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Abstract  

A major effect of environment on crops is through crop phenology, and therefore, the capacity to predict 

phenology as a function of soil, weather, and management is important. Mechanistic crop models are a 

major tool for such predictions. It has been shown that there is a large variability between predictions by 

different modeling groups for the same inputs, and therefore, a need for shared improvement of crop 

models. Two pathways to improvement are through improved understanding of the mechanisms of the 

modeled system, and through improved model parameterization. This article focuses on improving crop 

model parameters through improved calibration, specifically for prediction of crop phenology. A detailed 

calibration protocol is proposed, which covers all the steps in the calibration work-flow, namely choice of 

default parameter values, choice of objective function, choice of parameters to estimate from the data, 

calculation of optimal parameter values and diagnostics. For those aspects where knowledge of the model 

and target environments is required, the protocol gives detailed guidelines rather than strict instructions. 

The protocol includes documentation tables, to make the calibration process more transparent. The 

protocol was applied by 19 modeling groups to three data sets for wheat phenology. All groups first 

calibrated their model using their “usual” calibration approach. Evaluation was based on data from sites 

and years not represented in the training data. Compared to usual calibration, calibration following the 

new protocol significantly reduced the error in predictions for the evaluation data, and reduced the 

variability between modeling groups by 22%.  
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crop model, prediction error, protocol, model ensemble, variability 
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1. Introduction 

Plant phenology is a major aspect of plant response to environment, and a major determinant of plant 

response to climate change. This includes phenology of natural vegetation, which is a dominant aspect of 

plant ecology (Cleland et al. 2007) and has been shown to be affected by warming (Piao et al. 2019; 

Menzel et al. 2020; Stuble et al. 2021) and phenology of cultivated crops. For the latter, phenology must 

be taken into account for crop management (Sisheber et al. 2022), choice of cultivar or cultivar 

characteristics adapted to a particular region (Zhang et al. 2022) and for evaluating the impact of climate 

change on crop production (Rezaei et al. 2018). It is thus important to be able to predict phenology as a 

function of environment, in particular as a function of climate. 

A number of mechanistic crop models have been developed, which include simulation of phenology, and 

such models are regularly used to evaluate management options (McNunn et al. 2019) or the effect of 

climate change on crops, including wheat (Asseng et al. 2013), rice, (Li et al. 2015),  maize (Bassu et al. 

2014) and others. Such models are particularly important for taking into account an increasing diversity of 

combinations of weather events (Webber et al. 2020).  

Mechanistic models in general, and models used to simulate crop phenology in particular (we will refer to 

such models as crop phenology models, though they are usually embedded within more general crop 

models), are based on our understanding of the processes and their inter-linkages that drive the evolution 

of the system. This conceptual understanding usually builds on detailed experiments that study specific 

aspects of the system (e.g. Brisson et al., 2003 for the crop model STICS). The set of model equations is 

referred to as “model structure” (Tao et al. 2018).  

In addition to model structure, simulation requires values for all the model parameters. In essentially all 

uses of crop models, the model is first calibrated using observed data that is related to the target 

population for which predictions are required, for example observations for the specific variety of interest 

and/or for the particular set of growing environments of interest. Calibration is essentially universally 

necessary because mechanistic models are only approximations, without universally valid parameter 

values (Fath and Jorgensen 2011; Wallach 2011). 

There are therefore two main tracks to improvement of crop phenology models. The first is through 

improvement of model structure through improved understanding of the underlying processes, and the 

second is through improvement of the model parameters. For a fixed data set, improvement of model 

parameters implies improvement of model calibration, and that is the topic here. 
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Crop models, like system models in general, are basically regression models, in that they predict outcomes 

of the system based on input variables. While calibration of regression models (usually referred to as 

parameter estimation in a statistical context) is a major topic in statistics, the application of statistical 

methods to system models is not straightforward. Among the difficulties are the fact that system models 

often have multiple output variables that can be compared to observed results (e.g., dates of heading and 

dates of flowering for crop phenology models) and there are usually many parameters, often more than the 

number of data points available. While the details differ, these problems apply to essentially all system 

models, not only crop phenology models but also full crop models, hydrological models, ecology models  

and models  in other fields. No doubt as a result, there are no widely accepted standard methods for 

calibration of system models. It has been found,  for example, that there is a wide diversity of calibration 

approaches and model outputs for crop phenology models furnished with identical data, even between 

modeling groups using the same model structure (Confalonieri et al. 2016; Wallach et al. 2021a, b). 

Because of the importance of calibration and the lack of standard approaches for calibration, there have 

been many studies published that make recommendations as to how to calibrate crop models or system 

models in other fields. One type of study is model-specific, and identifies the most important parameters 

to estimate for a particular model (Ahuja and Ma, 2011). Other studies have focused on the methodology 

of identifying the most important parameters through sensitivity analysis  (Khorashadi Zadeh et al. 2022), 

on the choice between frequentist and Bayesian paradigms (Gao et al. 2021), on the form of the objective 

function, or on the numerical algorithm for searching for the best parameter values (Rafiei et al. 2022). A 

recent study has emphasized the need to consider the full flow of the calibration exercise, including the 

choice of default parameter values, the choice of observed data to include in the objective function, the 

form of the objective function, the choice of parameters to estimate, and the choice of numerical algorithm 

for calculating the best parameter values, and proposed recommendations for each of those activities 

(Wallach et al., 2021c). 

