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Abstract

Animals exhibit a diverse behavioral repertoire when exploring new environments and can learn
which actions or action sequences produce positive outcomes. Dopamine release upon
encountering reward is critical for reinforcing reward-producing actions!'~>. However, it has been
challenging to understand how credit is assigned to the exact action that produced dopamine
release during continuous behavior. We investigated this problem with a novel self-stimulation
paradigm in which specific spontaneous movements triggered optogenetic stimulation of
dopaminergic neurons. We uncovered that dopamine self-stimulation rapidly and dynamically
changes the structure of the entire behavioral repertoire. Initial stimulations reinforced not only
the stimulation-producing target action, but also actions similar to the target and actions that
occurred a few seconds before stimulation. Repeated pairings led to gradual refinement of the
behavioral repertoire leading animals to home in on the target action. Reinforcement of action
sequences revealed further temporal dependencies of behavioral refinement. Action pairs that tend
to be spontaneously separated by long time intervals promoted a stepwise credit assignment, with
early refinement of actions most proximal to stimulation and subsequent refinement of more distal
actions. Thus, a retrospective reinforcement mechanism promotes gradual refinement of the entire
behavioral repertoire to assign credit to specific actions and action sequences that lead to dopamine

release.
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Main Text

Background

Animals spontaneously transition amongst a repertoire of movements when exploring new
environments. Movements or movement sequences that produce positive outcomes are
reinforced and increase in frequency to maximize the obtainment of those outcomes*>.
However, it is still not completely clear how animals assign credit to the exact action that
produce reward in the context of a continuous behavioral space. This credit assignment
problem?®~ during spontaneous behavior poses at least two main challenges. First, it is unclear
how animals come to preferentially perform a specific reward-producing action or action
sequence above other possibilities in the behavioral repertoire. Second, it is unclear how animals
derive contingency between a reward-producing action and reward if there can be variable delays

between action performance and reward delivery.

Dopamine (DA) has been proposed to mediate credit assignment®!°, At the cellular level, DA
can facilitate synaptic plasticity in corticostriatal synapses!! within a critical time window that is
behaviorally relevant!>4, Still, it is unknown how DA changes the dynamics of spontaneous
behavior to mediate credit assignment. We therefore developed a paradigm to investigate how
DA shapes the evolution of continuous behavior during action learning to gain insights into the

process of credit assignment.

Conventional operant conditioning paradigms™>!>~!° have helped derive principles of behavioral
reinforcement, but they are not ideal for studying action credit assignment. In general, such

paradigms do not permit the clean isolation of actions as the trigger for reward versus particular
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locations or objects. In such paradigms, animals are also required to perform a series of
consummatory actions, such as approaching and interacting with reward-delivering devices to
retrieve reward. These requirements make it difficult to investigate how credit is assigned to a

specific action or action sequence in the behavioral repertoire during continuous behavior.

Until recently, technological and conceptual limits have made it difficult to study how the entire
structure of continuous behavior evolves as naive animals come to associate specific action or
action sequences with reward. To address previous limitations, we developed a new approach to
study action credit assignment. This approach directly reinforces specific spontaneous action(s)
by triggering dopaminergic neuron (DA neuron) excitation and DA release upon action
performance. It combines wireless inertial sensors, unsupervised clustering of continuous

2021 and optogenetics?? into a closed-loop system linking specific action performance to

behavior
immediate phasic DA release (Methods; Fig. 1a-f). This paradigm permits action detection and
reinforcement without requiring an animal to approach or interact with a place/object/cue, or to

perform consummatory behavior. These combined features overcome the aforementioned

caveats associated with conventional paradigms.

Rapid reinforcement of actions via closed-loop dopamine stimulation

To implement the action detection component of the closed loop system, we first classified the
entire behavioral repertoire of individual mice?® mice in a grey-walled open field using inertial
sensors and unsupervised affinity propagation clustering?®?! (Fig. 1d). Self-paced behavior was
monitored using a novel, wireless inertial sensor system (WEAR; Methods) that allows minimal

movement restraints, high resolution behavior monitoring and fast data transmission to open-
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93  source hardware and software for online experimentation (Fig. 1b, Extended Data Fig. 1a).
94  Affinity propagation clustering is particularly well suited to cluster an unknown number of
95  clusters?, is computationally efficient?*, and easily outputs similarity between clusters.
96  Clustering begins by processing accelerometer and gyroscope data to extract 4 features
97  discriminating postural changes, movement momentum, head and head-body rotations, and total
98  body accelerations. Feature values from 300 ms long segments of behavior were discretized into
99  histograms, upon which pairwise similarity comparisons could be made using a Earth-Mover’s
100  Distance (EMD)? metric. The similarity matrix of all possible pairwise comparisons were fed
101 into an unsupervised affinity propagation clustering algorithm?° (Methods), identifying naturally
102 occurring repertoire of 300 ms long behavioral clusters?!, or “actions” (Fig. 1¢,Extended Data
103 Fig. 1b). The choice of 300 ms long movements was informed by previous studies?!?. Using
104  these parameters, we identified over 30 clusters of spontaneous behavior per individual (34.3 +/-
105 2.1 and 35.6 +/- 2.5 total actions per ChR2-YFP and YFP mice, respectively; mean +/- standard
106  deviation,15 ChR2-YFP and 10 YFP mice). We chose particular clusters of actions to be
107  reinforced (hereby named target action A).
108
109  To implement closed-loop reinforcement, we used Cre-dependent AAV viruses (EF1a-DIO-
110  expression cassette) to express channelrhodopsin ChR2-YFP? or the control protein YFP
111  bilaterally in DA neurons of the ventral tegmental area (VTA) 2”-*® of DAT-Cre mice (Fig.
112 1la,Extended Data Fig. 2a-c). Using the wireless inertial sensor, we tracked behavior
113 continuously in a white open field and used the similarity metric to match ongoing 300 ms
114  behavioral segments to exemplars representing each mouse’s repertoire of actions (Fig. 1d-e).

115  Upon a match to a defined target action (target action A), a 25 hz, 600 ms long train of
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116  optogenetic stimulation was delivered to DA neurons of the VTA parabrachial pigmented area
117  (PBP) (30-60 ms delay, Fig. 1e). These target action As were different for different animals, and
118  were dispersed across a behavioral space (Fig. 1g).To evaluate whether stimulation parameters
119  triggered DA release similar in magnitude to that triggered by sucrose reward in food restricted
120  mice, we delivered random optogenetic stimulations to ChR2-YFP- or YFP-expressing VTA DA
121 neurons while monitoring DA release with the GRAB rDA 1m sensor ?° in both ventral and

122 dorsal striatum (Fig. 1f). We also measured DA release in the same animals upon delivery of
123 sucrose while they were food deprived. Sucrose presentation led to a sharp increase in DA

124 release in both ventral and dorsal striatum (Fig. 1f). Interestingly, optogenetic stimulation of DA
125  neurons in VTA with the parameters described above, resulted in a similar phasic increase in DA
126  not only in ventral striatum but also in dorsal striatum (Fig. 1f). This is consistent with emerging
127  evidence showing the existence of dorsal striatum-projecting VTA neurons®®3!. Thus, our

128  optogenetic stimulation triggered DA release similar in decay and spatial localization to that

129  triggered by sucrose reward in food restricted mice (Fig. 1f), offering us a suitable approach to
130  interrogate how pairing DA release with specific action performance leads to credit assignment.
131

132 Closed loop reinforcement for a specific action occurred over a 3-day, 60-90 minute/session

133 protocol designed to probe both intra- and inter-session changes in behavior (Fig. 1h-m,

134 Extended Data Fig. 3). Optogenetic stimulation of VTA DA neurons upon execution of a

135  particular target action (action A) resulted in significant increase in the frequency of action A for
136  ChR2-YFP, but not YFP mice (Fig. 1h, Extended Data Fig.3b). Increased action A in ChR2-YFP
137  animals depends on optogenetic stimulation, as removal of closed-loop stimulations resulted in

138  progressive extinction of action A (Fig.3h, Extended Data Fig.3d). Resuming paired stimulation
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139  led to rapid re-instatement of action A (Fig. 1h, Extended Data Fig.3c,e). Interestingly, during
140  extinction, ChR2-YFP animals kept performing exploratory unrewarded bursts of action A,

141  which could explain rapid reinstatement (Extended Data Fig. 3e,f). This paradigm revealed that
142 just a few pairings with DA leads to rapid reinforcement, as changes in multiple parameters

143 including decreased trigger latency, increased action A frequency and increased average

144 behavioral similarity towards action A become significant following 10-15 stimulations (Fig. 11,
145  Extended Data Fig. 4a-b).

146

147  We next examined if only action A changed in frequency or if other non-stimulated actions also
148  changed with closed-loop reinforcement of action A. We calculated baseline-normalized

149  frequency of all actions in the repertoire and ordered them as a function of similarity to the target
150  action (Fig. 1j). Earth-Mover’s Distance (EMD)?!?> was used to measure each action exemplar’s
151  similarity to the target exemplar (Methods), with lower EMD value indicating increased

152 similarity. Surprisingly, we observed that optogenetic stimulation resulted in a dramatic change
153  in the entire behavioral repertoire. We observed that early in training actions most similar to

154  target tended to also increase in frequency (Fig. 1j-1, Extended Data Fig. 4c) whereas actions
155  most dissimilar to target tended to decrease in frequency. Repeated pairing led to refinement of
156  the actions that were performed at high frequency, and by late stages action A became the

157  predominant action being performed, with a sharp drop-off of non-target action frequencies as
158  similarity to target decreased (Fig. 1k-1). Such effects were not observed in YFP controls

159  (Extended Data Fig. 4d-e). These data suggested that early reinforcement results in rapid

160  reshaping of the entire behavioral repertoire, biasing animals towards actions similar to the target
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161  action, and continued pairing resulted in gradual refinement and assignment of credit to the

162  specific target action.

163

164  Dynamics of behavioral refinement during reinforcement

165  To better describe individual action dynamics during reinforcement, we categorized actions (511
166  actions, n=15 ChR2-YFP animals) by the trajectories of their changes in frequency throughout
167  learning (Methods). Three meaningful types of trajectories were categorized, comprising over
168  94% of all actions. These types were characterized by either initial increase that remained stable
169  (Sustained Increase), initial increases that decreased over time (Transient Increase) and initial
170  decreases that remained stable (Decreased) (Fig 1m, Extended Data Fig. 5-6). We again

171  confirmed that the frequency dynamics type of each particular action was related to its similarity
172 to target, regardless of whether actions were sorted based on their raw or percentile similarity
173 scores (Extended Data Fig. 6b-c). Actions most similar to target were predominately Sustained
174  Increase types, while moderately similar actions mostly comprised of Sustained Increase or

175  Transient Increase types and more dissimilar actions are more of the Decreased type (Extended
176  Data Fig. 6b-c). Taken together, these finer resolution analyses indicate again that the dynamics
177  of action frequency are related in great part to the similarity to target action.

