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Abstract 20 

Motivation:  21 
Kataegis refers to the occurrence of regional hypermutation in cancer genomes and is a 22 
phenomenon that has been observed in a wide range of malignancies. Robust detection of 23 
kataegis is necessary to advance research regarding the origins and clinical impact of 24 
kataegis. Multiple kataegis detection packages are publicly available; however, the 25 
performance of their respective approaches have not been evaluated extensively. Here, we 26 
introduce katdetectr, an R-based, open-source, computationally fast, and robust package 27 
for the detection, characterisation and visualisation of kataegis.  28 
Results:  29 
The performance of katdetectr and five publicly available packages for kataegis detection 30 
were evaluated using an in-house generated synthetic dataset and an a priori labelled pan-31 
cancer dataset of whole genome sequenced malignancies. The performance evaluation 32 
revealed that katdetectr has the highest accuracy and normalized Matthews Correlation 33 
Coefficient for kataegis classification on both the synthetic and the a priori labelled dataset. 34 
Katdetectr is in particularly more robust for kataegis detection within samples with a high 35 
tumour mutational burden. 36 
Availability and Implementation:  37 

Katdetectr imports standardised variant calling formats (MAF and VCF) as well as standard 38 

Bioconductor classes (GRanges and VRanges). Katdetectr segments genomic variants 39 

utilising unsupervised changepoint detection and the Pruned Exact Linear Time search 40 

algorithm. The implementation of changepoint detection utilised by katdetectr results in 41 

fast computation. Furthermore, katdetectr is available on Bioconductor which ensures 42 

reliability, and operability on common operating systems (Windows, macOS and Linux). 43 

Katdetectr is available on Bioconductor at 44 

https://www.bioconductor.org/packages/devel/bioc/html/katdetectr.html.  45 

Contact: h.vandewerken@erasmusmc.nl  46 
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Introduction 47 

Next-generation sequencing of cancer genomes has revealed that mutations can cluster 48 

together, i.e., the acquired mutations are found in proximity to one another, much closer 49 

than would be expected if they had been dispersed uniformly throughout the genome 50 

purely by chance (Alexandrov et al., 2013a; Nik-Zainal et al., 2012a). This phenomenon was 51 

termed kataegis and its respective genomic location was termed a kataegis foci. Kataegis, 52 

which is Greek for thunderstorm or shower, was first observed and visualised in whole 53 

genome sequencing (WGS) data of 21 primary breast cancers (Nik-Zainal et al., 2012b). 54 

Alexandrov et al. subsequently detected 873 kataegis foci in a pan-cancer dataset containing 55 

507 WGS samples from primary malignancies (Alexandrov et al., 2013b).  56 

 57 

Extensive exploration of the aetiology of kataegis revealed a significant positive correlation 58 

between kataegis and two distinct mutational signatures both attributed to the APOBEC 59 

enzyme-family Alexandrov et al., 2020; Bergstrom, Luebeck, et al., 2022; Burns et al., 2013; 60 

Taylor et al., 2013b). 61 

 62 

Subsequently, multiple studies confirmed the importance of the APOBEC enzymes in cancer, 63 

showing that APOBEC is a major cause of mutagenesis, both seen in clusters, dispersed 64 

throughout the cancer genome and in extrachromosomal DNA (Bergstrom et al., 2021; 65 

Bergstrom, Luebeck, et al., 2022; Langenbucher et al., 2021; Maciejowski et al., n.d.; Taylor 66 

et al., 2013a). 67 

 68 

Previous studies have shown that kataegis occurs within known cancer genes including 69 

TP53, EGFR and BRAF which are associated with overall survival (Bergstrom, Luebeck, et al., 70 

2022). Still, the clinical significance of kataegis remains to be validated and therefore 71 

obfuscates kataegis as a clinical biomarker for predicting prognosis. Nevertheless, any future 72 

clinical application requires accurate and robust detection of kataegis.  73 

 74 

Here, we introduce katdetectr, an R-based and Bioconductor package that contains a 75 

complete suite for the detection, characterisation and visualisation of kataegis. Additionally, 76 

we have evaluated the performance of katdetectr and five publicly available kataegis 77 

detection packages (Bergstrom, Kundu, et al., 2022; Lin et al., 2021; Lora, 2016; Mayakonda 78 

et al., 2018; Yousif et al., 2020). 79 

 80 

Approach 81 

Katdetectr was programmed in the R statistical programming language (v4.1.2) (R Core 82 

Team, 2022). Briefly, katdetectr can import standardised formats denoting genomic variants 83 

including: Variant Calling Format (VCF), Mutation Annotation Format (MAF) and VRanges 84 

objects. Per sample, the genomic variants are pre-processed and subsequently the 85 

upstream-oriented intermutation distance (IMD) is calculated (Nik-Zainal et al., 2012a). The 86 

distribution of IMDs is then segmented based on unsupervised detection of changepoints 87 

using the changepoint package (v2.2.3) and the Pruned Exact Linear Time (PELT) search 88 

method (Haynes et al., 2017; Haynes & Killick, 2021; Killick et al., 2012; Killick & Eckley, 89 

