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Abstract:

Charting microRNA (miRNA) regulation across pathways is central to characterizing their role in
disease. Yet, current methods reveal only individual miRNA-pathway interactions. We have
developed a systems biology approach, Pathway networks of miRNA Regulation (PanomiR),
that overcomes these limitations to identify miRNA targeting of groups of interacting pathways
using gene expression. The approach does not depend on statistically significant enrichment of
MiRNA target genes in individual pathways or significant differentially expressed genes. Rather,
it directly captures differential activity of pathways between states, determining their up-or-down
regulation while sensitively detecting biologically-meaningful signals. PanomiR analyzes the co-
activity of differentially regulated pathways to determine coordinate functional groups and uses
these co-activated grouped pathways to uncover miRNAs that target them. Incorporating both
experimentally-supported or predicted miIRNA-mRNA interactions, PanomiR robustly identifies
mMiRNAs central to the regulation of disease functions. We applied PanomiR to a liver cancer
dataset and showed that it can organize liver cancer pathways and their regulating miRNAs into
coordinated transcriptional programs, reflecting the pathogenic mechanisms of hepatocellular
carcinoma. PanomiR recapitulated known central miRNAs in liver cancer with a biologically
meaningful assignment of pathways under their regulation, unbiased by the number of genes
targeted by each miRNA. PanomiR is a granular framework for detecting broad-scale multi-
pathway programs under miRNA regulation. It is accessible as an open-source R/Bioconductor
package: <https://bioconductor.org/packages/PanomiR>.
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INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNAs that act as potent regulators of
cellular functions and molecular pathways (1). They post-transcriptionally regulate gene
expression and can coordinate gene function across distinct pathways. miRNA dysregulation
has been shown to be a central component of the pathogenesis of diverse diseases, including
neoplastic conditions and Alzheimer’s Disease (2—20). Because miRNAs can target dozens of
genes, the characterization of their roles in health and disease requires charting of coordinate
co-regulation across heterogeneous molecular cascades and pathways. Despite extensive
progress in the field to map the effects of mMiRNAs on one or more pathway activities (4, 21-27)
or the effect of pathway activity on a miRNA, no framework exists for characterization and
prioritization of the multi-pathway dynamics of miRNA-orchestrated regulation that form driving
transcriptional programs in both healthy and diseased states.

Current best practice for the transcriptomic study of miRNA regulation relies on miRNA-
gene or one-to-one miRNA-pathway relationships. miRNA-pathway analysis technigues such as
gene set enrichment and correlation are used to detect whether a pathway is potentially
regulated by a miRNA (4, 21). Enrichment analyses evaluate the presence (overlap) of targets
of a single miRNA in a single pathway, aiming to identify pathways with a higher number of
targets than expected by chance (21, 22, 28-32). Alternatively, correlation methods evaluate
the association of the expression of a single miRNA with a gene representing the activity of a
pathway (4, 33). Table 1 describes some of the most widely used methods for miRNA pathway
analyses, their scope and approach. Large-scale functional processes in health and disease
coordinate across pathways in multiple ways, including gene-sharing, pathway co-activity, multi-
pathway co-regulation, and cross-talk (34—39). Current approaches fail to account for these
complex relationships and disease-specific expression dynamics, which in turn limits our ability
to detect the potential of a miRNA to regulate highly-specific or broadly-acting gene expression
programs.

To uncover how multiple pathways are coordinated by miRNAs to form gene expression
programs, we have developed a framework to address existing limitations from a systems
perspective. Pathway networks of miRNA Regulation (PanomiR) enables discovering central
MiRNA regulators based on their ability to control coordinate pathways forming a transcriptional
program. PanomiR determines if a miRNA concurrently regulates and targets a coordinate
group of disease- or function-associated pathways, as opposed to investigating isolated miRNA-
pathway events. PanomiR derives these multi-pathway targeting events using predefined
pathways, their co-activation, gene expression, and annotated miRNA-mRNA interactions. Its
framework (i) captures the activity of pathways and identifies disease-specific differentially
regulated pathways using pathway activity profiling, a technique that accounts for overall co-
activity of genes and commonly observed biases (40-42); (ii) constructs a co-expression
network of differentially regulated pathways (based on a reference of pathway co-expression
networks) and deconvolves it into coordinate groups of pathways that act in concert using
network clustering algorithms (40—-42); (iii) determines miRNAs targeting these coordinate
pathway groups using a novel statistical test and pre-determined miRNA-mRNA interactions
from experimentally-supported or prediction databases (43, 44). Taken together, these steps
produce broad-scale, multi-pathway, and disease-specific miRNA regulatory events (Figure 1).

In order to highlight PanomiR’s ability to detect miRNAs regulating gene expression
programs in human disease, we applied it to the hepatocellular carcinoma dataset of The
Cancer Genome Atlas (TCGA) comprising 368 primary tumor samples and 49 controls(45).
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PanomiR unbiasedly detected multi-pathway miRNA regulation events in this well-documented
disease and generated a comprehensive framework for evaluating miRNA-associated
mechanisms (46). We identified differentially regulated pathways and uncovered their regulating
MiRNAs in liver cancer, assessed biological relevance of the readouts, and evaluated the
statistical robustness of PanomiR using in silico experimentation. PanomiR recapitulated known
central miRNAs in hepatocellular carcinoma with a biologically meaningful assignment of
pathways under their regulation, unbiased by the number of genes targeted by miRNAs.
PanomiR is available as an easy-to-use Bioconductor R package, enabling its application in
research projects, inclusion into in silico tools, and augmentation of analysis pipelines.