178

179  Reinforcement and refinement after reversal of action-reward contingencies

180  Next, we asked if animals could follow changes in contingency between action and closed-loop
181 DA stimulation. We therefore chose a different action, action B, which is clearly distinct from
182  the action A for each animal (Methods, Fig. 2a, Extended Data Fig. 1¢) and started delivering

183 DA neuron optogenetic stimulation after action B. Chosen action A/B pairs were relatively
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184  dissimilar in the context of entire action similarity distributions (Fig. 2b). Upon reinforcement,
185  previously trained ChR2-YFP, but not YFP animals showed increased action B performance
186  over time (Fig. 2c-e, Extended Data Fig. 7). In contrast, action A frequency changes clearly

187  moved in the opposite direction from that of action B over time (Fig. 2¢). Maintenance of action
188 B performance depended on continual reinforcement (Fig. 2c, Extended Data Fig. 7d-e). Similar
189  toaction A, action B credit assignment unfolds by initially biasing the entire repertoire, i.e.,

190 increasing the frequency of similar actions and reducing the frequency of dissimilar actions. This
191  was again followed by gradually refining for action B relative to similar actions as pairing

192 progressed (Fig. 2d-e, Extended Data Fig. 7f). To confirm that action learning is contingent on
193 action B appearing before reinforcement, we subjected trained animals to a contingency

194  degradation protocol in which we delivered a similar number of random stimulations uncoupled
195  to action B performance. Action B performance decreased following contingency degradation
196  and could be re-instated upon resuming the action B-stimulation contingency (Fig. 2f, Extended
197  Data Fig. 7g). These experiments indicate that animals can follow changes in the contingency
198  between actions and DA release and assign credit to a new action through a similar process of
199  behavioral repertoire refinement.

200

201  Although animals show similar patterns of behavioral refinement for actions A and B, animals
202  that previously credited an action (action A) for DA release did initially respond to reinforcement
203  of a new action (action B) differently from naive animals (Fig. 2g-j). Whereas naive animals
204  responded to initial reinforcements for target action A by significantly increasing action A

205  performance relative to the non-target action B (Fig. 2g,i,left graph), animals with a history of

206  reinforcement on action A animals responded to initial reinforcements of action B by increasing
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207  non-target action A performance (Fig. 2g,i,right graph). This trend reverses later such that target
208 action B becomes significantly increased over the non-target action A (Fig. 2g,i,right graph).
209  YFP control animals showed no such trends (Fig. 2h,j). Thus, DA reinforcement does not simply
210  reinforce the recently performed, temporally contiguous action, but trigger previously credited
211  actions in the face of a new action-reward contingency that is not yet learned. This suggest again
212 that animals learned the contingency between action performance and DA release.

213

214 Temporal constraints of DA-dependent reinforcement

215  The contingency degradation results above indicate that the temporal relation between target

216  action and DA phasic activity is important for reinforcement (Fig. 2¢). Reinforcement is thought

217  to occur on behavior that precedes reward in time!%-!2.14.19

, and while temporal contiguity

218  between action and reinforcement has long been recognized®?4, it is not clear how the position
219  of an action relative to the time of DA phasic activity influences its subsequent frequency. We
220  investigated if in addition to behavioral similarity, the temporal relationship between action and
221  stimulation influenced the dynamics of behavioral repertoire evolution during reinforcement and
222 credit assignment.

223

224 We observed that the median inter-target action interval decreased with stimulation in ChR2-
225  YFP mice (Fig. 3a,b). We therefore examined the distribution of the action dynamic types

226  categorized above (Sustained Increase, Transient Increase, Decreased) according to both an
227  action’s similarity to target and the median time of that action’s performance leading into target

228  during baseline, before reinforcement protocol began (Fig. 3c-e). Action dynamic types showed

229  distinct distribution patterns for these two dependent variables (similarity and time). Further,


https://doi.org/10.1101/2022.09.22.507905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.22.507905; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

230  these two dependent variables were not significantly collinear (Methods). Thus, action similarity
231  to target as well as baseline temporal proximity to target should together predict action dynamic
232 type upon reinforcement better than either factor alone. To test this idea, we performed

233 multinomial logistic regression to assess whether 1- or 2-factor models best fit the observed

234  dynamics pattern that an action would follow upon reinforcement (Fig. 3f,g). The two-factor
235  model outperformed either one-factor models, and prediction of action dynamics type with this
236  model was significantly above chance as assessed by precision-recall curves, which is suitable
237  for evaluating datasets with imbalanced categories®® (Fig. 3g). The beta coefficients indicated
238  that increased similarity to target and decreased median time to target increases prediction of
239  Sustained Increase and Transient Increase dynamic types relative to Decreased types

240  (Supplementary Table). These results suggest that DA may reshape behavioral repertoire by
241 reinforcing not only actions similar to the target action but also actions that happen to be

242 performed temporally close to the reinforcer, as suggested before!%1214.19,

243

244  To more rigorously test whether DA reinforcement acts in a retrospective or prospective manner,
245  we increased the resolution of analysis by examining 1% order action transitions leading into and
246  out of stimulation (Fig. 3h-j). By focusing analysis on action transitions enriched within specific
247 1.2 second moving windows, one could distinguish more clearly behavior that occurred leading
248  up to, during, and after DA stimulation. Our analyses showed that action transitions enriched in
249  windows up to 1.2 seconds prior to stimulation onset, as well as during stimulation, are

250 reinforced early on (Fig. 3i). However, this did not occur to action transitions following

251  stimulation, suggesting an asymmetric process. Indeed, action transitions enriched in windows

252  leading into stimulation were also preferentially reinforced relative to those enriched in windows
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253  after stimulation (Fig. 3j). Thus, DA stimulation promotes reinforcement of behaviors occurring
254  during stimulation and a few seconds before stimulation.

255

256  Credit assignment for action sequences

257  In the real world, when animals are spontaneously shifting between actions in their repertoire,
258  outcomes are often not the result of a single action but rather of a sequence of actions performed
259 atvariable intervals. We therefore investigated the dynamics of reinforcement when the release
260  of DA is contingent upon the performance of a sequence of 2 actions (target action 1 and 2, T1
261 and T2). We applied closed loop optogenetics to ask whether naive animals can learn a T1-2>T2
262  reinforcement rule, where the delays between T1 and T2 are governed by the spontaneous

263  behavior of the animals and not experimentally controlled (n=15 ChR2-YFP and 10 YFP mice,
264  Fig. 4a, Extended Data Fig. 2a,d-e, Extended Data Fig. 8-10). Various T1/T2 pairs were

265  sampled, with focus on sequences sharing general commonalities in movement order across

266  animals (Extended Data Fig. 1d,f-g). Overall, mice learned to increase the performance of a

267  sequence of two actions to obtain DA stimulation. Some animals showed a ChR2-dependent
268 increase in reinforcement within 5 sessions, but others experienced a lag in learning (Fig. 4b).
269  We hypothesized that this could relate to the initial time distance between T2 trigger and the
270  closest distal T1 (T1->T2 interval). Indeed, animals reinforced for action pairs with initially long
271  interval values tended to show slower learning curves (Fig. 4c-d). To capture a learning time
272 point whereby individuals reach similar rising phase in their respective learning curves, a

273  criterion frequency was set (Methods). 14 of 15 trained animals eventually reached criterion
274  (Fig. 4e; Extended Data Fig. 8a-c). Sequence performance depended on continuing DA

275  reinforcement (Fig. 4f,g). Learning was also revealed by decreases in the median T1-> T2 time
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276 intervals (Fig.4h-1) and convergence of T1-to-T2 frequency ratio towards 1 (Fig. 4j). To quantify
277  the specific credit assignment of T1 and T2 we used a refinement index that compares the

278  median frequency of actions uniquely similar to T1 with those uniquely similar to T2, with the
279  frequencies normalized by either that of T1 or T2 (Methods). Values lower than 1 indicate that
280 the target actions are being performed even more frequently than similar actions, and thus

281  indicate greater refinement (Methods). By the end of learning, T1 and T2 became credited as the
282  reward-producing actions relative to their similar counterparts (Fig. 4k). YFP controls did not
283  show any of these trends (Fig.4c-d,4g-h). Thus, closed loop reinforcement promoted learning of
284  atwo-action sequence rule in freely moving mice starting from a naive state.

285

286  Importantly, the initial median T1->T2 interval performed by ChR2-YFP animals was inversely
287  related to the eventual number of sessions required for each animal to reach criterion frequency
288  (Fig. 41). A sigmoidal curve was fit to the data, showing that animals with longer open field

289  T1->T2 intervals beyond the sigmoidal midpoint tended to face sudden increase in sessions to
290  reach criterion frequency (Fig. 41). ChR2-YFP animals were divided according to the half-

291  maximum point of the sigmoidal curve into 'Fast Learners’ and ‘Slow Learners’. Fast Learners
292 quickly reached criterion frequency and low T1->T2 time intervals, whereas Slow Learners

293  experienced a time lag in reaching criterion frequency and low T1->T2 intervals. Slow Learners
294  tended to suddenly increase the frequency of sequence performance in sessions that showed a
295  drop in the median T1->T2 interval to below 2-4 seconds (Fig.4d,h). In contrast, there was no
296  stable sigmoidal relationship between T1-T2 action similarities and sessions to criterion

297  frequency (Extended Data Fig. 8d). Thus, the initial median time distances between distal action
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298  T1 and proximal action T2(which produced DA stimulation) modulated how fast animals learned
299  to effectively perform the reinforced action sequence.

