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Abstract

A major effect of environment on crops is through crop phenology, and therefore, the capacity to predict
phenology as a function of soil, weather, and management is important. Mechanistic crop models are a
major tool for such predictions. It has been shown that there is a large variability between predictions by
different modeling groups for the same inputs, and therefore, a need for shared improvement of crop
models. Two pathways to improvement are through improved understanding of the mechanisms of the
modeled system, and through improved model parameterization. This article focuses on improving crop
model parameters through improved calibration, specifically for prediction of crop phenology. A detailed
calibration protocol is proposed, which covers all the steps in the calibration work-flow, namely choice of
default parameter values, choice of objective function, choice of parameters to estimate from the data,
calculation of optimal parameter values and diagnostics. For those aspects where knowledge of the model
and target environments is required, the protocol gives detailed guidelines rather than strict instructions.
The protocol includes documentation tables, to make the calibration process more transparent. The
protocol was applied by 19 modeling groups to three data sets for wheat phenology. All groups first
calibrated their model using their “usual” calibration approach. Evaluation was based on data from sites
and years not represented in the training data. Compared to usual calibration, calibration following the
new protocol significantly reduced the error in predictions for the evaluation data, and reduced the

variability between modeling groups by 22%.
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1. Introduction

Plant phenology is a major aspect of plant response to environment, and a major determinant of plant
response to climate change. This includes phenology of natural vegetation, which is a dominant aspect of
plant ecology (Cleland et al. 2007) and has been shown to be affected by warming (Piao et al. 2019;
Menzel et al. 2020; Stuble et al. 2021) and phenology of cultivated crops. For the latter, phenology must
be taken into account for crop management (Sisheber et al. 2022), choice of cultivar or cultivar
characteristics adapted to a particular region (Zhang et al. 2022) and for evaluating the impact of climate
change on crop production (Rezaei et al. 2018). It is thus important to be able to predict phenology as a

function of environment, in particular as a function of climate.

A number of mechanistic crop models have been developed, which include simulation of phenology, and
such models are regularly used to evaluate management options (McNunn et al. 2019) or the effect of
climate change on crops, including wheat (Asseng et al. 2013), rice, (Li et al. 2015), maize (Bassu et al.
2014) and others. Such models are particularly important for taking into account an increasing diversity of

combinations of weather events (Webber et al. 2020).

Mechanistic models in general, and models used to simulate crop phenology in particular (we will refer to
such models as crop phenology models, though they are usually embedded within more general crop
models), are based on our understanding of the processes and their inter-linkages that drive the evolution
of the system. This conceptual understanding usually builds on detailed experiments that study specific
aspects of the system (e.g. Brisson et al., 2003 for the crop model STICS). The set of model equations is

referred to as “model structure” (Tao et al. 2018).

In addition to model structure, simulation requires values for all the model parameters. In essentially all
uses of crop models, the model is first calibrated using observed data that is related to the target
population for which predictions are required, for example observations for the specific variety of interest
and/or for the particular set of growing environments of interest. Calibration is essentially universally
necessary because mechanistic models are only approximations, without universally valid parameter
values (Fath and Jorgensen 2011; Wallach 2011).

There are therefore two main tracks to improvement of crop phenology models. The first is through
improvement of model structure through improved understanding of the underlying processes, and the
second is through improvement of the model parameters. For a fixed data set, improvement of model

parameters implies improvement of model calibration, and that is the topic here.
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Crop models, like system models in general, are basically regression models, in that they predict outcomes
of the system based on input variables. While calibration of regression models (usually referred to as
parameter estimation in a statistical context) is a major topic in statistics, the application of statistical
methods to system models is not straightforward. Among the difficulties are the fact that system models
often have multiple output variables that can be compared to observed results (e.g., dates of heading and
dates of flowering for crop phenology models) and there are usually many parameters, often more than the
number of data points available. While the details differ, these problems apply to essentially all system
models, not only crop phenology models but also full crop models, hydrological models, ecology models
and models in other fields. No doubt as a result, there are no widely accepted standard methods for
calibration of system models. It has been found, for example, that there is a wide diversity of calibration
approaches and model outputs for crop phenology models furnished with identical data, even between

modeling groups using the same model structure (Confalonieri et al. 2016; Wallach et al. 2021a, b).

Because of the importance of calibration and the lack of standard approaches for calibration, there have
been many studies published that make recommendations as to how to calibrate crop models or system
models in other fields. One type of study is model-specific, and identifies the most important parameters
to estimate for a particular model (Ahuja and Ma, 2011). Other studies have focused on the methodology
of identifying the most important parameters through sensitivity analysis (Khorashadi Zadeh et al. 2022),
on the choice between frequentist and Bayesian paradigms (Gao et al. 2021), on the form of the objective
function, or on the numerical algorithm for searching for the best parameter values (Rafiei et al. 2022). A
recent study has emphasized the need to consider the full flow of the calibration exercise, including the
choice of default parameter values, the choice of observed data to include in the objective function, the
form of the objective function, the choice of parameters to estimate, and the choice of numerical algorithm
for calculating the best parameter values, and proposed recommendations for each of those activities
(Wallach et al., 2021c).

