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Abstract 24 

Animals exhibit a diverse behavioral repertoire when exploring new environments and can learn 25 

which actions or action sequences produce positive outcomes. Dopamine release upon 26 

encountering reward is critical for reinforcing reward-producing actions1–3. However, it has been 27 

challenging to understand how credit is assigned to the exact action that produced dopamine 28 

release during continuous behavior. We investigated this problem with a novel self-stimulation 29 

paradigm in which specific spontaneous movements triggered optogenetic stimulation of 30 

dopaminergic neurons. We uncovered that dopamine self-stimulation rapidly and dynamically 31 

changes the structure of the entire behavioral repertoire. Initial stimulations reinforced not only 32 

the stimulation-producing target action, but also actions similar to the target and actions that 33 

occurred a few seconds before stimulation. Repeated pairings led to gradual refinement of the 34 

behavioral repertoire leading animals to home in on the target action. Reinforcement of action 35 

sequences revealed further temporal dependencies of behavioral refinement. Action pairs that tend 36 

to be spontaneously separated by long time intervals promoted a stepwise credit assignment, with 37 

early refinement of actions most proximal to stimulation and subsequent refinement of more distal 38 

actions. Thus, a retrospective reinforcement mechanism promotes gradual refinement of the entire 39 

behavioral repertoire to assign credit to specific actions and action sequences that lead to dopamine 40 

release.  41 

 42 

 43 

 44 

 45 

 46 
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Main Text 47 

Background 48 

Animals spontaneously transition amongst a repertoire of movements when exploring new 49 

environments. Movements or movement sequences that produce positive outcomes are 50 

reinforced and increase in frequency to maximize the obtainment of those outcomes4,5.  51 

However, it is still not completely clear how animals assign credit to the exact action that 52 

produce reward in the context of a continuous behavioral space. This credit assignment 53 

problem2,6–9 during spontaneous behavior poses at least two main challenges. First, it is unclear 54 

how animals come to preferentially perform a specific reward-producing action or action 55 

sequence above other possibilities in the behavioral repertoire. Second, it is unclear how animals 56 

derive contingency between a reward-producing action and reward if there can be variable delays 57 

between action performance and reward delivery.  58 

 59 

Dopamine (DA) has been proposed to mediate credit assignment6,10. At the cellular level, DA 60 

can facilitate synaptic plasticity in corticostriatal synapses11 within a critical time window that is 61 

behaviorally relevant12–14. Still, it is unknown how DA changes the dynamics of spontaneous 62 

behavior to mediate credit assignment. We therefore developed a paradigm to investigate how 63 

DA shapes the evolution of continuous behavior during action learning to gain insights into the 64 

process of credit assignment. 65 

 66 

Conventional operant conditioning paradigms5,15–19 have helped derive principles of behavioral 67 

reinforcement, but they are not ideal for studying action credit assignment. In general, such 68 

paradigms do not permit the clean isolation of actions as the trigger for reward versus particular 69 
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locations or objects. In such paradigms, animals are also required to perform a series of 70 

consummatory actions, such as approaching and interacting with reward-delivering devices to 71 

retrieve reward. These requirements make it difficult to investigate how credit is assigned to a 72 

specific action or action sequence in the behavioral repertoire during continuous behavior.  73 

 74 

Until recently, technological and conceptual limits have made it difficult to study how the entire 75 

structure of continuous behavior evolves as naive animals come to associate specific action or 76 

action sequences with reward. To address previous limitations, we developed a new approach to 77 

study action credit assignment. This approach directly reinforces specific spontaneous action(s) 78 

by triggering dopaminergic neuron (DA neuron) excitation and DA release upon action 79 

performance. It combines wireless inertial sensors, unsupervised clustering of continuous 80 

behavior20,21  and optogenetics22 into a closed-loop system linking specific action performance to 81 

immediate phasic DA release (Methods; Fig. 1a-f). This paradigm permits action detection and 82 

reinforcement without requiring an animal to approach or interact with a place/object/cue, or to 83 

perform consummatory behavior. These combined features overcome the aforementioned 84 

caveats associated with conventional paradigms.  85 

 86 

Rapid reinforcement of actions via closed-loop dopamine stimulation 87 

To implement the action detection component of the closed loop system, we first classified the 88 

entire behavioral repertoire of individual mice23 mice in a grey-walled open field using inertial 89 

sensors and unsupervised affinity propagation clustering20,21 (Fig. 1d). Self-paced behavior was 90 

monitored using a novel, wireless inertial sensor system (WEAR; Methods) that allows minimal 91 

movement restraints, high resolution behavior monitoring and fast data transmission to open-92 
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source hardware and software for online experimentation (Fig. 1b, Extended Data Fig. 1a). 93 

Affinity propagation clustering is particularly well suited to cluster an unknown number of 94 

clusters20, is computationally efficient24, and easily outputs similarity between clusters. 95 

Clustering begins by processing accelerometer and gyroscope data to extract 4 features 96 

discriminating postural changes, movement momentum, head and head-body rotations, and total 97 

body accelerations. Feature values from 300 ms long segments of behavior were discretized into 98 

histograms, upon which pairwise similarity comparisons could be made using a Earth-Mover’s 99 

Distance (EMD)25 metric. The similarity matrix of all possible pairwise comparisons were fed 100 

into an unsupervised affinity propagation clustering algorithm20 (Methods), identifying naturally 101 

occurring repertoire of 300 ms long behavioral clusters21, or “actions” (Fig. 1c,Extended Data 102 

Fig. 1b). The choice of 300 ms long movements was informed by previous studies21,26. Using 103 

these parameters, we identified over 30 clusters of spontaneous behavior per individual (34.3 +/- 104 

2.1 and 35.6 +/- 2.5 total actions per ChR2-YFP and YFP mice, respectively; mean +/- standard 105 

deviation,15 ChR2-YFP and 10 YFP mice). We chose particular clusters of actions to be 106 

reinforced (hereby named target action A).  107 

 108 

To implement closed-loop reinforcement, we used Cre-dependent AAV viruses (EF1a-DIO-109 

expression cassette) to express channelrhodopsin ChR2-YFP22 or the control protein YFP 110 

bilaterally in DA neurons of the ventral tegmental area (VTA) 27,28  of DAT-Cre mice (Fig. 111 

1a,Extended Data Fig. 2a-c).  Using the wireless inertial sensor, we tracked behavior 112 

continuously in a white open field and used the similarity metric to match ongoing 300 ms 113 

behavioral segments to exemplars representing each mouse’s repertoire of actions (Fig. 1d-e).  114 

Upon a match to a defined target action (target action A), a 25 hz, 600 ms long train of 115 
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optogenetic stimulation was delivered to DA neurons of the VTA parabrachial pigmented area 116 

(PBP) (30-60 ms delay, Fig. 1e). These target action As were different for different animals, and 117 

were dispersed across a behavioral space (Fig. 1g).To evaluate whether stimulation parameters 118 

triggered DA release similar in magnitude to that triggered by sucrose reward in food restricted 119 

mice, we delivered random optogenetic stimulations to ChR2-YFP- or YFP-expressing VTA DA 120 

neurons while monitoring DA release with the GRAB rDA1m sensor 29 in both ventral and 121 

dorsal striatum (Fig. 1f). We also measured DA release in the same animals upon delivery of 122 

sucrose while they were food deprived. Sucrose presentation led to a sharp increase in DA 123 

release in both ventral and dorsal striatum (Fig. 1f). Interestingly, optogenetic stimulation of DA 124 

neurons in VTA with the parameters described above, resulted in a similar phasic increase in DA 125 

not only in ventral striatum but also in dorsal striatum (Fig. 1f). This is consistent with emerging 126 

evidence showing the existence of dorsal striatum-projecting VTA neurons30,31. Thus, our 127 

optogenetic stimulation triggered DA release similar in decay and spatial localization to that 128 

triggered by sucrose reward in food restricted mice (Fig. 1f), offering us a suitable approach to 129 

interrogate how pairing DA release with specific action performance leads to credit assignment. 130 

 131 

Closed loop reinforcement for a specific action occurred over a 3-day, 60-90 minute/session 132 

protocol designed to probe both intra- and inter-session changes in behavior (Fig. 1h-m, 133 

Extended Data Fig. 3). Optogenetic stimulation of VTA DA neurons upon execution of a 134 

particular target action (action A) resulted in significant increase in the frequency of action A for 135 

ChR2-YFP, but not YFP mice (Fig. 1h, Extended Data Fig.3b). Increased action A in ChR2-YFP 136 

animals depends on optogenetic stimulation, as removal of closed-loop stimulations resulted in 137 

progressive extinction of action A (Fig.3h, Extended Data Fig.3d). Resuming paired stimulation 138 
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led to rapid re-instatement of action A (Fig. 1h, Extended Data Fig.3c,e). Interestingly, during 139 

extinction, ChR2-YFP animals kept performing exploratory unrewarded bursts of action A, 140 

which could explain rapid reinstatement (Extended Data Fig. 3e,f). This paradigm revealed that 141 

just a few pairings with DA leads to rapid reinforcement, as changes in multiple parameters 142 

including decreased trigger latency, increased action A frequency and increased average 143 

behavioral similarity towards action A become significant following 10-15 stimulations (Fig. 1i, 144 

Extended Data Fig. 4a-b).  145 

 146 

We next examined if only action A changed in frequency or if other non-stimulated actions also 147 

changed with closed-loop reinforcement of action A. We calculated baseline-normalized 148 

frequency of all actions in the repertoire and ordered them as a function of similarity to the target 149 

action (Fig. 1j). Earth-Mover’s Distance (EMD)21,25 was used to measure each action exemplar’s 150 

similarity to the target exemplar (Methods), with lower EMD value indicating increased 151 

similarity. Surprisingly, we observed that optogenetic stimulation resulted in a dramatic change 152 

in the entire behavioral repertoire. We observed that early in training actions most similar to 153 

target tended to also increase in frequency (Fig. 1j-l, Extended Data Fig. 4c) whereas actions 154 

most dissimilar to target tended to decrease in frequency. Repeated pairing led to refinement of 155 

the actions that were performed at high frequency, and by late stages action A became the 156 

predominant action being performed, with a sharp drop-off of non-target action frequencies as 157 

similarity to target decreased (Fig. 1k-l). Such effects were not observed in YFP controls 158 

(Extended Data Fig. 4d-e). These data suggested that early reinforcement results in rapid 159 

reshaping of the entire behavioral repertoire, biasing animals towards actions similar to the target 160 
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action, and continued pairing resulted in gradual refinement and assignment of credit to the 161 

specific target action.  162 

 163 

Dynamics of behavioral refinement during reinforcement 164 

To better describe individual action dynamics during reinforcement, we categorized actions (511 165 

actions, n=15 ChR2-YFP animals) by the trajectories of their changes in frequency throughout 166 

learning (Methods). Three meaningful types of trajectories were categorized, comprising over 167 