300

301  If DA is acting retrospectively to reinforce actions performed earlier in time, we hypothesized
302 that the action most proximal to reinforcement, T2, should experience earlier refinement relative
303  to the distal action, T1. We again used the median target normalized frequencies of actions

304  uniquely related to T1 or T2 as refinement indices (Methods). Proximal T2 clearly refines

305  towards its most refined level earlier than the distal T1, at least in some animals (Fig. 5a). By
306  subtracting the area under the refinement curve for T1 from the curve for T2, one could calculate
307  differential refinement between the two actions. Positive values indicate refinement

308  preferentially favoring T2, and vice versa. A linear relationship was found between open field
309 median T1->T2 interval and differential refinement between T1 and T2 (Fig. 5b). This suggests
310  for longer T1->T2 median intervals, the proximal action T2 spends more sessions being more
311  refined than the distal action T1. In contrast, there was no significant linear relationship between
312 the initial intervals between the execution of the proximal action that led to reward and the next
313  initiation of the sequence (T2->T1) or of the similarity between T1 and T2 actions, and the

314  dynamics of differential refinement between T1 and T2 (Fig. 5b, right graph, Extended Data Fig.
315 9a).

316

317  We next investigated if the differential refinement between T1 and T2 was different for slow and
318  fast learners. We analyzed changes in T1-T2 refinement curves relative to ‘Starting Points’ at
319  which the refinement indices of T1 and T2 are most similar or are biased towards the distal T1

320  rather than the proximal T2 action (Methods). All Slow Learners showed a pattern where they
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321 initially refine the repertoire of T2 from these Starting Points, and after reaching a maximum

322 Turning Point, they start showing a bias towards greater T1 refinement (Fig. 5¢). Notably, by
323  these Turning Points the median intervals of T1->T2, but not T2->T1 events had decreased

324  significantly relative to initial values (Fig. 5d, Extended Data Fig. 9b). Therefore, the median
325 T1->T2 interval decrease occurred before a decrease in the interval to perform the next sequence
326  (T2->T1), which started decreasing after the Turning Point (Fig. 5e). Using these learning

327  landmarks, we asked more rigorously how animals homed in on T1 vs T2 over time (Fig. 5f,

328  Extended Data Fig.10a). We found that animals initially refined the action proximal to DA

329  stimulation (T2, between Starting Point and Turning Point), whereas T1 refinement occurred

330  several sessions later, after the Turning point (Fig. 5f, Extended Data Fig.10a). Indeed, the

331  Turning Point coincided with an increased probability of the T1 being found within 3.6 secs

332 before T2 and reinforcement (Fig. 5g-h). These results indicate that animals can assign credit to
333 sequences of actions that lead to reinforcement, following similar retrospective dynamics that
334  were observed for single actions, whereby the actions most proximal to reinforcement are refined
335  earlier and the actions more distal to reinforcement refined later, when they probabilistically start
336  to occur within a few seconds of DA release.

337

338  Discussion

339 Our results demonstrate that DA reinforcement promotes single action credit assignment from a
340 naive state through a dynamic process whereby the entire behavioral repertoire is restructured.
341  During the initial stages of reinforcement both actions similar to the target action and actions that
342 were performed in close temporal proximity of the target action increase in frequency, while

343  very dissimilar actions decrease in frequency. With repeated reinforcement there is a process of
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344  gradual refinement that homes in on the action that produces DA release. In the case of action
345  sequences, we observe a similar gradual refinement process whereby credit assignment for the
346  action sequence is accomplished by early refinement for the actions most temporally proximal to
347  reinforcement, followed by later refinement for the more temporally distal actions.

348  Previous synaptic and cellular studies*®>” proposed that DA reinforcement may act

349  retrospectively to reinforce behavior. By utilizing the closed loop system, we rigorously tested
350 this prediction. Since retrospective reinforcement of behavior is not confined to the target action
351 alone, it facilitates credit assignment to a stimulation-producing action even when reinforcement
352 is delayed; stimulation-producing action pairs that tend to be performed closed together in time
353  were learned much faster than pairs that tended to be performed far apart in time. Intriguingly,
354  animals eventually learned to assign credit to distal stimulation-producing actions even in the
355  latter scenario. This is characterized by a gradual process whereby early on, the median time
356 interval between distal and proximal target actions decreased and the repertoire proximal to

357  reinforcement was preferentially refined to favor the performance of the proximal target action.
358  As the distal target action became significantly more likely to occur within second timescale
359  distance prior to reinforcement, retrospective reinforcement of the correct stimulation-producing
360  sequences became increasingly likely, resulting in whole behavioral refinement for the distal
361  target as well, hence increasing sequence performance (Fig. 5g).

362

363 It has been suggested that retrospective reinforcement of behavior is mediated by DA modulation
364  of an eligibility trace left by action potential-triggered synaptic plasticity!?. Studies of DA action
365  at the striatal synaptic level*®*7 indicate that the timescale within which retrospective

366  reinforcement may occur is on the order of a few seconds, but the behavioral consequences have
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367  remained elusive until now. Our behavioral findings are consistent with cellular studies in that
368  behavior occurring within a few seconds leading into DA stimulation are reinforced. It is also
369  noteworthy that distal T1 refinement in two action reinforcement occurs after the closest T1 to
370 DA stimulation has become more probable within a few seconds of stimulation. The cutoff of
371  retrospective reinforcement by phasic DA activities within a few seconds could explain the

372 sudden increase in sessions required to reach criterion frequency amongst animals that were
373  reinforced for action pairs with initially longer median time separations. Retrospective

374  behavioral reinforcement may be mediated by DA modulation of Ca2+ influx left by earlier
375  spiking activities. Ca2+ influx triggered by NMDA receptors would increase adenosine 3°,5’-
376  cyclic monophosphate at thin distal dendrites of medium spiny neurons, leading to transient and
377  localized protein kinase A activity specifically within the retrospective time window, as

378  regulated by high phosphodiesterase activity'4. Similar actions have more similar and

379  overlapping striatal neural ensemble activities?!'. Arrival of DA upon activation of action-specific
380  ensembles may reinforce not only a specific action, but also similar actions. As striatal

381  ensembles specific to actions are activated and a trial of eligibility traces is left temporally, DA
382  arrival could set the stage for retrospective reinforcement of a spatially graded repertoire of
383  actions within a few seconds, resulting in the observed behavioral learning patterns. Future

384  studies testing these ideas would clarify how synaptic plasticity and cellular ensemble activities
385  integrate to produce a dynamic refinement process, resulting in the behavioral principles for
386  credit assignment revealed here.

387

388  END OF MAIN TEXT

389
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390 Methods

391  Animals: All experiments were approved by the Portuguese DGAV and Champalimaud Centre
392  for the Unknown Ethical Committee and performed in accordance with European guidelines.
393  They were also performed according to National Institutes of Health (NIH) guidelines and

394  approved by the Institutional Animal Care and Use Committee of Columbia University. 3-5
395  months old DAT-Cre male mice in the C57/BL6J background?® were used.

396

397  Sample Sizes, randomization, and blinding. For sample size, we applied a power of 0.8,

398  significance of p<0.05, and standard variation of 20% of the mean. We determined sample sizes
399  of 4-8 mice per group for different mean-based tests (matched pairs, 2 groups). No formal

400  method of randomization was used; littermates were equally divided among the groups being
401  compared. The experimenter was not blinded of the experimental groups. Optogenetic

402  manipulations were performed automatically via a computer algorithm and not manually by the
403  experimenter.

404

405 Recombinant adeno-associated viral vectors, stereotaxic injections, and implants. 750 nl of
406 rAAV.EF1a.DIO.hChR2(H134R).eYFP or rAAV.EF1a.DIO.eYFP (3-4 x 10"12 vg/ml, AAVS,
407  University of North Carolina Vector Core; 1-2 x 10"13 vg/ml, AAV1, Addgene, 27056-AAV1
408 and 20298-AAV1) were injected into each hemisphere of the VTA of 3-4 month old DAT-Cre
409  mice. For viral injections, the coordinates are AP - 3.52 mm, ML - +/- 0.35 mm, DV — 4.3 mm.
410  Injections were made at 0.2 Hz pulses. Each pulse injects 4.6 nl volume. Injected needles were
411  kept in place in the injection site for ~15 minutes before withdrawal. For each mouse, a dual

412 optic fiber cannula (200/240 pm diameter, 6 mm length, 0.7 mm center-to-center FLT, 0.22 NA;
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413  Doric, DFC 200/240-0.22 6mm_DFO0.7 FLT) was placed 200 pm above the injection site and
414  fixed to the skull. Next, a 4-position receptacle connector (Harwin Inc., M52-5000445) was fixed
415  anteriorly to the dual optic fiber cannula, with its posterior edge set at -0.6 mm. Skull implants
416  are then fixed with dental cement. A 4-position connector (Harwin Inc., M52-040023V0445)
417  with pins removed from one end was used to cap the receptacle connector.

418

419  For photometry experiments, 3-5 month old DAT-Cre males were used. The conditions used for
420  VTA injections and implants were as above. Additionally, 1 pl and 500 nl of AAV9-hSyn-

421  GRAB-rDAIm (2 x 10"13 vg/ml; Addgene, 140556-AAV9) were injected into the dorsal

422 striatum (AP 0.5 mm, ML +2.1 (right), DV 2.3 (from brain surface)) and ventral striatum (AP
423 1.15mm, ML +1.65 (right), DV 4.2 (from Bregma)) , respectively. For photometry fiber

424  implants, mono fiberoptic cannula were used (400/430 um diameter, 4 mm length (dorsal

425  striatum) and 6 mm length (ventral striatum), 0.37 NA, 1.25 diameter ferrule, flat; Doric,

426  MFC 400/430-0.37 6mm_MF1.25 FLT (ventral striatum) and MFC 400/430-

427 037 4mm_MF1.25 FLT (dorsal striatum)). Implants were inserted at a 22 degrees angle. For
428  dorsal striatum implantation, the cannula entered the skull at AP 0.5 mm and ML 3.03 mm at 22-
429  degree angle. The angled implant penetrated the brain from its surface for 1.92 mm. For ventral
430  striatum implantation, the cannula entered the skull at AP 2.85 mm at 22 degrees angle, ML 1.65
431  mm. The angled implant penetrated the brain from its surface for 4.25 mm.