Recommendations for improved calibration are useful, but have important limitations. Not only do they 

generally concern only part of the calibration activity, but in addition they are generally not tested for a 

wide range of situations, to verify that they have general applicability, and they generally do not have any 

mechanism for ensuring that they are correctly followed. To date, recommendations have not resulted in a 

convergence of calibration practices for crop phenology models.  

The purpose of this study is to propose, implement, and evaluate a calibration protocol for crop phenology 

models that does not have the above-mentioned limitations. Compared to usual recommendations, the 

protocol suggested here, shown schematically in Figure 1, is more detailed, covers the full range of 

decisions involved in calibration, and includes documentation templates that help in correctly 
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implementing the protocol and make the calibration strategy more transparent. To test the applicability of 

the protocol to a range of model structures, multiple modeling groups implemented the protocol, using 

multiple model structures. To test the applicability to differently structured data sets, each modeling group 

applied the protocol to three different wheat phenology data sets, with two quite different structures. The 

most important, and exacting, test of the proposed calibration protocol is its ability to  improve predictions 

of phenology for out-of-sample environments, compared to usual calibration practice. All of the modeling 

groups that applied the protocol in this study first used their usual method of calibration on the same data 

sets as those used here, in most cases as part of previous studies(Wallach et al. 2021a, b). Thus, we were 

able to compare the predictive accuracy of usual calibration with calibration using the protocol proposed 

here. It is also important to reduce the uncertainty in phenology predictions, as measured by the variability 

between different modeling groups. Therefore, we also compared the variability between groups for the 

case where each group uses their usual calibration approach or the protocol.  

   

                                                                           

 
Figure 1: Schematic diagram of steps in the proposed protocol for calibration of crop phenology models. 
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2. Materials and Methods 

Data sets 

The phenology stages targeted in this study, using the BBCH scale  (Meier 1997)., are BBCH10 

(emergence), BBCH30 (beginning of stem elongation), BBCH55 (middle of heading), BBCH65 (anthesis 

half way) and BBCH90 (fully ripe grain).  Simulations were performed for three data sets. The two French 

data sets had a similar structure, but concerned two different winter wheat varieties. The third data set was 

from Australia, for a spring wheat variety. In each case, the data could be considered to come from a well-

defined target population: conventionally managed wheat fields in the major wheat growing regions of 

France for the first two data sets, and of Australia for the third data set. The Australian data set included 

multiple planting dates from within the range of reasonable dates. Each data set was split into two subsets, 

one for calibration and one for evaluation. The two subsets had neither site nor year in common, so the 

evaluation is a rigorous test of how well a modeling group can simulate phenology for out-of-sample 

environments. 

The French data sets contained observations of stages BBCH30 and BBCH55. For each variety there were 

14 calibration environments and 8 evaluation environments, where an environment is a combinations of 

site and sowing date. More details about the French data set can be found in Wallach et al (2021a). The 

Australian data set contained once weekly notations of BBCH stage in each environment. The Australian  

data were interpolated to give the date of each integer BBCH stage from the earliest that was observed to 

the latest, and these interpolated data were provided to the modeling groups. The interpolated data were 

provided to avoid each modeling group doing their own interpolation, which would add unwanted 

variability to the exercise. The Australian data set had 24 calibration environments and 18 evaluation 

environments. For more details see Wallach et al (2021b). 

Modeling groups 

Nineteen modeling groups, using 16 different model structures (Table 1), participated in this study, which 

was carried out within the Agricultural Model Intercomparison and Improvement Project (AgMIP; 

www.agmip.org). The modeling groups are identified only by a code (“M1”, “M2” etc.) without indicating 

which model structure they used, since it would be misleading to give the impression that the results are 

determined solely by model structure. The codes here refer to the same modeling groups as in Wallach et 

al. (2021a, 2021b).  
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Table 1: List of model structures used by participating groups 

Model structure Version(s) References 

AgroC May 2018 (Herbst et al. 2008; Klosterhalfen et al. 2017) 

APSIM 7.8, 7.9, 7.10 (Keating et al. 2003; Holzworth et al. 2014) 

AquaCrop 4.0 (Vanuytrecht et al. 2014) 

CERES-Wheat DSSAT V4.7. (Hoogenboom et al., 2019a, 2019b; Jones et al., 

2003)  

 

CoupModel Version 5.4.4 (P.-E. Jansson 2012; Senapati et al. 2016; 

Coucheney et al. 2018) 

CROPSIM-Wheat DSSAT V4.7 (Hoogenboom et al., 2019a, 2019b; Jones et al., 

2003) 