Recommendations for improved calibration are useful, but have important limitations. Not only do they
generally concern only part of the calibration activity, but in addition they are generally not tested for a
wide range of situations, to verify that they have general applicability, and they generally do not have any
mechanism for ensuring that they are correctly followed. To date, recommendations have not resulted in a

convergence of calibration practices for crop phenology models.

The purpose of this study is to propose, implement, and evaluate a calibration protocol for crop phenology
models that does not have the above-mentioned limitations. Compared to usual recommendations, the
protocol suggested here, shown schematically in Figure 1, is more detailed, covers the full range of

decisions involved in calibration, and includes documentation templates that help in correctly
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implementing the protocol and make the calibration strategy more transparent. To test the applicability of
the protocol to a range of model structures, multiple modeling groups implemented the protocol, using
multiple model structures. To test the applicability to differently structured data sets, each modeling group
applied the protocol to three different wheat phenology data sets, with two quite different structures. The
most important, and exacting, test of the proposed calibration protocol is its ability to improve predictions
of phenology for out-of-sample environments, compared to usual calibration practice. All of the modeling
groups that applied the protocol in this study first used their usual method of calibration on the same data
sets as those used here, in most cases as part of previous studies(Wallach et al. 2021a, b). Thus, we were
able to compare the predictive accuracy of usual calibration with calibration using the protocol proposed
here. It is also important to reduce the uncertainty in phenology predictions, as measured by the variability
between different modeling groups. Therefore, we also compared the variability between groups for the

case where each group uses their usual calibration approach or the protocol.

f i i e ‘is"d%a_é

“ M 2. |dentify observed

1. Choose default §Y pléied sk
parameter values 4 variables ‘
fitted "

3, Defing the f
( objective function |

5a. Calculate <) 4b. identify
optimal values for ya additional
almost additive 3 candidate

parameters ‘ parameters

[ Aa. Identify slmost
additive
‘e - ‘ parameters

5b. Calculate !
optimal values for |
candidates, test |f |
improvement in fit |

g r
7, éj}_ is sufficient B
J ~>3 - e ~
o, " "l ‘ - » oy \I ."

- i - A A - A : - -
Figure 1: Schematic diagram of steps in the proposed protocol for calibration of crop phenology models.
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2. Materials and Methods

Data sets

The phenology stages targeted in this study, using the BBCH scale (Meier 1997)., are BBCH10
(emergence), BBCH30 (beginning of stem elongation), BBCH55 (middle of heading), BBCH65 (anthesis
half way) and BBCH90 (fully ripe grain). Simulations were performed for three data sets. The two French
data sets had a similar structure, but concerned two different winter wheat varieties. The third data set was
from Australia, for a spring wheat variety. In each case, the data could be considered to come from a well-
defined target population: conventionally managed wheat fields in the major wheat growing regions of
France for the first two data sets, and of Australia for the third data set. The Australian data set included
multiple planting dates from within the range of reasonable dates. Each data set was split into two subsets,
one for calibration and one for evaluation. The two subsets had neither site nor year in common, so the
evaluation is a rigorous test of how well a modeling group can simulate phenology for out-of-sample

environments.

The French data sets contained observations of stages BBCH30 and BBCH55. For each variety there were
14 calibration environments and 8 evaluation environments, where an environment is a combinations of
site and sowing date. More details about the French data set can be found in Wallach et al (2021a). The
Australian data set contained once weekly notations of BBCH stage in each environment. The Australian
data were interpolated to give the date of each integer BBCH stage from the earliest that was observed to
the latest, and these interpolated data were provided to the modeling groups. The interpolated data were
provided to avoid each modeling group doing their own interpolation, which would add unwanted
variability to the exercise. The Australian data set had 24 calibration environments and 18 evaluation

environments. For more details see Wallach et al (2021b).