432

433  WEAR motion sensor system. The WEAR motion sensor family was developed by the

434  Champalimaud Hardware platform and Costa lab as a wired or wireless solution to obtain self-

435  centered 9-axis motion data based on 3-axis accelerometer, gyroscope, and magnetometer
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436  (https://www .cf-hw.org/harp/wear). The wired version is a very small and extremely lightweight

437  device (200mg) that can sample motion data up to 500 Hz and at the same time provide current
438  up to 500mA that can be used to power LEDs for optogenetic experiments or stimulating

439  electrodes. The wireless version is small and lightweight (~1.8g) and can sample motion data up
440  to 200 Hz while having the ability to provide up to 50 mA that can be used to power LEDs for
441  optogenetic experiments or stimulating electrodes. The battery of the wireless WEAR allows
442  recordings up to 4 h at 200 Hz sampling rate and even more at lower sampling rates. These

443  devices communicate with the computers through a base station based on the HARP design

444  developed by the Champalimaud Hardware Platform, which can be accessed through a software
445  GUI to easily change sensor parameters to best fit the experimental needs. The base stations have
446  several important hardware features such as 2 digital inputs and outputs, an analog input, 2

447  outputs for camera triggering, and a clock sync input and output that provides hardware-based
448  synchronization. The sensor can be started or stopped by software or pin. The WEAR motion
449  sensor family and base station are all open source (repository

450  at https://bitbucket.org/fchampalimaud/workspace/projects/HP). Moreover, the WEAR devices

451  are compatible with the Bonsai visual reactive programming software (https://bonsai-rx.org/),

452  also open source, and allow the integration and synchronization of the streams of data being
453  collected using the WEAR sensor with other data sources such as cameras.

454  Taking these specs and features together, the WEAR allows researchers to acquire high-

455  resolution motion data wirelessly and for long periods of time, without being computationally
456  very demanding. The 9-dimensional motion data acquired through WEAR is simple to process,
457  easy to connect to analysis software, which allowed the fast online behavior classification that

458  was fundamental for the experiments described in this paper.
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459

460  Open field experiment. One-month post-surgery, mice were habituated to head-mounted

461  equipment over 2 days. On day 1, an actual or mock wireless inertial sensor (~2.5cm Hx 1 cm L
462  x 0.5 cm W with ~ 2.5-3.0 cm antennae, ~1.8 g weight) glued to the 4-position connector

463  (Harwin Inc., M52-040023V0445) was attached to the implanted receptacle connector on the
464  skull cap. Individual mice roamed freely in the home cage for 1 hour. On day 2, an actual

465  wireless inertial sensor and mono fiberoptic patchcord (200/220 um diameter, 0.22 NA; Doric
466  DFP_200/220/900-0.22 2m_DF1.0-2FC) was attached to the skull cap via a mating sleeve.

467  Patchcords were attached to 1x2 fiber-optic rotary joint (intensity division, 0.22 NA; Doric,

468 FRJ 1x2i FC-2FC) and mice roam freely in home cage for 1 hour. On open field recording day,
469  sensor/patchcord habituated mice were anesthetized by isoflurane, attached to equipment,

470  subjected to calibration protocol described below, and individually placed in an open field box
471  inside a sound insulated chamber. The open field box is made of 410 x 400 mm grey opaque
472  acrylic walls and a 410 x 400 mm white matte acrylic base. Individual mice were allowed to
473  behave freely inside the box for 75 minutes. The wireless inertial sensor (~1.8 g in weight,

474  WEAR wireless sensor v1.1; Champalimaud Scientific Hardware Platform) conveys motion
475  information sampled at 200 hz (set on WEAR v1.3.2 software; Champalimaud Scientific

476  Hardware Platform) to a receiver base-station (Harp basestation v1.1 or v. 1.2, Assembly vO0,
477  Harp vl.4, Firmware v1.5; Champalimaud Scientific Hardware Platform), which conveys the
478  information to the experimental computer running a Bonsai script (Bonsai® editor v2.3.1) to
479  capture and record motion data and video information. Video was captured with a camera (Flea3
480  FL3-U3-I3Y3M(17450451), Point Grey Research) coupled to a 1/2” format lens (NMV-6WA,

481  Navitar).
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482

483  Calibration. To ensure sensor stability within sessions, several approaches were employed.

484  First, a coated mating sleeve was attached to the dual optic fiber cannula that sits immediately
485  posterior to the sensor. The sleeve was thickened with black tape to a desired outer diameter such
486  that it stabilized the sensor in the anterior-posterior direction. Second, the metal pins in the 4-
487  position connector glued to the sensor were thickened with solder to stabilize their fit inside the
488  receptacle connector in the skull cap. This protects against displacement in all directions. Third,
489  stretchable black tape was wound around the base of the attached sensor and sleeve-covered

490  cannula, further protecting against shifts in sensor positioning.

491

492  To control for possible variation in sensor positioning across sessions, a calibration approach was
493  developed. Wireless inertial sensor was attached to individual isoflurane-anesthetized mice and
494  the sensor was secured with the above strategies. Next, individual mice was placed in a custom-
495  made calibration rig. The essential element of the rig is a vertical stainless-steel pole suspended
496  above a stably secured table. In the setup used, the vertical pole was fixed to the horizontal edge
497  of a vertically reversed “L” shape, stainless steel post assembly mounted on a breadboard

498  (Thorlabs). The space between the lower end of the vertical pole and the table is enough for an
499  individual mouse to slide underneath. The lower end of the vertical pole is fixed to a custom-
500  made connector that resembles the connecting end of the fiberoptic patchcord. To perform

501 calibration, individual isoflurane-anesthetized mice was securely attached to the vertical pole via
502  amating sleeve bridging the connection to the mouse’s cannula implant. Next, replicate readings
503  of the immobilized inertial sensor were made on Bonsai. Next, mice were attached to the

504  experimental patchcord and allowed to recover in home cage for 20 minutes or until individual
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505  mice are clearly recovered and behaviorally active. Individual mice were then placed in open-
506  field box for experimentation.

507

508  Calibration involves rotating all accelerometer and gyroscope readings from the inertial sensor
509 by arotation matrix such that the final gravitational field vector of the stationary sensor, when
510  mounted on the mouse and fixed to the calibration rig, is in a universal frame of reference

511  whereby there is zero vertical tilt. In other words, the only non-zero acceleration is on the

512 universal z-axis (pointing down). To accomplish this, the accelerometer pitch and roll orientation
513  angles of the fixed stationary accelerometer were determined and then applied to calculate the
514  rotation matrix. The rotation matrix is multiplied by the sensor accelerometer and gyroscope

515 readings to remove the stationary vertical tilt from the sensor. To account for possible drift in
516  gyroscope baseline over time, a daily reading of stationary gyroscope baseline was made with a
517  mock cement skull cap attached to the sensor just before the start of each experimental day. The
518  baseline gyroscope readings were subtracted from all gyroscope values before the rotation matrix
519 s applied to sensor data.

520

521  Action Selection. After open field run in the grey-walled box, off-line behavioral clustering was
522  performed on calibrated sensor data. To identify the natural action repertoire of individual mice,
523  we quantified behavior using acceleration and gyroscope time series features in a similar fashion
524 as described previously?!. For the ground truth analysis, we used: 1.) Gravitational acceleration
525  (GA) along the anterior-posterior (A-P) axis for the discrimination of postural changes - GAap.

526  2.) Raw sensor acceleration along the dorsal-ventral (D-V) axis to quantify movement


https://doi.org/10.1101/2022.09.22.507905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.22.507905; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

527  momentum — ACCdv. 3.) D-V axis of gyroscope to extract head head-body rotational

528  information — GYRdv. 4.) Total body acceleration to differentiate resting state from movement.
529

530  Total body acceleration (TotBA) was defined as:

531

532 TotBA =sqrt(BAap? + BAmlI> + BAdv?),

533

534  where BAap, ml and dv represent the body acceleration of the anterior-posterior, medio-lateral
535 and dorsal-ventral axis, respectively. We calculated each individual BA component by median-
536 filtering the raw acceleration signals followed by a fourth-order Butterworth high-pass (0.5Hz)
537  filter. For the gravitational acceleration (GA) axis, the BA components were subtracted from the
538  median filtered raw signal axis.

539

540  All four time series features were binned into non overlapping 300 ms long window segments?¢.
541  The values of each bin and per feature were then discretized, using fixed thresholds, producing a
542  summary distribution of each segment. For GAap and ACCdv we used 10 equal size threshold
543  values, plus two added bins between the limits and infinity to capture an approximated

544  distribution of values within each window bin. For GYRdv we used 5 thresholds (0, £50, £100)
545  to discriminate left and right turns. For TotBA, a single threshold was used to separate moving
546  from resting. The threshold was kept constant for all experiments and was set to the average

547  value separating the bimodal distribution of logTotBA (natural logarithm of TotBA feature). For

548  each 300-ms window segment we get four resulting histograms, one for each feature. The feature
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549  histograms were individually normalized to obtain probability distributions and used to calculate
550  the pairwise similarities between segments.

551

552  We used the "earth mover's" (EM) distance as a measure of similarity>>:

553

554  S=-(dEM/4)"2

555

556  where dEM is the sum of the normalized EM distances for the 4 features (GAap, ACCdy,

557  GYRdv and TotBA) defined above. The bin normalizations constrain S values within the range
558  [-1,0], specifically, -1 and 0 define the maximum dissimilarity and identity between the two

559  probability distributions, respectively. Finally, to produce a continuous unbiased classification of
560  behavioral states, the similarity measures were clustered using affinity propagation?’, with the
561  preference parameter set to the minimal value of the similarity matrix; this particular value was
562  used for its stable number of behavioral clusters within its range.

563

564  Using the behavioral clusters identified by affinity propagation clustering of the grey open field
565  behavior!® as a ground truth for the true identity of each 300 ms histogram, we were able to

566  simulate and evaluate the precision with which the Earth Mover’s Distance (EMD) metric?!23
567  could be applied for cluster matching online. Notable difference between the EMD metric used
568  here is the use of the 4 features mentioned above rather than the 3 features used previously?!, as
569  well as the multiplication of the similarity score by -1 such that the range of possible scores from
570  maximal identity to dissimilarity is 0 to 1, respectively. Although the EMD cluster matching

571  outcome correlates strongly with affinity propagation clustering, some false positive and false
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572  negatives may occur. Several filters were set to optimize cluster selection for reinforcement: 1.)
573  We selected for clusters that show low false positive rate (<5.5%) and below the 60" percentile
574  false positive rate amongst all clusters per animal. 2.) We selected against clusters with high

575  false negative rates (> 90" percentile of clusters per animal). 3.) We selected against clusters that
576  tend to be performed serially within a short time interval. We calculated the probability that a
577  target cluster or its top 5 most similar clusters (determined by EMD score) would reappear 3-18
578  seconds after the first occurrence of the target cluster. Clusters that tend to be repeated either by
579  itself or have a high probability of having similar clusters appear within this 15 second window
580 (> 90" percentile for median and range of probabilities of cluster appearing in window) were

581 removed from selection pool. 4.) We filtered against clusters whose matching by EMD would be
582  more sensitive to anterior-posterior shifts of the inertial sensor (although we already protected
583  against this possibility with the safeguards above) (> 90" percentile for percent deviation from
584  original cluster matching after shifts of accelerometer reading in the anterior or posterior

585  direction). For each cluster, percent deviation is calculated first by summing up the total absolute
586  cluster matching changes from original cluster matching data in the anterior and posterior shifted
587  datasets. Next, the sum of deviation in the two altered datasets is divided by two and then

588  divided by the total of cluster calls from the original dataset, and multiplied by 100 to get percent
589  deviation from original cluster matching result. 5.) We selected for clusters that show fully

590  accelerating movement (cluster exemplar value of less than the maximum value of 1 in the body
591  acceleration feature bin of histogram). To choose dissimilar clusters per animal, an algorithm
592 was written filtering clusters of each animal’s repertoire based on the feature histogram values of
593  each cluster’s representative, or exemplar. Thresholds were set along the GAap and GYRdv

594  features to divide cluster exemplars based on the distribution of values within these feature
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595  histograms. For each repertoire, all histogram values from all cluster exemplars are pooled to
596  create a pooled histogram. The range of bins with non-zero values for each feature are identified.
597  The algorithm then filters cluster exemplars in the repertoire for non-zero values in the high,

598  medium, low, or high+low value bins. For example, action A identification occurs by selecting
599  for a cluster exemplar with median counts falling in the high GAap and GYRdy value bins.

