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Abstract: 
 
Charting microRNA (miRNA) regulation across pathways is central to characterizing their role in 
disease. Yet, current methods reveal only individual miRNA-pathway interactions. We have 
developed a systems biology approach, Pathway networks of miRNA Regulation (PanomiR), 
that overcomes these limitations to identify miRNA targeting of groups of interacting pathways 
using gene expression. The approach does not depend on statistically significant enrichment of 
miRNA target genes in individual pathways or significant differentially expressed genes. Rather, 
it directly captures differential activity of pathways between states, determining their up-or-down 
regulation while sensitively detecting biologically-meaningful signals. PanomiR analyzes the co-
activity of differentially regulated pathways to determine coordinate functional groups and uses 
these co-activated grouped pathways to uncover miRNAs that target them. Incorporating both 
experimentally-supported or predicted miRNA-mRNA interactions, PanomiR robustly identifies 
miRNAs central to the regulation of disease functions. We applied PanomiR to a liver cancer 
dataset and showed that it can organize liver cancer pathways and their regulating miRNAs into 
coordinated transcriptional programs, reflecting the pathogenic mechanisms of hepatocellular 
carcinoma. PanomiR recapitulated known central miRNAs in liver cancer with a biologically 
meaningful assignment of pathways under their regulation, unbiased by the number of genes 
targeted by each miRNA. PanomiR is a granular framework for detecting broad-scale multi-
pathway programs under miRNA regulation. It is accessible as an open-source R/Bioconductor 
package: <https://bioconductor.org/packages/PanomiR>. 
 
 Keywords: microRNA, miRNA, Pathways, biological networks, systems biology, miRNA 
prioritization, pathway analysis.  
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INTRODUCTION  
 
MicroRNAs (miRNAs) are small non-coding RNAs that act as potent regulators of 

cellular functions and molecular pathways (1). They post-transcriptionally regulate gene 
expression and can coordinate gene function across distinct pathways. miRNA dysregulation 
has been shown to be a central component of the pathogenesis of diverse diseases, including 
neoplastic conditions and Alzheimer’s Disease (2–20). Because miRNAs can target dozens of 
genes, the characterization of their roles in health and disease requires charting of coordinate 
co-regulation across heterogeneous molecular cascades and pathways. Despite extensive 
progress in the field to map the effects of miRNAs on one or more pathway activities (4, 21–27) 
or the effect of pathway activity on a miRNA, no framework exists for characterization and 
prioritization of the multi-pathway dynamics of miRNA-orchestrated regulation that form driving 
transcriptional programs in both healthy and diseased states.  
 

Current best practice for the transcriptomic study of miRNA regulation relies on miRNA-
gene or one-to-one miRNA-pathway relationships. miRNA-pathway analysis techniques such as 
gene set enrichment and correlation are used to detect whether a pathway is potentially 
regulated by a miRNA (4, 21). Enrichment analyses evaluate the presence (overlap) of targets 
of a single miRNA in a single pathway, aiming to identify pathways with a higher number of 
targets than expected by chance (21, 22, 28–32). Alternatively, correlation methods evaluate 
the association of the expression of a single miRNA with a gene representing the activity of a 
pathway (4, 33). Table 1 describes some of the most widely used methods for miRNA pathway 
analyses, their scope and approach. Large-scale functional processes in health and disease 
coordinate across pathways in multiple ways, including gene-sharing, pathway co-activity, multi-
pathway co-regulation, and cross-talk (34–39). Current approaches fail to account for these 
complex relationships and disease-specific expression dynamics, which in turn limits our ability 
to detect the potential of a miRNA to regulate highly-specific or broadly-acting gene expression 
programs.  

 
To uncover how multiple pathways are coordinated by miRNAs to form gene expression 

programs, we have developed a framework to address existing limitations from a systems 
perspective. Pathway networks of miRNA Regulation (PanomiR) enables discovering central 
miRNA regulators based on their ability to control coordinate pathways forming a transcriptional 
program. PanomiR determines if a miRNA concurrently regulates and targets a coordinate 
group of disease- or function-associated pathways, as opposed to investigating isolated miRNA-
pathway events. PanomiR derives these multi-pathway targeting events using predefined 
pathways, their co-activation, gene expression, and annotated miRNA-mRNA interactions. Its 
framework (i) captures the activity of pathways and identifies disease-specific differentially 
regulated pathways using pathway activity profiling, a technique that accounts for overall co-
activity of genes and commonly observed biases (40–42); (ii) constructs a co-expression 
network of differentially regulated pathways (based on a reference of pathway co-expression 
networks) and deconvolves it into coordinate groups of pathways that act in concert using 
network clustering algorithms (40–42); (iii) determines miRNAs targeting these coordinate 
pathway groups using a novel statistical test and pre-determined miRNA-mRNA interactions 
from experimentally-supported or prediction databases (43, 44). Taken together, these steps 
produce broad-scale, multi-pathway, and disease-specific miRNA regulatory events (Figure 1).  

 
In order to highlight PanomiR’s ability to detect miRNAs regulating gene expression 

programs in human disease, we applied it to the hepatocellular carcinoma dataset of The 
Cancer Genome Atlas (TCGA) comprising 368 primary tumor samples and 49 controls(45). 
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PanomiR unbiasedly detected multi-pathway miRNA regulation events in this well-documented 
disease and generated a comprehensive framework for evaluating miRNA-associated 
mechanisms (46). We identified differentially regulated pathways and uncovered their regulating 
miRNAs in liver cancer, assessed biological relevance of the readouts, and evaluated the 
statistical robustness of PanomiR using in silico experimentation. PanomiR recapitulated known 
central miRNAs in hepatocellular carcinoma with a biologically meaningful assignment of 
pathways under their regulation, unbiased by the number of genes targeted by miRNAs. 
PanomiR is available as an easy-to-use Bioconductor R package, enabling its application in 
research projects, inclusion into in silico tools, and augmentation of analysis pipelines. 

