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20  Abstract

21  Motivation:

22  Kataegis refers to the occurrence of regional hypermutation in cancer genomes and is a

23 phenomenon that has been observed in a wide range of malignancies. Robust detection of
24 kataegis is necessary to advance research regarding the origins and clinical impact of

25  kataegis. Multiple kataegis detection packages are publicly available; however, the

26 performance of their respective approaches have not been evaluated extensively. Here, we
27  introduce katdetectr, an R-based, open-source, computationally fast, and robust package
28  for the detection, characterisation and visualisation of kataegis.

29  Results:

30 The performance of katdetectr and five publicly available packages for kataegis detection
31 were evaluated using an in-house generated synthetic dataset and an a priori labelled pan-
32  cancer dataset of whole genome sequenced malignancies. The performance evaluation

33  revealed that katdetectr has the highest accuracy and normalized Matthews Correlation
34  Coefficient for kataegis classification on both the synthetic and the a priori labelled dataset.
35  Katdetectris in particularly more robust for kataegis detection within samples with a high
36  tumour mutational burden.

37  Availability and Implementation:

38 Katdetectr imports standardised variant calling formats (MAF and VCF) as well as standard
39  Bioconductor classes (GRanges and VRanges). Katdetectr segments genomic variants

40  utilising unsupervised changepoint detection and the Pruned Exact Linear Time search

41  algorithm. The implementation of changepoint detection utilised by katdetectr results in
42  fast computation. Furthermore, katdetectr is available on Bioconductor which ensures

43 reliability, and operability on common operating systems (Windows, macOS and Linux).

44  Katdetectr is available on Bioconductor at

45  https://www.bioconductor.org/packages/devel/bioc/html/katdetectr.html.

46  Contact: h.vandewerken@erasmusmc.nl
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47  Introduction

48  Next-generation sequencing of cancer genomes has revealed that mutations can cluster

49  together, i.e., the acquired mutations are found in proximity to one another, much closer
50 than would be expected if they had been dispersed uniformly throughout the genome

51  purely by chance (Alexandrov et al., 2013a; Nik-Zainal et al., 2012a). This phenomenon was
52  termed kataegis and its respective genomic location was termed a kataegis foci. Kataegis,
53  which is Greek for thunderstorm or shower, was first observed and visualised in whole

54  genome sequencing (WGS) data of 21 primary breast cancers {Nik-Zainal et al., 2012b).

55  Alexandrov et al. subsequently detected 873 kataegis foci in a pan-cancer dataset containing
56 507 WGS samples from primary malignancies (Alexandrov et al., 2013b).

57

58 Extensive exploration of the aetiology of kataegis revealed a significant positive correlation
59  between kataegis and two distinct mutational signatures both attributed to the APOBEC

60  enzyme-family Alexandrov et al., 2020; Bergstrom, Luebeck, et al., 2022; Burns et al., 2013;
61 Tayloretal., 2013b).

62

63  Subsequently, multiple studies confirmed the importance of the APOBEC enzymes in cancer,
64  showing that APOBEC is a major cause of mutagenesis, both seen in clusters, dispersed

65  throughout the cancer genome and in extrachromosomal DNA (Bergstrom et al., 2021;

66  Bergstrom, Luebeck, et al., 2022; Langenbucher et al., 2021; Maciejowski et al., n.d.; Taylor
67 etal, 2013a).

68

69  Previous studies have shown that kataegis occurs within known cancer genes including

70  TP53, EGFR and BRAF which are associated with overall survival (Bergstrom, Luebeck, et al.,
71  2022). Still, the clinical significance of kataegis remains to be validated and therefore

72  obfuscates kataegis as a clinical biomarker for predicting prognosis. Nevertheless, any future
73 clinical application requires accurate and robust detection of kataegis.

74

75 Here, we introduce katdetectr, an R-based and Bioconductor package that contains a

76  complete suite for the detection, characterisation and visualisation of kataegis. Additionally,
77  we have evaluated the performance of katdetectr and five publicly available kataegis

78  detection packages (Bergstrom, Kundu, et al., 2022; Lin et al., 2021; Lora, 2016; Mayakonda
79 etal, 2018; Yousif et al., 2020).

80

81 Approach

82  Katdetectr was programmed in the R statistical programming language (v4.1.2) (R Core

83  Team, 2022). Briefly, katdetectr can import standardised formats denoting genomic variants
84  including: Variant Calling Format (VCF), Mutation Annotation Format (MAF) and VRanges

85  objects. Per sample, the genomic variants are pre-processed and subsequently the

86  upstream-oriented intermutation distance (IMD) is calculated (Nik-Zainal et al., 2012a). The
87  distribution of IMDs is then segmented based on unsupervised detection of changepoints
88  using the changepoint package (v2.2.3) and the Pruned Exact Linear Time (PELT) search

89  method (Haynes et al., 2017; Haynes & Killick, 2021; Killick et al., 2012; Killick & Eckley,

90  2014).

91

92  After segmentation, putative kataegis foci are called based on the following definition: 1) a
93  continuous segment harbouring =6 variants and 2) the captured IMDs within the segment
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contain a mean IMD of £1000 bp (Alexandrov et al., 2013a). Moreover, katdetectr can
visualise the IMD, changepoints and their continuous segments and can highlight all
putative kataegis foci within a sample using an intuitive rainfall plot (Figure 1).