94% of all actions. These types were characterized by either initial increase that remained stable 168 

(Sustained Increase), initial increases that decreased over time (Transient Increase) and initial 169 

decreases that remained stable (Decreased) (Fig 1m, Extended Data Fig. 5-6). We again 170 

confirmed that the frequency dynamics type of each particular action was related to its similarity 171 

to target, regardless of whether actions were sorted based on their raw or percentile similarity 172 

scores (Extended Data Fig. 6b-c). Actions most similar to target were predominately Sustained 173 

Increase types, while moderately similar actions mostly comprised of Sustained Increase or 174 

Transient Increase types and more dissimilar actions are more of the Decreased type (Extended 175 

Data Fig. 6b-c). Taken together, these finer resolution analyses indicate again that the dynamics 176 

of action frequency are related in great part to the similarity to target action. 177 

 178 

Reinforcement and refinement after reversal of action-reward contingencies 179 

Next, we asked if animals could follow changes in contingency between action and closed-loop 180 

DA stimulation. We therefore chose a different action, action B, which is clearly distinct from 181 

the action A for each animal (Methods, Fig. 2a, Extended Data Fig. 1c) and started delivering 182 

DA neuron optogenetic stimulation after action B. Chosen action A/B pairs were relatively 183 
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dissimilar in the context of entire action similarity distributions (Fig. 2b). Upon reinforcement, 184 

previously trained ChR2-YFP, but not YFP animals showed increased action B performance 185 

over time (Fig. 2c-e, Extended Data Fig. 7). In contrast, action A frequency changes clearly 186 

moved in the opposite direction from that of action B over time (Fig. 2c). Maintenance of action 187 

B performance depended on continual reinforcement (Fig. 2c, Extended Data Fig. 7d-e). Similar 188 

to action A, action B credit assignment unfolds by initially biasing the entire repertoire, i.e., 189 

increasing the frequency of similar actions and reducing the frequency of dissimilar actions. This 190 

was again followed by gradually refining for action B relative to similar actions as pairing 191 

progressed (Fig. 2d-e, Extended Data Fig. 7f). To confirm that action learning is contingent on 192 

action B appearing before reinforcement, we subjected trained animals to a contingency 193 

degradation protocol in which we delivered a similar number of random stimulations uncoupled 194 

to action B performance. Action B performance decreased following contingency degradation 195 

and could be re-instated upon resuming the action B-stimulation contingency (Fig. 2f, Extended 196 

Data Fig. 7g). These experiments indicate that animals can follow changes in the contingency 197 

between actions and DA release and assign credit to a new action through a similar process of 198 

behavioral repertoire refinement.  199 

 200 

Although animals show similar patterns of behavioral refinement for actions A and B, animals 201 

that previously credited an action (action A) for DA release did initially respond to reinforcement 202 

of a new action (action B) differently from naïve animals (Fig. 2g-j). Whereas naïve animals 203 

responded to initial reinforcements for target action A by significantly increasing action A 204 

performance relative to the non-target action B (Fig. 2g,i,left graph), animals with a history of 205 

reinforcement on action A animals responded to initial reinforcements of action B by increasing 206 
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non-target action A performance (Fig. 2g,i,right graph). This trend reverses later such that target 207 

action B becomes significantly increased over the non-target action A (Fig. 2g,i,right graph). 208 

YFP control animals showed no such trends (Fig. 2h,j). Thus, DA reinforcement does not simply 209 

reinforce the recently performed, temporally contiguous action, but trigger previously credited 210 

actions in the face of a new action-reward contingency that is not yet learned. This suggest again 211 

that animals learned the contingency between action performance and DA release. 212 

 213 

Temporal constraints of DA-dependent reinforcement 214 

The contingency degradation results above indicate that the temporal relation between target 215 

action and DA phasic activity is important for reinforcement (Fig. 2e). Reinforcement is thought 216 

to occur on behavior that precedes reward in time10,12,14,19, and while temporal contiguity 217 

between action and reinforcement has long been recognized32–34, it is not clear how the position 218 

of an action relative to the time of DA phasic activity influences its subsequent frequency. We 219 

investigated if in addition to behavioral similarity, the temporal relationship between action and 220 

stimulation influenced the dynamics of behavioral repertoire evolution during reinforcement and 221 

credit assignment.   222 

 223 

We observed that the median inter-target action interval decreased with stimulation in ChR2-224 

YFP mice (Fig. 3a,b).  We therefore examined the distribution of the action dynamic types 225 

categorized above (Sustained Increase, Transient Increase, Decreased) according to both an 226 

action’s similarity to target and the median time of that action’s performance leading into target 227 

during baseline, before reinforcement protocol began (Fig. 3c-e). Action dynamic types showed 228 

distinct distribution patterns for these two dependent variables (similarity and time). Further, 229 
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these two dependent variables were not significantly collinear (Methods). Thus, action similarity 230 

to target as well as baseline temporal proximity to target should together predict action dynamic 231 

type upon reinforcement better than either factor alone. To test this idea, we performed 232 

multinomial logistic regression to assess whether 1- or 2-factor models best fit the observed 233 

dynamics pattern that an action would follow upon reinforcement (Fig. 3f,g). The two-factor 234 

model outperformed either one-factor models, and prediction of action dynamics type with this 235 

model was significantly above chance as assessed by precision-recall curves, which is suitable 236 

for evaluating datasets with imbalanced categories35 (Fig. 3g). The beta coefficients indicated 237 

that increased similarity to target and decreased median time to target increases prediction of 238 

Sustained Increase and Transient Increase dynamic types relative to Decreased types 239 

(Supplementary Table).  These results suggest that DA may reshape behavioral repertoire by 240 

reinforcing not only actions similar to the target action but also actions that happen to be 241 

performed temporally close to the reinforcer, as suggested before10,12,14,19.  242 

 243 

To more rigorously test whether DA reinforcement acts in a retrospective or prospective manner, 244 

we increased the resolution of analysis by examining 1st order action transitions leading into and 245 

out of stimulation (Fig. 3h-j). By focusing analysis on action transitions enriched within specific 246 

1.2 second moving windows, one could distinguish more clearly behavior that occurred leading 247 

up to, during, and after DA stimulation. Our analyses showed that action transitions enriched in 248 

windows up to 1.2 seconds prior to stimulation onset, as well as during stimulation, are 249 

reinforced early on (Fig. 3i). However, this did not occur to action transitions following 250 

stimulation, suggesting an asymmetric process. Indeed, action transitions enriched in windows 251 

leading into stimulation were also preferentially reinforced relative to those enriched in windows 252 
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after stimulation (Fig. 3j). Thus, DA stimulation promotes reinforcement of behaviors occurring 253 

during stimulation and a few seconds before stimulation. 254 

 255 

Credit assignment for action sequences 256 

In the real world, when animals are spontaneously shifting between actions in their repertoire, 257 

outcomes are often not the result of a single action but rather of a sequence of actions performed 258 

at variable intervals. We therefore investigated the dynamics of reinforcement when the release 259 

of DA is contingent upon the performance of a sequence of 2 actions (target action 1 and 2, T1 260 

and T2).  We applied closed loop optogenetics to ask whether naïve animals can learn a T1àT2 261 

reinforcement rule, where the delays between T1 and T2 are governed by the spontaneous 262 

behavior of the animals and not experimentally controlled (n=15 ChR2-YFP and 10 YFP mice, 263 

Fig. 4a, Extended Data Fig. 2a,d-e, Extended Data Fig. 8-10). Various T1/T2 pairs were 264 

sampled, with focus on sequences sharing general commonalities in movement order across 265 

animals (Extended Data Fig. 1d,f-g). Overall, mice learned to increase the performance of a 266 

sequence of two actions to obtain DA stimulation. Some animals showed a ChR2-dependent 267 

increase in reinforcement within 5 sessions, but others experienced a lag in learning (Fig. 4b). 268 

We hypothesized that this could relate to the initial time distance between T2 trigger and the 269 

closest distal T1 (T1àT2 interval). Indeed, animals reinforced for action pairs with initially long 270 

interval values tended to show slower learning curves (Fig. 4c-d). To capture a learning time 271 

point whereby individuals reach similar rising phase in their respective learning curves, a 272 

criterion frequency was set (Methods). 14 of 15 trained animals eventually reached criterion 273 

(Fig. 4e; Extended Data Fig. 8a-c). Sequence performance depended on continuing DA 274 

reinforcement (Fig. 4f,g). Learning was also revealed by decreases in the median T1à T2 time 275 
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intervals (Fig.4h-i) and convergence of T1-to-T2 frequency ratio towards 1 (Fig. 4j). To quantify 276 

the specific credit assignment of T1 and T2 we used a refinement index that compares the 277 

median frequency of actions uniquely similar to T1 with those uniquely similar to T2, with the 278 

frequencies normalized by either that of T1 or T2 (Methods). Values lower than 1 indicate that 279 

the target actions are being performed even more frequently than similar actions, and thus 280 

indicate greater refinement (Methods). By the end of learning, T1 and T2 became credited as the 281 

reward-producing actions relative to their similar counterparts (Fig. 4k). YFP controls did not 282 

show any of these trends (Fig.4c-d,4g-h). Thus, closed loop reinforcement promoted learning of 283 

a two-action sequence rule in freely moving mice starting from a naïve state. 284 

 285 

Importantly, the initial median T1àT2 interval performed by ChR2-YFP animals was inversely 286 

related to the eventual number of sessions required for each animal to reach criterion frequency 287 

(Fig. 4l). A sigmoidal curve was fit to the data, showing that animals with longer open field 288 

T1àT2 intervals beyond the sigmoidal midpoint tended to face sudden increase in sessions to 289 

reach criterion frequency (Fig. 4l). ChR2-YFP animals were divided according to the half-290 

maximum point of the sigmoidal curve into 'Fast Learners’ and ‘Slow Learners’. Fast Learners 291 

quickly reached criterion frequency and low T1àT2 time intervals, whereas Slow Learners 292 

experienced a time lag in reaching criterion frequency and low T1àT2 intervals.  Slow Learners 293 

tended to suddenly increase the frequency of sequence performance in sessions that showed a 294 

drop in the median T1àT2 interval to below 2-4 seconds (Fig.4d,h). In contrast, there was no 295 

stable sigmoidal relationship between T1-T2 action similarities and sessions to criterion 296 

frequency (Extended Data Fig. 8d). Thus, the initial median time distances between distal action 297 
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T1 and proximal action T2(which produced DA stimulation) modulated how fast animals learned 298 

to effectively perform the reinforced action sequence. 299 

 300 

If DA is acting retrospectively to reinforce actions performed earlier in time, we hypothesized 301 

that the action most proximal to reinforcement, T2, should experience earlier refinement relative 302 

to the distal action, T1.  We again used the median target normalized frequencies of actions 303 

uniquely related to T1 or T2 as refinement indices (Methods). Proximal T2 clearly refines 304 

towards its most refined level earlier than the distal T1, at least in some animals (Fig. 5a). By 305 

subtracting the area under the refinement curve for T1 from the curve for T2, one could calculate 306 

differential refinement between the two actions. Positive values indicate refinement 307 

preferentially favoring T2, and vice versa. A linear relationship was found between open field 308 

median T1àT2 interval and differential refinement between T1 and T2 (Fig. 5b). This suggests 309 

for longer T1àT2 median intervals, the proximal action T2 spends more sessions being more 310 

refined than the distal action T1. In contrast, there was no significant linear relationship between 311 

the initial intervals between the execution of the proximal action that led to reward and the next 312 

initiation of the sequence (T2àT1) or of the similarity between T1 and T2 actions, and the 313 

dynamics of differential refinement between T1 and T2 (Fig. 5b, right graph, Extended Data Fig. 314 