 
 

MATERIALS AND METHODS 
 
Overview and input datasets  

The overarching goal of PanomiR is to detect miRNAs regulating multi-pathway 
condition-associated gene expression programs (Figure 1). PanomiR uses as input a user-
provided gene expression dataset (e.g., RNAseq) to quantify pathway activity profiles by 
utilizing annotated pathway datasets from the Molecular Signatures Database (MSigDB) (Figure 
1A-1B)(47). Pathway activity profiles are then compared between two conditions (e.g., cancer 
vs control, wild type vs knockout) to identify and prioritize differentially regulated pathways 
(Figure 1C). To determine broad-scale condition-associated groups of functions, PanomiR 
constructs a co-activity network of differentially regulated (or disease dysregulated) pathways 
and deconvolves the network into coherent functional groups using reference pathway co-
expression networks; using our previously-described pathway activity methods (Figure 1D-1E) 
(40–42). Subsequently, PanomiR integrates miRNA-mRNA interactions provided by the user 
(such as predicted targets from TargetScan (43) or experimentally validated interactions from 
TarBase (44)) to evaluate miRNA regulatory effects on coordinate pathway groups (Figure 1F). 
The final output of PanomiR is a ranked list of central miRNAs, together with statistical 
significance levels for each group of differentially regulated pathways, providing an effective 
means for identification of pathway groups, and for key miRNA prioritization, ranking, and target 
detection. PanomiR identifies differentially coordinated transcriptional programs between two 
conditions to provide a direct prioritization of the miRNAs responsible for their coordination. 

   
Capturing pathway activity dynamics  

Extending the approach developed in our previous methodology, Pathprint (40–42), 
PanomiR ingests a user-provided gene expression dataset and calculates pathway activity 
scores to capture pathway functional dynamics  (Figure 1B). The scores are proxy values for the 
activity of genes in individual pathways, which in turn, represent biologically meaningful 
functional units. By capturing gene expression levels as pathway activity scores, inherent 
complexity is reduced while tolerance to noise is increased when compared to gene-centric 
analyses (4, 41, 42, 48). Pathway activity scores leverage the complex inter-relationships and 
co-activity of genes. They provide the means to examine biological functions in a continuum and 
detect biological signals where standard differential gene expression analyses fail (4, 33, 40, 42, 
48–50).  
 

To capture pathway activity profiles, in a two-step process: (a) we rank genes in each 
sample in descending order, according to their expression, i.e., the highest expressed gene gets 
the largest rank-score; (b) we calculate the average squared ranks of genes that belong to a 
pathway as the activity score. Formally, for a pathway X with n genes, �������� � � 
�

� , . . . , 
�
�
, 

the activity score, ���,�, in sample � is: 
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 ���,� � 1
� � ������
�

���
�

�

 

where ������
�
�� refers to the rank of gene 
�

� (descending order) in sample � based on 
expression values. We generate activity profiles for each pathway of interest in each sample. 
Then, pathway profiles are normalized across the input samples (Supplementary Material). 
PanomiR uses the canonical pathways collection from MSigDB as its pathway database 
reference (47). MSigDB is a carefully curated database that represents non-redundant 
pathways from established pathway repositories such as KEGG and Reactome  (47, 51, 52). 
 
Detection of differentially regulated disease-associated pathways 

PanomiR compares pathway activity profiles between case and control subjects to 
determine functional dynamics in disease. PanomiR defines differentially regulated pathways by 
determining statistically significant differences in pathway activity profiles between cases and 
controls using linear models, implemented in the Limma package (Figure 1C) (53). In contrast to 
enrichment analysis, the linear modeling framework of PanomiR determines the directionality of 
differential regulation: It defines whether a pathway is upregulated or downregulated in disease 
subjects (or experimental conditions), and accounts for confounding variables such as batch, 
sequencing center, or any other fixed effects and continuous covariates. PanomiR outputs an 
ordered table of differentially regulated pathways along with p-values of differential regulation, 
adjusted for multiple hypothesis testing using False Discovery Rate (FDR)  (54).   

 
Detection of groups of differentially regulated pathways via their co-expression networks  

Dysregulation of an individual pathway is rarely an isolated event since pathways share 
activity and are often co-regulated. PanomiR accounts for co-regulation to place differentially 
regulated pathways into groups that represent high-level disease programs by exploiting the 
Pathway co-expression network (PCXN) (42): a reference tool that organizes and assesses the 
shared activity of pathways (Figure 1D). PanomiR leverages PCxN’s network, generated from a 
curated dataset of 3,207 expression profiles, providing an independent platform, to query co-
activity of all pathways in the MSigDB dataset (42, 55).   

 
PanomiR masks PCxN to contain only the subnetwork of differentially regulated 

pathways that were identified from the two-group data analysis in the previous step. In the 
masked network, nodes represent differentially regulated pathways and edges activity-
correlation of pathways. PanomiR subsequently identifies densely interconnected differentially 
regulated pathway subnetworks using graph clustering algorithms (Figure 1E). The default 
clustering algorithm of PanomiR is Louvain, but PanomiR can use other clustering methods that 
are available in the igraph R-package (56). The subnetworks denote clusters of highly 
correlated coordinate groups of differentially regulated pathways driving disease or condition-
specific functions. 

 
miRNA prioritization within clusters of differentially regulated pathways 

PanomiR exploits the concept that a coordinate group of disease-associated pathways 
has common miRNA regulators. Using annotated miRNA-mRNA interactions and an empirical 
statistical test (Figure 2), it analyzes clusters of differentially regulated pathways, to define 
central miRNAs, and captures the extent to which the targets of a specific miRNA are present 
within a group of coordinate pathways. miRNA regulatory events are then identified in three 
sequential steps (Figure 2): (i) by calculating individual miRNA-pathway overlap scores, (ii) by 
generalizing miRNA targeting scores to a group of pathways (i.e., a cluster of differentially 
regulated pathways), and (iii) by estimating the statistical significance of miRNA targeting scores 
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using an empirical approach. The empirical statistical tests are specific to the input dataset, for 
each miRNA and each cluster of differentially regulated pathways.  