MATERIALS AND METHODS

Overview and input datasets

The overarching goal of PanomiR is to detect miRNAs regulating multi-pathway
condition-associated gene expression programs (Figure 1). PanomiR uses as input a user-
provided gene expression dataset (e.g., RNAseq) to quantify pathway activity profiles by
utilizing annotated pathway datasets from the Molecular Signatures Database (MSigDB) (Figure
1A-1B)(47). Pathway activity profiles are then compared between two conditions (e.g., cancer
vs control, wild type vs knockout) to identify and prioritize differentially regulated pathways
(Figure 1C). To determine broad-scale condition-associated groups of functions, PanomiR
constructs a co-activity network of differentially regulated (or disease dysregulated) pathways
and deconvolves the network into coherent functional groups using reference pathway co-
expression networks; using our previously-described pathway activity methods (Figure 1D-1E)
(40-42). Subsequently, PanomiR integrates miRNA-mRNA interactions provided by the user
(such as predicted targets from TargetScan (43) or experimentally validated interactions from
TarBase (44)) to evaluate miRNA regulatory effects on coordinate pathway groups (Figure 1F).
The final output of PanomiR is a ranked list of central miRNAs, together with statistical
significance levels for each group of differentially regulated pathways, providing an effective
means for identification of pathway groups, and for key miRNA prioritization, ranking, and target
detection. PanomiR identifies differentially coordinated transcriptional programs between two
conditions to provide a direct prioritization of the miRNAs responsible for their coordination.

Capturing pathway activity dynamics

Extending the approach developed in our previous methodology, Pathprint (40-42),
PanomiR ingests a user-provided gene expression dataset and calculates pathway activity
scores to capture pathway functional dynamics (Figure 1B). The scores are proxy values for the
activity of genes in individual pathways, which in turn, represent biologically meaningful
functional units. By capturing gene expression levels as pathway activity scores, inherent
complexity is reduced while tolerance to noise is increased when compared to gene-centric
analyses (4, 41, 42, 48). Pathway activity scores leverage the complex inter-relationships and
co-activity of genes. They provide the means to examine biological functions in a continuum and
detect biological signals where standard differential gene expression analyses fail (4, 33, 40, 42,
48-50).

To capture pathway activity profiles, in a two-step process: (a) we rank genes in each
sample in descending order, according to their expression, i.e., the highest expressed gene gets
the largest rank-score; (b) we calculate the average squared ranks of genes that belong to a
pathway as the activity score. Formally, for a pathway X with n genes, Pathway, = { g7,...,9n}
the activity score, Ac, ,, in sample a is:
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n
1
Aca,x = EZ ranka(gf)z

l
where rank,(g7) refers to the rank of gene g7 (descending order) in sample a based on
expression values. We generate activity profiles for each pathway of interest in each sample.
Then, pathway profiles are normalized across the input samples (Supplementary Material).
PanomiR uses the canonical pathways collection from MSigDB as its pathway database
reference (47). MSigDB is a carefully curated database that represents non-redundant
pathways from established pathway repositories such as KEGG and Reactome (47, 51, 52).

Detection of differentially regulated disease-associated pathways

PanomiR compares pathway activity profiles between case and control subjects to
determine functional dynamics in disease. PanomiR defines differentially regulated pathways by
determining statistically significant differences in pathway activity profiles between cases and
controls using linear models, implemented in the Limma package (Figure 1C) (53). In contrast to
enrichment analysis, the linear modeling framework of PanomiR determines the directionality of
differential regulation: It defines whether a pathway is upregulated or downregulated in disease
subjects (or experimental conditions), and accounts for confounding variables such as batch,
sequencing center, or any other fixed effects and continuous covariates. PanomiR outputs an
ordered table of differentially regulated pathways along with p-values of differential regulation,
adjusted for multiple hypothesis testing using False Discovery Rate (FDR) (54).

Detection of groups of differentially regulated pathways via their co-expression networks
Dysregulation of an individual pathway is rarely an isolated event since pathways share

activity and are often co-regulated. PanomiR accounts for co-regulation to place differentially
regulated pathways into groups that represent high-level disease programs by exploiting the
Pathway co-expression network (PCXN) (42): a reference tool that organizes and assesses the
shared activity of pathways (Figure 1D). PanomiR leverages PCxN’s network, generated from a
curated dataset of 3,207 expression profiles, providing an independent platform, to query co-
activity of all pathways in the MSigDB dataset (42, 55).

PanomiR masks PCxN to contain only the subnetwork of differentially regulated
pathways that were identified from the two-group data analysis in the previous step. In the
masked network, nodes represent differentially regulated pathways and edges activity-
correlation of pathways. PanomiR subsequently identifies densely interconnected differentially
regulated pathway subnetworks using graph clustering algorithms (Figure 1E). The default
clustering algorithm of PanomiR is Louvain, but PanomiR can use other clustering methods that
are available in the igraph R-package (56). The subnetworks denote clusters of highly
correlated coordinate groups of differentially regulated pathways driving disease or condition-
specific functions.

MiRNA prioritization within clusters of differentially regulated pathways

PanomiR exploits the concept that a coordinate group of disease-associated pathways
has common miRNA regulators. Using annotated miRNA-mRNA interactions and an empirical
statistical test (Figure 2), it analyzes clusters of differentially regulated pathways, to define
central miRNAs, and captures the extent to which the targets of a specific miRNA are present
within a group of coordinate pathways. miRNA regulatory events are then identified in three
sequential steps (Figure 2): (i) by calculating individual miRNA-pathway overlap scores, (ii) by
generalizing miRNA targeting scores to a group of pathways (i.e., a cluster of differentially
regulated pathways), and (iii) by estimating the statistical significance of miRNA targeting scores
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using an empirical approach. The empirical statistical tests are specific to the input dataset, for
each miRNA and each cluster of differentially regulated pathways.