Cropsyst 3.04.08 (Stockle et al. 2001) 

HERMES 4.27 (Kersebaum, 2007; Kersebaum, 2011) 

 

 

Evaluation  

Our basic evaluation metric is the sum of squared errors (SSE) and the related quantities mean squared 

error (MSE) and root mean squared error (RMSE), where  

 

 
2

ˆ

/

ij ij

i j

SSE y y

MSE SSE n

RMSE MSE

 







  (1) 

The sum is over variables and environments. Here ijy  is the observed value of variable i for environment 

j,  ˆ
ijy  is the corresponding simulated value and n is the number of terms in the sum. We also look at the 
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decomposition of MSE as the sum of three terms, namely squared bias (bias²), a term related to the 

difference in standard deviations of the observed and simulated values (SDSD) and a term related to the 

correlation of observed and simulated vales (LCS) (Kobayashi 2004). 

In addition, we define two simple benchmark models. The first (the “naive” model) is simply the average 

number of days to each stage in the calibration data of each data set. This is used as the prediction model 

for all environments of that data set. The often used Nash Sutcliffe modeling efficiency is one minus the 

ratio of MSE of a model to MSE of the naive model. The naive model ignores all variability between 

environments, so it is a very low bar as a benchmark. We therefore also use a more sophisticated 

benchmark, the “onlyT” model, introduced in Wallach et al. (2021a). This benchmark model assumes that 

the sum of degree days above a threshold of 0°C from sowing to each stage is fixed for spring wheat. For 

winter wheat, a simple vernalization model is used, and then the fixed number of degree days applies after 

vernalization is completed (van Bussel et al. 2015; Wallach et al. 2021a). Both benchmark models are 

quite easily parameterized based on calibration data, and then easily applied to new environments.   

Simulation exercise  

The participants received input data (daily weather at the field, soil characteristics, management details 

and, where possible, initial conditions) for all environments of every data set. Also, the observed data 

from the calibration environments were provided to all participants. The participants were asked to use 

those data to calibrate their models, and then to simulate and report days after sowing to stages BBCH10, 

BBCH30, and BBCH55 for the French calibration and evaluation environments, and to stages BBCH10, 

BBCH30, BBCH65, and BBCH90 for the Australian calibration and evaluation environments. Days to 

emergence (BBCH10) was included to have an example of a variable for which there were no calibration 

data. The BBCH stages 30 and 55 requested for the French environments represent stages that are used for 

fertilizer decisions in France. The BBCH stages 30, 65, and 90 requested for the Australian environments 

represent major transitions that are explicitly simulated by many models. 

Seventeen of the 19 participating modeling groups participated in previous phases of this project, and in 

that framework had already calibrated their model using their usual calibration approach (Wallach et al. 

2021a, b). The two remaining groups also calibrated their models using their usual approach before 

beginning to use  the protocol proposed here. It is the results of the usual calibration method that are 

compared here to the results of using the proposed protocol. If any simulated results were missing from 

the usual calibration results, the corresponding results from the protocol calibration results were deleted, 

and vice versa. Thus, the results for the usual and protocol calibrations are comparable. At no time were 

the evaluation data shown to participants, neither in previous studies nor in the present study. To keep 
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these data confidential, and thus, potentially useable in future studies, no graphs are presented here 

showing the evaluation data.  

In the present study, participants were given the detailed protocol for model calibration and asked to 

implement it for the three data sets. The protocol was the same as described below, but the textual 

description was somewhat different. The team leaders used the protocol documentation generated by the 

modeling teams to identify problems and interact with the participants.  

The protocol does not impose a specific software solution. However, several participants used trial and 

error in their usual approach and requested help in finding and implementing an automated search 

algorithm, since that is required for the protocol. To answer this need, the CroptimizR R package (Buis et 

al. 2021) was modified to do the protocol calculations, and many of the participants used this software. 

In addition to the individual models, we report on two ensemble models, created by taking the mean (the 

e-mean model) or the median (the e-median model) of the simulated values. These ensemble models were 

calculated both for the usual and protocol calibration results.  

AICc and BIC 

The protocol uses a model selection criterion to decide which parameters to estimate. The corrected 

Akaike Information Crition (AICc) and the Bayesian Information Criterion (BIC) are two different criteria 

that are often used for model selection (Chakrabarti and Ghosh 2011). Both are based on model error, with 

a penalization term that increases with the number of estimated parameters. Assuming that model errors 

are normally distributed, the criteria are  

 
2 ( 1)

ln( ) 2
1

p p
AICc n MSE p

n p


  

 
  (2) 

 ln( ) ln( )BIC n MSE p n    

where n is the number of data points and p is the number of calibrated parameters. These criteria are only 

used for comparing models calibrated using the same data, so any term that only involves n, the number of 

data points, has been dropped because it is the same for all models.  