9a).   315 

 316 

We next investigated if the differential refinement between T1 and T2 was different for slow and 317 

fast learners. We analyzed changes in T1-T2 refinement curves relative to ‘Starting Points’ at 318 

which the refinement indices of T1 and T2 are most similar or are biased towards the distal T1 319 

rather than the proximal T2 action (Methods). All Slow Learners showed a pattern where they 320 
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initially refine the repertoire of T2 from these Starting Points, and after reaching a maximum 321 

Turning Point, they start showing a bias towards greater T1 refinement (Fig. 5c). Notably, by 322 

these Turning Points the median intervals of T1àT2, but not T2àT1 events had decreased 323 

significantly relative to initial values (Fig. 5d, Extended Data Fig. 9b). Therefore, the median 324 

T1àT2 interval decrease occurred before a decrease in the interval to perform the next sequence 325 

(T2àT1), which started decreasing after the Turning Point (Fig. 5e). Using these learning 326 

landmarks, we asked more rigorously how animals homed in on T1 vs T2 over time (Fig. 5f, 327 

Extended Data Fig.10a). We found that animals initially refined the action proximal to DA 328 

stimulation (T2, between Starting Point and Turning Point), whereas T1 refinement occurred 329 

several sessions later, after the Turning point (Fig. 5f, Extended Data Fig.10a). Indeed, the 330 

Turning Point coincided with an increased probability of the T1 being found within 3.6 secs 331 

before T2 and reinforcement (Fig. 5g-h). These results indicate that animals can assign credit to 332 

sequences of actions that lead to reinforcement, following similar retrospective dynamics that 333 

were observed for single actions, whereby the actions most proximal to reinforcement are refined 334 

earlier and the actions more distal to reinforcement refined later, when they probabilistically start 335 

to occur within a few seconds of DA release.  336 

 337 

Discussion 338 

Our results demonstrate that DA reinforcement promotes single action credit assignment from a 339 

naïve state through a dynamic process whereby the entire behavioral repertoire is restructured. 340 

During the initial stages of reinforcement both actions similar to the target action and actions that 341 

were performed in close temporal proximity of the target action increase in frequency, while 342 

very dissimilar actions decrease in frequency. With repeated reinforcement there is a process of 343 
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gradual refinement that homes in on the action that produces DA release. In the case of action 344 

sequences, we observe a similar gradual refinement process whereby credit assignment for the 345 

action sequence is accomplished by early refinement for the actions most temporally proximal to 346 

reinforcement, followed by later refinement for the more temporally distal actions.  347 

Previous synaptic and cellular studies36,37 proposed that DA reinforcement may act 348 

retrospectively to reinforce behavior. By utilizing the closed loop system, we rigorously tested 349 

this prediction. Since retrospective reinforcement of behavior is not confined to the target action 350 

alone, it facilitates credit assignment to a stimulation-producing action even when reinforcement 351 

is delayed; stimulation-producing action pairs that tend to be performed closed together in time 352 

were learned much faster than pairs that tended to be performed far apart in time. Intriguingly, 353 

animals eventually learned to assign credit to distal stimulation-producing actions even in the 354 

latter scenario. This is characterized by a gradual process whereby early on, the median time 355 

interval between distal and proximal target actions decreased and the repertoire proximal to 356 

reinforcement was preferentially refined to favor the performance of the proximal target action.  357 

As the distal target action became significantly more likely to occur within second timescale 358 

distance prior to reinforcement, retrospective reinforcement of the correct stimulation-producing 359 

sequences became increasingly likely, resulting in whole behavioral refinement for the distal 360 

target as well, hence increasing sequence performance (Fig. 5g).  361 

 362 

It has been suggested that retrospective reinforcement of behavior is mediated by DA modulation 363 

of an eligibility trace left by action potential-triggered synaptic plasticity10. Studies of DA action 364 

at the striatal synaptic level36,37 indicate that the timescale within which retrospective 365 

reinforcement may occur is on the order of a few seconds, but the behavioral consequences have 366 
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remained elusive until now. Our behavioral findings are consistent with cellular studies in that 367 

behavior occurring within a few seconds leading into DA stimulation are reinforced. It is also 368 

noteworthy that distal T1 refinement in two action reinforcement occurs after the closest T1 to 369 

DA stimulation has become more probable within a few seconds of stimulation. The cutoff of 370 

retrospective reinforcement by phasic DA activities within a few seconds could explain the 371 

sudden increase in sessions required to reach criterion frequency amongst animals that were 372 

reinforced for action pairs with initially longer median time separations. Retrospective 373 

behavioral reinforcement may be mediated by DA modulation of Ca2+ influx left by earlier 374 

spiking activities. Ca2+ influx triggered by NMDA receptors would increase adenosine 3’,5’-375 

cyclic monophosphate at thin distal dendrites of medium spiny neurons, leading to transient and 376 

localized protein kinase A activity specifically within the retrospective time window, as 377 

regulated by high phosphodiesterase activity14. Similar actions have more similar and 378 

overlapping striatal neural ensemble activities21. Arrival of DA upon activation of action-specific 379 

ensembles may reinforce not only a specific action, but also similar actions. As striatal 380 

ensembles specific to actions are activated and a trial of eligibility traces is left temporally, DA 381 

arrival could set the stage for retrospective reinforcement of a spatially graded repertoire of 382 

actions within a few seconds, resulting in the observed behavioral learning patterns. Future 383 

studies testing these ideas would clarify how synaptic plasticity and cellular ensemble activities 384 

integrate to produce a dynamic refinement process, resulting in the behavioral principles for 385 

credit assignment revealed here. 386 

 387 

END OF MAIN TEXT 388 

 389 
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Methods 390 

Animals: All experiments were approved by the Portuguese DGAV and Champalimaud Centre 391 

for the Unknown Ethical Committee and performed in accordance with European guidelines. 392 

They were also performed according to National Institutes of Health (NIH) guidelines and 393 

approved by the Institutional Animal Care and Use Committee of Columbia University. 3-5 394 

months old DAT-Cre male mice in the C57/BL6J background23 were used.   395 

 396 

Sample Sizes, randomization, and blinding.  For sample size, we applied a power of 0.8, 397 

significance of p<0.05, and standard variation of 20% of the mean. We determined sample sizes 398 

of 4-8 mice per group for different mean-based tests (matched pairs, 2 groups). No formal 399 

method of randomization was used; littermates were equally divided among the groups being 400 

compared. The experimenter was not blinded of the experimental groups. Optogenetic 401 

manipulations were performed automatically via a computer algorithm and not manually by the 402 

experimenter.   403 

 404 

Recombinant adeno-associated viral vectors, stereotaxic injections, and implants. 750 nl of 405 

rAAV.EF1a.DIO.hChR2(H134R).eYFP or rAAV.EF1a.DIO.eYFP (3-4 x 10^12 vg/ml, AAV5, 406 

University of North Carolina Vector Core; 1-2 x 10^13 vg/ml, AAV1, Addgene, 27056-AAV1 407 

and 20298-AAV1) were injected into each hemisphere of the VTA of 3-4 month old DAT-Cre 408 

mice. For viral injections, the coordinates are AP - 3.52 mm, ML - +/- 0.35 mm, DV – 4.3 mm. 409 

Injections were made at 0.2 Hz pulses. Each pulse injects 4.6 nl volume. Injected needles were 410 

kept in place in the injection site for ~15 minutes before withdrawal. For each mouse, a dual 411 

optic fiber cannula (200/240 μm diameter, 6 mm length, 0.7 mm center-to-center FLT, 0.22 NA; 412 
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Doric, DFC_200/240-0.22_6mm_DF0.7_FLT) was placed 200 μm above the injection site and 413 

fixed to the skull. Next, a 4-position receptacle connector (Harwin Inc., M52-5000445) was fixed 414 

anteriorly to the dual optic fiber cannula, with its posterior edge set at -0.6 mm. Skull implants 415 

are then fixed with dental cement. A 4-position connector (Harwin Inc., M52-040023V0445) 416 

with pins removed from one end was used to cap the receptacle connector. 417 

 418 

For photometry experiments, 3-5 month old DAT-Cre males were used. The conditions used for 419 

VTA injections and implants were as above. Additionally, 1 μl and 500 nl of AAV9-hSyn-420 

GRAB-rDA1m (2 x 10^13 vg/ml; Addgene, 140556-AAV9) were injected into the dorsal 421 

striatum (AP 0.5 mm, ML +2.1 (right), DV 2.3 (from brain surface)) and ventral striatum (AP 422 

1.15mm, ML +1.65 (right), DV 4.2 (from Bregma)) , respectively. For photometry fiber 423 

implants, mono fiberoptic cannula were used (400/430 μm diameter, 4 mm length (dorsal 424 

striatum) and 6 mm length (ventral striatum), 0.37 NA, 1.25 diameter ferrule, flat; Doric, 425 

MFC_400/430-0.37_6mm_MF1.25_FLT (ventral striatum) and MFC_400/430-426 

0.37_4mm_MF1.25_FLT (dorsal striatum)). Implants were inserted at a 22 degrees angle. For 427 

dorsal striatum implantation, the cannula entered the skull at AP 0.5 mm and ML 3.03 mm at 22-428 

degree angle. The angled implant penetrated the brain from its surface for 1.92 mm.  For ventral 429 

striatum implantation, the cannula entered the skull at AP 2.85 mm at 22 degrees angle, ML 1.65 430 

mm. The angled implant penetrated the brain from its surface for 4.25 mm.   431 

 432 

WEAR motion sensor system. The WEAR motion sensor family was developed by the 433 