In the first step, PanomiR derives the overlap scores for individual miRNA-pathway pairs
using p-values of Fisher's Exact test, capturing overrepresentation of targets of a specific
MiRNA in each individual pathway. To make analysis disease-, condition-, tissue-, or cell-type-
specific, PanomiR calculates overlap scores using only the genes expressed in the input
experiment.

In the second step, an overall targeting score for a given cluster of pathways (Figure 2)
is derived. The clusters of pathways are generated in the previous step using PCxN. Formally,
for each cluster of differentially regulated pathways, C, the targeting score of a miRNA x is:

s¢ = iz &~ 1(1-P,)
X |C| Xy
yec

where ¢~1(.) denotes the inverse of the standard normal cumulative distribution function (CDF)
and P,, denotes the Fisher's Exact test p-value of overlap between targets of miRNA x and
genes of pathway y. The targeting-score, S5 , is related to Stouffer's method (with equal
weights) for p-value aggregation. The inverse normal CDF avoids extreme cases in which a
MiRNA has many targets in one pathway and only a few targets in other pathways in a cluster.

In the third step, the statistical significance of the targeting score Ss is determined in
order to produce cluster-specific lists of miRNAs ranked by targeting p-values. The targeting-
score does not constitute, by itself, an unbiased measure of miRNA-targeting as it might depend
on the number of targets of a miRNA. To create an unbiased measure, PanomiR also derives
an empirical targeting p-value, P(S5 ), for a score of S5. This p-value denotes the probability of
observing a larger targeting score from a random cluster of pathways (with |C| members) than
the one observed. This empirical probability is derived using a bootstrap sampling approach by
selecting randomized groups of pathways and re-calculating their cluster targeting score. This
approach directly tackles known or unknown biases in gene annotations for miRNA targets, as
have been discussed by our group (21) and others (57, 58). The output p-values are then
adjusted for multiple hypothesis comparison using the Benjamini-Hochberg False Discovery
Rate (FDR) (54).

Given the computational cost of bootstrap sampling, especially to calculate small p-
values, PanomiR employs a Gaussian approximation approach to estimate P(Ss ). In clusters of
large-enough size (>30 pathways), S$ values follow a normal distribution according to the
Central Limit Theorem. PanomiR uses pre-calculated Gaussian distribution estimates from
1,000 random S, values to overcome the computational costs in these cases. In the last step,
MiRNAs are prioritized based on p-values for targeting each cluster. We provide detailed
assessments of the Gaussian estimation and robustness of P(S$ )-values using a jackknife
estimation as Supplementary Materials (Supplementary Figures S3 and S4).

RESULTS

PanomiR’s utility is presented in a case-study showing its ability to provide a systematic,
unbiased, and biologically meaningful determination of regulatory miRNAs. We applied
PanomiR to a liver cancer gene expression dataset from TCGA (59). Figures 3 and 4 portray
PanomiR’s recapitulation of liver cancer-associated pathways (Table 2), their coordination, and
the miRNAs that target them. We found three clusters of differentially regulated pathways in
liver cancer representing coherent function of high-level cancer mechanisms: transcription, cell


https://doi.org/10.1101/2022.07.12.499819
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.12.499819; this version posted October 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

replication, and signaling. PanomiR detected miRNAs that targeted each cluster using either
experimentally supported (TarBase v8.0) or predicted (TargetScan v7.2) miRNA-miRNA
interactions (Tables 3 and 4). By comparing PanomiR’s results with the relevant literature and
with enrichment analysis, we show that PanomiR provides informative and novel biological
inference of multi-pathway targeting by miRNAs.

PanomiR detects multiple liver cancer-associated pathways

We generated and compared pathway activity profiles from normal tissues (TCGA
Abbreviation: NT, n = 49) and primary solid tumors (TCGA Abbreviation: TP, n = 368) from liver
cancer gene expression RNAseq data and using the MSigDB pathway database. PanomiR
detected 428 upregulated and 397 downregulated pathways in TP compared to NT (FDR <
0.01, Total pathways 1220; Table 2 and Supplementary Table S1). The large-scale differences
in pathway activity profiles closely mirror the differential expression results at the gene level:
more than 50% of the genes were differentially expressed based on a similar statistical design
(FDR <0.01; n = 7801, total genes= 14212).

Differentially regulated pathways reflected well-established dysregulated functions in
liver cancer (Table 2). For example, NUCLEAR SIGNALING BY ERBB4 was downregulated in
TP and activated in NT and has the highest statistical significance among all pathways (Figure
3a, Table 2). Downregulation of ERBB4 in tumors is in concordance with a well-established
body of evidence on the roles of ERBB signaling as a tumor suppressor in liver cancer (60, 61).
In addition, we found downregulation of HDL MEDIATED LIPID TRANSPORT in tumor tissues,
corroborated by several reports on lipid disorders in liver cancer including decreased plasma
levels of HDL (62, 63). These results suggest the utility of PanomiR in detecting differentially
regulated disease functions through pathway activity analysis.

