

C.

S2 Fig. Genetic map construction for the NN×SS cross. (A) Genetic map
and markers. (B) Segregation distortion in the cross and genotype frequencies across
the chromosome. (C) Number of crossovers per chromosome in the genetic map. (D)
Pairwise recombination fraction (upper left triangle) and LOD scores for the markers.
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A.

B.

S3 Fig. Mendelian segregation for gene-body methylation. (A) Distribution
of methylated CG sites the genome in 200 kb windows, separately for 213178 sites
methylated in both parents (N-1 S-1), 109868 sites methylated only in the northern
parent (N-1 S-0), and 39682 sites methylated only in the southern parent (N-0 S-1).
(B) Genotype and relative methylation levels for 6 F2 individuals along
chromosome 1. Genotypes are given by colors (NN is turquoise; SS is yellow; NS is
grey), relative methylation levels by black curve.
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A.

B.

C.

D.

S4 Fig. Patterns of somatic deviations. (A) Gains and losses separated by four
contexts (CGA, CGT, CGG and CGC). (B) Average gains and losses across the
genome at different temperatures. (C) Methylation levels at (gain at previously
unmethylated) CG, CHG and CHH sites near a mCG gain site. (D) Methylation
levels at CG (loss at previously methylated), CHG and CHH sites near a CG loss site.
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A.

B.

S5 Fig. Modeling somatic deviations. (A) Distribution of average deviations per
site and per individual using data from chromosome 1 NN genotypes as an example.
(B) Distribution of the variance between individuals across sites, Var(X.j), in data
and in simulations. Top row shows the distribution for all sites, bottom row only for
sites that are differentially methylated between N and S.
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A.

B.

S6 Fig. Composite Interval Mapping for average deviations. (A) Composite
Interval Mapping was applied to four different gain phenotypes and four different loss
phenotypes in order to refine peaks. For each of the four major QTL identified by
combining results across 500 kb windows (two for gains and two for losses, see Fig 4)
deviations were averaged over regions showing QTL effect at two temperatures. (B)
Testing for epistasis on the QTLs for somatic deviations (using the “scantwo” function
in R/qtl). Two QTLs on Chr1 and Chr5 for gains and three QTLs on Chr1, Chr4 and
Chr5 for losses. The bottom triangle is the LOD scores for the full model including
the interaction effect, upper triangle is LOD scores for only the interaction.
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S7 Fig. Deviations in parental strains. Reaction norms for average gains and
losses for parental strains.
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A.

C.

B.

D.

E.

S8 Fig. Genetic architecture of deviations in reciprocal cross (SS×NN).
(A) Average deviations in 500 kb windows across genome (cf. Fig 3). (B) QTL
mapping for gains and losses (cf. Fig 4). (C) Variance-partitioning results (cf. Fig 4).
(D) Temperature effects on average gains and losses (in NN background) for both
directions. (E) Genotypic effects for two gain QTL and three loss QTLs (cf. Fig 5).
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A. B.

C.

D.

S9 Fig. GWAS of deviations in Swedish A. thaliana. (A) mCG allele
frequencies in populations from northern and southern Sweden [3]. (B) Correlation
between genome-wide deviations between 10℃ and 16℃. (C) GWAS for genome-wide
gains. (D) GWAS for genome-wide losses.
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S10 Fig. Gene-body methylation %mCHG and %mCHH on annotated protein
coding genes (Araport 11) in parental lines N and S. We filtered out genes having any
non-CG methylation on the gene-bodies to determine the gbM genes.

S11 Fig. Possibly heterozygous mCG sites in grandparents Histograms for
methylation levels on gbM sites averaged across parental values (N in the left panel
and S on the right panel), F2 individuals homozyogous for the same ancestry, and F2
individuals heterozygous for ancestry. There are far more sites with intermediate
values in the parental than in the homozygous F2 data, although the former is also
supposed to be homozygous.
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S12 Fig. Trans-generational epimutations. The plots compare average gbM for
parents with average gbM for F2 individuals homozygous for the parental ancestry
across sites, separately for the two cross-directions. Only data from chromosome 5 was
used as all other chromosomes showed evidence of residual heterozygosity in the
southern parental line (S1 Fig).
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Gain: 169 (72)

Loss: 413 (257)

Grandparent N

F1 (NNxSS) F1 (SSxNN)

Grandparent S

Gain: 211 (50)

Loss: 144 (71) Shared


Gain: 40 (25)

Loss: 35 (23)

Gain: 371 (147)

Loss 289 (88)

Gain: 190 (96)

Loss 256 (79)

Shared

Gain: 10 (3)

Loss: 7 (2)

S13 Fig. Trans-generational epimutations along lines of descent. The
trans-generational epimutation from S12 Fig are shown for each line-of-descent in the
cross. ”Shared” refers to the number of changed sites that are shared between the
directions of the cross, separately for the northern and southern ancestry. The
numbers in parentheses are for the sites that are differentially methylated sites
between N and S (S14 Fig).
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S14 Fig. Transgenerational epimutations. Same plots as S12 Fig but only sites
that differ in methylation between the parental lines were used.
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