Champalimaud Hardware platform and Costa lab as a wired or wireless solution to obtain self-434 

centered 9-axis motion data based on 3-axis accelerometer, gyroscope, and magnetometer 435 
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(https://www.cf-hw.org/harp/wear). The wired version is a very small and extremely lightweight 436 

device (200mg) that can sample motion data up to 500 Hz and at the same time provide current 437 

up to 500mA that can be used to power LEDs for optogenetic experiments or stimulating 438 

electrodes. The wireless version is small and lightweight (~1.8g) and can sample motion data up 439 

to 200 Hz while having the ability to provide up to 50 mA that can be used to power LEDs for 440 

optogenetic experiments or stimulating electrodes. The battery of the wireless WEAR allows 441 

recordings up to 4 h at 200 Hz sampling rate and even more at lower sampling rates. These 442 

devices communicate with the computers through a base station based on the HARP design 443 

developed by the Champalimaud Hardware Platform, which can be accessed through a software 444 

GUI to easily change sensor parameters to best fit the experimental needs. The base stations have 445 

several important hardware features such as 2 digital inputs and outputs, an analog input, 2 446 

outputs for camera triggering, and a clock sync input and output that provides hardware-based 447 

synchronization. The sensor can be started or stopped by software or pin. The WEAR motion 448 

sensor family and base station are all open source (repository 449 

at https://bitbucket.org/fchampalimaud/workspace/projects/HP). Moreover, the WEAR devices 450 

are compatible with the Bonsai visual reactive programming software (https://bonsai-rx.org/), 451 

also open source, and allow the integration and synchronization of the streams of data being 452 

collected using the WEAR sensor with other data sources such as cameras.  453 

Taking these specs and features together, the WEAR allows researchers to acquire high-454 

resolution motion data wirelessly and for long periods of time, without being computationally 455 

very demanding. The 9-dimensional motion data acquired through WEAR is simple to process, 456 

easy to connect to analysis software, which allowed the fast online behavior classification that 457 

was fundamental for the experiments described in this paper.  458 
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 459 

Open field experiment. One-month post-surgery, mice were habituated to head-mounted 460 

equipment over 2 days. On day 1, an actual or mock wireless inertial sensor (~2.5 cm H x 1 cm L 461 

x 0.5 cm W with ~ 2.5-3.0 cm antennae, ~1.8 g weight) glued to the 4-position connector 462 

(Harwin Inc., M52-040023V0445) was attached to the implanted receptacle connector on the 463 

skull cap. Individual mice roamed freely in the home cage for 1 hour. On day 2, an actual 464 

wireless inertial sensor and mono fiberoptic patchcord (200/220 μm diameter, 0.22 NA; Doric 465 

DFP_200/220/900-0.22_2m_DF1.0-2FC) was attached to the skull cap via a mating sleeve. 466 

Patchcords were attached to 1x2 fiber-optic rotary joint (intensity division, 0.22 NA; Doric, 467 

FRJ_1x2i_FC-2FC) and mice roam freely in home cage for 1 hour. On open field recording day, 468 

sensor/patchcord habituated mice were anesthetized by isoflurane, attached to equipment, 469 

subjected to calibration protocol described below, and individually placed in an open field box 470 

inside a sound insulated chamber. The open field box is made of 410 x 400 mm grey opaque 471 

acrylic walls and a 410 x 400 mm white matte acrylic base. Individual mice were allowed to 472 

behave freely inside the box for 75 minutes. The wireless inertial sensor (~1.8 g in weight, 473 

WEAR wireless sensor v1.1; Champalimaud Scientific Hardware Platform) conveys motion 474 

information sampled at 200 hz (set on WEAR v1.3.2 software; Champalimaud Scientific 475 

Hardware Platform) to a receiver base-station (Harp basestation v1.1 or v. 1.2, Assembly v0, 476 

Harp v1.4, Firmware v1.5; Champalimaud Scientific Hardware Platform), which conveys the 477 

information to the experimental computer running a Bonsai script (Bonsai38 editor v2.3.1) to 478 

capture and record motion data and video information. Video was captured with a camera (Flea3 479 

FL3-U3-I3Y3M(17450451), Point Grey Research) coupled to a 1/2” format lens (NMV-6WA, 480 

Navitar). 481 
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  482 

Calibration. To ensure sensor stability within sessions, several approaches were employed. 483 

First, a coated mating sleeve was attached to the dual optic fiber cannula that sits immediately 484 

posterior to the sensor. The sleeve was thickened with black tape to a desired outer diameter such 485 

that it stabilized the sensor in the anterior-posterior direction. Second, the metal pins in the 4-486 

position connector glued to the sensor were thickened with solder to stabilize their fit inside the 487 

receptacle connector in the skull cap. This protects against displacement in all directions. Third, 488 

stretchable black tape was wound around the base of the attached sensor and sleeve-covered 489 

cannula, further protecting against shifts in sensor positioning.  490 

 491 

To control for possible variation in sensor positioning across sessions, a calibration approach was 492 

developed. Wireless inertial sensor was attached to individual isoflurane-anesthetized mice and 493 

the sensor was secured with the above strategies. Next, individual mice was placed in a custom-494 

made calibration rig. The essential element of the rig is a vertical stainless-steel pole suspended 495 

above a stably secured table. In the setup used, the vertical pole was fixed to the horizontal edge 496 

of a vertically reversed “L” shape, stainless steel post assembly mounted on a breadboard 497 

(Thorlabs). The space between the lower end of the vertical pole and the table is enough for an 498 

individual mouse to slide underneath. The lower end of the vertical pole is fixed to a custom-499 

made connector that resembles the connecting end of the fiberoptic patchcord. To perform 500 

calibration, individual isoflurane-anesthetized mice was securely attached to the vertical pole via 501 

a mating sleeve bridging the connection to the mouse’s cannula implant. Next, replicate readings 502 

of the immobilized inertial sensor were made on Bonsai. Next, mice were attached to the 503 

experimental patchcord and allowed to recover in home cage for 20 minutes or until individual 504 
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mice are clearly recovered and behaviorally active. Individual mice were then placed in open-505 

field box for experimentation.   506 

 507 

Calibration involves rotating all accelerometer and gyroscope readings from the inertial sensor 508 

by a rotation matrix such that the final gravitational field vector of the stationary sensor, when 509 

mounted on the mouse and fixed to the calibration rig, is in a universal frame of reference 510 

whereby there is zero vertical tilt. In other words, the only non-zero acceleration is on the 511 

universal z-axis (pointing down). To accomplish this, the accelerometer pitch and roll orientation 512 

angles of the fixed stationary accelerometer were determined and then applied to calculate the 513 

rotation matrix. The rotation matrix is multiplied by the sensor accelerometer and gyroscope 514 

readings to remove the stationary vertical tilt from the sensor. To account for possible drift in 515 

gyroscope baseline over time, a daily reading of stationary gyroscope baseline was made with a 516 

mock cement skull cap attached to the sensor just before the start of each experimental day. The 517 

baseline gyroscope readings were subtracted from all gyroscope values before the rotation matrix 518 

is applied to sensor data. 519 

 520 

Action Selection. After open field run in the grey-walled box, off-line behavioral clustering was 521 

performed on calibrated sensor data. To identify the natural action repertoire of individual mice, 522 

we quantified behavior using acceleration and gyroscope time series features in a similar fashion 523 

as described previously21. For the ground truth analysis, we used: 1.) Gravitational acceleration 524 

(GA) along the anterior-posterior (A-P) axis for the discrimination of postural changes -  GAap.  525 

2.) Raw sensor acceleration along the dorsal-ventral (D-V) axis to quantify movement 526 
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momentum – ACCdv. 3.) D-V axis of gyroscope to extract head head-body rotational 527 

information – GYRdv. 4.) Total body acceleration to differentiate resting state from movement. 528 

 529 

Total body acceleration (TotBA) was defined as:  530 

 531 

TotBA = sqrt(BAap2 + BAml2 + BAdv2), 532 

 533 

where BAap, ml and dv represent the body acceleration of the anterior-posterior, medio-lateral 534 

and dorsal-ventral axis, respectively. We calculated each individual BA component by median-535 

filtering the raw acceleration signals followed by a fourth-order Butterworth high-pass (0.5Hz) 536 

filter. For the gravitational acceleration (GA) axis, the BA components were subtracted from the 537 

median filtered raw signal axis. 538 

 539 

All four time series features were binned into non overlapping 300 ms long window segments26. 540 

The values of each bin and per feature were then discretized, using fixed thresholds, producing a 541 

summary distribution of each segment. For GAap and ACCdv we used 10 equal size threshold 542 

values, plus two added bins between the limits and infinity to capture an approximated 543 

distribution of values within each window bin. For GYRdv we used 5 thresholds (0, ±50, ±100) 544 

to discriminate left and right turns. For TotBA, a single threshold was used to separate moving 545 

from resting. The threshold was kept constant for all experiments and was set to the average 546 

value separating the bimodal distribution of logTotBA (natural logarithm of TotBA feature). For 547 

each 300-ms window segment we get four resulting histograms, one for each feature. The feature 548 
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histograms were individually normalized to obtain probability distributions and used to calculate 549 

the pairwise similarities between segments. 550 

 551 

We used the "earth mover's" (EM) distance as a measure of similarity25: 552 

 553 

S = -(dEM/4)^2 554 

 555 

where dEM is the sum of the normalized EM distances for the 4 features (GAap, ACCdv, 556 

GYRdv and TotBA) defined above. The bin normalizations constrain S values within the range 557 

[-1,0], specifically, -1 and 0 define the maximum dissimilarity and identity between the two 558 

probability distributions, respectively. Finally, to produce a continuous unbiased classification of 559 

behavioral states, the similarity measures were clustered using affinity propagation20, with the 560 

preference parameter set to the minimal value of the similarity matrix; this particular value was 561 

used for its stable number of behavioral clusters within its range. 562 

 563 

Using the behavioral clusters identified by affinity propagation clustering of the grey open field 564 

behavior13 as a ground truth for the true identity of each 300 ms histogram, we were able to 565 

simulate and evaluate the precision with which the Earth Mover’s Distance (EMD) metric21,25 566 

could be applied for cluster matching online. Notable difference between the EMD metric used 567 

here is the use of the 4 features mentioned above rather than the 3 features used previously21, as 568 

well as the multiplication of the similarity score by -1 such that the range of possible scores from 569 

maximal identity to dissimilarity is 0 to 1, respectively. Although the EMD cluster matching 570 

outcome correlates strongly with affinity propagation clustering, some false positive and false 571 
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negatives may occur. Several filters were set to optimize cluster selection for reinforcement: 1.) 572 

We selected for clusters that show low false positive rate (<5.5%) and below the 60th percentile 573 

false positive rate amongst all clusters per animal. 2.) We selected against clusters with high 574 

false negative rates (> 90th percentile of clusters per animal). 3.) We selected against clusters that 575 

tend to be performed serially within a short time interval. We calculated the probability that a 576 

target cluster or its top 5 most similar clusters (determined by EMD score) would reappear 3-18 577 

seconds after the first occurrence of the target cluster. Clusters that tend to be repeated either by 578 

itself or have a high probability of having similar clusters appear within this 15 second window 579 