We compared pathway readouts from PanomiR with pathway enrichment analysis of
differentially expressed genes from the same liver cancer dataset. Enrichment analysis using
Fisher's Exact Test and comparable cut-offs identified 51 enriched pathways (FDR <0.01,
Supplementary Table S2) from differentially expressed genes (differential gene expression:
FDR < 0.05; |LogFC| > 1; supplementary material). Of these enriched pathways, 50 were also
determined as differentially regulated by PanomiR. Significant overlap between the results
suggests that PanomiR recapitulates the majority of enrichment analysis readouts (Fisher’s
Exact Test p-value = 3.5e-08). PanomiR also detected liver cancer pathways that were missed
by enrichment analysis. For example, the top liver cancer-associated pathway according to
PanomiR, NUCLEAR SIGNALING BY ERBBA4, was not detected by enrichment analysis (p-
value = 1), since overrepresentation analysis prioritizes pathways with more DE genes than
expected by chance and misses pathways with significantly differential activity between
pathways and controls but not increased DE gene proportions. Table 2 and Supplementary
Table S1 show several other instances of pathways that were detected by PanomiR but were
not identified in the standard enrichment analysis. These results highlight the ability of PanomiR
to detect significant functional dysregulation in disease even in absence of significant differential
gene expression (Table 2).

Synthetic data analysis shows PanomiR captures biologically-meaningful signals

To assess the recapitulation of biological signals by PanomiR, we employed two
randomization tests (Supplementary Material). In the first, we asked to what extent PanomiR
detected differentially regulated pathways in a random assignment of samples to case and
control groups in liver cancer (i.e., biologically meaningless classes). PanomiR found a very
small number of differentially regulated pathways (0.054 + 1.2, Mean + SD) via randomized
case/control sample assignment (Supplementary Table S3). In the second test, we interrogated
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whether the use of biologically meaningful pathways (as annotated in the MSigDB) held
advantages versus using randomly assigned gene sets. We generated randomized pathways by
permuting gene labels to conserve the overlap structure of the original MSigDB dataset. We
found that annotated gene-sets generate a significantly larger number of differentially regulated
pathways (one-sided Z test p-value < 3.34 *10°; mean = 693.785 pathways at an FDR < 0.01;
sd = 39.1). We also compared the distribution of adjusted p-values from differentially regulated
pathways from MSigDB and with that of randomized pathway collections, irrespective of FDR
cut-offs. This experiment showed a significant difference between the two scenarios according
to a one-sided Kolmogorov-Smirnov test (p-value < 2.86E-18 Supplementary Table S3,
Supplementary Figure S1). Biologically meaningful gene sets were more likely to be
differentially regulated than randomized pathways and were more likely to capture biological
signals.

Identification of coordinate clusters of differentially regulated pathways

Pathways coordinate and co-regulate through various mechanisms, including gene
sharing. To detect coordinate groups of differentially regulated pathways, we used the Pathway
Co-expression Network (PCxN), where edges represent precalculated correlations between
pathways based on independent gene expression data (42). We mapped the 200 most
statistically significant differentially regulated pathways onto the PCxN network and performed
Louvain clustering to identify coordinate pathway groups. PanomiR identified 3 major clusters of
differentially regulated pathways with consistent functions (Figure 4).

The largest cluster of differentially regulated pathways (Cluster A) contained pathways
upregulated in TP such as SPLICEOSOME, PROTEASOME, TRANSLATION, RNA POLL I
TRANSCRIPTION, and SIGNALLING BY WNT (Supplementary Table S4). Wnt signaling
activation is a critical mechanism for transformation of precancerous lesions into liver cancer
through proliferation (64). The second largest cluster (Cluster B) contained terms related to cell
cycle and proliferation (Figure 4, Supplementary Table S4). The third cluster (Cluster C)
contained liver cancer-associated signaling pathways that were either down or upregulated in
TP vs NT with terms related to ERBB signaling, IL signaling, and NOTCH signaling
(Supplementary Table 4). Differentially regulated pathways within clusters A and B showed a
coherent direction of differential regulation in cancer vs normal tissues, suggesting a coordinate
multi-pathway dysregulation in driving high-order functions. We validated the robustness of
pathway clustering using a variety of parameters and algorithms (Supplementary Figure S2).
The results indicate that PanomiR successfully deconvolves distinct groups of differentially
regulated pathways that represent higher-order functional programs of liver cancer.

Detection of regulatory miRNAs that target clusters of differentially regulated pathways
We evaluated whether the coordinate clusters of differentially regulated pathways have
common mMiRNA regulators. In our case study, we examined separately experimentally
supported (TarBase v8.0; >500K interactions) and predicted miRNA-mRNA interactions
(Targetscan v7.2; >113K interactions) to detect miRNAs that target each cluster of differentially
regulated pathways (Tables 3 and 4, Supplementary Tables S5 and S6). Our results showed
that PanomiR identified distinct miRNAs for each cluster of liver cancer-associated pathways.