There have been comparisons between these criteria, but there does not seem to be one that systematically 

performs better than the other, for choosing the model that predicts best (Kuha 2004). In applying the 

protocol here, participants were asked to perform the calculations twice, once using the AICc criterion and 

once using the BIC criterion to choose the parameters to estimate. In almost all cases, the two criteria led 

to exactly the same choice of parameters. In the few cases where the criteria led to different choices, the 
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final models had very similar RMSE for the evaluation data, with a very slight advantage to BIC 

(Supplementary tables 22-23). All results shown here are based on the BIC criterion.   

 

The protocol 

The proposed protocol follows the recommendations from Wallach et al. (2021c), but with additional 

details to extend, standardize, and document the implementation of those recommendations. The protocol 

covers all the steps involved in calibration, with detailed instructions for each step. 

Step 1. Choose default parameter values 

The first step in the protocol is to define the default values for all parameters. This step is rarely if ever 

mentioned in discussions of system model calibration. It is however very important since most parameters 

retain their default values. Furthermore, the protocol calculations work best if the default values of the 

parameters to be estimated are reasonably close to the new best values. For phenology, one would want to 

have reasonable approximations to the cycle length for the cultivar in question, to photoperiod dependence 

and to vernalization requirements. The documentation for step 1 (see example in Table 2) specifies the 

cultivar which is used to provide default parameter values, and why that cultivar was chosen.  

                                                                          

Table 2: Example of protocol documentation for step 1, showing cultivar characteristics of the target 

population cultivar and of the cultivar that provides the default parameter values. This example is for the 

French data set and modeling group M21.   

Variety Characteristics 

Variety of target population: Apache A soft winter wheat. Stem elongation – semi-

early. Heading – early. Vernalization requires 40 

days where full vernalization occurs if daily 

average temperature is between 3°C and 10°C. 

There is no vernalization below -4°C or above 

17°C. Otherwise there is a proportional 

reduction in vernalization effectiveness.  

 

Default variety : Soissons Soissons seems to be close to Apache in 

terms of vernalization requirements and 

earliness. 
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Step  2. Identify measured variables to be fit 

Here one lists each of the observed variables and the corresponding simulated variables if any. In the 

simplest case, there is a simulated variable that corresponds directly to each observed variable. The 

documentation for step 2 is a table with one row for each observed variable (Table 3).  

Often this step is straightforward. In some cases, however, there may be stages for which simulations are 

required, and for which there are observations, but which are not specifically identified in the model. In 

the study here, for example, several models do not specifically simulate the stage BBCH30, which was 

observed in the French data set and which was to be simulated. Most models do, however, simulate an 

internal growth stage variable. One can then treat the internal growth stage that corresponds to BBCH30 

as a new parameter, to be estimated. This is the recommendation of the protocol. This approach makes it 

possible for a much wider range of models to use all the data for calibration, than if only observed 

variables specifically simulated by the model were used.  

  

Table 3: Example of documentation of protocol step 2 with one row for each measured variable, showing the 

corresponding simulated variable. This example is for the French data set and modeling group M21.  

Measured variable Corresponding simulated value 

Days to BBCH stage 30 

 

Days to end juvenile stage 

Days to BBCH stage 55 Days at maximum LAI 

 

 

 

 

Step 3. Define the objective function 

The protocol uses as objective function to be minimized SSE, where the sum over variables is over the 

observed variables from step 2 that have a simulated equivalent.  No choices are required here. Once step 

2 has been finalized, the objective function follows.  

In discussing system models in hydrology, Hernandez-Suarez et al. (2021) distinguish two categories of 

objective functions, one based on traditional performance metrics and the second adapted to the specific 

aspects of the system that are of primary interest. This choice applies generally to system models, and here 

we opt for the first possibility. The objective function of the protocol is simply the total sum of squared 

errors, which is the objective function of ordinary least squares (OLS) regression and is often used in crop 
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model calibration. Another major choice of the protocol is to include in the objective function all the 

observed variables that have a simulated equivalent, including variables that are not of primary interest. 

For example, in the study here, the Australian data set has observations of many stages. The protocol says 

to use all possible data, and in fact, most modeling groups did indeed use observations of other stages for 

calibration, in addition to data for the BBCH stages 30, 65, and 90, which are used for evaluation. A first 

reason for using all data is that often the same calibrated model will be used for several different 

objectives, so measured variables that are not of central interest in the current study may be important in 

future studies. Furthermore, using more variables makes the model a better representation of multiple 

aspects of the system dynamics, which is likely to improve all simulations.  

OLS has attractive optimal properties if the standard assumptions are satisfied (Seber and Wild 1989). It 

has been argued that crop models probably do not fully satisfy these  assumptions, not even the first 

assumption that the model is correctly specified, i.e. that there are parameter values such that the 

expectation of model error is zero (Wallach 2011). However, even in this case, OLS has desirable 

properties (White 1981).  