(> 90th percentile for median and range of probabilities of cluster appearing in window) were 580 

removed from selection pool. 4.) We filtered against clusters whose matching by EMD would be 581 

more sensitive to anterior-posterior shifts of the inertial sensor (although we already protected 582 

against this possibility with the safeguards above) (> 90th percentile for percent deviation from 583 

original cluster matching after shifts of accelerometer reading in the anterior or posterior 584 

direction). For each cluster, percent deviation is calculated first by summing up the total absolute 585 

cluster matching changes from original cluster matching data in the anterior and posterior shifted 586 

datasets. Next, the sum of deviation in the two altered datasets is divided by two and then 587 

divided by the total of cluster calls from the original dataset, and multiplied by 100 to get percent 588 

deviation from original cluster matching result. 5.) We selected for clusters that show fully 589 

accelerating movement (cluster exemplar value of less than the maximum value of 1 in the body 590 

acceleration feature bin of histogram). To choose dissimilar clusters per animal, an algorithm 591 

was written filtering clusters of each animal’s repertoire based on the feature histogram values of 592 

each cluster’s representative, or exemplar. Thresholds were set along the GAap and GYRdv 593 

features to divide cluster exemplars based on the distribution of values within these feature 594 
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histograms. For each repertoire, all histogram values from all cluster exemplars are pooled to 595 

create a pooled histogram. The range of bins with non-zero values for each feature are identified. 596 

The algorithm then filters cluster exemplars in the repertoire for non-zero values in the high, 597 

medium, low, or high+low value bins. For example, action A identification occurs by selecting 598 

for a cluster exemplar with median counts falling in the high GAap and GYRdy value bins. 599 

action B would then be selected by filtering for an exemplar with median counts falling in the 600 

low GAap and GYRdy value bins. This results in actions that are highly dissimilar. For example, 601 

EMD similarity scores comparing action A to action B almost always, except for 1 ChR2-YFP 602 

animal, fall in the more dissimilar end of a distribution of scores created by comparing action A 603 

to all actions in each animal. Hereafter, clusters will be referred to as actions. 604 

 605 

Closed-Loop Optogenetics. For close loop optogenetics, a computer running a Bonsai script 606 

captured and recorded wireless sensor motion data and video information as described above in 607 

grey-walled open-field experiment. Here, data is also streamed to a custom MATLAB code 608 

which analyzes action composition changes over the course of action reinforcement, we used the 609 

EMD metric21 to label individual 300 ms motion histograms with an action ID. For each arriving 610 

300-ms segment we calculate the EMD distance between each cluster exemplar (or 611 

representative) of the ground truth cluster library from the grey open field behavior recording.  612 

The motion features histogram is assigned to the action for which comparison with the exemplar 613 

gave the lowest EMD score (most similar to target) amongst all comparisons. Decision making 614 

for stimulation has a range of 35-55 ms time gap between action performance and sent decision 615 

for stimulation. To trigger optogenetics, a Multi-Pulse Width Modulation (PWM) generator 616 

(Harp Multi-PWM Generator hardware v1.1, Assembly v1, Harp v1.4, Firmware v1.1; Harp 617 
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Multi-PWM Generator software v2.1.0; Champalimaud Scientific Platform) converts each 618 

decision to trigger laser into electrical signals for 15 light pulses of 10 ms pulse duration at 25 619 

Hz, with each train of pulses occurring over 600 ms and at 25% duty cycle. The multi-PWM 620 

signal is passed through a 12 V, 7.2 W amplifier (Champalimaud Scientific Platform) and fixed 621 

frequency driver (Opto-electronic, MODA110-D4-30 (2001.320220)) to control the activities of 622 

a 473 nm, blue low noise laser (Shanghai Dream Lasers Technology, Co, Ltd. SDL-473-200T), 623 

which was sent through an acousto-optic modulator (Opto-electronic, MTS110-A3-V1S (1001 / 624 

330433)). The laser component that is modulated is then reflected by a mirror and funneled to a 625 

mono fiberoptic patchcord, which is then coupled to a commutator. The output laser is then 626 

passed through a dual-optic fiber patchord and connected to the implant cannula. Power 627 

adjustment out of the tip of patchcord was made so that ~5mW was emitted from each end of the 628 

dual optic fiber cannula. To ensure common time stamps from different channels, a clock 629 

synchronization device (Harp Clock Sync v1.0; Champalimaud Scientific Platform) was 630 

performed between the basestation and multi-PWM device.  631 

 632 

Single action sequence selection. Mice were placed in a white open field box for closed loop 633 

reinforcement protocol. Individual mice were subjected to a single session of protocol each day, 634 

with sessions following each other on consecutive days.  The white open field box is made of 635 

410 x 400 mm white matte acrylic walls and a 410 x 400 mm white matte acrylic base. To 636 

acquire baseline behavior, individual mice were allowed to behave freely inside the box for 30 637 

minutes on the first action A selection session. Closed loop reinforcement by blue laser 638 

stimulation of VTA DA neurons were made available for 60 minutes. 90 minutes of closed loop 639 

reinforcement were made available for individual mice during sessions 2 and 3. For session 4, an 640 
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extinction protocol was carried out comprising of 20-minute maintenance of reinforced behavior 641 

with laser availability, followed by 60 minutes of extinction of reinforced behavior without laser 642 

availability, followed by 20-minute re-acquisition of reinforced behavior with laser availability. 643 

To select for action B, a repeat of the protocol described above for action A was performed 644 

starting on the day following extinction protocol of action A. Upon completion of the 645 

reinforcement and extinction protocols for action B, a contingency degradation protocol was 646 

performed comprising of 20-minute maintenance of action B with laser availability, followed by 647 

60 minutes of contingency degradation of reinforced behavior by triggering laser randomly, 648 

followed by 40-minute re-acquisition of reinforced behavior with laser availability for action B 649 

performance. 650 

 651 

Photometry experiment. One-month post-surgery, mice were habituated to head-mounted 652 

equipment for 2 days. On day 1, habituation was made to wireless inertial sensor as described 653 

above. On day 2, a multi-fiber bundled patch cord (3 fiber bundle, 400/440 μm diameter for a 654 

maximum of inner diameter at 900 μm, 0.37 NA, 3.5 m long, 1.25 mm fiber tip diameter, low-655 

autofluorescence; Doric, BBP(3)_400/440/900-0.37_3.5m_FCM-3xMF1.25_LAF) was attached 656 

to individual mice in addition to the wireless sensor and optogenetic patchcord. Individual mice 657 

were allowed to habituate to the equipment for 1 hour in its home cage. On photometry recording 658 

day, mice were subjected to 30 frames per second photometry recording (Neurophotometrics), 659 

with 75-150 μW 560 nm LED illuminating rDA1m, and equivalent closed loop optogenetic 660 

parameters described above were used. To test for DA release in the context of closed loop 661 

optogenetic setup, an average of 30 hits of blue light were delivered randomly within the span of 662 

30 minutes. To evaluate DA release in the context of food reward, mice were placed on food 663 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.09.22.507905doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.507905
http://creativecommons.org/licenses/by-nc-nd/4.0/


deprivation protocol and kept within 85% of original weight. Mice were placed in an operant 664 

chamber with a nosepoke linked to a lick detector (PyControl). Each lick detection triggers 665 

dispensing 2 μl 10% sucrose. Since animals tend to accidentally trigger lick detector at the 666 

beginning of sessions, between 40-50 sucrose dispensing events were gathered per animal and 667 

rDA1m activities associated with the last 35 rewards of the session were used for analysis. 668 

 669 

Two action sequence selection. Two action sequence selection occurs as follows: after 670 

sensor/patchcord habituation and grey open field behavior recording, offline behavioral 671 

clustering and action filtering were performed as for single action selection. For each animal, 672 

median time intervals between all possible pairs of actions during open field were calculated as 673 

described above. Across animals, T1/T2 pairs with median T1àT2 interval values varying 674 

between 2 and 10 seconds, and with the feature of going from a head down(T1) to a head up(T2) 675 

movement, were chosen for reinforcement.  676 

 677 

On the first reinforcement session, a 30-minute baseline was taken when laser stimulation was 678 

not available for reinforcement. Laser became available for reinforcement in all subsequent 679 

sessions until extinction experiment. During reinforcement periods, when closed-loop system 680 

detects performance of the proximal action (T1) of interest, the algorithm enters a state where 681 

laser is triggered upon performance of the distal action (T2), regardless of the amount of time 682 

that has elapsed between the latest T1 and T2. On Session 1, 60 minutes of laser availability was 683 

given while in all subsequent reinforcement sessions, 90 minutes of laser availability was given.  684 

 685 
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Histology and Immunohistochemistry. After behavioral sessions were completed, mice were 686 

deeply anesthetized with isoflurane and perfused transcardially in PBS and then 4% PFA/PBS. 687 

Dissected brains with skulls attached were perfused in 4% PFA in PBS at 4 degrees Celsius 688 

overnight. The next day, brains were rinsed 3 times in PBS. Next, brain regions including VTA 689 

and implants were sectioned by vibratome into 50 or 100 μm slices. Slices are then subjected to 690 

immunohistochemistry using the reagents below. Standard immunohistochemistry protocols 691 

were applied to stain for the following reagents - Rabbit anti-GFP 488 conjugate (1:1000; 692 

Molecular Probes A21311). Mouse Anti-TH (1:5000; Immunostar Th 22941) with Goat Anti-693 

Mouse - IgG (H+L) Highly cross-adsorbed secondary antibody - Alexa Fluor647 (1:1000; 694 

ThermoFisher, A-21236), DAPI (1:1000 of 20 mg/mL stock; Sigma, D9542). 695 

 696 

Imaging. Zeiss Axio Imager M2 microscope was used to acquire brain section pictures. 10x tiled 697 

images were taken through the relevant fluorescent channels. The M2 is equipped with a fast 698 

Colibri.7 LED illumination for excitation of fluorophores. Images are captured with a high-699 

sensitivity monochromatic sCMOS camera (Hamamatsu Orca Flash 4.0 v2). The objective used 700 

for the images is a ZEISS Plan-ApoChromat 10x/0.45, which allows to resolve up to 577 nm 701 

when using a wavelength of observation of 520nm and it is fully corrected for chromatic and 702 

spherical aberrations. Implant locations were determined using standard mouse atlas39.  703 

 704 

Single action selection analyses. For target action frequency analysis, we analyzed frequencies 705 

within 25-minute windows at 4 time points: Baseline (before first reinforcement trigger), Early 706 