 
In the first step, PanomiR derives the overlap scores for individual miRNA-pathway pairs 

using p-values of Fisher’s Exact test, capturing overrepresentation of targets of a specific 
miRNA in each individual pathway. To make analysis disease-, condition-, tissue-, or cell-type- 
specific, PanomiR calculates overlap scores using only the genes expressed in the input 
experiment.  

 
In the second step, an overall targeting score for a given cluster of pathways (Figure 2) 

is derived. The clusters of pathways are generated in the previous step using PCxN. Formally, 
for each cluster of differentially regulated pathways, �, the targeting score of a miRNA � is: 

��� � 1
|�| � �	��1 � ��
�


��

 

where �	�(.) denotes the inverse of the standard normal cumulative distribution function (CDF) 
and ��
 denotes the Fisher’s Exact test p-value of overlap between targets of miRNA x and 
genes of pathway y. The targeting-score, ���  , is related to Stouffer’s method (with equal 
weights) for p-value aggregation. The inverse normal CDF avoids extreme cases in which a 
miRNA has many targets in one pathway and only a few targets in other pathways in a cluster.  
 

In the third step, the statistical significance of the targeting score ��� is determined in 
order to produce cluster-specific lists of miRNAs ranked by targeting p-values. The targeting-
score does not constitute, by itself, an unbiased measure of miRNA-targeting as it might depend 
on the number of targets of a miRNA. To create an unbiased measure, PanomiR also derives 
an empirical targeting p-value, �����), for a score of ���. This p-value denotes the probability of 
observing a larger targeting score from a random cluster of pathways (with |�| members) than 
the one observed. This empirical probability is derived using a bootstrap sampling approach by 
selecting randomized groups of pathways and re-calculating their cluster targeting score. This 
approach directly tackles known or unknown biases in gene annotations for miRNA targets, as 
have been discussed by our group (21) and others (57, 58). The output p-values are then 
adjusted for multiple hypothesis comparison using the Benjamini-Hochberg False Discovery 
Rate (FDR) (54).  
 

Given the computational cost of bootstrap sampling, especially to calculate small p-
values, PanomiR employs a Gaussian approximation approach to estimate �����). In clusters of 
large-enough size (>30 pathways), ��� values follow a normal distribution according to the 
Central Limit Theorem. PanomiR uses pre-calculated Gaussian distribution estimates from 
1,000 random ��  values to overcome the computational costs in these cases. In the last step, 
miRNAs are prioritized based on p-values for targeting each cluster. We provide detailed 
assessments of the Gaussian estimation and robustness of �����)-values using a jackknife 
estimation as Supplementary Materials (Supplementary Figures S3 and S4).  
 

 
RESULTS  

PanomiR’s utility is presented in a case-study showing its ability to provide a systematic, 
unbiased, and biologically meaningful determination of regulatory miRNAs. We applied 
PanomiR to a liver cancer gene expression dataset from TCGA (59).  Figures 3 and 4 portray 
PanomiR’s recapitulation of liver cancer-associated pathways (Table 2), their coordination, and 
the miRNAs that target them. We found three clusters of differentially regulated pathways in 
liver cancer representing coherent function of high-level cancer mechanisms: transcription, cell 
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replication, and signaling. PanomiR detected miRNAs that targeted each cluster using either 
experimentally supported (TarBase v8.0) or predicted (TargetScan v7.2) miRNA-miRNA 
interactions (Tables 3 and 4). By comparing PanomiR’s results with the relevant literature and 
with enrichment analysis, we show that PanomiR provides informative and novel biological 
inference of multi-pathway targeting by miRNAs. 
 
PanomiR detects multiple liver cancer-associated pathways 

We generated and compared pathway activity profiles from normal tissues (TCGA 
Abbreviation: NT, n = 49) and primary solid tumors (TCGA Abbreviation: TP, n = 368) from liver 
cancer gene expression RNAseq data and using the MSigDB pathway database. PanomiR 
detected 428 upregulated and 397 downregulated pathways in TP compared to NT (FDR < 
0.01, Total pathways 1220; Table 2 and Supplementary Table S1). The large-scale differences 
in pathway activity profiles closely mirror the differential expression results at the gene level: 
more than 50% of the genes were differentially expressed based on a similar statistical design 
(FDR <0.01; n = 7801; total genes= 14212). 

 
Differentially regulated pathways reflected well-established dysregulated functions in 

liver cancer (Table 2). For example, NUCLEAR SIGNALING BY ERBB4 was downregulated in 
TP and activated in NT and has the highest statistical significance among all pathways (Figure 
3a, Table 2). Downregulation of ERBB4 in tumors is in concordance with a well-established 
body of evidence on the roles of ERBB signaling as a tumor suppressor in liver cancer (60, 61). 
In addition, we found downregulation of HDL MEDIATED LIPID TRANSPORT in tumor tissues, 
corroborated by several reports on lipid disorders in liver cancer including decreased plasma 
levels of HDL (62, 63). These results suggest the utility of PanomiR in detecting differentially 
regulated disease functions through pathway activity analysis.  
 