With the use of experimentally supported interactions, PanomiR detected 202, 104, and
1 miRNA regulators in clusters A, B, and C respectively (FDR < 10, Table 3, Supplementary
Table S5). These included known liver cancer-associated miRNAs with consistent modes of
action with their targeted pathway clusters. Cluster A was targeted by miR-525-3p, miR-1307,
miR-631, and miR-663a— these miRNAs have been previously shown to have a role in tumor
migration and invasion (65—-68). Cluster B was targeted by miRNAs with established roles in
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regulating cell-cycle in liver cancer including miR-107, miR-124-3p, and miR-103a-3p. For
example, miR-107 is a P53-associated regulator of cell cycle and proliferation, elevated in early-
stage liver cancer (69-72); miR-124-3p is a tumor suppressor that regulates proliferation and
invasion in liver cancer by inducing G1-phase cell-cycle arrest (73, 74); miR-103a-3p is a
promoter of proliferation that is highly dysregulated in liver cancer (75). In cluster C, we found
miR-410-3p as a central regulator of the relevant module. This miRNA has been shown to be a
circulating biomarker of distant metastasis into the lung and the liver (76, 77), it also regulates
adenomas via signaling pathways such as MAPK, PTEN/AKT, and STAT (78, 79). In cluster C,
we also found a significant targeting role for miR-552-3p, which has been associated with liver
cancer and regulates various hallmarks of cancer (80). Supplementary material provides an
examination of the relationship between PanomiR miRNAs with DE miRNAs in TP vs NT. While
we did not find a significant association between prioritization by PanomiR and differential
expression, PanomiR attributes distinct DE miRNAs to distinct groups of pathway-targeting
events— providing a knowledge-driven approach for functional characterization of data-driven
disease miRNAs. Our results establish that PanomiR successfully detects key regulating liver-
cancer miRNAs and their downstream differentially regulated pathways.

PanomiR was also assessed using predicted miRNA-mRNA interactions (43). Although
PanomiR detected multiple liver cancer-associated miRNAs from predicted interactions, the set
of prioritized miRNAs were different than that of experimentally supported interactions (Table 4,
Supplementary Table S6). For example, PanomiR prioritized miR-299-3p in cluster C, a
regulator of IL and STAT signaling pathways in liver cells, which have several associated
annotated pathways in cluster C (81). Supplementary tables and results provide information on
processing predicted interactions and additional evaluations of PanomiR using varying
parameters for selection of predicted interactions. Our results suggest that predicted and
experimentally validated miRNA interactions databases produce complementary results, and
both should be considered for the downstream analysis of transcriptomic data.

We compared PanomiR'’s results with a standard miRNA-pathway enrichment analysis
in our case study (Tables 3 and 4). For comparative purposes, we employed three extensions of
miRNA-enrichment analysis tests to adapt to multi-pathway scenarios. (a) We initially extended
enrichment analysis to a group (cluster) of pathways by interrogating the number of pathways
within a given cluster that were significantly enriched for targets of a miRNA. For example, if the
targets of a miRNA, x, are significantly enriched in five pathways within a group of pathways, the
MiRNA gets a targeting score of 5. (b) We used Stouffer's method to obtain one single p-value
that combines enrichment p-values of a miRNA within all pathways in a cluster. (¢) We used
Fisher's p-value aggregation method to combine all enrichment p-values of a miRNA as an
alternative of Stouffer's method.

PanomiR successfully detected liver cancer-associated miRNAs that were not
prioritized by extended enrichment tests. When using experimentally supported miRNA-mRNA
interactions, enrichment analysis of cluster A revealed miR-525-3p as enriched in only 1 and
miR-1307-5p in none out of 65 pathways (Table 3). When using predicted miRNA-mRNA
interactions, PanomiR detected several miRNAs that were not detected by the extended
enrichment analysis (Table 4). It is of note that the enrichment tests (Tables 3 and 4) used a
highly-relaxed FDR threshold (FDR <0.25) to enable a more sensitive detection. Using a
conservative FDR cut-off (e.g., FDR < 0.05) would have retained an even lower detection rate of
MiRNAs. The results suggest that (a) PanomiR can detect liver cancer-associated miRNAs that
are not detectable by simple enrichment tests, and (b) a subset of critical liver cancer miRNAs
can be detected only by analyzing a group of pathways, and not by examining individual
pathways.
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Enrichment analyses are biased towards detecting miRNAs with a larger number of
targets (80). We examined the relationship of the number of targets of a miRNA with its
prioritization ranking by PanomiR or enrichment analysis extensions (Table 4). The enrichment
ranking of miRNAs significantly correlated with their number of gene targets while PanomiR was
unbiased to this number. Figure 5 displays the bias of enrichment analysis (including Stouffer’s
and Fisher’s extensions) towards prioritizing miRNAs with more targets in cluster A, while
mMiRNAs with a small number of targets did not rank highly. PanomiR did not show a correlation
between ranking according to PanomiR and the number of targets (Figure 5), suggesting its
ability to prioritize miRNAs irrespective of the number of their gene targets. Additional evaluation
of unbiased and robust miRNA prioritization by PanomiR is provided in the Supplementary
material. Using jackknifing and bootstrapping, we showed that PanomiR miRNA prioritization is
rather based on collective targeting of all pathways and is not driven by individual pathways

DISCUSSION

We have built PanomiR, a framework able to determine miRNA regulation of multiple
coordinately regulated pathways. Most of the existing tools for miRNA-pathway analysis are
focused on one-to-one miRNA-pathway relationships without the ability to infer relationships
between miRNAs and groups of co-regulated pathways. Previous studies use of p-value
integration methods to address multi-pathway analysis, but none of them determine pathway co-
activity/coordination and account for expression dynamics (82). PanomiR addresses these
challenges by deconvolving gene expression datasets into coordinate groups of pathways with
condition-associated dynamics and by measuring the extent to which miRNAs target these
groups. In the case study of the liver cancer dataset, PanomiR captured large-scale features of
cancers such as dysregulated transcription, cellular replication, and signaling (Figure 3). These
clusters represent coherent higher-order functional units that recapitulate specific, yet central,
disease mechanisms.