600 action B would then be selected by filtering for an exemplar with median counts falling in the
601  low GAap and GYRdy value bins. This results in actions that are highly dissimilar. For example,
602  EMD similarity scores comparing action A to action B almost always, except for 1 ChR2-YFP
603  animal, fall in the more dissimilar end of a distribution of scores created by comparing action A
604  to all actions in each animal. Hereafter, clusters will be referred to as actions.

605

606  Closed-Loop Optogenetics. For close loop optogenetics, a computer running a Bonsai script
607  captured and recorded wireless sensor motion data and video information as described above in
608  grey-walled open-field experiment. Here, data is also streamed to a custom MATLAB code

609  which analyzes action composition changes over the course of action reinforcement, we used the
610  EMD metric?! to label individual 300 ms motion histograms with an action ID. For each arriving
611  300-ms segment we calculate the EMD distance between each cluster exemplar (or

612  representative) of the ground truth cluster library from the grey open field behavior recording.
613  The motion features histogram is assigned to the action for which comparison with the exemplar
614  gave the lowest EMD score (most similar to target) amongst all comparisons. Decision making
615  for stimulation has a range of 35-55 ms time gap between action performance and sent decision
616  for stimulation. To trigger optogenetics, a Multi-Pulse Width Modulation (PWM) generator

617  (Harp Multi-PWM Generator hardware v1.1, Assembly v1, Harp v1.4, Firmware v1.1; Harp
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618  Multi-PWM Generator software v2.1.0; Champalimaud Scientific Platform) converts each

619  decision to trigger laser into electrical signals for 15 light pulses of 10 ms pulse duration at 25
620  Hz, with each train of pulses occurring over 600 ms and at 25% duty cycle. The multi-PWM
621  signal is passed through a 12 V, 7.2 W amplifier (Champalimaud Scientific Platform) and fixed
622  frequency driver (Opto-electronic, MODA110-D4-30 (2001.320220)) to control the activities of
623  a 473 nm, blue low noise laser (Shanghai Dream Lasers Technology, Co, Ltd. SDL-473-200T),
624  which was sent through an acousto-optic modulator (Opto-electronic, MTS110-A3-V1S (1001 /
625  330433)). The laser component that is modulated is then reflected by a mirror and funneled to a
626  mono fiberoptic patchcord, which is then coupled to a commutator. The output laser is then

627  passed through a dual-optic fiber patchord and connected to the implant cannula. Power

628  adjustment out of the tip of patchcord was made so that ~SmW was emitted from each end of the
629  dual optic fiber cannula. To ensure common time stamps from different channels, a clock

630  synchronization device (Harp Clock Sync v1.0; Champalimaud Scientific Platform) was

631  performed between the basestation and multi-PWM device.

632

633  Single action sequence selection. Mice were placed in a white open field box for closed loop
634  reinforcement protocol. Individual mice were subjected to a single session of protocol each day,
635  with sessions following each other on consecutive days. The white open field box is made of
636 410 x 400 mm white matte acrylic walls and a 410 x 400 mm white matte acrylic base. To

637  acquire baseline behavior, individual mice were allowed to behave freely inside the box for 30
638  minutes on the first action A selection session. Closed loop reinforcement by blue laser

639  stimulation of VTA DA neurons were made available for 60 minutes. 90 minutes of closed loop

640  reinforcement were made available for individual mice during sessions 2 and 3. For session 4, an
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641  extinction protocol was carried out comprising of 20-minute maintenance of reinforced behavior
642  with laser availability, followed by 60 minutes of extinction of reinforced behavior without laser
643 availability, followed by 20-minute re-acquisition of reinforced behavior with laser availability.
644  To select for action B, a repeat of the protocol described above for action A was performed

645  starting on the day following extinction protocol of action A. Upon completion of the

646  reinforcement and extinction protocols for action B, a contingency degradation protocol was
647  performed comprising of 20-minute maintenance of action B with laser availability, followed by
648 60 minutes of contingency degradation of reinforced behavior by triggering laser randomly,

649  followed by 40-minute re-acquisition of reinforced behavior with laser availability for action B
650  performance.

651

652  Photometry experiment. One-month post-surgery, mice were habituated to head-mounted

653  equipment for 2 days. On day 1, habituation was made to wireless inertial sensor as described
654  above. On day 2, a multi-fiber bundled patch cord (3 fiber bundle, 400/440 um diameter for a
655 maximum of inner diameter at 900 um, 0.37 NA, 3.5 m long, 1.25 mm fiber tip diameter, low-
656  autofluorescence; Doric, BBP(3) 400/440/900-0.37 3.5m_FCM-3xMF1.25 LAF) was attached
657  to individual mice in addition to the wireless sensor and optogenetic patchcord. Individual mice
658  were allowed to habituate to the equipment for 1 hour in its home cage. On photometry recording
659  day, mice were subjected to 30 frames per second photometry recording (Neurophotometrics),
660  with 75-150 pW 560 nm LED illuminating rDA 1m, and equivalent closed loop optogenetic

661  parameters described above were used. To test for DA release in the context of closed loop

662  optogenetic setup, an average of 30 hits of blue light were delivered randomly within the span of

663 30 minutes. To evaluate DA release in the context of food reward, mice were placed on food
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664  deprivation protocol and kept within 85% of original weight. Mice were placed in an operant
665  chamber with a nosepoke linked to a lick detector (PyControl). Each lick detection triggers

666  dispensing 2 pl 10% sucrose. Since animals tend to accidentally trigger lick detector at the

667  beginning of sessions, between 40-50 sucrose dispensing events were gathered per animal and
668 rDAIlIm activities associated with the last 35 rewards of the session were used for analysis.

669

670  Two action sequence selection. Two action sequence selection occurs as follows: after

671  sensor/patchcord habituation and grey open field behavior recording, offline behavioral

672  clustering and action filtering were performed as for single action selection. For each animal,
673  median time intervals between all possible pairs of actions during open field were calculated as
674  described above. Across animals, T1/T2 pairs with median T1->T2 interval values varying

675  between 2 and 10 seconds, and with the feature of going from a head down(T1) to a head up(T2)
676  movement, were chosen for reinforcement.

677

678  On the first reinforcement session, a 30-minute baseline was taken when laser stimulation was
679  not available for reinforcement. Laser became available for reinforcement in all subsequent

680  sessions until extinction experiment. During reinforcement periods, when closed-loop system
681  detects performance of the proximal action (T1) of interest, the algorithm enters a state where
682 laser is triggered upon performance of the distal action (T2), regardless of the amount of time
683  that has elapsed between the latest T1 and T2. On Session 1, 60 minutes of laser availability was
684  given while in all subsequent reinforcement sessions, 90 minutes of laser availability was given.

685
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686  Histology and Immunohistochemistry. After behavioral sessions were completed, mice were
687  deeply anesthetized with isoflurane and perfused transcardially in PBS and then 4% PFA/PBS.
688  Dissected brains with skulls attached were perfused in 4% PFA in PBS at 4 degrees Celsius
689  overnight. The next day, brains were rinsed 3 times in PBS. Next, brain regions including VTA
690 and implants were sectioned by vibratome into 50 or 100 pum slices. Slices are then subjected to
691  immunohistochemistry using the reagents below. Standard immunohistochemistry protocols
692  were applied to stain for the following reagents - Rabbit anti-GFP 488 conjugate (1:1000;

693  Molecular Probes A21311). Mouse Anti-TH (1:5000; Immunostar Th 22941) with Goat Anti-
694  Mouse - IgG (H+L) Highly cross-adsorbed secondary antibody - Alexa Fluor647 (1:1000;

695  ThermoFisher, A-21236), DAPI (1:1000 of 20 mg/mL stock; Sigma, D9542).

696

697  Imaging. Zeiss Axio Imager M2 microscope was used to acquire brain section pictures. 10x tiled
698  images were taken through the relevant fluorescent channels. The M2 is equipped with a fast
699  Colibri.7 LED illumination for excitation of fluorophores. Images are captured with a high-
700  sensitivity monochromatic SCMOS camera (Hamamatsu Orca Flash 4.0 v2). The objective used
701  for the images is a ZEISS Plan-ApoChromat 10x/0.45, which allows to resolve up to 577 nm
702  when using a wavelength of observation of 520nm and it is fully corrected for chromatic and
703  spherical aberrations. Implant locations were determined using standard mouse atlas’®.

704

705  Single action selection analyses. For target action frequency analysis, we analyzed frequencies
706  within 25-minute windows at 4 time points: Baseline (before first reinforcement trigger), Early
707  (after first reinforcement trigger in Session 1 (action A) or 5 (action B)), Mid (after 2-minute

708  mark in Session 2 (action A) or 6 (action B)), Late (after 2-minute mark in Session 3 (action A)
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709  or 7 (action B)). For 3D action repertoire plots, baseline normalized frequencies were plotted and
710  actions whose time series include NaN or Infinity values were discarded from the plot. (Plotted
711  actions: 509 of 514 actions, 15 ChR2YFP animals (action A); 427 of 443 actions, 13 ChR2YFP
712 animals (action B); 355 of 356 actions, 10 YFP animals (action A); 341 of 356 actions, 10 YFP
713 animals (action B)).