Modeling groups
Nineteen modeling groups, using 16 different model structures (Table 1), participated in this study, which
was carried out within the Agricultural Model Intercomparison and Improvement Project (AgMIP;

www.agmip.org). The modeling groups are identified only by a code (“M17, “M2” etc.) without indicating

which model structure they used, since it would be misleading to give the impression that the results are
determined solely by model structure. The codes here refer to the same modeling groups as in Wallach et
al. (2021a, 2021b).
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Table 1: List of model structures used by participating groups

Model structure Version(s) References
AgroC May 2018 (Herbst et al. 2008; Klosterhalfen et al. 2017)
APSIM 7.8,7.9, 7.10 (Keating et al. 2003; Holzworth et al. 2014)
AquaCrop 4.0 (Vanuytrecht et al. 2014)
CERES-Wheat DSSAT V4.7. (Hoogenboom et al., 2019a, 2019b; Jones et al.,
2003)
CoupModel Version 5.4.4 (P.-E. Jansson 2012; Senapati et al. 2016;
Coucheney et al. 2018)
CROPSIM-Wheat DSSAT V4.7 (Hoogenboom et al., 2019a, 2019b; Jones et al.,
2003)
Cropsyst 3.04.08 (Stockle et al. 2001)
HERMES 4.27 (Kersebaum, 2007; Kersebaum, 2011)
Evaluation

Our basic evaluation metric is the sum of squared errors (SSE) and the related quantities mean squared

error (MSE) and root mean squared error (RMSE), where

A \2
SSE =Z;(yﬁ -9
MSE = SSE /n 1)

RMSE =+/MSE

The sum is over variables and environments. Here y; is the observed value of variable i for environment

i 9” is the corresponding simulated value and n is the number of terms in the sum. We also look at the
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decomposition of MSE as the sum of three terms, namely squared bias (bias?), a term related to the
difference in standard deviations of the observed and simulated values (SDSD) and a term related to the
correlation of observed and simulated vales (LCS) (Kobayashi 2004).

In addition, we define two simple benchmark models. The first (the “naive” model) is simply the average
number of days to each stage in the calibration data of each data set. This is used as the prediction model
for all environments of that data set. The often used Nash Sutcliffe modeling efficiency is one minus the
ratio of MSE of a model to MSE of the naive model. The naive model ignores all variability between
environments, so it is a very low bar as a benchmark. We therefore also use a more sophisticated
benchmark, the “onlyT” model, introduced in Wallach et al. (2021a). This benchmark model assumes that
the sum of degree days above a threshold of 0°C from sowing to each stage is fixed for spring wheat. For
winter wheat, a simple vernalization model is used, and then the fixed number of degree days applies after
vernalization is completed (van Bussel et al. 2015; Wallach et al. 2021a). Both benchmark models are

quite easily parameterized based on calibration data, and then easily applied to new environments.

Simulation exercise

The participants received input data (daily weather at the field, soil characteristics, management details
and, where possible, initial conditions) for all environments of every data set. Also, the observed data
from the calibration environments were provided to all participants. The participants were asked to use
those data to calibrate their models, and then to simulate and report days after sowing to stages BBCH10,
BBCH30, and BBCH55 for the French calibration and evaluation environments, and to stages BBCH10,
BBCH30, BBCH®65, and BBCH90 for the Australian calibration and evaluation environments. Days to
emergence (BBCH10) was included to have an example of a variable for which there were no calibration
data. The BBCH stages 30 and 55 requested for the French environments represent stages that are used for
fertilizer decisions in France. The BBCH stages 30, 65, and 90 requested for the Australian environments

represent major transitions that are explicitly simulated by many models.

Seventeen of the 19 participating modeling groups participated in previous phases of this project, and in
that framework had already calibrated their model using their usual calibration approach (Wallach et al.
2021a, b). The two remaining groups also calibrated their models using their usual approach before
beginning to use the protocol proposed here. It is the results of the usual calibration method that are
compared here to the results of using the proposed protocol. If any simulated results were missing from
the usual calibration results, the corresponding results from the protocol calibration results were deleted,
and vice versa. Thus, the results for the usual and protocol calibrations are comparable. At no time were

the evaluation data shown to participants, neither in previous studies nor in the present study. To keep
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these data confidential, and thus, potentially useable in future studies, no graphs are presented here

showing the evaluation data.

In the present study, participants were given the detailed protocol for model calibration and asked to
implement it for the three data sets. The protocol was the same as described below, but the textual
description was somewhat different. The team leaders used the protocol documentation generated by the

modeling teams to identify problems and interact with the participants.

The protocol does not impose a specific software solution. However, several participants used trial and
error in their usual approach and requested help in finding and implementing an automated search
algorithm, since that is required for the protocol. To answer this need, the CroptimizR R package (Buis et

al. 2021) was modified to do the protocol calculations, and many of the participants used this software.

In addition to the individual models, we report on two ensemble models, created by taking the mean (the
e-mean model) or the median (the e-median model) of the simulated values. These ensemble models were

calculated both for the usual and protocol calibration results.

AlICc and BIC

The protocol uses a model selection criterion to decide which parameters to estimate. The corrected
Akaike Information Crition (AICc) and the Bayesian Information Criterion (BIC) are two different criteria
that are often used for model selection (Chakrabarti and Ghosh 2011). Both are based on model error, with
a penalization term that increases with the number of estimated parameters. Assuming that model errors

are normally distributed, the criteria are

AICc:nIn(MSE)+2p+2np(—F;+11) @)

BIC =nIn(MSE) + pIn(n)

where n is the number of data points and p is the number of calibrated parameters. These criteria are only
used for comparing models calibrated using the same data, so any term that only involves n, the number of

data points, has been dropped because it is the same for all models.