(after first reinforcement trigger in Session 1 (action A) or 5 (action B)), Mid (after 2-minute 707 

mark in Session 2 (action A) or 6 (action B)), Late (after 2-minute mark in Session 3 (action A) 708 
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or 7 (action B)). For 3D action repertoire plots, baseline normalized frequencies were plotted and 709 

actions whose time series include NaN or Infinity values were discarded from the plot. (Plotted 710 

actions: 509 of 514 actions, 15 ChR2YFP animals (action A); 427 of 443 actions, 13 ChR2YFP 711 

animals (action B); 355 of  356 actions, 10 YFP animals (action A); 341 of 356 actions, 10 YFP 712 

animals (action B)). 713 

 714 

Three parameters were assessed for rapid behavioral adaptation following cumulative closed 715 

loop reinforcements: latency between Target A triggered reinforcements, Target A frequency and 716 

average behavioral similarity to Target A. To calculate the latency parameter, the average 717 

latency between 10 consecutive Target A triggered reinforcements following a specified number 718 

of cumulated reinforcements were taken and then normalized by the average latency taken over 719 

the final 10 baseline Target A instances that in simulations would have triggered reinforcement. 720 

To calculate the frequency parameter, the frequency of Target A triggered reinforcements over 721 

the course of 1 minute following a specified number of cumulated reinforcements were taken and 722 

then normalized by frequency of the final 10 baseline Target A instances that in simulations 723 

would have triggered reinforcement. To calculate the behavioral similarity parameter, the 724 

average behavioral similarity (EMD score) to Target A between 10 consecutive Target A 725 

triggered reinforcement events following a specified number of cumulated reinforcements were 726 

taken and then normalized by the corresponding value taken over the final 10 baseline Target A 727 

instances that in simulations would have triggered reinforcement. 728 

 729 

rDA1m Fiber Photometry Analyses. To evaluate DA release in the context of food reward, the 730 

delta F/Fo signal was plotted for rDA1m signal aligned to lick detection/reward trigger. The 731 
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baseline Fo value was taken as the median rDA1m raw fluorescence signal of the 10 time points 732 

(333.33 milliseconds) preceding the trigger event.  To test whether DA release is triggered in the 733 

context of the closed loop system, the activity of the rDA1m sensor was quantified. Delta F/Fo 734 

was calculated by subtracting baseline value from each fluorescent rDA1m value of a 735 

smoothened time series (smooth function, default moving average filter, MATLAB), and then 736 

dividing the outcome by the baseline value. To account for control ChR2-independent effects, 737 

the average delta F/Fo trace of ChR2-YFP animals were subtracted from the corresponding 738 

average trace of YFP animals, giving the differential delta F/Fo used for the plots. The standard 739 

deviation of ChR2-YFP minus YFP curves were obtained by taking the square root of the sum of 740 

squared variances of ChR2-YFP and YFP delta F/Fo curves.  741 

 742 

Categorizing behavioral actions by temporal dynamics. To categorize behavioral actions by 743 

temporal dynamics, moving mean of action counts was used as input. Various window sizes 744 

were examined; 2.5-minute windows moving at 300 ms steps were found suitable for analyses. 745 

The baseline frequency (f0) was the average of 5 minutes of moving mean data preceding the 746 

first reinforcement event. Early frequency rate (f1) was the average of 30 minutes moving means 747 

immediately following the first reinforcement event. Mid- and Late frequency rates were taken 748 

from Day 2 (f2) and Day3 (f3), respectively. f2 and f3 rates were calculated from the beginning 749 

30 minutes period after moving windows has accumulated enough bins (2.5 minutes) following 750 

the start of the session. Significant positive modulation above baseline was judged if in 500 751 

consecutive moving windows (2.5 minutes period) in Early/Mid or Late stages the frequency rate 752 

of all bins were greater than the 99th percentile bin of baseline frequency. Significant negative 753 

modulation below baseline was judged if in 500 consecutive moving windows (2.5-minute 754 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.09.22.507905doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.507905
http://creativecommons.org/licenses/by-nc-nd/4.0/


period) in Early/Mid or Late stages the frequency rate of all bins were less than or equal to the 5th 755 

percentile bin of baseline frequency. Actions that showed both significantly positive and 756 

negative modulation at Early/Mid or Late stages when compared to baseline were delegated to 757 

positive modulation group. For figure plotting, time-course median frequencies of action 758 

dynamic types were downsampled 10-fold. To investigate the relationship between target 759 

similarity and frequency, two approaches were taken. To perform multiple comparison statistics, 760 

actions were binned by their percentile ranking in terms of similarity to target (EMD). This is 761 

because action distribution based on raw EMD binning was not even. Percentile binning allowed 762 

for even distribution of actions amongst the groups. To examine the distribution of action 763 

dynamic type frequencies in terms of target similarity, a binning by raw EMD score (0.5 score 764 

binwidth) was used because this allowed for clear visualization of the relationship between target 765 

similarity and frequency. Alternatively, percentile binning of EMD score was also used and gave 766 

similar trends. 767 

 768 

Criterion for action dynamic types. Action dynamics were grouped according as follows: 1.) 769 

Increasing actions showed significant increase in f0 to f1/2 and f1 to f2/3 comparisons and 770 

showed either significant increase or unchanged frequency in f1/2 to f3 comparisons.  2.) 771 

Sustained actions showed significant increase in f0 to f1/2 comparisons, and unchanged 772 

frequency in f1 to f2/3 and f1/2 to f3 comparisons. 3.) Transient actions showed significant 773 

increase in f0 to f1/2 comparisons, and significant decrease in f1/2 to f3 comparisons. 4.) 774 

Decreasing actions showed significant decrease in f0 to f1/2 and f0 to f3 comparisons. 5.) Other 775 

actions were all remaining actions that did not fall in the above groups. In the main figure only 776 

dynamic subtypes with more than 10 members are shown. 777 
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 778 

Extinction analyses.10 minutes portions from different time windows along the extinction 779 

protocols (Session 4 for action A and Session 8 for action B) were chosen. Early maintenance 780 

(M1) starts from the first instance of target action performance in the session. Late maintenance 781 

(M2) is the portion preceding the first performance of target upon extinction. Early extinction 782 

(E1) begins at the first instance of target performance upon extinction. Late extinction (E3) is the 783 

portion preceding the first performance of target upon re-acquisition. Mid extinction (E2) begins 784 

at the midpoint between the starts of E1 and E3. Early re-acquisition (R1) starts at the first 785 

performance of target upon re-acquisition condition. Late re-acquisition (R2) is the final portion 786 

of the extinction protocol.   787 

 788 

Action burstiness analysis. To evaluate action burstiness, or dispersion, we used Fano factor 789 

(variance/mean) as a measure. A survey of moving mean frequencies of reinforced actions across 790 

animals suggest that actions are more dispersed during the extinction phase, but the timescale 791 

with which this may occur is variable. To identify a suitable timescale to detect dispersion across 792 

reinforced actions, we screened a range of window sizes (600 ms to 5 minutes windows in 600 793 

ms steps) with which to calculate moving window frequencies, and then calculate Fano factor in 794 

varying time segments. We chose a moving window of 15 seconds (50 x 300 ms action units) to 795 

construct moving mean frequencies. This window size consistently gave decreased Fano factor 796 

in baseline vs. maintenance session across animal, a result that would be expected as 797 

reinforcement led to stable target action performance.  798 

 799 
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Single action reinforcement, inter-target, and inter-action interval analyses. To quantity 800 

inter-target action intervals, the median amount of time that transpired between the start of 801 

successive target actions over the course of a time window was calculated. The time periods 802 

analyzed were: 1.) Baseline from the start of Day 1 (Sessions 1 and 5 for action A and B, 803 

respectively) until the first reinforcement event. 2-4.) Days 1 to 3 reinforcement. For 804 

reinforcement periods, behavior from the start of the first reinforcement event of that session 805 

until the end of session were analyzed. We considered the possibility that including the time 806 

interval between consecutive repeating of target actions (resulting in an inter-target action 807 

interval of 300 ms) would greatly affect the result. To test this, we removed values collected 808 

from consecutively repeating target actions. However, this did not affect result interpretations. 809 

Thus, we included intervals from consecutively repeating target actions in the presented 810 

analyses. For single action reinforcement, the median amount of time between the closest 811 

occurring action of interest and target action was calculated for both pre-target and post-target 812 

intervals.  813 

 814 

Multinomial logistic regression predicting action dynamic types. To test whether intrinsic 815 

and baseline action properties are predictive of classifiable action dynamics during single action 816 

reinforcement from naïve state, two factors were considered. The factors are Earth Mover’s 817 

Distance (EMD) similarity of action to target and median time interval of closest action of 818 

interest prior to target appearance at baseline condition. 819 

  820 

To perform multinomial logistic regression, data from both dependent variables were log-821 

transformed after addition of a constant value of 1. Transformed data were tested for collinearity 822 
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by examining scatter plots, Pearson’s correlation coefficients, Variance Inflation Factors (VIF) 823 

and condition indices. The two variables showed some correlation, but the coefficient value was 824 

not above typical thresholds40,41 and direct collinearity diagnostics did not show significant 825 

collinearity (Pearson’s correlation: 0.67 < 0.840, VIFs: 1.82 < 5-1042, condition indices: 6.6 < 10-826 

3043). Multinomial logistic regression was performed using MATLAB functions mnrfit and 827 

mnrval. Non-Target A actions from all animals from reinforcement of action A were included 828 

except those whose reinforcement dynamics were previously classified as “Other” types (n = 30 829 

actions from a total of 514 actions, 15 ChR2-YFP animals). Decreasing dynamics type actions 830 

were used as the reference group. Model accuracies were assessed using a 20-repeat, 10-fold 831 

cross-validation approach for a total of 200 unique models for Real data, and 10,000 unique 832 

models from 50 shuffled datasets.  833 

 834 

To evaluate multinomial logistic regression, the deviance measure was used to judge model 835 

fitting. Model performances were judged by area under precision-recall curve as this criterion is 836 

suitable for imbalanced categories in the data35. A model containing both dependent variables 837 

was found to outperform that of any single variable, even after consideration for penalties for an 838 

extra factor (Akaike Information Criterion). The lack of significant collinearity between 839 

dependent variables was supported by the stability of two relevant parameters, beta-coefficient 840 

directions and significant p-values, across 200 cross-validation models and single- and double-841 

factor regression conditions (See Supplementary Information for tables).  842 

 843 

Dopamine retrospective window analysis. To analyze whether DA reinforces actions proximal 844 

to target, baseline rates of action transitions occurring close to reinforced action were examined. 845 
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First, a matrix tabulating 300 ms action counts from 2.4 seconds before to 2.4 seconds after each 846 

theoretical target-triggered laser stimulation (600 ms in length) during baseline condition was 847 

constructed. Next, all possible 600 ms action transitions (ex. XàY) for each animal were then 848 

counted using the above matrix, resulting in an action transition type (row) vs. time bin (column) 849 

matrix where the counts of each action transition type occurring in specific 600 ms transition 850 

windows (ex. XàY) were recorded (sum across rows). This will be called the count matrix. 851 