714

715  Three parameters were assessed for rapid behavioral adaptation following cumulative closed

716  loop reinforcements: latency between Target A triggered reinforcements, Target A frequency and
717  average behavioral similarity to Target A. To calculate the latency parameter, the average

718  latency between 10 consecutive Target A triggered reinforcements following a specified number
719  of cumulated reinforcements were taken and then normalized by the average latency taken over
720  the final 10 baseline Target A instances that in simulations would have triggered reinforcement.
721  To calculate the frequency parameter, the frequency of Target A triggered reinforcements over
722 the course of 1 minute following a specified number of cumulated reinforcements were taken and
723 then normalized by frequency of the final 10 baseline Target A instances that in simulations

724 would have triggered reinforcement. To calculate the behavioral similarity parameter, the

725  average behavioral similarity (EMD score) to Target A between 10 consecutive Target A

726  triggered reinforcement events following a specified number of cumulated reinforcements were
727  taken and then normalized by the corresponding value taken over the final 10 baseline Target A
728  instances that in simulations would have triggered reinforcement.

729

730  rDAl1m Fiber Photometry Analyses. To evaluate DA release in the context of food reward, the

731  delta F/Fo signal was plotted for rDA 1m signal aligned to lick detection/reward trigger. The
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732 baseline Fo value was taken as the median rDA1m raw fluorescence signal of the 10 time points
733 (333.33 milliseconds) preceding the trigger event. To test whether DA release is triggered in the
734 context of the closed loop system, the activity of the rDA1m sensor was quantified. Delta F/Fo
735  was calculated by subtracting baseline value from each fluorescent rDA1m value of a

736  smoothened time series (smooth function, default moving average filter, MATLAB), and then
737  dividing the outcome by the baseline value. To account for control ChR2-independent effects,
738  the average delta F/Fo trace of ChR2-YFP animals were subtracted from the corresponding

739  average trace of YFP animals, giving the differential delta F/Fo used for the plots. The standard
740  deviation of ChR2-YFP minus YFP curves were obtained by taking the square root of the sum of
741  squared variances of ChR2-YFP and YFP delta F/Fo curves.

742

743  Categorizing behavioral actions by temporal dynamics. To categorize behavioral actions by
744  temporal dynamics, moving mean of action counts was used as input. Various window sizes

745  were examined; 2.5-minute windows moving at 300 ms steps were found suitable for analyses.
746  The baseline frequency (f0) was the average of 5 minutes of moving mean data preceding the
747  first reinforcement event. Early frequency rate (f1) was the average of 30 minutes moving means
748  immediately following the first reinforcement event. Mid- and Late frequency rates were taken
749  from Day 2 (2) and Day3 (f3), respectively. {2 and {3 rates were calculated from the beginning
750 30 minutes period after moving windows has accumulated enough bins (2.5 minutes) following
751  the start of the session. Significant positive modulation above baseline was judged if in 500

752 consecutive moving windows (2.5 minutes period) in Early/Mid or Late stages the frequency rate
753  of all bins were greater than the 99™ percentile bin of baseline frequency. Significant negative

754  modulation below baseline was judged if in 500 consecutive moving windows (2.5-minute
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755  period) in Early/Mid or Late stages the frequency rate of all bins were less than or equal to the 5
756  percentile bin of baseline frequency. Actions that showed both significantly positive and

757  negative modulation at Early/Mid or Late stages when compared to baseline were delegated to
758  positive modulation group. For figure plotting, time-course median frequencies of action

759  dynamic types were downsampled 10-fold. To investigate the relationship between target

760  similarity and frequency, two approaches were taken. To perform multiple comparison statistics,
761  actions were binned by their percentile ranking in terms of similarity to target (EMD). This is
762  because action distribution based on raw EMD binning was not even. Percentile binning allowed
763  for even distribution of actions amongst the groups. To examine the distribution of action

764  dynamic type frequencies in terms of target similarity, a binning by raw EMD score (0.5 score
765  binwidth) was used because this allowed for clear visualization of the relationship between target
766  similarity and frequency. Alternatively, percentile binning of EMD score was also used and gave
767  similar trends.

768

769  Criterion for action dynamic types. Action dynamics were grouped according as follows: 1.)
770  Increasing actions showed significant increase in f0 to f1/2 and f1 to f2/3 comparisons and

771  showed either significant increase or unchanged frequency in f1/2 to f3 comparisons. 2.)

772  Sustained actions showed significant increase in {0 to f1/2 comparisons, and unchanged

773  frequency in f1 to f2/3 and f1/2 to f3 comparisons. 3.) Transient actions showed significant

774  increase in fO to f1/2 comparisons, and significant decrease in f1/2 to f3 comparisons. 4.)

775  Decreasing actions showed significant decrease in f0 to f1/2 and f0 to f3 comparisons. 5.) Other
776  actions were all remaining actions that did not fall in the above groups. In the main figure only

777  dynamic subtypes with more than 10 members are shown.
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778

779  Extinction analyses.10 minutes portions from different time windows along the extinction

780  protocols (Session 4 for action A and Session 8 for action B) were chosen. Early maintenance
781 (M) starts from the first instance of target action performance in the session. Late maintenance
782 (M?) is the portion preceding the first performance of target upon extinction. Early extinction
783  (E!) begins at the first instance of target performance upon extinction. Late extinction (E?) is the
784  portion preceding the first performance of target upon re-acquisition. Mid extinction (E?) begins
785  at the midpoint between the starts of E! and E>. Early re-acquisition (R") starts at the first

786  performance of target upon re-acquisition condition. Late re-acquisition (R?) is the final portion
787  of the extinction protocol.

788

789  Action burstiness analysis. To evaluate action burstiness, or dispersion, we used Fano factor
790  (variance/mean) as a measure. A survey of moving mean frequencies of reinforced actions across
791  animals suggest that actions are more dispersed during the extinction phase, but the timescale
792  with which this may occur is variable. To identify a suitable timescale to detect dispersion across
793  reinforced actions, we screened a range of window sizes (600 ms to 5 minutes windows in 600
794  ms steps) with which to calculate moving window frequencies, and then calculate Fano factor in
795  varying time segments. We chose a moving window of 15 seconds (50 x 300 ms action units) to
796  construct moving mean frequencies. This window size consistently gave decreased Fano factor
797  in baseline vs. maintenance session across animal, a result that would be expected as

798  reinforcement led to stable target action performance.

799
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800  Single action reinforcement, inter-target, and inter-action interval analyses. To quantity
801 inter-target action intervals, the median amount of time that transpired between the start of
802  successive target actions over the course of a time window was calculated. The time periods
803  analyzed were: 1.) Baseline from the start of Day 1 (Sessions 1 and 5 for action A and B,

804  respectively) until the first reinforcement event. 2-4.) Days 1 to 3 reinforcement. For

805  reinforcement periods, behavior from the start of the first reinforcement event of that session
806  until the end of session were analyzed. We considered the possibility that including the time
807 interval between consecutive repeating of target actions (resulting in an inter-target action
808 interval of 300 ms) would greatly affect the result. To test this, we removed values collected
809 from consecutively repeating target actions. However, this did not affect result interpretations.
810  Thus, we included intervals from consecutively repeating target actions in the presented

811 analyses. For single action reinforcement, the median amount of time between the closest

812  occurring action of interest and target action was calculated for both pre-target and post-target
813  intervals.

814

815  Multinomial logistic regression predicting action dynamic types. To test whether intrinsic
816  and baseline action properties are predictive of classifiable action dynamics during single action
817  reinforcement from naive state, two factors were considered. The factors are Earth Mover’s
818  Distance (EMD) similarity of action to target and median time interval of closest action of
819 interest prior to target appearance at baseline condition.

820

821  To perform multinomial logistic regression, data from both dependent variables were log-

822  transformed after addition of a constant value of 1. Transformed data were tested for collinearity
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823 by examining scatter plots, Pearson’s correlation coefficients, Variance Inflation Factors (VIF)
824  and condition indices. The two variables showed some correlation, but the coefficient value was

825  not above typical thresholds**#!

and direct collinearity diagnostics did not show significant

826  collinearity (Pearson’s correlation: 0.67 < 0.84, VIFs: 1.82 < 5-10%, condition indices: 6.6 < 10-
827  30%). Multinomial logistic regression was performed using MATLAB functions mnrfit and

828  mnrval. Non-Target A actions from all animals from reinforcement of action A were included
829  except those whose reinforcement dynamics were previously classified as “Other” types (n = 30
830  actions from a total of 514 actions, 15 ChR2-YFP animals). Decreasing dynamics type actions
831  were used as the reference group. Model accuracies were assessed using a 20-repeat, 10-fold
832  cross-validation approach for a total of 200 unique models for Real data, and 10,000 unique

833  models from 50 shuffled datasets.

834

835  To evaluate multinomial logistic regression, the deviance measure was used to judge model

836  fitting. Model performances were judged by area under precision-recall curve as this criterion is
837  suitable for imbalanced categories in the data®>. A model containing both dependent variables
838  was found to outperform that of any single variable, even after consideration for penalties for an
839  extra factor (Akaike Information Criterion). The lack of significant collinearity between

840  dependent variables was supported by the stability of two relevant parameters, beta-coefficient
841  directions and significant p-values, across 200 cross-validation models and single- and double-
842  factor regression conditions (See Supplementary Information for tables).

843

844  Dopamine retrospective window analysis. To analyze whether DA reinforces actions proximal

845  to target, baseline rates of action transitions occurring close to reinforced action were examined.
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846  First, a matrix tabulating 300 ms action counts from 2.4 seconds before to 2.4 seconds after each
847  theoretical target-triggered laser stimulation (600 ms in length) during baseline condition was
848  constructed. Next, all possible 600 ms action transitions (ex. X->Y) for each animal were then
849  counted using the above matrix, resulting in an action transition type (row) vs. time bin (column)
850  matrix where the counts of each action transition type occurring in specific 600 ms transition
851  windows (ex. X2Y) were recorded (sum across rows). This will be called the count matrix.