There have been comparisons between these criteria, but there does not seem to be one that systematically
performs better than the other, for choosing the model that predicts best (Kuha 2004). In applying the
protocol here, participants were asked to perform the calculations twice, once using the AICc criterion and
once using the BIC criterion to choose the parameters to estimate. In almost all cases, the two criteria led

to exactly the same choice of parameters. In the few cases where the criteria led to different choices, the
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final models had very similar RMSE for the evaluation data, with a very slight advantage to BIC

(Supplementary tables 22-23). All results shown here are based on the BIC criterion.

The protocol

The proposed protocol follows the recommendations from Wallach et al. (2021c), but with additional
details to extend, standardize, and document the implementation of those recommendations. The protocol
covers all the steps involved in calibration, with detailed instructions for each step.

Step 1. Choose default parameter values

The first step in the protocol is to define the default values for all parameters. This step is rarely if ever
mentioned in discussions of system model calibration. It is however very important since most parameters
retain their default values. Furthermore, the protocol calculations work best if the default values of the
parameters to be estimated are reasonably close to the new best values. For phenology, one would want to
have reasonable approximations to the cycle length for the cultivar in question, to photoperiod dependence
and to vernalization requirements. The documentation for step 1 (see example in Table 2) specifies the

cultivar which is used to provide default parameter values, and why that cultivar was chosen.

Table 2: Example of protocol documentation for step 1, showing cultivar characteristics of the target
population cultivar and of the cultivar that provides the default parameter values. This example is for the
French data set and modeling group M21.

Variety Characteristics

Variety of target population: Apache A soft winter wheat. Stem elongation — semi-
early. Heading — early. Vernalization requires 40
days where full vernalization occurs if daily
average temperature is between 3°C and 10°C.
There is no vernalization below -4°C or above
17°C. Otherwise there is a proportional
reduction in vernalization effectiveness.

Default variety : Soissons Soissons seems to be close to Apache in
terms of vernalization requirements and
earliness.

11
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Step 2. Identify measured variables to be fit

Here one lists each of the observed variables and the corresponding simulated variables if any. In the
simplest case, there is a simulated variable that corresponds directly to each observed variable. The
documentation for step 2 is a table with one row for each observed variable (Table 3).

Often this step is straightforward. In some cases, however, there may be stages for which simulations are
required, and for which there are observations, but which are not specifically identified in the model. In
the study here, for example, several models do not specifically simulate the stage BBCH30, which was
observed in the French data set and which was to be simulated. Most models do, however, simulate an
internal growth stage variable. One can then treat the internal growth stage that corresponds to BBCH30
as a new parameter, to be estimated. This is the recommendation of the protocol. This approach makes it
possible for a much wider range of models to use all the data for calibration, than if only observed

variables specifically simulated by the model were used.

Table 3: Example of documentation of protocol step 2 with one row for each measured variable, showing the
corresponding simulated variable. This example is for the French data set and modeling group M21.

Measured variable Corresponding simulated value
Days to BBCH stage 30 Days to end juvenile stage
Days to BBCH stage 55 Days at maximum LAl

Step 3. Define the objective function
The protocol uses as objective function to be minimized SSE, where the sum over variables is over the
observed variables from step 2 that have a simulated equivalent. No choices are required here. Once step

2 has been finalized, the objective function follows.

In discussing system models in hydrology, Hernandez-Suarez et al. (2021) distinguish two categories of
objective functions, one based on traditional performance metrics and the second adapted to the specific
aspects of the system that are of primary interest. This choice applies generally to system models, and here
we opt for the first possibility. The objective function of the protocol is simply the total sum of squared

errors, which is the objective function of ordinary least squares (OLS) regression and is often used in crop

12
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model calibration. Another major choice of the protocol is to include in the objective function all the
observed variables that have a simulated equivalent, including variables that are not of primary interest.
For example, in the study here, the Australian data set has observations of many stages. The protocol says
to use all possible data, and in fact, most modeling groups did indeed use observations of other stages for
calibration, in addition to data for the BBCH stages 30, 65, and 90, which are used for evaluation. A first
reason for using all data is that often the same calibrated model will be used for several different
objectives, so measured variables that are not of central interest in the current study may be important in
future studies. Furthermore, using more variables makes the model a better representation of multiple

aspects of the system dynamics, which is likely to improve all simulations.

OLS has attractive optimal properties if the standard assumptions are satisfied (Seber and Wild 1989). It
has been argued that crop models probably do not fully satisfy these assumptions, not even the first
assumption that the model is correctly specified, i.e. that there are parameter values such that the
expectation of model error is zero (Wallach 2011). However, even in this case, OLS has desirable
properties (White 1981).