The assumptions underlying the optimal properties of OLS also include homoscedasticity (equal variances 

of error for all variables) and independence between errors for all variables. Once again, these 

assumptions are probably not fully satisfied for crop phenology models. If problems of heteroscedasticity 

(unequal error variances) and non-independence are ignored, the calibration does not make optimal use of 

the data. One could correct the problem of heteroscedasticity by using weighted least squares, and the 

problem of non-independence by using generalized least squares (Seber and Wild 1989), but in both cases 

that would require estimating additional parameters, related to the standard deviation or to the variance-

covariance matrix of model error. The assumption here is that the problems of heteroscedasticity and non-

independence are often not too important for crop phenology models, since the variables are all times to 

various development stages and thus, may have similar error variances, and different environments often 

have similar amounts of data, so taking non-independence into account would not greatly change the 

relative importance of different environments. The choice in the protocol is, therefore, to use OLS and to 

avoid estimating additional parameters related to variance and covariance of errors.  

An alternative approach would be to do a Bayesian calculation, where one calculates the posterior 

parameter distribution rather than a single best parameter vector. However, this is more difficult 

computationally, and furthermore requires specification of the distribution of model error, including 

variances and covariances. Also, while in principle one can estimate any number or parameters using a 

Bayesian approach, in practice there is always a choice of which  parameters to include in the calculation, 

as with the approach here. 
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Step 4. Choose which parameters to estimate 

Usual calibration approaches include various methods of choosing which parameters to estimate, 

including sensitivity analysis, expert opinion, and testing different options to find the best fit to the data 

(Wallach et al. 2021c). The protocol here combines expert opinion and a data-based criterion of choice.   

The protocol distinguishes two categories of parameters to estimate: the nearly additive, obligatory 

parameters (those that will definitely be estimated) and the candidate parameters (those that will be tested, 

and only changed from the default value if the improvement in the fit to the calibration data is sufficiently 

large). 

Step 4a. Identify the nearly additive, obligatory parameters 

The obligatory parameters are parameters that are nearly additive, i.e. such that changing the parameter 

has a similar effect for all environments. Usually, a parameter that represents degree days to a measured 

stage is a good choice as an obligatory parameter for time to that stage. If the calculation of a variable in 

the model includes a constant (i.e. there is an exactly additive parameter), then estimating that constant 

using OLS  ensures that model bias will be exactly zero (i.e. the average of observed and simulated values 

will be equal), An approximately additive parameter will almost eliminate bias. Reducing bias reduces 

MSE for the calibration data, since squared bias is one of the three terms that add up to MSE (Kobayashi 

and Salam 2000). Once bias is nearly eliminated, one may already have a fairly reasonable fit to the data. 

Ideally, the number of almost additive parameters will be identical to the number of variables in the 

objective function. The number of almost additive parameters cannot be greater than the number of 

variables in the objective function, and each must be nearly additive for a different variable or 

combination of variables. Otherwise, the parameters would be very poorly estimated, or non-estimable. 

The protocol does allow fewer almost additive parameters than observed variables. In that case bias is 

only nearly eliminated on average over several variables, and not for each variable.  

The documentation for protocol step 4a has one row for each ,early additive parameter (Table 4),  which 

gives the default value and upper and lower bounds. Our definition of upper and lower bounds is that the 

modeler would be very surprised if the true best value for this target population were outside these 

bounds. This is admittedly a rather vague definition, but it is meant to translate the fact that while we do 

not know the true best value of each parameter, we do have some knowledge about a reasonable range.  
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Table 4: Example of documentation for protocol step 4a, showing obligatory parameters for the French data 

set, variety Apache for modeling group M21.  

Name of  obligatory 

parameter 

explanation Default value 

(lower,upper limits) 

stlevamf Degree days sowing 

to end juvenile stage 

233 (150-400) 

stamflax Degree days sowing 

to maximum LAI 

354 (150-500) 

 

 

 

 

Step 4b. Identify candidate parameters 

The role of the candidate parameters is to reduce the variability between environments that remains after 

estimation of the obligatory parameters. It is the role of the modeler to identify the parameters that seem 

likely, when estimated, to explain a substantial part of the unexplained variability between environments, 

and to order them by amount of variability likely to be explained. Each parameter is associated with a 

particular process, so the choice here is of the process and then of the specific parameter in the equations 

describing that process. For example, in Table 5, the first and last candidate parameters are both associated 

with crop vernalization, but affect different aspects of that process.  

In the calculation step (step 5), each candidate parameter is tested, and only those that lead to a reduction 

in the BIC criterion are retained for estimation. Otherwise, the parameter is kept at its default value. There 

should be only a limited number of candidate parameters, with those thought most important first, in order 

to reduce the risk of selection bias where unimportant parameters are chosen because of random error 

(Lukacs et al. 2010). The choice of almost additive and candidate parameters is the calibration step which 

requires the most detailed knowledge of the model. 

 

Table 5: Example of documentation for protocol step 4b, showing candidate parameters for the French data 

set, variety Apache for modeling group M21.  