The use of pathway activity profiles is a key component of PanomiR; It sensitively
detects differentially regulated pathways and provides granularity in definition of coordinate
functional groups (Figures 2 and 3, Table 2). In a case study, PanomiR detected critical known
liver cancer pathways even with few associated differentially expressed genes (Table 2).
Pathway activity profiling in PanomiR also facilitated the understanding of the directionality of
pathway (de)activation in disease states. Methods that use pathway activity scores are often
limited in generating explainable and biologically meaningful pathway activity profiles as they
may use nonlinear dimensionality reduction approaches (3). PanomiR fills this gap by providing
biologically meaningful measurements of changes in pathway activity profiles where a higher (or
lower) pathway activity indicates a higher (or lower) overall activity of associated genes.
Pathway activity profiles in PanomiR are directly comparable and translatable across different
datasets, which makes it possible to leverage co-expression of pathways to detect disease-
specific functional dynamics and themes across datasets, platforms, and species (40).

Deconvolution of coordinate pathway groups allowed PanomiR to detect miRNA
regulatory events in liver cancer robustly and unbiasedly, many of which were not detectable by
conventional analyses (Figure 4, Tables 3 and 4). PanomiR'’s prioritized miRNAs have distinct
roles in liver cancer, concordant with the functional characteristic of the pathway clusters that
they were discovered from. For example, miR-107 regulates cell cycle and proliferation and
targets cluster B which includes cellular replication pathways (Figure 4, Table 3). These results
highlight the ability to identify miRNAs that consistently target groups of pathways even with
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only a few targets from each pathway. Our results demonstrate that PanomiR can robustly
detect miRNAs that regulate the broad, yet specific, gene expression programs of liver cancer.

The complete landscape of miIRNA-mRNA binding events is currently unknown. This gap
contributes to the discrepancy in miRNA prioritization based on the background dataset of
miRNA-mRNA interactions (Tables 3 and 4). By using 113K high-confidence predicted miRNA
interactions (TargetScan) and more than 500K experimentally supported (TarBase) miRNA
targets, PanomiR discovered informative and complementary miRNA regulatory events (Tables
3 and 4). Users have the ability to tailor the background datasets (miRNA-mRNA integration or
pathway gene sets) to their study design and research questions. We have made PanomiR
flexible to heterogeneous miRNA-mRNA interactions and gene-expression datasets. PanomiR
can be expanded (in future development) to co-expression analysis of miRNAs and pathways,
which has been proposed to provide informative pointers to biological programs of diseases (3).

In summary, PanomiR is a systems biology framework to study differentially regulated
pathways, their co-activity, and their regulating miRNAs. It accounts for co-expression of
pathways and disease-specific expression dynamics to identify miRNA-regulatory events,
providing an advance over the current practice of studying static and isolated miRNA-pathway
interactions. PanomiR is available as an open-source R/Bioconductor package for the use of the
community.

AVAILABILITY

PanomiR is available as a Bioconductor package. The development version of PanomiR
can be accessed via <https://github.com/pouryany/PanomiR> and
<https://bioconductor.org/packages/PanomiR>. Additional scripts and analyses, specific to this
manuscript are available via <https://github.com/pouryany/PanomiR_paper>.
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Figure 1. PanomiR workflow. PanomiR prioritizes miRNAs that target coordinate groups of
pathways. (A) Input gene expression dataset and a set of annotated pathways (B) Gene
expression data is summarized into pathway activity scores. (C) Pathway activity profiles are
compared between disease and control subjects to discover differentially regulated pathways.
(D) Differentially regulated pathways are mapped to the canonical pathway co-expression
network (PCxN), where nodes denote pathways and the edges denote correlation of activity
scores. (E) Within the network of differentially regulated pathways, modules of coordinate
pathways are identified using graph clustering algorithms (F) miRNAs are prioritized using
annotated miRNA-mRNA interactions (known or predicted) for preferential targeting within each
cluster of differentially regulated pathways. The outputs of the pipeline are individuals lists of
mMiRNAs with prioritization scores (targeting p-values) per each cluster of pathways.
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Figure 2. miRNA prioritization from pathway clusters. (A) PanomiR generates an observed
targeting statistic, Sx° , for a miRNA X with respect to C, an observed cluster of pathways. The
cluster-targeting statistic is an average individual overlap score for each miRNA-pathway pair.
Individual overlap scores (e.g., Si, S,) are functions (inverse normal) of the overlap statistic
(Fisher’'s exact test) between the miRNA target genes and the pathway member genes
(B)I'MPanomiR generates an empirical distribution of cluster-targeting scores for a miRNA X by
randomly selecting a set of pathways and recalculating the cluster targeting score. (C) The
prioritization p-value is calculated from comparing the observed targeting statistic, Sx°, to the
null distribution of targeting score for the miRNA X. The p-value is used to rank the miRNAs.
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Figure 3. Pathway activity analysis of the Liver Hepatocellular Carcinoma dataset from
the Cancer Genome Atlas. (A) Detection of differentially regulated liver cancer pathways by
comparison of pathway activity profiles between normal tissues (NT) and Tumor primary (TP)
samples (45). Boxplots show the most significant differentially regulated pathways selected
based on p-values of difference between NT and TP (Table 2). (B) Principal component
analysis (PCA) projection of the samples based on either genes or pathways. Pathway
summarization in PanomiR allows to analyze the activity of pathways in a continuum. PCA of
pathways conserves sample groups and captures a higher variation compared to the PCA of

genes.