The assumptions underlying the optimal properties of OLS also include homoscedasticity (equal variances
of error for all variables) and independence between errors for all variables. Once again, these
assumptions are probably not fully satisfied for crop phenology models. If problems of heteroscedasticity
(unequal error variances) and non-independence are ignored, the calibration does not make optimal use of
the data. One could correct the problem of heteroscedasticity by using weighted least squares, and the
problem of non-independence by using generalized least squares (Seber and Wild 1989), but in both cases
that would require estimating additional parameters, related to the standard deviation or to the variance-
covariance matrix of model error. The assumption here is that the problems of heteroscedasticity and non-
independence are often not too important for crop phenology models, since the variables are all times to
various development stages and thus, may have similar error variances, and different environments often
have similar amounts of data, so taking non-independence into account would not greatly change the
relative importance of different environments. The choice in the protocol is, therefore, to use OLS and to

avoid estimating additional parameters related to variance and covariance of errors.

An alternative approach would be to do a Bayesian calculation, where one calculates the posterior
parameter distribution rather than a single best parameter vector. However, this is more difficult
computationally, and furthermore requires specification of the distribution of model error, including
variances and covariances. Also, while in principle one can estimate any number or parameters using a
Bayesian approach, in practice there is always a choice of which parameters to include in the calculation,

as with the approach here.
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Step 4. Choose which parameters to estimate
Usual calibration approaches include various methods of choosing which parameters to estimate,
including sensitivity analysis, expert opinion, and testing different options to find the best fit to the data

(Wallach et al. 2021c). The protocol here combines expert opinion and a data-based criterion of choice.

The protocol distinguishes two categories of parameters to estimate: the nearly additive, obligatory
parameters (those that will definitely be estimated) and the candidate parameters (those that will be tested,
and only changed from the default value if the improvement in the fit to the calibration data is sufficiently

large).

Step 4a. Identify the nearly additive, obligatory parameters

The obligatory parameters are parameters that are nearly additive, i.e. such that changing the parameter
has a similar effect for all environments. Usually, a parameter that represents degree days to a measured
stage is a good choice as an obligatory parameter for time to that stage. If the calculation of a variable in
the model includes a constant (i.e. there is an exactly additive parameter), then estimating that constant
using OLS ensures that model bias will be exactly zero (i.e. the average of observed and simulated values
will be equal), An approximately additive parameter will almost eliminate bias. Reducing bias reduces
MSE for the calibration data, since squared bias is one of the three terms that add up to MSE (Kobayashi
and Salam 2000). Once bias is nearly eliminated, one may already have a fairly reasonable fit to the data.

Ideally, the number of almost additive parameters will be identical to the number of variables in the
objective function. The number of almost additive parameters cannot be greater than the number of
variables in the objective function, and each must be nearly additive for a different variable or
combination of variables. Otherwise, the parameters would be very poorly estimated, or non-estimable.
The protocol does allow fewer almost additive parameters than observed variables. In that case bias is

only nearly eliminated on average over several variables, and not for each variable.

The documentation for protocol step 4a has one row for each ,early additive parameter (Table 4), which
gives the default value and upper and lower bounds. Our definition of upper and lower bounds is that the
modeler would be very surprised if the true best value for this target population were outside these
bounds. This is admittedly a rather vague definition, but it is meant to translate the fact that while we do

not know the true best value of each parameter, we do have some knowledge about a reasonable range.
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Table 4: Example of documentation for protocol step 4a, showing obligatory parameters for the French data
set, variety Apache for modeling group M21.

Name of obligatory | explanation Default value
parameter (lower,upper limits)
stlevamf Degree days sowing | 233 (150-400)

to end juvenile stage
stamflax Degree days sowing | 354 (150-500)

to maximum LAI

Step 4b. Identify candidate parameters

The role of the candidate parameters is to reduce the variability between environments that remains after
estimation of the obligatory parameters. It is the role of the modeler to identify the parameters that seem
likely, when estimated, to explain a substantial part of the unexplained variability between environments,
and to order them by amount of variability likely to be explained. Each parameter is associated with a
particular process, so the choice here is of the process and then of the specific parameter in the equations
describing that process. For example, in Table 5, the first and last candidate parameters are both associated

with crop vernalization, but affect different aspects of that process.

In the calculation step (step 5), each candidate parameter is tested, and only those that lead to a reduction
in the BIC criterion are retained for estimation. Otherwise, the parameter is kept at its default value. There
should be only a limited number of candidate parameters, with those thought most important first, in order
to reduce the risk of selection bias where unimportant parameters are chosen because of random error
(Lukacs et al. 2010). The choice of almost additive and candidate parameters is the calibration step which

requires the most detailed knowledge of the model.