Candidate parameter (include units and a 

brief explanation) 

Default value (Lower and upper bounds) 

jvc (days): number of vernalizing days  38 (25 – 60) 

sensrsec (no unit): index of root sensitivity 

to drought (1=insensitive) 

0.5 (0 – 1) 

belong (degree.day-1): parameter of the 0.012 (0.005 – 0.03) 
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curve of coleoptile elongation 
JVCmini (days): minimum vernalizing days 

required 
7.0 (2 – 15) 

stressdev (no unit): maximum phasic delay 

allowed due to stresses 
0 (0 – 1) 

 

 

Step 5. Calculation of the optimal parameter values 

The protocol prescribes using an algorithm based on the Nelder-Mead simplex (Nelder and Mead 1965), 

to minimize SSE. This is a robust, derivative-free method, which is appropriate for crop models which 

may have multiple discontinuities.  

The optimization is done in several steps, first for the obligatory parameters and then for each candidate 

parameter. At each step, one estimates the previously chosen parameters plus the next candidate 

parameter. If this leads to a smaller value of the BIC criterion than the previous best model, the candidate 

parameter is added to the list of parameters to estimate. If not, the candidate parameter returns to its 

default value and is not added to the list of parameters to estimate. The model with the lowest value of 

BIC is the final model. Table 6 shows the documentation of protocol step 5, which has one row for each 

minimization step.   

The results of the simplex are sensitive to starting values (Wang and Shoup 2011), and there is no 

guarantee that the algorithm will converge to the global optimum.  Therefore, the protocol calls for 

multiple starting points. For the initial step, with more than one parameter to estimate, the protocol 

recommends using at least 20 starting values, chosen within the lower to upper bound for each parameter. 

Latin hypercube sampling could be used to distribute the starting values within the space of possible 

values. When a new candidate parameter is estimated, it is expected that the optimal values of the other 

estimated parameters will often be similar to their previous optimal values. Therefore, the protocol 

recommends starting from the parameter values that gave the previous lowest BIC value, and five 

different starting values for the new parameter. In this way the calculations take advantage of knowledge 

of the system to focus the search for best parameters on a limited portion of the parameter space, thus 

reducing calculation time.  

Table 6: Example of documentation for protocol step 5, showing the calculations for the French data set, 

variety Apache, modeling group M21. The first line shows the optimization results for the obligatory 

parameters, then each subsequent line corresponds to a candidate parameter. In this example, the first 

candidate parameter (jvc) is accepted, and all the subsequent candidate parameters increase BIC, and are 

therefore, rejected. The model finally chosen (minimum BIC) has three estimated parameters. 
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Step 6 Diagnostics 

a. The protocol evaluation graph shows simulated versus observed values, with a different symbol 

for each variable (Figure 1). 

 

 

Figure 2: Graph for protocol documentation of step 6a, showing simulated and observed values of BBCH30 

and BBCH55. The results are for the French data set, variety Apache, modeling group M21.  

Estimated.parameters Initial.parameter.values Final.values Sum.of.squared. 

errors 

BIC 

stlevamf, stamflax multiple 227, 360 405 81.47 

stlevamf, stamflax, jvc 227, 360, multiple 212, 367,  55.91 349 80.64 

stlevamf, stamflax, jvc, 

sensrsec 

212, 367,  55.91,   

multiple 

209, 367,  58.40,   

0.057 

322 81.71 

stlevamf, stamflax, jvc, 

belong 

212, 367,  55.91,    

multiple  

212, 367,  55.91,   

0.012 

349 83.97 

stlevamf, stamflax, jvc, 

jvcmini 

212, 367,  55.91,   

multiple  

197, 362,  55.28,  

20.88 

319 81.45 

stlevamf, stamflax, jvc, 

stressdev 

212, 367,  55.91,    

multiple  

212, 367,  55.91,   

0.00 

349 83.97 
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b. Calculate MSE and its components for each variable (7) 

 

                                                                             

Table 7: Example of documentation of protocol step 6b, showing the calculations for the French data set, 

variety Apache, modeling group M21. Mean squared error (MSE) is a sum of bias², SDSD, and LCS.  

 MSE (days²) bias² (days²) SDSD (days²) LCS (days²) 

 

BBCH30 19.64 0.25 5.93 13.46 

BBCH55 5.29 0.02 0.03 5.24 

 

 

 

 

c. Compare results to benchmark models (Table 8). 

 

                                                                            

Table 8: Example of documentation for protocol step 6c, showing results for benchmark models for the 

French data set, variety Apache, modeling group M21.  The benchmark “naive” assumes a constant number 

of days to each stage. The benchmark “onlyT” assumes a constant temperature sum to each stage.   

 naive onlyT M21 

variable RMSE (days) RMSE (days) RMSE (days) 

BBCH30 12.5 8.4 3.1 

BBCH55 8.3 9.5 3.8 
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3. Results and discussion 

Comparison of usual and protocol calibration for individual models 

Number of parameters and simulated values 

There were substantial differences between the consequences of doing usual or protocol calibration. For 

the large majority of modeling groups, the number of estimated parameters in the final model was 

different between protocol and usual calibration (Supplementary Figure 1). Table 9 shows that on average 

over modeling groups, protocol calibration led to fewer parameters (French data sets) or the same number 

of parameters (Australian data set) to be estimated in comparison to usual calibration. The modeling 

groups considered a larger number of parameters in the protocol calibration than in the usual calibration, 

but then rejected most of the candidates.   