852  Next, the relative enrichment of each action transition type in a specific transition window

853  against all transition windows was calculated by dividing the action transition count matrix by
854  the total number of action transitions per type (probability across rows). Next, action transition
855  probability within a sliding 1.2 second transition window (containing a total of three action

856  transitions) relative to surrounding temporal environment (3.6 seconds) was derived by

857  subtracting the total number of action transitions per type within the surrounding 3.6 second

858  window from the total number of action transitions per type within the 1.2 second sliding

859  window of interest. This will be called the differential probability matrix. Next, action transition
860  types that showed greater than a threshold of 0.001 relative probability within sliding 1.2 second
861  windows of interest over the corresponding surrounding windows were filtered and kept for the
862  next step. Next, for each sliding 1.2 second window, the count matrix from above was analyzed
863  to select for action transition types that occurred between 2 to 6 times during the 30 minutes

864  baseline period (0.067 to 0.2 action transitions per minute). The count range was chosen to filter
865  out single events while selecting for action transitions with low initial frequencies over the

866  baseline period and analysis time range. Since the range of probabilities of specific action

867  transition types could vary greatly between different sliding 1.2 second windows, filtering as

868  above also balances the distribution of action transition probabilities amongst all action transition
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869  types analyzed across sliding 1.2 second transition windows. The above process results in a list
870  of action transition types enriched for each sliding 1.2 second transition window, and baseline
871  normalized frequencies of these action transition types upon reinforcement in subsequent

872  sessions were calculated. Note that baseline normalized frequencies were calculated from all

873  occurrences of specific action transition types, regardless of their time distance in relationship to
874  target occurrence. Baseline normalized frequencies of individual action transition types were

875  averaged within animals and the means between animals are averaged to produce animal-

876  balanced results. Identical data trends and conclusions could be reached even if baseline

877  normalized frequencies of all action transitions were used for analyses.

878

879  Two action sequence experiment analyses. Two action sequence frequency was quantified in
880  terms of laser triggers per minutes. To assess learning across animals, the baseline frequency was
881  subtracted from frequencies of all reinforcement sessions. A criterion baseline subtracted

882  frequency of 3.2 triggers per minute was set after considering the range of baseline subtracted
883  frequencies observed in the open field and reinforcement sessions all animals. The criterion is set
884  such that it is > 20 % above the highest baseline-subtracted frequency value seen at open field
885  condition. The criterion point consistently falls above the open field frequencies of all animals
886  and marks the rising phase of all reinforcement frequency curves.

887

888  T1->T2 intervals were quantified as the time distance between the end of the latest distal action
889  (T1) and the end of the proximal action (T2) that triggers laser. T2->T1 intervals were quantified

890 as the time distance between the end of T2 that triggers laser and the end of the next closest T1.
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891  To produce equivalent measures in open field and baseline conditions, laser trigger events were
892  simulated by scanning across the data as if reinforcement was available.

893

894  Significance testing was performed on 14 of 15 ChR2-YFP animals that reached criterion

895  frequency (ChR2-YFP Criterion). The lone animal that did not reach criterion frequency was
896  removed because the T1->T2 median interval was still very high after session 10. This animal
897  was subsequently subjected to single action reinforcement protocol to assess its ability to learn
898  T1 and subsequently T2. Next, the animal was again subjected to T1->T2 reinforcement

899  protocol. These results indicate that this animal was capable of action learning for both T1 and
900 T2 separately, and for T1->T2 sequence after learning of each individual action.

901

902  Reinforcement sessions for the 14 ChR2-YFP animals that reached beyond criterion frequency
903  continued until the T1->T2 interval has been decreased to below at least a median of 2 seconds.
904  As YFP animals do not decrease the T1->T2 median interval over sessions, we stopped

905  reinforcement at session 20.

906

907  Two action sequence extinction. Extinction session begins with a 25-minute maintenance

908  period for two action-sequence reinforcement, followed by a 40-minute extinction period when
909 laser was inactive, followed by a 25-minute re-acquisition period whereby reinforcement was
910  made available again. To quantify performance for plotting, frequency was calculated over 5
911  minutes bins and then normalized to the last 5 minutes bin of the maintenance condition. For
912  significant testing, raw frequencies were analyzed at the last 5 minutes of maintenance,

913  extinction, and re-acquisition conditions.
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914

915 Two action sequence refinement. To measure refinement for T1 and T2 in the two-action

916  sequence, actions that were uniquely related to one but not the other were identified. Actions
917  performed by each animal in their open field repertoires were ranked by their EMD similarity
918  scores to T1 or T2. The top-12 actions (within action repertoires ranging between 30-40 actions)
919  most similar to either T1 or T2 were identified. Actions common to both T1 and T2 in these lists
920  were removed, leaving actions uniquely similar to T1 or T2. We required at least 3 non-target
921  actions to be uniquely related to each of T1 and T2. One of the animals did not meet this

922  requirement, because less than 3 actions were uniquely similar to each of T1 and T2 when

923  considering the top-12 actions related to T1 or T2. For this animal, we relaxed the stringency by
924  considering actions that uniquely belong as the top-9 actions most similar to either T1 or T2. We
925  took the median target-normalized frequency of these uniquely similar actions to T1 or T2 as the
926  refinement index. A refinement index of above or around 1 indicates little to no refinement of
927  uniquely related actions to target. Refinement index below 1 indicates refinement relative to

928  target; the lower the score the more refinement. Refinement curves were smoothened using the
929  Savitzky-Golay filter to improve visualization of trends. To better compare the progress of

930 refinement between T1- and T2-related actions, refinement indices were scaled such that the

931  minimum value amongst all sessions for individual animals would be zero and target-normalized
932 median frequency of 1 would remain at a scaled value of 1.

933

934  Relationship between T1->T2 interval and sessions to criterion frequency. To describe the
935  trend in a T1->T2 interval vs. sessions to criterion frequency scatter plot, non-linear sigmoidal fit

936  was tested against a 4" order polynomial fit. A linear fit was also tested. Sigmoidal fitting gave
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937  the best result. The same fitting was tested for T2 = T1 interval vs. sessions to criterion

938  frequency, but the fit was poor and midpoint was unstable. For the T1->T2 sigmoidal curve,
939  half-maximum was 2.59 sessions to criterion frequency and midpoint was 4.69 seconds of open
940  field median interval. The half-maximum value was used to divide ChR2-YFP animals into slow
941  (above half-max) and fast (below half-max) learners.

942

943  Differential refinement analyses. The difference in area between T1 and T2 scaled refinement
944  curves over sessions was used to assess the relative refinement status between T1 and T2 over
945  sequence learning. The difference in areas were summed up using the trapezoid method across
946  sessions until the session when both T1 and T2 has or had reached minimal scaled refinement.
947  Next, the relationship between open field median interval and average difference in area under
948  TI1 — T2 refinement curves per session was tested. Linear regression proved most suitable for
949 fitting (Goodness-of-fit: R2 = 0.66). The fit for T1->T2 linear line was y = 0.1893x — 0.7050.
950  Slope was significantly non-zero (p = 0.0004). The same fitting was tested for T2 = T1 interval
951  ws. difference in area under T1 — T2 refinement curves per session (y = 0.00736x + 0.1356), but
952 the fit was poor, and goodness of fit was low (Goodness-of-fit: R2 = 0.07). The slope was not
953  significantly non-zero (p = 0.7063).

954

955  Starting Point identification for evaluating progression of differential T1/T2 refinement. To
956  more precisely examine whether proximal action (T2) refinement precedes that of distal action
957  (T1) in Slow Learners, it was important to consider refinement progression of T1 relative to T2.
958  To rule out any bias towards proximal refinement because of initial bias towards proximal T2

959  refinement, a specific session was chosen as a Starting Point for analysis for each animal. This
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960  Starting Point is defined by an early session in which T1 and T2 were relatively similar in

961  refinement levels or when the distal action T1 was more refined than proximal T2. To identify
962 these Starting Points, a scan was made retrospective from the session for which the T1>T2 time
963 interval is close to final value (less than or equal to a median of 3 seconds). Using this approach,
964  we identified earlier sessions in which distal T1 refinement was equal to or greater than proximal
965 T2 (T2 —T1 refinement curve area less than or equal to 0). The latest such session was set as the
966  Starting Point for analysis. If at no point early in learning did an animal have a session where
967  proximal (T1) action is most refined relative to distal (T2) action, an early session of closest T1
968  and T2 refinement was used as the Starting Point. The initial T2-T1 refinement curve area

969 difference calculated from the Starting Point to next session was subtracted from all T2-T1 area
970  differences calculated in subsequent sessions. This value is called the Starting Point subtracted
971  refinement difference. This made it possible to clearly track the change in relative refinement of
972  distal(T1) vs. proximal(T2) actions over time (Values above zero indicate T2>T1 refinement,
973  and values below zero indicate T1>T2 refinement). To identify the Turning Points for each

974  animal, sessions carrying the local maximum value of the Starting Point subtracted refinement
975  difference were identified for each animal. To calculate Starting Point subtracted refinement,
976  scaled refinement values from sessions of interest were subtracted from that of the Starting Point
977  session defined above.

978

979  Odds ratio analysis. For odds ratio calculation, the total amount of open field = Turning Point
980  session (second of two consecutive sessions used to calculate the refinement difference at

981  Turning Point as mentioned above) and Turning Point = session of criterion frequency median

982 interval changes were summed up for T1->T2 and T2->T1 intervals, respectively. Next, the
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983  proportion of total interval change stemming from the open field condition=>Turning Point
984  period, and from Turning Point->session reaching criterion frequency period, were calculated.
985  Next, the proportion of open field=> Turning Point interval change was divided by the proportion
986  of Turning Point = session reaching criterion frequency period interval change for T1->T2 and
987  T2->TI interval types, respectively. This gives the odds ratio.
988
989  TI1 probability rank and refinement change across time bins from T2 trigger. For every
990 actual or simulated trigger for T1->T2 performance, the first occurrences of every action before
991  or after T2 triggers were counted at specific 300 ms time bins for up to 6 seconds before and
992  after T2 trigger. This was done for the specific conditions of baseline, Starting Point, Turning
993  Point, session passing criterion frequency, and last session. The probability of an action
994  occurring at a specific 300 ms time bin was calculated for all actions in the repertoire, and the
995  wvalues were used to determine probability rank in terms of percentiles (100 percentile is most
996  probable action relative to all actions at a specific 300 ms time bin). To assess total T1
997  probability rank change within 0.3-1.8 or 2.1-3.6 second time bins, the area under the curve was
998  determined and values were normalized by subtraction from each animal’s corresponding
999  baseline values. Refinement change was calculated by first taking the median probability rank of
1000  actions most uniquely related to T1 at varying time distances before or after T2 trigger. This
1001  wvalue is then normalized by T1 probability rank to arrive at a refinement index. The area under
1002  the curve was determined and values were normalized by subtraction from each animal’s
1003 corresponding baseline values. Decreasing values from Starting Point indicate increasing
1004  refinement.