Table 5: Example of documentation for protocol step 4b, showing candidate parameters for the French data
set, variety Apache for modeling group M21.

Candidate parameter (include units and a | Default value (Lower and upper bounds)
brief explanation)
jvc (days): number of vernalizing days 38 (25 - 60)
sensrsec (no unit): index of root sensitivity | 0.5 (0 —1)

to drought (1=insensitive)
belong (degree.day-1): parameter of the | 0.012 (0.005 —0.03)
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curve of coleoptile elongation
JVCmini (days): minimum vernalizing days | 7.0 (2 — 15)
required
stressdev (no unit): maximum phasic delay | 0 (0 —1)
allowed due to stresses

Step 5. Calculation of the optimal parameter values
The protocol prescribes using an algorithm based on the Nelder-Mead simplex (Nelder and Mead 1965),
to minimize SSE. This is a robust, derivative-free method, which is appropriate for crop models which

may have multiple discontinuities.

The optimization is done in several steps, first for the obligatory parameters and then for each candidate
parameter. At each step, one estimates the previously chosen parameters plus the next candidate
parameter. If this leads to a smaller value of the BIC criterion than the previous best model, the candidate
parameter is added to the list of parameters to estimate. If not, the candidate parameter returns to its
default value and is not added to the list of parameters to estimate. The model with the lowest value of
BIC is the final model. Table 6 shows the documentation of protocol step 5, which has one row for each

minimization step.

The results of the simplex are sensitive to starting values (Wang and Shoup 2011), and there is no
guarantee that the algorithm will converge to the global optimum. Therefore, the protocol calls for
multiple starting points. For the initial step, with more than one parameter to estimate, the protocol
recommends using at least 20 starting values, chosen within the lower to upper bound for each parameter.
Latin hypercube sampling could be used to distribute the starting values within the space of possible
values. When a new candidate parameter is estimated, it is expected that the optimal values of the other
estimated parameters will often be similar to their previous optimal values. Therefore, the protocol
recommends starting from the parameter values that gave the previous lowest BIC value, and five
different starting values for the new parameter. In this way the calculations take advantage of knowledge
of the system to focus the search for best parameters on a limited portion of the parameter space, thus
reducing calculation time.

Table 6: Example of documentation for protocol step 5, showing the calculations for the French data set,
variety Apache, modeling group M21. The first line shows the optimization results for the obligatory
parameters, then each subsequent line corresponds to a candidate parameter. In this example, the first

candidate parameter (jvc) is accepted, and all the subsequent candidate parameters increase BIC, and are
therefore, rejected. The model finally chosen (minimum BIC) has three estimated parameters.
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Estimated.parameters Initial.parameter.values | Final.values Sum.of.squared. | BIC
errors

stlevamf, stamflax multiple 227, 360 405 81.47
stlevamf, stamflax, jvc | 227, 360, multiple 212, 367, 55.91 349 80.64
stlevamf, stamflax, jvc, | 212, 367, 55.91, | 209, 367, 58.40, | 322 81.71
Sensrsec multiple 0.057

stlevamf, stamflax, jvc, | 212, 367, 55.91, | 212, 367, 55.91, | 349 83.97
belong multiple 0.012

stlevamf, stamflax, jvc, | 212, 367, 55.91, | 197, 362, 55.28, | 319 81.45
jvemini multiple 20.88

stlevamf, stamflax, jvc, | 212, 367, 55.91, | 212, 367, 55.91, | 349 83.97
stressdev multiple 0.00

Step 6 Diagnostics

a. The protocol evaluation graph shows simulated versus observed values, with a different symbol

for each variable (Figure 1).

simulated days

220

200

180

160

140

o BBCH30
A BBCH55

180 200 220

observed days

Figure 2: Graph for protocol documentation of step 6a, showing simulated and observed values of BBCH30
and BBCH55. The results are for the French data set, variety Apache, modeling group M21.
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b. Calculate MSE and its components for each variable (7)

Table 7: Example of documentation of protocol step 6b, showing the calculations for the French data set,

variety Apache, modeling group M21. Mean squared error (MSE) is a sum of bias?, SDSD, and LCS.

MSE (days?) bias? (days?) SDSD (days?) LCS (days?)
BBCH30 19.64 0.25 5.93 13.46
BBCH55 5.29 0.02 0.03 5.24

c. Compare results to benchmark models (Table 8).