Next, the relative enrichment of each action transition type in a specific transition window 852 

against all transition windows was calculated by dividing the action transition count matrix by 853 

the total number of action transitions per type (probability across rows). Next, action transition 854 

probability within a sliding 1.2 second transition window (containing a total of three action 855 

transitions) relative to surrounding temporal environment (3.6 seconds) was derived by 856 

subtracting the total number of action transitions per type within the surrounding 3.6 second 857 

window from the total number of action transitions per type within the 1.2 second sliding 858 

window of interest. This will be called the differential probability matrix. Next, action transition 859 

types that showed greater than a threshold of 0.001 relative probability within sliding 1.2 second 860 

windows of interest over the corresponding surrounding windows were filtered and kept for the 861 

next step. Next, for each sliding 1.2 second window, the count matrix from above was analyzed 862 

to select for action transition types that occurred between 2 to 6 times during the 30 minutes 863 

baseline period (0.067 to 0.2 action transitions per minute). The count range was chosen to filter 864 

out single events while selecting for action transitions with low initial frequencies over the 865 

baseline period and analysis time range. Since the range of probabilities of specific action 866 

transition types could vary greatly between different sliding 1.2 second windows, filtering as 867 

above also balances the distribution of action transition probabilities amongst all action transition 868 
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types analyzed across sliding 1.2 second transition windows. The above process results in a list 869 

of action transition types enriched for each sliding 1.2 second transition window, and baseline 870 

normalized frequencies of these action transition types upon reinforcement in subsequent 871 

sessions were calculated. Note that baseline normalized frequencies were calculated from all 872 

occurrences of specific action transition types, regardless of their time distance in relationship to 873 

target occurrence. Baseline normalized frequencies of individual action transition types were 874 

averaged within animals and the means between animals are averaged to produce animal-875 

balanced results. Identical data trends and conclusions could be reached even if baseline 876 

normalized frequencies of all action transitions were used for analyses. 877 

 878 

Two action sequence experiment analyses.  Two action sequence frequency was quantified in 879 

terms of laser triggers per minutes. To assess learning across animals, the baseline frequency was 880 

subtracted from frequencies of all reinforcement sessions. A criterion baseline subtracted 881 

frequency of 3.2 triggers per minute was set after considering the range of baseline subtracted 882 

frequencies observed in the open field and reinforcement sessions all animals. The criterion is set 883 

such that it is > 20 % above the highest baseline-subtracted frequency value seen at open field 884 

condition. The criterion point consistently falls above the open field frequencies of all animals 885 

and marks the rising phase of all reinforcement frequency curves. 886 

 887 

T1àT2 intervals were quantified as the time distance between the end of the latest distal action 888 

(T1) and the end of the proximal action (T2) that triggers laser. T2àT1 intervals were quantified 889 

as the time distance between the end of T2 that triggers laser and the end of the next closest T1. 890 
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To produce equivalent measures in open field and baseline conditions, laser trigger events were 891 

simulated by scanning across the data as if reinforcement was available. 892 

 893 

Significance testing was performed on 14 of 15 ChR2-YFP animals that reached criterion 894 

frequency (ChR2-YFP Criterion). The lone animal that did not reach criterion frequency was 895 

removed because the T1àT2 median interval was still very high after session 10. This animal 896 

was subsequently subjected to single action reinforcement protocol to assess its ability to learn 897 

T1 and subsequently T2. Next, the animal was again subjected to T1àT2 reinforcement 898 

protocol. These results indicate that this animal was capable of action learning for both T1 and 899 

T2 separately, and for T1àT2 sequence after learning of each individual action. 900 

 901 

Reinforcement sessions for the 14 ChR2-YFP animals that reached beyond criterion frequency 902 

continued until the T1àT2 interval has been decreased to below at least a median of 2 seconds. 903 

As YFP animals do not decrease the T1àT2 median interval over sessions, we stopped 904 

reinforcement at session 20. 905 

 906 

Two action sequence extinction. Extinction session begins with a 25-minute maintenance 907 

period for two action-sequence reinforcement, followed by a 40-minute extinction period when 908 

laser was inactive, followed by a 25-minute re-acquisition period whereby reinforcement was 909 

made available again. To quantify performance for plotting, frequency was calculated over 5 910 

minutes bins and then normalized to the last 5 minutes bin of the maintenance condition. For 911 

significant testing, raw frequencies were analyzed at the last 5 minutes of maintenance, 912 

extinction, and re-acquisition conditions. 913 
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 914 

Two action sequence refinement. To measure refinement for T1 and T2 in the two-action 915 

sequence, actions that were uniquely related to one but not the other were identified. Actions 916 

performed by each animal in their open field repertoires were ranked by their EMD similarity 917 

scores to T1 or T2. The top-12 actions (within action repertoires ranging between 30-40 actions) 918 

most similar to either T1 or T2 were identified. Actions common to both T1 and T2 in these lists 919 

were removed, leaving actions uniquely similar to T1 or T2. We required at least 3 non-target 920 

actions to be uniquely related to each of T1 and T2. One of the animals did not meet this 921 

requirement, because less than 3 actions were uniquely similar to each of T1 and T2 when 922 

considering the top-12 actions related to T1 or T2. For this animal, we relaxed the stringency by 923 

considering actions that uniquely belong as the top-9 actions most similar to either T1 or T2. We 924 

took the median target-normalized frequency of these uniquely similar actions to T1 or T2 as the 925 

refinement index. A refinement index of above or around 1 indicates little to no refinement of 926 

uniquely related actions to target. Refinement index below 1 indicates refinement relative to 927 

target; the lower the score the more refinement. Refinement curves were smoothened using the 928 

Savitzky-Golay filter to improve visualization of trends. To better compare the progress of 929 

refinement between T1- and T2-related actions, refinement indices were scaled such that the 930 

minimum value amongst all sessions for individual animals would be zero and target-normalized 931 

median frequency of 1 would remain at a scaled value of 1.  932 

 933 

Relationship between T1àT2 interval and sessions to criterion frequency. To describe the 934 

trend in a T1àT2 interval vs. sessions to criterion frequency scatter plot, non-linear sigmoidal fit 935 

was tested against a 4th order polynomial fit. A linear fit was also tested. Sigmoidal fitting gave 936 
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the best result. The same fitting was tested for T2 à T1 interval vs. sessions to criterion 937 

frequency, but the fit was poor and midpoint was unstable. For the T1àT2 sigmoidal curve, 938 

half-maximum was 2.59 sessions to criterion frequency and midpoint was 4.69 seconds of open 939 

field median interval. The half-maximum value was used to divide ChR2-YFP animals into slow 940 

(above half-max) and fast (below half-max) learners. 941 

 942 

Differential refinement analyses. The difference in area between T1 and T2 scaled refinement 943 

curves over sessions was used to assess the relative refinement status between T1 and T2 over 944 

sequence learning. The difference in areas were summed up using the trapezoid method across 945 

sessions until the session when both T1 and T2 has or had reached minimal scaled refinement. 946 

Next, the relationship between open field median interval and average difference in area under 947 

T1 – T2 refinement curves per session was tested. Linear regression proved most suitable for 948 

fitting (Goodness-of-fit: R2 = 0.66). The fit for T1àT2 linear line was y = 0.1893x – 0.7050. 949 

Slope was significantly non-zero (p = 0.0004). The same fitting was tested for T2 à T1 interval 950 

vs. difference in area under T1 – T2 refinement curves per session (y = 0.00736x + 0.1356), but 951 

the fit was poor, and goodness of fit was low (Goodness-of-fit: R2 = 0.07). The slope was not 952 

significantly non-zero (p = 0.7063).  953 

 954 

Starting Point identification for evaluating progression of differential T1/T2 refinement. To 955 

more precisely examine whether proximal action (T2) refinement precedes that of distal action 956 

(T1) in Slow Learners, it was important to consider refinement progression of T1 relative to T2. 957 

To rule out any bias towards proximal refinement because of initial bias towards proximal T2 958 

refinement, a specific session was chosen as a Starting Point for analysis for each animal. This 959 
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Starting Point is defined by an early session in which T1 and T2 were relatively similar in 960 

refinement levels or when the distal action T1 was more refined than proximal T2. To identify 961 

these Starting Points, a scan was made retrospective from the session for which the T1àT2 time 962 

interval is close to final value (less than or equal to a median of 3 seconds). Using this approach, 963 

we identified earlier sessions in which distal T1 refinement was equal to or greater than proximal 964 

T2 (T2 – T1 refinement curve area less than or equal to 0). The latest such session was set as the 965 

Starting Point for analysis. If at no point early in learning did an animal have a session where 966 

proximal (T1) action is most refined relative to distal (T2) action, an early session of closest T1 967 

and T2 refinement was used as the Starting Point. The initial T2-T1 refinement curve area 968 

difference calculated from the Starting Point to next session was subtracted from all T2-T1 area 969 

differences calculated in subsequent sessions. This value is called the Starting Point subtracted 970 

refinement difference. This made it possible to clearly track the change in relative refinement of 971 

distal(T1) vs. proximal(T2) actions over time (Values above zero indicate T2>T1 refinement, 972 

and values below zero indicate T1>T2 refinement). To identify the Turning Points for each 973 

animal, sessions carrying the local maximum value of the Starting Point subtracted refinement 974 

difference were identified for each animal. To calculate Starting Point subtracted refinement, 975 

scaled refinement values from sessions of interest were subtracted from that of the Starting Point 976 

session defined above. 977 

 978 

Odds ratio analysis. For odds ratio calculation, the total amount of open field à Turning Point 979 

session (second of two consecutive sessions used to calculate the refinement difference at 980 

Turning Point as mentioned above) and Turning Point à session of criterion frequency median 981 

interval changes were summed up for T1àT2 and T2àT1 intervals, respectively. Next, the 982 
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proportion of total interval change stemming from the open field conditionàTurning Point 983 

period, and from Turning Pointàsession reaching criterion frequency period, were calculated. 984 

Next, the proportion of open fieldàTurning Point interval change was divided by the proportion 985 

of Turning Point à session reaching criterion frequency period interval change for T1àT2 and 986 

T2àT1 interval types, respectively. This gives the odds ratio.  987 

 988 

T1 probability rank and refinement change across time bins from T2 trigger. For every 989 

actual or simulated trigger for T1àT2 performance, the first occurrences of every action before 990 

or after T2 triggers were counted at specific 300 ms time bins for up to 6 seconds before and 991 

after T2 trigger. This was done for the specific conditions of baseline, Starting Point, Turning 992 