https://doi.org/10.1101/2022.07.12.499819
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.12.499819; this version posted October 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

o
® L
= Positive Co-expression é ©
— Negative Co-expression ® | ©
Y
O Downregulated Pathway (TP vs NT) _ @ O\\\ iﬁ - B
e m

|:| Upregulated Pathway (TP vs NT) e

Figure 4. PanomiR deconvolutes coordinate clusters of differentially regulated pathways
in liver cancer. The network displays a pathway co-expression map of liver cancer pathways.
PanomiR detected three major groups of pathways, defined by direction of differential regulation
and clusters of co-expression. The three classes are (i) activation of transcription in tumors
(Cluster A) (ii) activation of cellular replication (Cluster B) (iii) deactivation of specific signaling
pathways (Cluster C). Each node in the network represents a differentially regulated pathway
(Table 2). Edges represent canonical co-expression between two pathways, obtained from an
independent compendium of gene expression data, as described in the PCxN method (42).
Node colors represent unsupervised network clusters found by Louvain algorithm (83). Clusters
were manually labeled according to the functional consensus of their pathways.
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Figure 5. Unbiased prioritization of miRNAs by PanomiR. PanomiR prioritizes miRNAs with
either a small or large number of annotated targets. In contrast, enrichment-based miRNA-
prioritization methods are biased towards prioritization of miRNAs with larger numbers of gene
targets. The figure displays correlation analysis of miRNA-prioritization rankings with the
number of gene targets in Cluster A of the liver cancer dataset. Each point represents a miRNA
annotated in the TarBase dataset. (A) Spearman correlation analysis did not find a significant
association between the number of targets and the prioritization ranking of miRNAs by PanomiR
(correlation -0.03). (B) The number of enriched pathways for a miRNA significantly correlated
with its number of gene targets. We also observed a significant correlation between the number
of a miRNA's targets and its prioritization ranking based on (C) Stouffer's method and (D)
Fisher's method for aggregation of enrichment p-value. X-axis denotes the log number of gene
targets of mMiRNAs based on experimentally-validated miRNA-mRNA interactions from the
TarBase database (44). Y-axes in panel b represents the number of significantly enriched
pathways (Adjusted p-value < 0.25, Table 3).


https://doi.org/10.1101/2022.07.12.499819
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.12.499819; this version posted October 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

TABLES

Table 1. Overview of standard miRNA-Pathway analysis methods and PanomiR.

Method/ Multi-pathway Pathway Pathway Open-source Tissue-specific

Reference targeting activity coordination/ software customization
dynamics interaction

PanomiR X X X X X

This work

miRPath v3 X

[PMID 25977294] Meta-analysis

Wilk and Braun X X X

[PMID 29294105]

miRPathDB 2 X X
[PMID 31691816] precalculated precalculated
MITHrIL X X
[PMID 27275538] (via DEG)
miRTar X
[PMID 21791068] Web portal non-

functional
BUFET X X

[PMID 28874117]

miTalos X
[PMID 26998997] precalculated
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Table 2. Detection of differentially regulated pathways in liver cancer. Most significant
differentially regulated pathways identified by PanomiR according to p-value of differential
activity between tumor (TP) and normal tissues (NT). Differential regulation p-values were
derived using linear models using the limma package by comparing pathway activity profiles of
TP vs NT (53). Differential Activation adjusted P-values are for multiple hypothesis testing using
FDR. Direction denotes upregulation or downregulation of pathway activity in TP vs NT.
Enrichment adjusted p-values for pathways are provided for comparison. Enrichment p-values
were derived from the differentially expressed genes (|FC| >1, FDR <0.05). The column “#DE
genes” shows the number of differentially expressed genes (TP vs NT) that are present in the
pathway.

Adjusted Direction Enrichment #DE

Differentially Regulated Pathways p-value TPvs NT  adj. p-value genes

REACTOME: NUCLEAR SIGNALING BY ERBB4 1.13E-30 DOWN 1 5
KEGG: NEUROACTIVE LIGAND RECEPTOR INTERACTION 1.13E-30 DOWN 0.00109 27
KEGG: JAK STAT SIGNALING PATHWAY 3.19E-28 DOWN 1 12
REACTOME: CLASS A1 RHODOPSIN LIKE RECEPTORS 2.98E-27 DOWN 0.0114 28
REACTOME: GPCR LIGAND BINDING 4.2E-27 DOWN 0.0265 35
REACTOME: HDL MEDIATED LIPID TRANSPORT 7.57E-26 DOWN 0.53 4
PID: TCR CALCIUM PATHWAY 1.29E-25 DOWN 1 3
BIOCARTA: GATA3 PATHWAY 1.25E-24 DOWN 1 1
REACTOME: ASSEMBLY OF THE PRE REPLICATIVE COMPLEX 2.19E-24 uUpP 0.849 11
REACTOME: ORC1 REMOVAL FROM CHROMATIN 1.03E-23 UpP 1 9
KEGG: TRYPTOPHAN METABOLISM 1.37E-23 DOWN 0.000547 15
BIOCARTA: ACTINY PATHWAY 4.77E-23 UP 1 0
REACTOME: PROTEIN FOLDING 5.59E-23 UP 1 0
KEGG: CYTOKINE-CYTOKINE RECEPTOR INTERACTION 1.71E-22 DOWN 0.0543 33
PID: ARF6 PATHWAY 2.55E-22 DOWN 1 5
BIOCARTA: IL1R PATHWAY 3.87E-22 DOWN 1 3
CEACTOME REGULATIONOF INSULI LKE GROWTH ACTOR OF ACTWIY o0 pown o0ars
REACTOME: SIGNALING BY GPCR 1.28E-21 DOWN 0.447 52
REACTOME: PREFOLDIN MEDIATED TRANSFER OF SUBSTRATE TO CCT TRIC 2.63E-21 UpP 1 0
REACTOME: LIPOPROTEIN METABOLISM 2.64E-21 DOWN 0.0521 9
PID: IL1 PATHWAY 3.2E-21 DOWN 1 3
REACTOME: M G1 TRANSITION 3.92E-21 UpP 0.447 15
BIOCARTA: TOLL PATHWAY 4.12E-21 DOWN 1 2
KEGG: UBIQUITIN MEDIATED PROTEOLYSIS 7.43E-21 UP 1 4

REACTOME: MRNA SPLICING MINOR PATHWAY 8.3E-21 UpP 1 0



https://doi.org/10.1101/2022.07.12.499819
http://creativecommons.org/licenses/by/4.0/

available under aCC-BY 4.0 International license.