Table 8: Example of documentation for protocol step 6c, showing results for benchmark models for the
French data set, variety Apache, modeling group M21. The benchmark “naive” assumes a constant number
of days to each stage. The benchmark “onlyT” assumes a constant temperature sum to each stage.

naive onlyT M21
variable RMSE (days) | RMSE (days) | RMSE (days)
BBCH30 12.5 8.4 3.1
BBCH55 8.3 9.5 3.8
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3. Results and discussion

Comparison of usual and protocol calibration for individual models

Number of parameters and simulated values

There were substantial differences between the consequences of doing usual or protocol calibration. For
the large majority of modeling groups, the number of estimated parameters in the final model was
different between protocol and usual calibration (Supplementary Figure 1). Table 9 shows that on average
over modeling groups, protocol calibration led to fewer parameters (French data sets) or the same number
of parameters (Australian data set) to be estimated in comparison to usual calibration. The modeling
groups considered a larger number of parameters in the protocol calibration than in the usual calibration,

but then rejected most of the candidates.

Table 9: Number of estimated parameters in the final model after protocol or usual calibration, averaged over
modeling groups.

Data set Protocol calibration Usual
calibration
Additive Candidate Accepted Total Total
parameters parameters candidate parameters parameters
parameters

France 1.9 3.6 0.7 2.6 3.5

Apache

France 1.9 3.6 0.9 2.8 3.6

Bermude

Australia 4.0 4.5 1.7 5.7 5.7

The differences between simulated values after usual and protocol calibration were small for BBCH10, for
which there were no calibration data. For the other stages, the simulated values differed appreciably. The
mean absolute difference between simulated values using usual or protocol calibration is shown in Table

10. Results by modeling group are shown in Supplementary Figure 2.

Table 10: Mean over modeling groups and environments of the absolute difference in simulated values
between usual calibration and protocol calibration for the calibration data.

French data set | stage BBCH10 BBCH30 BBCH55
(Apache and | Mean 0.8 4.5 3.1
Bermude) absolute
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difference
(days)

Australian data
set

stage

BBCH10

BBCH30

BBCH65

BBCH90

Mean
absolute
difference

(days)

1.8

7.9

7.9

8.5

Goodness of fit and evaluation

Figure 3 and 4 and Supplementary Tables 2-7 show RMSE using usual and protocol calibration for the

French and Australian data sets respectively. If a point is below the diagonal, RMSE is smaller for

protocol calibration than for usual calibration.
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RMSE France Apache evaluation data
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Figure 3: RMSE for usual and protocol calibration, for each French datasets, for calibration and evaluation

data.
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RMSE Australia calibration data
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Figure 4: RMSE for usual and protocol calibration, for each Australian dataset, for calibration and evaluation
data.
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Table 11 shows RMSE values for each data set, averaged over modeling groups, for usual and protocol
calibration for the calibration and evaluation data. The protocol reduces RMSE by 10-22% compared to
the usual calibration method. The p values for a one-sided paired t-test of the hypothesis that RMSE is
larger for usual calibration than for protocol calibration are also shown. On average over stages other than
BBCH10, all three data sets have significantly larger RMSE values with usual calibration than with
protocol calibration for the calibration data (p<0.05). For the evaluation data, p<0.01 for the two French
data sets, but p=0.15 for the Australian data set. The table also shows the proportion of modeling groups
where RMSE is larger for the usual calibration than for the protocol calibration. Looking at the averages
over stages and then averaging over data sets, 75% of models have lower RMSE for protocol calibration

than for usual calibration for the calibration data, and 66% for the evaluation data.

The evaluation data here are from environments similar to those of the calibration data. This has the
important advantage of being a standard situation that does not introduce the additional complication of
the degree of dissimilarity between the calibration and evaluation environments. However, it leaves open
the question of how useful protocol calibration would be if the models were used to extrapolate to quite
different conditions, such as projected future climate. Nonetheless, the improvement here for out-of-

sample predictions is certainly encouraging.

Almost all modeling groups did better than the two benchmark models for all stages. Averaged over
stages, for the evaluation data, only 2, 1, and 4 modeling groups using usual calibration did worse than the
onlyT model for the French Apache, French Bermude, and Australian data sets, respectively. Using
protocol calibration, 0, 1, and 1 modeling groups did worse than the onlyT model for the French Apache,

French Bermude, and Australian data sets respectively.

Table 11: RMSE averaged over modeling groups for each stage and averaged over stages for the calibration
and evaluation data, using usual or protocol calibration, for each data set. The p value is for the test that
RMSE using usual calibration is larger than RMSE using protocol calibration, and below that is the
proportion of models for which RMSE using usual calibration is larger than RMSE using protocol

calibration.
Calibration data Evaluation data
Usual | protocol | p-value usual | protocol | p-value
RMS | RMSE | RMSE,>RMSE | RMS | RMSE | RMSE,>RMSE
E p E p
France BBCH3 | 7.7 6 0.007 6.7 6.2 0.20
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Apache |0 10/16 9/16
BBCH5 |5 4 0.02 7.3 5.8 0.005