We compared pathway readouts from PanomiR with pathway enrichment analysis of 
differentially expressed genes from the same liver cancer dataset. Enrichment analysis using 
Fisher’s Exact Test and comparable cut-offs identified 51 enriched pathways (FDR <0.01, 
Supplementary Table S2) from differentially expressed genes (differential gene expression: 
FDR < 0.05; |LogFC| > 1; supplementary material). Of these enriched pathways, 50 were also 
determined as differentially regulated by PanomiR. Significant overlap between the results 
suggests that PanomiR recapitulates the majority of enrichment analysis readouts (Fisher’s 
Exact Test p-value = 3.5e-08). PanomiR also detected liver cancer pathways that were missed 
by enrichment analysis. For example, the top liver cancer-associated pathway according to 
PanomiR, NUCLEAR SIGNALING BY ERBB4, was not detected by enrichment analysis (p-
value = 1), since overrepresentation analysis prioritizes pathways with more DE genes than 
expected by chance and misses pathways with significantly differential activity between 
pathways and controls but not increased DE gene proportions. Table 2 and Supplementary 
Table S1 show several other instances of pathways that were detected by PanomiR but were 
not identified in the standard enrichment analysis. These results highlight the ability of PanomiR 
to detect significant functional dysregulation in disease even in absence of significant differential 
gene expression (Table 2).  
 
Synthetic data analysis shows PanomiR captures biologically-meaningful signals 

To assess the recapitulation of biological signals by PanomiR, we employed two 
randomization tests (Supplementary Material). In the first, we asked to what extent PanomiR 
detected differentially regulated pathways in a random assignment of samples to case and 
control groups in liver cancer (i.e., biologically meaningless classes). PanomiR found a very 
small number of differentially regulated pathways (0.054 ± 1.2, Mean ± SD) via randomized 
case/control sample assignment (Supplementary Table S3). In the second test, we interrogated 
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whether the use of biologically meaningful pathways (as annotated in the MSigDB) held 
advantages versus using randomly assigned gene sets. We generated randomized pathways by 
permuting gene labels to conserve the overlap structure of the original MSigDB dataset. We 
found that annotated gene-sets generate a significantly larger number of differentially regulated 
pathways (one-sided Z test p-value < 3.34 *10-5; mean = 693.785 pathways at an FDR < 0.01; 
sd = 39.1). We also compared the distribution of adjusted p-values from differentially regulated 
pathways from MSigDB and with that of randomized pathway collections, irrespective of FDR 
cut-offs. This experiment showed a significant difference between the two scenarios according 
to a one-sided Kolmogorov-Smirnov test (p-value < 2.86E-18 Supplementary Table S3, 
Supplementary Figure S1). Biologically meaningful gene sets were more likely to be 
differentially regulated than randomized pathways and were more likely to capture biological 
signals. 
 
 Identification of coordinate clusters of differentially regulated pathways 

Pathways coordinate and co-regulate through various mechanisms, including gene 
sharing. To detect coordinate groups of differentially regulated pathways, we used the Pathway 
Co-expression Network (PCxN), where edges represent precalculated correlations between 
pathways based on independent gene expression data (42). We mapped the 200 most 
statistically significant differentially regulated pathways onto the PCxN network and performed 
Louvain clustering to identify coordinate pathway groups. PanomiR identified 3 major clusters of 
differentially regulated pathways with consistent functions (Figure 4).  

 
The largest cluster of differentially regulated pathways (Cluster A) contained pathways 

upregulated in TP such as SPLICEOSOME, PROTEASOME, TRANSLATION, RNA POLL II 
TRANSCRIPTION, and SIGNALLING BY WNT (Supplementary Table S4). Wnt signaling 
activation is a critical mechanism for transformation of precancerous lesions into liver cancer 
through proliferation (64). The second largest cluster (Cluster B) contained terms related to cell 
cycle and proliferation (Figure 4, Supplementary Table S4). The third cluster (Cluster C) 
contained liver cancer-associated signaling pathways that were either down or upregulated in 
TP vs NT with terms related to ERBB signaling, IL signaling, and NOTCH signaling 
(Supplementary Table 4). Differentially regulated pathways within clusters A and B showed a 
coherent direction of differential regulation in cancer vs normal tissues, suggesting a coordinate 
multi-pathway dysregulation in driving high-order functions. We validated the robustness of 
pathway clustering using a variety of parameters and algorithms (Supplementary Figure S2). 
The results indicate that PanomiR successfully deconvolves distinct groups of differentially 
regulated pathways that represent higher-order functional programs of liver cancer. 

 
Detection of regulatory miRNAs that target clusters of differentially regulated pathways 

We evaluated whether the coordinate clusters of differentially regulated pathways have 
common miRNA regulators. In our case study, we examined separately experimentally 
supported (TarBase v8.0; >500K interactions) and predicted miRNA-mRNA interactions 
(Targetscan v7.2; >113K interactions) to detect miRNAs that target each cluster of differentially 
regulated pathways (Tables 3 and 4, Supplementary Tables S5 and S6). Our results showed 
that PanomiR identified distinct miRNAs for each cluster of liver cancer-associated pathways. 