 

Table 9: Number of estimated parameters in the final model after protocol or usual calibration, averaged over 

modeling groups.  

Data set Protocol calibration Usual 

calibration 

Additive 

parameters 

Candidate 

parameters 

Accepted 

candidate 

parameters 

Total 

parameters  

Total 

parameters 

France 

Apache  

1.9 3.6 0.7 2.6 3.5 

France  

Bermude  

1.9 3.6 0.9 2.8 3.6 

Australia 4.0 4.5 1.7 5.7 5.7 

 

 

 

The differences between simulated values after usual and protocol calibration were small for BBCH10, for 

which there were no calibration data. For the other stages, the simulated values differed appreciably. The 

mean absolute difference between simulated values using usual or protocol calibration is shown in Table 

10. Results by modeling group are shown in Supplementary Figure 2.  

 

Table 10: Mean over modeling groups and environments of the absolute difference in simulated values 

between usual calibration and protocol calibration for the calibration data.   

French data set 

(Apache and 

Bermude) 

stage BBCH10 BBCH30 BBCH55  

Mean 

absolute 

0.8 4.5 3.1  
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difference 

(days) 

Australian data 

set 

stage BBCH10 BBCH30 BBCH65 BBCH90 

Mean 

absolute 

difference 

(days) 

1.8 7.9 7.9 8.5 

 

 

Goodness of fit and evaluation  

Figure 3 and 4 and Supplementary Tables 2-7 show RMSE using usual and protocol calibration for the 

French and Australian data sets respectively. If a point is below the diagonal, RMSE is smaller for 

protocol calibration than for usual calibration.  

 

Figure 3: RMSE for usual and protocol calibration, for each French datasets, for calibration and evaluation 

data.  
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Figure 4: RMSE for usual and protocol calibration, for each Australian dataset, for calibration and evaluation 

data. 
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Table 11 shows RMSE values for each data set, averaged over modeling groups, for usual and protocol 

calibration for the calibration and evaluation data. The protocol reduces RMSE by 10-22% compared to 

the usual calibration method. The p values for a one-sided paired t-test of the hypothesis that RMSE is 

larger for usual calibration than for protocol calibration are also shown. On average over stages other than 

BBCH10, all three data sets have significantly larger RMSE values with usual calibration than with 

protocol calibration for the calibration data (p<0.05). For the evaluation data, p<0.01 for the two French 

data sets, but p=0.15 for the Australian data set. The table also shows the proportion of modeling groups 

where RMSE is larger for the usual calibration than for the protocol calibration. Looking at the averages 

over stages and then averaging over data sets, 75% of models have lower RMSE for protocol calibration 

than for usual calibration for the calibration data, and 66% for the evaluation data.  

The evaluation data here are from environments similar to those of the calibration data. This has the 

important advantage of being a standard situation that does not introduce the additional complication of 

the degree of dissimilarity between the calibration and evaluation environments. However, it leaves open 

the question of how useful protocol calibration would be if the models were used to extrapolate to quite 

different conditions, such as projected future climate. Nonetheless, the improvement here for out-of-

sample predictions is certainly encouraging.   

Almost all modeling groups did better than the two benchmark models for all stages. Averaged over 

stages, for the evaluation data, only 2, 1, and 4 modeling groups using usual calibration did worse than the 

onlyT model for the French Apache, French Bermude, and Australian data sets, respectively. Using 

protocol calibration, 0, 1, and 1 modeling groups did worse than the onlyT model for the French Apache, 

French Bermude, and Australian data sets respectively.  

 

Table 11: RMSE averaged over modeling groups for each stage and averaged over stages for the calibration 

and evaluation data, using usual or protocol calibration, for each data set. The p value is for the test that 

RMSE using usual calibration is larger than RMSE using protocol calibration, and below that is the 

proportion of models for which RMSE using usual calibration is larger than RMSE using protocol 

calibration. 