Table 3. PanomiR prioritizes regulatory miRNAs in liver cancer using experimentally-
validated interactions. Prioritized miRNAs for each identified pathway cluster, ranked by
PanomiR targeting p-value (Figure 2). miRNAs are prioritized based on experimentally validated
MiRNA-mRNA interaction from TarBase V8.0 (44). Enrichment analysis results are provided for
comparison. The column “#Pathways enriched” denotes the number of pathways in the cluster

with significant (FDR < 0.25) enrichment in the targets of each miRNA, derived using Fisher's

Exact test.

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.12.499819; this version posted October 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Cluster A (n = 65)

Cluster B (n = 60)

Cluster C (n = 58)

miRNA

hsa-miR-525-3p
hsa-miR-1307-5p
hsa-miR-302c-5p
hsa-miR-631
hsa-miR-663a
hsa-miR-595
hsa-miR-933
hsa-miR-510-5p
hsa-miR-5009-5p
hsa-miR-2682-5p

# Pathways
Enriched

1
0
0
5
6
4
1
1
7
0

PanomiR
Adjusted
p-value

2.7E-43

1.4E-27
6.22E-24
6.61E-24
1.64E-23
4.03E-23
1.04E-22
1.04E-22
2.23E-22
4.65E-22

miRNA

hsa-miR-107
hsa-miR-124-3p
hsa-miR-103a-3p
hsa-miR-129-2-3p
hsa-miR-1-3p
hsa-miR-23a-5p
hsa-miR-663a
hsa-miR-449b-5p
hsa-miR-147a
hsa-miR-193b-3p

# Pathways
Enriched
40
38
40
37
36
3
5
33
41
35

PanomiR
Adjusted
p-value

1.92E-22
2.04E-22
3.24E-21
2.31E-17
2.43E-17
8.12E-16
3.29E-15
2.26E-14
2.26E-14
3.26E-14

miRNA

hsa-miR-410-3p
hsa-miR-552-3p
hsa-miR-5187-5p
hsa-miR-612
hsa-miR-198
hsa-miR-621
hsa-miR-199b-5p
hsa-miR-204-3p
hsa-miR-4733-5p
hsa-miR-506-3p

# Pathways
Enriched

N R R DM N NN R A R

PanomiR
Adjusted
p-value

2.25E-07
0.00057
0.00057
0.00254
0.0142
0.0172
0.0209
0.0249
0.0503
0.0503
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Table 4. PanomiR prioritizes regulatory miRNAs in liver cancer using predicted
interactions. Prioritized miRNAs for each identified pathway cluster, ranked by PanomiR
targeting p-value (Figure 2). miRNAs are prioritized based on predicted miRNA:mRNA
interaction from TargetScan V7.2 (43). The column “Pathways enriched” denotes the number of
pathways in the cluster with significant (FDR < 0.25) enrichment in the targets of each miRNA,
derived using Fisher's Exact test.

Cluster A Cluster B Cluster C
mipna  Patweys JEEC) e Patweys SEEECT] mmwa Patways OO0
p-value p-value p-value
hsa-miR-371a-5p 0 1.06E-38 | hsa-miR-191-5p 2 2.53E-19 | hsa-miR-219a-2-3p 3 1.68E-09
hsa-miR-505-3p.2 0 8.96E-34 | hsa-miR-892c- 1 8.81E-14 | hsa-miR-376c-3p 4 9.51E-09
3p/hsa-miR-452-5p

hsa-miR-1298-5p 0 1.88E-31 | hsa-miR-4424 4 4.26E-12 | hsa-miR-1249-3p 0 4E-08
hsa-miR-556-5p 0 3.4E-28 hsa-miR-339-5p 3 8.51E-11 | hsa-miR-3605-3p 3 1.2E-07
hsa-miR-325-3p 3 5.95E-25 [ hsa-miR-944 0 8.51E-11 | hsa-miR-143-3p 3 2.06E-07
hsa-miR-495-3p 0 1.05E-23 | hsa-miR-345-5p 1 2.03E-10 |hsa-miR-514b- 1 6.57E-07

5p/hsa-miR-513c-5p

hsa-miR-1278 1 1.05E-23 | hsa-miR-518c-3p 0 8.89E-10 | hsa-miR-187-3p 3 1.39E-06
hsa-miR-651-5p 0 1.46E-22 | hsa-miR-154-5p 2 3.17E-09 | hsa-miR-625-3p 1 3.06E-06
hsa-miR-323b-3p 0 6.39E-18 | hsa-miR-1251-5p 1 3.47E-09 | hsa-miR-1306-5p 2 5.83E-06
hsa-miR-421 0 1.16E-17 | hsa-miR-599 1 3.47E-09 | hsa-miR-873-5p.1 3 7.82E-06
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