 
With the use of experimentally supported interactions, PanomiR detected 202, 104, and 

1 miRNA regulators in clusters A, B, and C respectively (FDR < 10-5, Table 3, Supplementary 
Table S5). These included known liver cancer-associated miRNAs with consistent modes of 
action with their targeted pathway clusters. Cluster A was targeted by miR-525-3p, miR-1307, 
miR-631, and miR-663a– these miRNAs have been previously shown to have a role in tumor 
migration and invasion (65–68). Cluster B was targeted by miRNAs with established roles in 
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regulating cell-cycle in liver cancer including miR-107, miR-124-3p, and miR-103a-3p. For 
example, miR-107 is a P53-associated regulator of cell cycle and proliferation, elevated in early-
stage liver cancer (69–72); miR-124-3p is a tumor suppressor that regulates proliferation and 
invasion in liver cancer by inducing G1-phase cell-cycle arrest (73, 74); miR-103a-3p is a 
promoter of proliferation that is highly dysregulated in liver cancer (75). In cluster C, we found 
miR-410-3p as a central regulator of the relevant module. This miRNA has been shown to be a 
circulating biomarker of distant metastasis into the lung and the liver (76, 77), it also regulates 
adenomas via signaling pathways such as MAPK, PTEN/AKT, and STAT (78, 79). In cluster C, 
we also found a significant targeting role for miR-552-3p, which has been associated with liver 
cancer and regulates various hallmarks of cancer (80). Supplementary material provides an 
examination of the relationship between PanomiR miRNAs with DE miRNAs in TP vs NT. While 
we did not find a significant association between prioritization by PanomiR and differential 
expression, PanomiR attributes distinct DE miRNAs to distinct groups of pathway-targeting 
events– providing a knowledge-driven approach for functional characterization of data-driven 
disease miRNAs. Our results establish that PanomiR successfully detects key regulating liver-
cancer miRNAs and their downstream differentially regulated pathways. 
 
PanomiR was also assessed using predicted miRNA-mRNA interactions (43). Although 
PanomiR detected multiple liver cancer-associated miRNAs from predicted interactions, the set 
of prioritized miRNAs were different than that of experimentally supported interactions (Table 4, 
Supplementary Table S6). For example, PanomiR prioritized miR-299-3p in cluster C, a 
regulator of IL and STAT signaling pathways in liver cells, which have several associated 
annotated pathways in cluster C (81). Supplementary tables and results provide information on 
processing predicted interactions and additional evaluations of PanomiR using varying 
parameters for selection of predicted interactions. Our results suggest that predicted and 
experimentally validated miRNA interactions databases produce complementary results, and 
both should be considered for the downstream analysis of transcriptomic data.  
 

We compared PanomiR’s results with a standard miRNA-pathway enrichment analysis 
in our case study (Tables 3 and 4). For comparative purposes, we employed three extensions of 
miRNA-enrichment analysis tests to adapt to multi-pathway scenarios. (a) We initially extended 
enrichment analysis to a group (cluster) of pathways by interrogating the number of pathways 
within a given cluster that were significantly enriched for targets of a miRNA. For example, if the 
targets of a miRNA, x, are significantly enriched in five pathways within a group of pathways, the 
miRNA gets a targeting score of 5. (b) We used Stouffer’s method to obtain one single p-value 
that combines enrichment p-values of a miRNA within all pathways in a cluster. (c) We used 
Fisher’s p-value aggregation method to combine all enrichment p-values of a miRNA as an 
alternative of Stouffer’s method. 

 
 PanomiR successfully detected liver cancer-associated miRNAs that were not 

prioritized by extended enrichment tests. When using experimentally supported miRNA-mRNA 
interactions, enrichment analysis of cluster A revealed miR-525-3p as enriched in only 1 and 
miR-1307-5p in none out of 65 pathways (Table 3). When using predicted miRNA-mRNA 
interactions, PanomiR detected several miRNAs that were not detected by the extended 
enrichment analysis (Table 4). It is of note that the enrichment tests (Tables 3 and 4) used a 
highly-relaxed FDR threshold (FDR <0.25) to enable a more sensitive detection. Using a 
conservative FDR cut-off (e.g., FDR < 0.05) would have retained an even lower detection rate of 
miRNAs. The results suggest that (a) PanomiR can detect liver cancer-associated miRNAs that 
are not detectable by simple enrichment tests, and (b) a subset of critical liver cancer miRNAs 
can be detected only by analyzing a group of pathways, and not by examining individual 
pathways. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.07.12.499819doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.12.499819
http://creativecommons.org/licenses/by/4.0/


  
 

  
 

 
Enrichment analyses are biased towards detecting miRNAs with a larger number of 

targets (80). We examined the relationship of the number of targets of a miRNA with its 
prioritization ranking by PanomiR or enrichment analysis extensions (Table 4). The enrichment 
ranking of miRNAs significantly correlated with their number of gene targets while PanomiR was 
unbiased to this number. Figure 5 displays the bias of enrichment analysis (including Stouffer’s 
and Fisher’s extensions) towards prioritizing miRNAs with more targets in cluster A, while 
miRNAs with a small number of targets did not rank highly. PanomiR did not show a correlation 
between ranking according to PanomiR and the number of targets (Figure 5), suggesting its 
ability to prioritize miRNAs irrespective of the number of their gene targets. Additional evaluation 
of unbiased and robust miRNA prioritization by PanomiR is provided in the Supplementary 
material. Using jackknifing and bootstrapping, we showed that PanomiR miRNA prioritization is 
rather based on collective targeting of all pathways and is not driven by individual pathways 
 
DISCUSSION 

We have built PanomiR, a framework able to determine miRNA regulation of multiple 
coordinately regulated pathways. Most of the existing tools for miRNA-pathway analysis are 
focused on one-to-one miRNA-pathway relationships without the ability to infer relationships 
between miRNAs and groups of co-regulated pathways. Previous studies use of p-value 
integration methods to address multi-pathway analysis, but none of them determine pathway co-
activity/coordination and account for expression dynamics (82). PanomiR addresses these 
challenges by deconvolving gene expression datasets into coordinate groups of pathways with 
condition-associated dynamics and by measuring the extent to which miRNAs target these 
groups. In the case study of the liver cancer dataset, PanomiR captured large-scale features of 
cancers such as dysregulated transcription, cellular replication, and signaling (Figure 3). These 
clusters represent coherent higher-order functional units that recapitulate specific, yet central, 
disease mechanisms.  