1005
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1006  Statistical Analysis:

1007  Standard statistical analyses were performed on Prism (GraphPad Software, Inc.) and

1008  permutation/bootstrap analyses were performed on MATLAB (MathWorks Inc.). To determine
1009  appropriate tests for comparisons, datasets were assessed for normality using Anderson-Darling,
1010  D’Agostino & Pearson, Shapiro-Wilk and/or Kolmogorov-Smirnov tests whenever applicable.
1011  Datasets were also visualized for normality using QQ plots and assessed for equal variance by
1012 examining the Residual plot (Residuals vs. Predicted Y). Parametric or non-parametric tests were
1013 chosen based on the combination of these analyses. Data were transformed logarithmically (with
1014  or without addition of a constant prior to transformation) whenever it was appropriate to promote
1015  normality and equal variance. Unless specified, sphericity was not assumed, and Geisser-

1016  Greenhouse correction was applied in all ANOVA tests. The appropriate post hoc multiple

1017  comparisons tests were applied to compare between the means of specific conditions wherever
1018  applicable. Significance was set at alpha = 0.05. For bootstrap analysis, significance was

1019  determined by asking whether the original target action mean Fano factor was greater or less
1020  than the 95% confidence interval of the bootstrap distribution. Permutation test was applied in
1021  the comparisons between regression models because of the large sample size discrepancy

1022 between groups. Bonferroni p adjustment was used to account for multiple comparisons in this
1023 case. For detailed description of statistical procedures please refer to Supplementary Information.
1024

1025

1026

1027

1028
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Fig. 1. Learning of a single action from the naive state as mediated by closed loop

optogenetics. a, Injection scheme. b, Wireless inertial sensor. ¢, Sensor data processing. d, Open

field behavioral clustering and action reinforcement. e, Closed loop schematic. f, Dopamine release

in dorsal and ventral striatum (n = 70 sucrose rewards, 2 ChR2-YFP mice; n = 66 and 65 random
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stimulations, 2 ChR2-YFP and 2 YFP animals, respectively). Plots were mean, S.E.M. g. Action A
exemplar locations in behavioral space. h-m, ChR2-dependent reinforcement of Action A (n =15
ChR2-YFP animals (green). n = 10 YFP animals (grey)). Plots were mean, S.E.M. h, Left: Head-
mount setup. Right: Light green/grey lines represent individual ChR2-YFP/YFP animals,
respectively. i, Rapid increase in target action performance in response to close-loop
reinforcements. Significant Time x Group Interactions (Supplementary Information). Plots were
mean, S.E.M. j, Evolution of pooled behavior repertoire (n = 509 actions, ChR2-YFP mice) across
learning. k, Early/Late cross-sectional views of (j) (Early: baseline normalized frequency >1, green
circles, <1, magenta triangles). Blue dashed lines - single phase log decay fits. Bottom inset graph
shows Early/Late fitted lines normalized to 1 at EMD=0. 1, Raw frequencies across learning and
target similarity percentile groups. Plots were mean, S.E.M. Two-way mixed effects statistics in
Supplementary Information. m, Pie chart summarizing distribution of actions according to their
dynamics within reinforced Action A (left) or other actions (right). Asterisks: **** p <(.0001. ***
p <0.001. ** p<0.01. * p<0.05. n.s. — not significant. See Supplementary Information for

statistical/sample details.
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Figure 2. Transitioning from learned action to reinforcing new action. a-j, Animals reinforcing
for Action A (n =15 ChR2-YFP) to Action B (n =13 of 15 ChR2-YFP). n = 10 YFP animals. a.
Action A and B exemplar locations in behavioral space. b, Action similarity comparisons (A vs. B;
n=15/10, ChR2-YFP/YFP; All vs. A; n = 514/356, ChR2-YFP/YFP) or Action B (All vs. B; n =
443/356, ChR2YFP/YFP). Plot indicates median/interquartile range. ¢, Reinforcement for Action A
and B in ChR2-YFP animals. Plot indicates mean/S.E.M. d, Evolution of pooled action repertoire (n
=427 ChR2-YFP actions) reinforced for Action B. e, Early/Late cross-sectional views of (d). Blue

dashed lines indicate fitted decay curve. Bottom inset graph shows normalized Early/Late fitted
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curves. f, Contingency degradation of Action B. Target random laser triggers frequencies (bottom)
is based on initial Action B performance prior to contingency degradation. Plots indicate
mean/S.E.M. g-j, Action A (blue) induced by reinforcement for Action B in experienced ChR2-YFP
animals. g-h, Moving mean frequencies over reinforcement for Action A or B. Dashed, vertical line
mark first reinforcement. Plots are mean/S.E.M (colored fill). Bin1/Bin2 are time bins for (i-j). i-j,
Frequency measures within time bins noted in (g,h). Repeated measures two-way ANOVA reveal
significant difference across time and actions A/B frequencies (not shown). Sidék’s post hoc

comparisons. Asterisks except in (h): **** p <0.0001. ** p <0.01. * p <0.05. n.s. — not

significant. See Supplementary Information for statistical/sample details.
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Figure 3. Dopamine mediates retrospective reinforcement of freely moving behavior. a-b,
ChR2-dependent reinforcement decrease inter-action intervals for Action A (n = 15 ChR2-YFP) and
B (n =13 of 15 ChR2-YFP). n =10 YFP animals. Plots are mean/S.E.M (a-b). Significant
difference across time and ChR2-YFP/YFP (Mixed Effect Model. Action A: F(3,69) = 72.26, p <
0.0001. Action B: F(3,62) = 33.78, p < 0.0001.) b, Post-hoc Tukey’s multiple comparisons of (a). c-
d, Distribution of action dynamic types (n = 464 actions, 15 ChR2-YFP animals) according to target
similarity (¢,d), median time to target (c,e). d-e, Violin plots show median/quartiles. Two-tailed
permutation tests with Bonferroni-adjusted p-values. f-g, Multinomial logistic regression of all
factor combinations in Real data (200 models) versus Shuffled data (10,000 models). f. Groups

differ across combinations (repeated measures, two-way ANOVA. F(2,30594) =518.2,p <
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0.0001.). Post-hoc Dunnett multiple comparisons. Plots are mean/std. g, Performance of double-
factor regression model measured with area under the precision-recall curves (AUPRC). Two-tailed
permutation test with Bonferroni-adjusted p-value. Plots are mean/S.E.M. h, Identifying moving
window-enriched action transitions. i. ChR2-dependent reinforcement for Action A increases
action transitions prior to and within stimulation window. Plots indicate mean/S.E.M. j,
Quantification of (i). Significant difference across time and Retrospective/Forward reinforcement
directions (Mixed Effect Modeling. ChR2-YFP Sessionl: F(6,168) = 114.8, p < 0.0001. ChR2-YFP
Session 3: F(6,168) =46.62, p < 0.0001, YFP Sessionl: F(6,108) = 10.52, p < 0.0001. YFP Session
3: F(6,168) = 0.8992, p = 0.4984). Post-hoc Sidak multiple comparisons. **** p < 0.0001, ¥** p <
0.001, ** p <0.01, * p <0.05, n.s. — not significant. See Supplementary Information for

statistical/sample details.
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Figure 4. Relationship between pre-reinforcement inter-action intervals and learning of a two-
action sequence. a, Schema. b-1, » =15 (b,d,h) or 14 (e-g,i-1) ChR2-YFP, 6 YFP animals.
Repeated measures one-way ANOVA, post hoc Sidék tests applied in (e,g,i,k). Plots of individuals
in (d-e). b, ChR2-dependent increase in T1->T2 triggers (no laser during open field / baseline). ¢,
Open field inter-action intervals of T1/T2 pairs chosen. Same color codes in (d,h). d, Individual
learning curves labeled by color codes in (¢). e, Frequency changes over conditions
(F(1.911,24.85)=51.02, p<0.0001). f-g, Extinction of T1->T2 sequence (ChR2-YFP). f, Plot shows
mean(black)/S.E.M.(orange fill)/individuals(grey). g, Frequency changes over extinction conditions
(F(1.073, 12.87) = 52.96, p<0.0001). h-i, ChR2-dependent decrease in T1->T2 intervals. (F(1.377,
17.90) =35.95, p<0.0001) (i). j, T2:T1 frequency ratios (ChR2-YFP) k, Target refinement shown

by median target normalized frequencies of related actions. (T1: F(1.237, 16.08) = 43.38. T2:
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F(1.171, 15.22) = 48.74. Both p<0.0001). Individual color code as in (c,g). I, Sigmoidal relationship

between open field T1->T2 interval and sessions to criterion frequency.
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Figure 5. Behavioral process underlying learning of a two action sequence. n =14 ChR2-YFP (7

Slow Learners). a, T1/T2 refinements in two ChR2-YFP individuals. b, Linear relationship between

initial T1->T2 interval and differential T1-T2 refinement. Non-zero slope significance: T12>T2, p =

0.0004, T2->T1, p = 0.7063. ¢, Progression of differential T1-T2 refinement from Starting Point in

Individual Slow Learners. d, T1->T2 interval significantly decreased by Turning Point in Slow
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Learners. Repeated-measures 2-way ANOVA. Post hoc Tukey’s test. e, Odds ratio of TI2>T2 /
T2->T1 interval changes. Paired Wilcoxon test (p = 0.0312, n = 7 animals). f, Preferential
refinement of T2 relative to T1 by Turning Point in Slow Learners. Raw scaled refinement indices.
Repeated measures, mixed effects model. Significant main effects. Time (F (2.184, 26.20) = 54.21,
p <0.0001). Post-hoc Sidak test. g, First occurrences of T1 before (left) and after (right) T2 triggers
across learning stages. h, Quantification of pooled time bins from (g). Repeated measures, 2-way
ANOVA for learning stage vs. rank change. First T1 Before and After T2 Trigger groups differ
across learning stage and total T1 rank change. (Proximal bins (0.3-1.8 sec): F(3,36) = 3.126.
p=0.0376. Distal bins (2.1 to 3.6 sec): F(3,36) = 7.701. p<0.001). Post-hoc Sidék relative to Starting
Point values. g, Model for learning initially distantly separated T1->T2 sequences. Time not drawn

to scale. **** p <(0.0001. *** p <0.001. ** p <0.01. * p <0.05. n.s. — not significant. All bar plots

indicate mean +/- S.E.M. See Supplementary Information for statistical/sample details.
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