2014).  90 

 91 

After segmentation, putative kataegis foci are called based on the following definition: 1) a 92 

continuous segment harbouring ≥6 variants and 2) the captured IMDs within the segment 93 
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contain a mean IMD of ≤1000 bp (Alexandrov et al., 2013a). Moreover, katdetectr can 94 

visualise the IMD, changepoints and their continuous segments and can highlight all 95 

putative kataegis foci within a sample using an intuitive rainfall plot (Figure 1). 96 

The output of katdetectr consists of an S4 object containing the putative kataegis foci 97 

(GRanges), the annotated genomic variants (VRanges) and the annotated segments 98 

(GRanges). 99 

 100 

See supplementary note 1 for an extended description of the design of katdetectr and 101 

parameters settings. 102 

 103 

Figure 1, Overview of the katdetectr workflow, Intermutation distance and rainfall plots. A) 104 

General workflow of katdetectr represented by arrows. B) The intermutation distance (IMD) 105 

is determined for each two subsequent genomic variants per chromosome and rainfall plots 106 

are used to visualise these IMDs and corresponding detected changepoint segments. C) 107 

Rainfall plot of PD7049a (breast cancer) from the Alexandrov dataset as interrogated by 108 

katdetectr (Alexandrov et al., 2013a). Y-axis: IMD, x-axis: variant ID ordered on genomic 109 

appearance, light blue rectangles: kataegis foci with genomic variants within kataegis foci 110 

shown in bold. The mutational type is depicted by the colour. The determined segmentation 111 

(as mean IMD per segment) is shown by black horizontal solid lines whilst vertical lines 112 

represent detected changepoints. Note that the first variant of a kataegis foci has a high 113 

IMD due to the usage of the upstream-oriented IMD. 114 

 115 

Method 116 

The performance of katdetectr (v1.0.0) was compared to alternative packages by utilising an 117 

in-house generated synthetic dataset containing 1024 samples and a publicly available pan-118 

cancer dataset containing 507 WGS samples with a priori labelled kataegis foci as curated by 119 

Alexandrov et al. (2013) (Alexandrov et al., 2013a; Bergstrom, Kundu, et al., 2022; Lin et al., 120 

2021; Lora, 2016; Mayakonda et al., 2018; Yousif et al., 2020).  121 

 122 

In order to quantify and compare performances, the task of kataegis detection was reduced 123 

to a binary classification problem. The task of the kataegis detection packages was to 124 

correctly label each variant for kataegis, i.e., whether or not a genomic variant lies within a 125 

kataegis foci. 126 

 127 

In order to assess performance related to sample-specific Tumour Mutational Burden 128 

(TMB), we binned samples based on TMB. The synthetic dataset contained eight TMB 129 

classes (0.1, 0.5, 1, 5, 10, 50, 100, 500) whilst the Alexandrov dataset was binned into three 130 

TMB classes (low: TMB < 0.1, middle: 0.1 ≥ TMB < 10, high: TMB ≥ 10). 131 

Due to large class imbalance, we used the normalised Matthews Correlation Coefficient 132 

(nMCC) as the main performance metric for performance evaluation (Chicco & Jurman, 133 

2020).  134 

 135 

See supplementary note 1 for an extended description of the datasets, synthetic data 136 

generation and confusion matrices. 137 
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 138 
Table 1, performance metrics of evaluated kataegis detection packages. Accuracy, 139 

normalized Matthews Correlation Coefficient (nMCC), F1 score, True Positive Rate (TPR) and 140 

True Negative Rate (TNR) of the kataegis detection packages on 1024 synthetic samples and 141 

507 a priori labelled WGS samples (Alexandrov et al., 2013a). Rows were sorted in 142 

descending order based on nMCC score on the Alexandrov dataset (grey transparent 143 

background). For each performance metric, the highest score is underlined. 144 

 145 

Results 146 

Out of all evaluated packages, katdetectr revealed the highest overall accuracy and nMCC in 147 

correctly labelling kataegis foci within both the synthetic and Alexandrov et al. dataset 148 

(Table 1). The performance of all packages was found to be associated with the sample-149 

respective TMB (Supplementary Figure 1). Performance evaluation per TMB-binned 150 

category revealed that katdetectr is on par with alternative packages for samples with TMB 151 

≤50. However, in contrast to alternative packages, the nMCC of katdetectr remains high for 152 

samples with high TMB (ranging between 50-500; Supplementary Figures 2-3). Furthermore, 153 

katdetectr demonstrated the fastest computational runtimes of all evaluated packages 154 

(Supplementary Figures 4). 155 

 156 

Conclusion 157 

Here, we described katdetectr; an R-based Bioconductor package capable of the detection, 158 

characterization and visualization of putative kataegis foci within genomic variants. 159 

Performance evaluation revealed that katdetectr robustly detects kataegis in a wide range 160 

of malignancies, irrespectively of low or high TMB. Additionally, katdetectr is user-friendly 161 

and computationally inexpensive with fast runtimes. In conclusion, the robust and 162 

reproducible methodologies of katdetectr can help facilitate further research into the 163 

clinical significance and underlying biological mechanism of kataegis. 164 

 165 
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performance evaluation can be found on Zenodo at: 179 

https://zenodo.org/record/6623289#.YqBxHi8Rr0o 180 
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