 
The use of pathway activity profiles is a key component of PanomiR; It sensitively 

detects differentially regulated pathways and provides granularity in definition of coordinate 
functional groups (Figures 2 and 3, Table 2). In a case study, PanomiR detected critical known 
liver cancer pathways even with few associated differentially expressed genes (Table 2). 
Pathway activity profiling in PanomiR also facilitated the understanding of the directionality of 
pathway (de)activation in disease states. Methods that use pathway activity scores are often 
limited in generating explainable and biologically meaningful pathway activity profiles as they 
may use nonlinear dimensionality reduction approaches (3). PanomiR fills this gap by providing 
biologically meaningful measurements of changes in pathway activity profiles where a higher (or 
lower) pathway activity indicates a higher (or lower) overall activity of associated genes. 
Pathway activity profiles in PanomiR are directly comparable and translatable across different 
datasets, which makes it possible to leverage co-expression of pathways to detect disease-
specific functional dynamics and themes across datasets, platforms, and species (40).  
 

Deconvolution of coordinate pathway groups allowed PanomiR to detect miRNA 
regulatory events in liver cancer robustly and unbiasedly, many of which were not detectable by 
conventional analyses (Figure 4, Tables 3 and 4). PanomiR’s prioritized miRNAs have distinct 
roles in liver cancer, concordant with the functional characteristic of the pathway clusters that 
they were discovered from. For example, miR-107 regulates cell cycle and proliferation and 
targets cluster B which includes cellular replication pathways (Figure 4, Table 3). These results 
highlight the ability to identify miRNAs that consistently target groups of pathways even with 
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only a few targets from each pathway. Our results demonstrate that PanomiR can robustly 
detect miRNAs that regulate the broad, yet specific, gene expression programs of liver cancer.  

 
The complete landscape of miRNA-mRNA binding events is currently unknown. This gap 

contributes to the discrepancy in miRNA prioritization based on the background dataset of 
miRNA-mRNA interactions (Tables 3 and 4). By using 113K high-confidence predicted miRNA 
interactions (TargetScan) and more than 500K experimentally supported (TarBase) miRNA 
targets, PanomiR discovered informative and complementary miRNA regulatory events (Tables 
3 and 4). Users have the ability to tailor the background datasets (miRNA-mRNA integration or 
pathway gene sets) to their study design and research questions. We have made PanomiR 
flexible to heterogeneous miRNA-mRNA interactions and gene-expression datasets. PanomiR 
can be expanded (in future development) to co-expression analysis of miRNAs and pathways, 
which has been proposed to provide informative pointers to biological programs of diseases (3).   
 

In summary, PanomiR is a systems biology framework to study differentially regulated 
pathways, their co-activity, and their regulating miRNAs. It accounts for co-expression of 
pathways and disease-specific expression dynamics to identify miRNA-regulatory events, 
providing an advance over the current practice of studying static and isolated miRNA-pathway 
interactions. PanomiR is available as an open-source R/Bioconductor package for the use of the 
community. 
 
AVAILABILITY 

PanomiR is available as a Bioconductor package. The development version of PanomiR 
can be accessed via <https://github.com/pouryany/PanomiR> and 
<https://bioconductor.org/packages/PanomiR>. Additional scripts and analyses, specific to this 
manuscript are available via <https://github.com/pouryany/PanomiR_paper>.  
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FIGURES 

 

Figure 1. PanomiR workflow. PanomiR prioritizes miRNAs that target coordinate groups of 
pathways. (A) Input gene expression dataset and a set of annotated pathways (B) Gene 
expression data is summarized into pathway activity scores. (C) Pathway activity profiles are 
compared between disease and control subjects to discover differentially regulated pathways. 
(D) Differentially regulated pathways are mapped to the canonical pathway co-expression 
network (PCxN), where nodes denote pathways and the edges denote correlation of activity 
scores. (E) Within the network of differentially regulated pathways, modules of coordinate 
pathways are identified using graph clustering algorithms (F) miRNAs are prioritized using 
annotated miRNA-mRNA interactions (known or predicted) for preferential targeting within each 
cluster of differentially regulated pathways. The outputs of the pipeline are individuals lists of 
miRNAs with prioritization scores (targeting p-values) per each cluster of pathways.  
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Figure 2. miRNA prioritization from pathway clusters. (A) PanomiR generates an observed 
targeting statistic, SX

C , for a miRNA X with respect to C, an observed cluster of pathways. The 
cluster-targeting statistic is an average individual overlap score for each miRNA-pathway pair. 
Individual overlap scores (e.g., S1, S2) are functions (inverse normal) of the overlap statistic 
(Fisher’s exact test) between the miRNA target genes and the pathway member genes 
(B)�PanomiR generates an empirical distribution of cluster-targeting scores for a miRNA X by 
randomly selecting a set of pathways and recalculating the cluster targeting score. (C) The 
prioritization p-value is calculated from comparing the observed targeting statistic, SX