The output of katdetectr consists of an S4 object containing the putative kataegis foci
(GRanges), the annotated genomic variants (VRanges) and the annotated segments
(GRanges).

See supplementary note 1 for an extended description of the design of katdetectr and
parameters settings.

Figure 1, Overview of the katdetectr workflow, Intermutation distance and rainfall plots. A)
General workflow of katdetectr represented by arrows. B) The intermutation distance (IMD)
is determined for each two subsequent genomic variants per chromosome and rainfall plots
are used to visualise these IMDs and corresponding detected changepoint segments. C)
Rainfall plot of PD7049a {breast cancer) from the Alexandrov dataset as interrogated by
katdetectr (Alexandrov et al., 2013a). Y-axis: IMD, x-axis: variant ID ordered on genomic
appearance, light blue rectangles: kataegis foci with genomic variants within kataegis foci
shown in bold. The mutational type is depicted by the colour. The determined segmentation
(as mean IMD per segment) is shown by black horizontal solid lines whilst vertical lines
represent detected changepoints. Note that the first variant of a kataegis foci has a high
IMD due to the usage of the upstream-oriented IMD.

Method

The performance of katdetectr (v1.0.0) was compared to alternative packages by utilising an
in-house generated synthetic dataset containing 1024 samples and a publicly available pan-
cancer dataset containing 507 WGS samples with a priori labelled kataegis foci as curated by
Alexandrov et al. (2013) (Alexandrov et al., 2013a; Bergstrom, Kundu, et al., 2022; Lin et al.,
2021; Lora, 2016; Mayakonda et al., 2018; Yousif et al., 2020).

In order to quantify and compare performances, the task of kataegis detection was reduced
to a binary classification problem. The task of the kataegis detection packages was to
correctly label each variant for kataegis, i.e., whether or not a genomic variant lies within a
kataegis foci.

In order to assess performance related to sample-specific Tumour Mutational Burden
(TMB), we binned samples based on TMB. The synthetic dataset contained eight TMB
classes (0.1, 0.5, 1, 5, 10, 50, 100, 500) whilst the Alexandrov dataset was binned into three
TMB classes (low: TMB < 0.1, middle: 0.1 =2 TMB < 10, high: TMB = 10).

Due to large class imbalance, we used the normalised Matthews Correlation Coefficient
(nMCC) as the main performance metric for performance evaluation (Chicco & Jurman,
2020).

See supplementary note 1 for an extended description of the datasets, synthetic data
generation and confusion matrices.
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Performance kataegis classification

Synthetic dataset Dataset labelled by Alexandrov et al.

Package Reference Language Accuracy nMCC F1  TPR TNR Accuracy nMCC F1  TPR TNR
1 katdetectr Hazelaar, van Riet et al., 2022 R 0.99 0.98 097 094 099 0.99 092 083 091 099
2 SeqKat Taylor et al., 2013 R 0.84 0.54 0.02 083 0.84 0.99 0.85 0.69  0.59 0.99
3 MafTools Mayakonda et al., 2018 R 0.74 0.53 0.01  0.96 0.74 0.99 0.85 066  0.93 0.99
4  SigProfilerClusters  Bergstrom, Kundu, et al., 2022 Python 0.65 0.52 001 088 065 0.99 0.84 068 066 099
5 ClusteredMutations Lora, 2016 R 0.70 053 001 099 074 0.99 0.83 061 099 099
i katacgis Lin et al., 2021 i 0.99 0.80 0.52 0.36 0.99 0.99 0.56 0.03  0.02 0.99

Table 1, performance metrics of evaluated kataegis detection packages. Accuracy,
normalized Matthews Correlation Coefficient (nMCC), F1 score, True Positive Rate (TPR) and
True Negative Rate (TNR) of the kataegis detection packages on 1024 synthetic samples and
507 a priori labelled WGS samples (Alexandrov et al., 2013a). Rows were sorted in
descending order based on nMCC score on the Alexandrov dataset (grey transparent
background). For each performance metric, the highest score is underlined.

Results

Out of all evaluated packages, katdetectr revealed the highest overall accuracy and nMCC in
correctly labelling kataegis foci within both the synthetic and Alexandrov et al. dataset
(Table 1). The performance of all packages was found to be associated with the sample-
respective TMB (Supplementary Figure 1). Performance evaluation per TMB-binned
category revealed that katdetectr is on par with alternative packages for samples with TMB
<50. However, in contrast to alternative packages, the nMCC of katdetectr remains high for
samples with high TMB (ranging between 50-500; Supplementary Figures 2-3). Furthermore,
katdetectr demonstrated the fastest computational runtimes of all evaluated packages
(Supplementary Figures 4).

Conclusion

Here, we described katdetectr; an R-based Bioconductor package capable of the detection,
characterization and visualization of putative kataegis foci within genomic variants.
Performance evaluation revealed that katdetectr robustly detects kataegis in a wide range
of malignancies, irrespectively of low or high TMB. Additionally, katdetectr is user-friendly
and computationally inexpensive with fast runtimes. In conclusion, the robust and
reproducible methodologies of katdetectr can help facilitate further research into the
clinical significance and underlying biological mechanism of kataegis.
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179  performance evaluation can be found on Zenodo at:

180  https://zenodo.org/record/6623289#.YqBxHi8Rr0o
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