  Calibration data Evaluation data 

  Usual 

RMS

E 

protocol 

RMSE 

p-value 

RMSEu>RMSE

p 

usual 

RMS

E 

protocol 

RMSE 

p-value 

RMSEu>RMSE

p 

France BBCH3 7.7 6 0.007 6.7 6.2 0.20 
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Apache 0 10/16 9/16 

BBCH5

5 

5 4 0.02 

11/17 

7.3 5.8 0.005 

13/17 

average 6.4 5 0.004 

14/17 

7 6 0.006 

14/17 

France 

Bermud

e 

BBCH3

0 

7.1 5.4 0.05 

11/16 

8.8 7.5 0.07 

9/16 

BBCH5

5 

6.8 5.7 0.04 

11/17 

6.9 6.1 0.08 

11/17 

average 7 5.6 0.029 

13/17 

7.8 6.8 0.008 

11/17 

Australi

a 

BBCH3

0 

13.3 12.0 0.09 

9/17 

15.1 14.8 0.38 

8/17 

BBCH6

5 

11.4 9.0 0.06 

14/19 

11.1 11.4 0.60 

10/19 

BBCH9

0 

11.9 9.9 0.096 

11/18 

9.0 6.2 0.20 

12/18 

average 12.2 10.2 0.049 

13/19 

11.7 10.7 0.15 

10/19 

 

 

Since the protocol specifically aims to reduce bias, one would expect squared bias to be a smaller fraction 

of MSE for protocol calibration than for usual calibration, and this is the case, both for the calibration data 

and the evaluation data (Supplementary Tables 9-24).
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Comparison of usual and protocol calibration for ensemble  

The choice of usual or protocol calibration has little effect on the predictive accuracy of the ensemble 

models e-mean and e-median. Averaged over development stages (not including BBCH10) and over data 

sets, for the evaluation data, RMSE for e-median is respectively 5.7 and 5.8 days for usual and protocol 

calibration. The values for RMSE of e-mean are 6.1 and 6.2 days for usual and protocol calibration, 

respectively (Supplementary Tables 3, 5, 7, 8). 

Recently, many crop model studies have been based on ensembles of models (Jägermeyr et al. 2021). 

Many studies have found that the ensemble mean and median are good predictors, sometimes better than 

even the best individual model (Martre et al. 2015; Wallach et al. 2018). It has, thus, become quite 

common to base projections of climate change impact on crop production on the ensemble median (e.g. 

Asseng et al., 2019). The e-mean and e-median results here, compared to the individual modeling groups, 

are in keeping with previous results. The e-median model is among the better predictors though not the 

very best, and is somewhat better than e-mean.  

The variability between simulated results for different modeling groups is shown in Table 12. The 

standard deviation is similar for usual and protocol calibration for BBCH10, for which there are no data 

for calibration, but is systematically smaller for protocol calibration for the other stages. Considering the 

average over stages other than BBCH10 and taking the average over data sets, protocol calibration 

reduced the standard deviation of simulated values by 31% for the calibration data and by 22% for the 

evaluation data.  

Table 12.: Standard deviation of values simulated by modeling groups (days). The average is over stages 

without BBCH10.  

  Calibration data Evaluation data 

  usual protocol usual protocol 

France 

Apache 

BBCH10 4.2 4.1 4.8 5.2 

BBCH30 6.4 4.3 6.2 5.5 

BBCH55 4.5 3.0 6.3 3.7 

average 5.4 3.6 6.2 4.6 

France 

Bermude 

BBCH10 4.3 4.4 4.8 6.6 

BBCH30 6.9 4.3 6.7 6.2 

BBCH55 4.8 3.5 5.8 4.3 

average 5.9 3.9 6.2 5.3 

Australia BBCH10 8.6 7.5 9.6 8.0 

BBCH30 11.3 7.3 10.2 8.1 

BBCH65 10.3 7.4 8.2 7.1 

BBCH90 11.2 9.3 11.1 6.9 
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average 10.9 8.0 9.8 7.4 

 

 

The variability among simulated values is a measure of uncertainty in impact assessments (Asseng et al. 

2013). This variability arises from differences in model structure, but also from parameter uncertainty and 

uncertainty in climate projections (Tao et al. 2018) The variability due to the method of calibration has not 

been specifically studied. The comparison here between the variability after usual and protocol calibration 

indicates whether, and how much, variability between modeling groups can be reduced if all groups apply 

the same calibration procedure. The results show that using a standard calibration approach can be an 

effective way of substantially reducing variability of crop phenology model simulations.   

 

4. Conclusion 

We have shown that it is possible to define a detailed protocol for calibration of crop phenology models 

that is applicable to a wide range of wheat models and to data sets with different structures. The protocol 

is designed to provide strict instructions where possible and clear guidelines where input from the 

modeling team is required. While the application here is to wheat phenology models, the same protocol 

could undoubtedly be used more generally for phenology models of other crops.  

Comparison with usual calibration practices shows that, on average over modeling groups, the protocol 

leads to a better fit to the calibration data and to a better fit to out-of-sample data. Use of the protocol 

would be advantageous not just for individual modeling studies, but also for studies based on ensembles of 

models, including projections of climate impact. In particular, we have shown that if all modeling groups 

use the protocol, between-model variability can be substantially reduced, thus reducing the uncertainty of 

projections.  

Models of crop phenology are in general relatively simple, compared to models that simulate not only 

phenology, but also crop growth and soil processes. It seems likely that having a standardized protocol for 

calibration would be even more important for these more complex models than for simpler models. 

Defining a protocol for more complex models would introduce new problems compared to the study here, 

in particular because of the number of output variables. However, the protocol here would be a useful 

starting point for treating more complex situations.  
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