C, to the 
null distribution of targeting score for the miRNA X. The p-value is used to rank the miRNAs. 
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Figure 3. Pathway activity analysis of the Liver Hepatocellular Carcinoma dataset from 
the Cancer Genome Atlas. (A) Detection of differentially regulated liver cancer pathways by 
comparison of pathway activity profiles between normal tissues (NT) and Tumor primary (TP) 
samples (45). Boxplots show the most significant differentially regulated pathways selected 
based on p-values of difference between NT and TP (Table 2). (B) Principal component 
analysis (PCA) projection of the samples based on either genes or pathways. Pathway 
summarization in PanomiR allows to analyze the activity of pathways in a continuum. PCA of 
pathways conserves sample groups and captures a higher variation compared to the PCA of 
genes. 
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Figure 4. PanomiR deconvolutes coordinate clusters of differentially regulated pathways 
in liver cancer. The network displays a pathway co-expression map of liver cancer pathways. 
PanomiR detected three major groups of pathways, defined by direction of differential regulation
and clusters of co-expression. The three classes are (i) activation of transcription in tumors 
(Cluster A) (ii) activation of cellular replication (Cluster B) (iii) deactivation of specific signaling 
pathways (Cluster C). Each node in the network represents a differentially regulated pathway 
(Table 2). Edges represent canonical co-expression between two pathways, obtained from an 
independent compendium of gene expression data, as described in the PCxN method (42). 
Node colors represent unsupervised network clusters found by Louvain algorithm (83). Clusters 
were manually labeled according to the functional consensus of their pathways.  
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Figure 5. Unbiased prioritization of miRNAs by PanomiR. PanomiR prioritizes miRNAs with 
either a small or large number of annotated targets. In contrast, enrichment-based miRNA-
prioritization methods are biased towards prioritization of miRNAs with larger numbers of gene 
targets. The figure displays correlation analysis of miRNA-prioritization rankings with the 
number of gene targets in Cluster A of the liver cancer dataset. Each point represents a miRNA 
annotated in the TarBase dataset. (A) Spearman correlation analysis did not find a significant 
association between the number of targets and the prioritization ranking of miRNAs by PanomiR 
(correlation -0.03). (B) The number of enriched pathways for a miRNA significantly correlated 
with its number of gene targets. We also observed a significant correlation between the number 
of a miRNA’s targets and its prioritization ranking based on (C) Stouffer’s method and (D) 
Fisher’s method for aggregation of enrichment p-value. X-axis denotes the log number of gene 
targets of miRNAs based on experimentally-validated miRNA-mRNA interactions from the 
TarBase database (44). Y-axes in panel b represents the number of significantly enriched 
pathways (Adjusted p-value < 0.25, Table 3).  
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TABLES 

Table 1. Overview of standard miRNA-Pathway analysis methods and PanomiR. 

Method/ 
Reference Multi-pathway 

targeting Pathway 
activity 
dynamics 

Pathway 
coordination/ 
interaction 

Open-source 
software Tissue-specific 

customization 

PanomiR 
This work X X X X X 

miRPath v3 
[PMID 25977294] X  

Meta-analysis     

Wilk and Braun 
[PMID 29294105]  X  X X 

miRPathDB 2  
[PMID 31691816]    X  

precalculated X  
precalculated 

MITHrIL 
[PMID 27275538]  X  

(via DEG)   X 

miRTar 
[PMID 21791068]    X  

Web portal non-
functional 

 

BUFET 
[PMID 28874117]    X X 

miTalos 
[PMID 26998997]     X  

precalculated 
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Table 2. Detection of differentially regulated pathways in liver cancer. Most significant 
differentially regulated pathways identified by PanomiR according to p-value of differential 
activity between tumor (TP) and normal tissues (NT). Differential regulation p-values were 
derived using linear models using the limma package by comparing pathway activity profiles of 
TP vs NT (53). Differential Activation adjusted P-values are for multiple hypothesis testing using 
FDR. Direction denotes upregulation or downregulation of pathway activity in TP vs NT. 
Enrichment adjusted p-values for pathways are provided for comparison. Enrichment p-values 
were derived from the differentially expressed genes (|FC| >1, FDR <0.05). The column “#DE 
genes” shows the number of differentially expressed genes (TP vs NT) that are present in the 
pathway.   

Differentially Regulated Pathways Adjusted 
p-value 

Direction 
TP vs NT  

Enrichment 
adj. p-value 

#DE 
genes 

REACTOME: NUCLEAR SIGNALING BY ERBB4 1.13E-30 DOWN 1 5 

KEGG: NEUROACTIVE LIGAND RECEPTOR INTERACTION 1.13E-30 DOWN 0.00109 27 

KEGG: JAK STAT SIGNALING PATHWAY 3.19E-28 DOWN 1 12 

REACTOME: CLASS A1 RHODOPSIN LIKE RECEPTORS 2.98E-27 DOWN 0.0114 28 

REACTOME: GPCR LIGAND BINDING 4.2E-27 DOWN 0.0265 35 

REACTOME: HDL MEDIATED LIPID TRANSPORT 7.57E-26 DOWN 0.53 4 

PID: TCR CALCIUM PATHWAY 1.29E-25 DOWN 1 3 

BIOCARTA: GATA3 PATHWAY 1.25E-24 DOWN 1 1 

REACTOME: ASSEMBLY OF THE PRE REPLICATIVE COMPLEX 2.19E-24 UP 0.849 11 

REACTOME: ORC1 REMOVAL FROM CHROMATIN 1.03E-23 UP 1 9 

KEGG: TRYPTOPHAN METABOLISM 1.37E-23 DOWN 0.000547 15 

BIOCARTA: ACTINY PATHWAY 4.77E-23 UP 1 0 

REACTOME: PROTEIN FOLDING 5.59E-23 UP 1 0 

KEGG: CYTOKINE-CYTOKINE RECEPTOR INTERACTION 1.71E-22 DOWN 0.0543 33 

PID: ARF6 PATHWAY 2.55E-22 DOWN 1 5 

BIOCARTA: IL1R PATHWAY 3.87E-22 DOWN 1 3 

REACTOME: REGULATION OF INSULIN LIKE GROWTH FACTOR IGF ACTIVITY 
BY INSULIN LIKE GROWTH FACTOR BINDING PROTEINS IGFBPS 5.02E-22 DOWN 0.0474 6 