5 11/17 13/17

average | 6.4 5 0.004 7 6 0.006

14/17 14/17

France BBCH3 | 7.1 5.4 0.05 8.8 7.5 0.07
Bermud |0 11/16 9/16
e BBCH5 | 6.8 5.7 0.04 6.9 6.1 0.08
5 11/17 11/17

average |7 5.6 0.029 7.8 6.8 0.008

13/17 11/17

Australi | BBCH3 | 13.3 12.0 0.09 15.1 14.8 0.38
a 0 9/17 8/17
BBCH6 | 114 9.0 0.06 11.1 11.4 0.60

5 14/19 10/19
BBCH9 | 11.9 9.9 0.096 9.0 6.2 0.20

0 11/18 12/18

average | 12.2 10.2 0.049 11.7 10.7 0.15

13/19 10/19

Since the protocol specifically aims to reduce bias, one would expect squared bias to be a smaller fraction
of MSE for protocol calibration than for usual calibration, and this is the case, both for the calibration data

and the evaluation data (Supplementary Tables 9-24).
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Comparison of usual and protocol calibration for ensemble

The choice of usual or protocol calibration has little effect on the predictive accuracy of the ensemble
models e-mean and e-median. Averaged over development stages (not including BBCH10) and over data
sets, for the evaluation data, RMSE for e-median is respectively 5.7 and 5.8 days for usual and protocol
calibration. The values for RMSE of e-mean are 6.1 and 6.2 days for usual and protocol calibration,

respectively (Supplementary Tables 3, 5, 7, 8).

Recently, many crop model studies have been based on ensembles of models (Jagermeyr et al. 2021).
Many studies have found that the ensemble mean and median are good predictors, sometimes better than
even the best individual model (Martre et al. 2015; Wallach et al. 2018). It has, thus, become quite
common to base projections of climate change impact on crop production on the ensemble median (e.g.
Asseng et al., 2019). The e-mean and e-median results here, compared to the individual modeling groups,
are in keeping with previous results. The e-median model is among the better predictors though not the

very best, and is somewhat better than e-mean.

The variability between simulated results for different modeling groups is shown in Table 12. The
standard deviation is similar for usual and protocol calibration for BBCH10, for which there are no data
for calibration, but is systematically smaller for protocol calibration for the other stages. Considering the
average over stages other than BBCH10 and taking the average over data sets, protocol calibration
reduced the standard deviation of simulated values by 31% for the calibration data and by 22% for the
evaluation data.

Table 12.: Standard deviation of values simulated by modeling groups (days). The average is over stages
without BBCH10.

Calibration data Evaluation data

usual protocol | usual protocol
France BBCH10 | 4.2 4.1 4.8 5.2
Apache | BBCH30 | 6.4 4.3 6.2 5.5
BBCH55 | 4.5 3.0 6.3 3.7
average 54 3.6 6.2 4.6
France BBCH10 | 4.3 4.4 4.8 6.6
Bermude | BBCH30 | 6.9 4.3 6.7 6.2
BBCH55 | 4.8 3.5 5.8 4.3
average 5.9 3.9 6.2 5.3
Australia | BBCH10 | 8.6 7.5 9.6 8.0
BBCH30 | 11.3 7.3 10.2 8.1
BBCH65 | 10.3 7.4 8.2 7.1
BBCH90 | 11.2 9.3 11.1 6.9
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| average | 10.9 8.0 9.8 74

The variability among simulated values is a measure of uncertainty in impact assessments (Asseng et al.
2013). This variability arises from differences in model structure, but also from parameter uncertainty and
uncertainty in climate projections (Tao et al. 2018) The variability due to the method of calibration has not
been specifically studied. The comparison here between the variability after usual and protocol calibration
indicates whether, and how much, variability between modeling groups can be reduced if all groups apply
the same calibration procedure. The results show that using a standard calibration approach can be an

effective way of substantially reducing variability of crop phenology model simulations.

4. Conclusion

We have shown that it is possible to define a detailed protocol for calibration of crop phenology models
that is applicable to a wide range of wheat models and to data sets with different structures. The protocol
is designed to provide strict instructions where possible and clear guidelines where input from the
modeling team is required. While the application here is to wheat phenology models, the same protocol

could undoubtedly be used more generally for phenology models of other crops.

Comparison with usual calibration practices shows that, on average over modeling groups, the protocol
leads to a better fit to the calibration data and to a better fit to out-of-sample data. Use of the protocol
would be advantageous not just for individual modeling studies, but also for studies based on ensembles of
models, including projections of climate impact. In particular, we have shown that if all modeling groups
use the protocol, between-model variability can be substantially reduced, thus reducing the uncertainty of
projections.

Models of crop phenology are in general relatively simple, compared to models that simulate not only
phenology, but also crop growth and soil processes. It seems likely that having a standardized protocol for
calibration would be even more important for these more complex models than for simpler models.
Defining a protocol for more complex models would introduce new problems compared to the study here,
in particular because of the number of output variables. However, the protocol here would be a useful

starting point for treating more complex situations.
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