REACTOME: SIGNALING BY GPCR 1.28E-21 DOWN 0.447 52 

REACTOME: PREFOLDIN MEDIATED TRANSFER OF SUBSTRATE TO CCT TRIC 2.63E-21 UP 1 0 

REACTOME: LIPOPROTEIN METABOLISM 2.64E-21 DOWN 0.0521 9 

PID: IL1 PATHWAY 3.2E-21 DOWN 1 3 

REACTOME: M G1 TRANSITION 3.92E-21 UP 0.447 15 

BIOCARTA: TOLL PATHWAY 4.12E-21 DOWN 1 2 

KEGG: UBIQUITIN MEDIATED PROTEOLYSIS 7.43E-21 UP 1 4 

REACTOME: MRNA SPLICING MINOR PATHWAY 8.3E-21 UP 1 0 
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Table 3. PanomiR prioritizes regulatory miRNAs in liver cancer using experimentally-
validated interactions. Prioritized miRNAs for each identified pathway cluster, ranked by 
PanomiR targeting p-value (Figure 2). miRNAs are prioritized based on experimentally validated 
miRNA-mRNA interaction from TarBase V8.0 (44). Enrichment analysis results are provided for 
comparison. The column “#Pathways enriched” denotes the number of pathways in the cluster 
with significant (FDR < 0.25) enrichment in the targets of each miRNA, derived using Fisher’s 
Exact test.    

 

Cluster A (n = 65) Cluster B (n = 60) Cluster C (n = 58) 

miRNA # Pathways 
Enriched 

PanomiR 
Adjusted 
p-value miRNA # Pathways 

Enriched 
PanomiR 
Adjusted 
p-value miRNA # Pathways 

Enriched 
PanomiR 
Adjusted 
p-value 

hsa-miR-525-3p 1 2.7E-43 hsa-miR-107 40 1.92E-22 hsa-miR-410-3p 1 2.25E-07 
hsa-miR-1307-5p 0 1.4E-27 hsa-miR-124-3p 38 2.04E-22 hsa-miR-552-3p 4 0.00057 
hsa-miR-302c-5p 0 6.22E-24 hsa-miR-103a-3p 40 3.24E-21 hsa-miR-5187-5p 1 0.00057 

hsa-miR-631 5 6.61E-24 hsa-miR-129-2-3p 37 2.31E-17 hsa-miR-612 2 0.00254 
hsa-miR-663a 6 1.64E-23 hsa-miR-1-3p 36 2.43E-17 hsa-miR-198 7 0.0142 
hsa-miR-595 4 4.03E-23 hsa-miR-23a-5p 3 8.12E-16 hsa-miR-621 2 0.0172 
hsa-miR-933 1 1.04E-22 hsa-miR-663a 5 3.29E-15 hsa-miR-199b-5p 4 0.0209 

hsa-miR-510-5p 1 1.04E-22 hsa-miR-449b-5p 33 2.26E-14 hsa-miR-204-3p 1 0.0249 
hsa-miR-5009-5p 7 2.23E-22 hsa-miR-147a 41 2.26E-14 hsa-miR-4733-5p 1 0.0503 
hsa-miR-2682-5p 0 4.65E-22 hsa-miR-193b-3p 35 3.26E-14 hsa-miR-506-3p 2 0.0503 
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Table 4. PanomiR prioritizes regulatory miRNAs in liver cancer using predicted 
interactions. Prioritized miRNAs for each identified pathway cluster, ranked by PanomiR 
targeting p-value (Figure 2). miRNAs are prioritized based on predicted miRNA:mRNA 
interaction from TargetScan V7.2 (43). The column “Pathways enriched” denotes the number of 
pathways in the cluster with significant (FDR < 0.25) enrichment in the targets of each miRNA, 
derived using Fisher’s Exact test.   

Cluster A Cluster B Cluster C 

miRNA Pathways 
Enriched 

PanomiR 
Adjusted 
p-value miRNA Pathways 

Enriched 
PanomiR 
Adjusted 
p-value miRNA Pathways 

Enriched 
PanomiR 
Adjusted 
p-value 

hsa-miR-371a-5p 0 1.06E-38 hsa-miR-191-5p 2 2.53E-19 hsa-miR-219a-2-3p 3 1.68E-09 
hsa-miR-505-3p.2 0 8.96E-34 hsa-miR-892c-

3p/hsa-miR-452-5p 1 8.81E-14 hsa-miR-376c-3p 4 9.51E-09 
hsa-miR-1298-5p 0 1.88E-31 hsa-miR-4424 4 4.26E-12 hsa-miR-1249-3p 0 4E-08 
hsa-miR-556-5p 0 3.4E-28 hsa-miR-339-5p 3 8.51E-11 hsa-miR-3605-3p 3 1.2E-07 
hsa-miR-325-3p 3 5.95E-25 hsa-miR-944 0 8.51E-11 hsa-miR-143-3p 3 2.06E-07 
hsa-miR-495-3p 0 1.05E-23 hsa-miR-345-5p 1 2.03E-10 hsa-miR-514b-

5p/hsa-miR-513c-5p 1 6.57E-07 
hsa-miR-1278 1 1.05E-23 hsa-miR-518c-3p 0 8.89E-10 hsa-miR-187-3p 3 1.39E-06 
hsa-miR-651-5p 0 1.46E-22 hsa-miR-154-5p 2 3.17E-09 hsa-miR-625-3p 1 3.06E-06 
hsa-miR-323b-3p 0 6.39E-18 hsa-miR-1251-5p 1 3.47E-09 hsa-miR-1306-5p 2 5.83E-06 
hsa-miR-421 0 1.16E-17 hsa-miR-599 1 3.47E-09 hsa-miR-873-5p.1 3 7.82E-06 
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