Point, session passing criterion frequency, and last session. The probability of an action 993 

occurring at a specific 300 ms time bin was calculated for all actions in the repertoire, and the 994 

values were used to determine probability rank in terms of percentiles (100 percentile is most 995 

probable action relative to all actions at a specific 300 ms time bin). To assess total T1 996 

probability rank change within 0.3-1.8 or 2.1-3.6 second time bins, the area under the curve was 997 

determined and values were normalized by subtraction from each animal’s corresponding 998 

baseline values. Refinement change was calculated by first taking the median probability rank of 999 

actions most uniquely related to T1 at varying time distances before or after T2 trigger. This 1000 

value is then normalized by T1 probability rank to arrive at a refinement index. The area under 1001 

the curve was determined and values were normalized by subtraction from each animal’s 1002 

corresponding baseline values. Decreasing values from Starting Point indicate increasing 1003 

refinement. 1004 

 1005 
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Statistical Analysis: 1006 

Standard statistical analyses were performed on Prism (GraphPad Software, Inc.) and 1007 

permutation/bootstrap analyses were performed on MATLAB (MathWorks Inc.). To determine 1008 

appropriate tests for comparisons, datasets were assessed for normality using Anderson-Darling, 1009 

D’Agostino & Pearson, Shapiro-Wilk and/or Kolmogorov-Smirnov tests whenever applicable. 1010 

Datasets were also visualized for normality using QQ plots and assessed for equal variance by 1011 

examining the Residual plot (Residuals vs. Predicted Y). Parametric or non-parametric tests were 1012 

chosen based on the combination of these analyses. Data were transformed logarithmically (with 1013 

or without addition of a constant prior to transformation) whenever it was appropriate to promote 1014 

normality and equal variance. Unless specified, sphericity was not assumed, and Geisser-1015 

Greenhouse correction was applied in all ANOVA tests. The appropriate post hoc multiple 1016 

comparisons tests were applied to compare between the means of specific conditions wherever 1017 

applicable. Significance was set at alpha  = 0.05. For bootstrap analysis, significance was 1018 

determined by asking whether the original target action mean Fano factor was greater or less 1019 

than the 95% confidence interval of the bootstrap distribution.  Permutation test was applied in 1020 

the comparisons between regression models because of the large sample size discrepancy 1021 

between groups. Bonferroni p adjustment was used to account for multiple comparisons in this 1022 

case. For detailed description of statistical procedures please refer to Supplementary Information. 1023 

 1024 

 1025 

 1026 

 1027 

 1028 
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Figures and Figure Legends:  

 

Fig. 1. Learning of a single action from the naïve state as mediated by closed loop 

optogenetics. a, Injection scheme. b, Wireless inertial sensor. c, Sensor data processing. d, Open 

field behavioral clustering and action reinforcement. e, Closed loop schematic. f, Dopamine release 

in dorsal and ventral striatum (n = 70 sucrose rewards, 2 ChR2-YFP mice; n = 66 and 65 random 
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stimulations, 2 ChR2-YFP and 2 YFP animals, respectively). Plots were mean, S.E.M. g. Action A 

exemplar locations in behavioral space. h-m, ChR2-dependent reinforcement of Action A (n = 15 

ChR2-YFP animals (green). n = 10 YFP animals (grey)). Plots were mean, S.E.M. h, Left: Head-

mount setup. Right: Light green/grey lines represent individual ChR2-YFP/YFP animals, 

respectively. i, Rapid increase in target action performance in response to close-loop 

reinforcements. Significant Time x Group Interactions (Supplementary Information). Plots were 

mean, S.E.M.  j, Evolution of pooled behavior repertoire (n = 509 actions, ChR2-YFP mice) across 

learning. k, Early/Late cross-sectional views of (j) (Early: baseline normalized frequency >1, green 

circles,  < 1, magenta triangles). Blue dashed lines - single phase log decay fits. Bottom inset graph 

shows Early/Late fitted lines normalized to 1 at EMD=0.  l, Raw frequencies across learning and 

target similarity percentile groups. Plots were mean, S.E.M. Two-way mixed effects statistics in 

Supplementary Information. m, Pie chart summarizing distribution of actions according to their 

dynamics within reinforced Action A (left) or other actions (right).  Asterisks: **** p < 0.0001. *** 

p < 0.001.  ** p < 0.01. * p < 0.05. n.s. – not significant. See Supplementary Information for 

statistical/sample details. 
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Figure 2. Transitioning from learned action to reinforcing new action. a-j, Animals reinforcing 

for Action A (n = 15 ChR2-YFP) to Action B (n = 13 of 15 ChR2-YFP). n = 10 YFP animals. a. 

Action A and B exemplar locations in behavioral space. b, Action similarity comparisons (A vs. B; 

n = 15/10, ChR2-YFP/YFP; All vs. A; n = 514/356, ChR2-YFP/YFP) or Action B (All vs. B; n = 

443/356, ChR2YFP/YFP). Plot indicates median/interquartile range. c, Reinforcement for Action A 

and B in ChR2-YFP animals. Plot indicates mean/S.E.M. d, Evolution of pooled action repertoire (n 

= 427 ChR2-YFP actions) reinforced for Action B. e, Early/Late cross-sectional views of (d). Blue 

dashed lines indicate fitted decay curve. Bottom inset graph shows normalized Early/Late fitted 
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curves. f, Contingency degradation of Action B. Target random laser triggers frequencies (bottom) 

is based on initial Action B performance prior to contingency degradation. Plots indicate 

mean/S.E.M. g-j, Action A (blue) induced by reinforcement for Action B in experienced ChR2-YFP 

animals. g-h, Moving mean frequencies over reinforcement for Action A or B. Dashed, vertical line 

mark first reinforcement. Plots are mean/S.E.M (colored fill). Bin1/Bin2 are time bins for (i-j). i-j, 

Frequency measures within time bins noted in (g,h). Repeated measures two-way ANOVA reveal 

significant difference across time and actions A/B frequencies (not shown). Šidák’s post hoc 

comparisons. Asterisks except in (h): **** p < 0.0001. ** p < 0.01. * p < 0.05. n.s. – not 

significant. See Supplementary Information for statistical/sample details. 
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Figure 3. Dopamine mediates retrospective reinforcement of freely moving behavior. a-b, 

ChR2-dependent reinforcement decrease inter-action intervals for Action A (n = 15 ChR2-YFP) and 

B (n = 13 of 15 ChR2-YFP). n = 10 YFP animals. Plots are mean/S.E.M (a-b). Significant 

difference across time and ChR2-YFP/YFP (Mixed Effect Model. Action A: F(3,69) = 72.26, p < 

0.0001. Action B: F(3,62) = 33.78, p < 0.0001.) b, Post-hoc Tukey’s multiple comparisons of (a). c-

d, Distribution of action dynamic types (n = 464 actions, 15 ChR2-YFP animals) according to target 

similarity (c,d), median time to target (c,e). d-e, Violin plots show median/quartiles. Two-tailed 

permutation tests with Bonferroni-adjusted p-values. f-g, Multinomial logistic regression of all 

factor combinations in Real data (200 models) versus Shuffled data (10,000 models). f. Groups 

differ across combinations (repeated measures, two-way ANOVA. F(2,30594) = 518.2, p < 
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0.0001.). Post-hoc Dunnett multiple comparisons. Plots are mean/std. g, Performance of double-

factor regression model measured with area under the precision-recall curves (AUPRC). Two-tailed 

permutation test with Bonferroni-adjusted p-value. Plots are mean/S.E.M. h, Identifying moving 

window-enriched action transitions.  i. ChR2-dependent reinforcement for Action A increases 

action transitions prior to and within stimulation window. Plots indicate mean/S.E.M.  j, 

Quantification of (i). Significant difference across time and Retrospective/Forward reinforcement 

directions (Mixed Effect Modeling. ChR2-YFP Session1: F(6,168) = 114.8, p < 0.0001. ChR2-YFP 

Session 3: F(6,168) = 46.62, p < 0.0001, YFP Session1: F(6,108) = 10.52, p < 0.0001. YFP Session 

3: F(6,168) = 0.8992, p = 0.4984). Post-hoc Šidák multiple comparisons.  **** p < 0.0001, *** p < 

0.001, ** p < 0.01, * p < 0.05, n.s. – not significant. See Supplementary Information for 

statistical/sample details. 
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Figure 4. Relationship between pre-reinforcement inter-action intervals and learning of a two-

action sequence.  a, Schema. b-l, n = 15 (b,d,h) or 14 (e-g,i-l) ChR2-YFP, 6 YFP animals.  

Repeated measures one-way ANOVA, post hoc Šidák tests applied in (e,g,i,k). Plots of individuals 

in (d-e). b, ChR2-dependent increase in T1àT2 triggers (no laser during open field / baseline). c, 

Open field inter-action intervals of T1/T2 pairs chosen. Same color codes in (d,h). d, Individual 

learning curves labeled by color codes in (c). e, Frequency changes over conditions 

(F(1.911,24.85)=51.02, p<0.0001). f-g, Extinction of T1àT2 sequence (ChR2-YFP). f, Plot shows 

mean(black)/S.E.M.(orange fill)/individuals(grey). g, Frequency changes over extinction conditions 

(F(1.073, 12.87) = 52.96, p<0.0001). h-i, ChR2-dependent decrease in T1àT2 intervals. (F(1.377, 

17.90) = 35.95, p<0.0001) (i). j, T2:T1 frequency ratios (ChR2-YFP) k, Target refinement shown 

by median target normalized frequencies of related actions. (T1: F(1.237, 16.08) = 43.38. T2: 
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F(1.171, 15.22) = 48.74. Both p<0.0001). Individual color code as in (c,g). l, Sigmoidal relationship 

between open field T1àT2 interval and sessions to criterion frequency.  
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Figure 5. Behavioral process underlying learning of a two action sequence. n =14 ChR2-YFP (7 

Slow Learners). a, T1/T2 refinements in two ChR2-YFP individuals. b, Linear relationship between 

initial T1àT2 interval and differential T1-T2 refinement. Non-zero slope significance: T1àT2, p = 

0.0004, T2àT1, p = 0.7063. c, Progression of differential T1-T2 refinement from Starting Point in 

Individual Slow Learners. d, T1àT2 interval significantly decreased by Turning Point in Slow 
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Learners. Repeated-measures 2-way ANOVA. Post hoc Tukey’s test. e, Odds ratio of T1àT2 / 

T2àT1 interval changes. Paired Wilcoxon test (p = 0.0312, n = 7 animals). f, Preferential 

refinement of T2 relative to T1 by Turning Point in Slow Learners. Raw scaled refinement indices. 

Repeated measures, mixed effects model. Significant main effects. Time (F (2.184, 26.20) = 54.21, 

p < 0.0001). Post-hoc Šidák test. g, First occurrences of T1 before (left) and after (right) T2 triggers 

across learning stages. h, Quantification of pooled time bins from (g). Repeated measures, 2-way 

ANOVA for learning stage vs. rank change. First T1 Before and After T2 Trigger groups differ 

across learning stage and total T1 rank change. (Proximal bins (0.3-1.8 sec): F(3,36) = 3.126. 

p=0.0376. Distal bins (2.1 to 3.6 sec): F(3,36) = 7.701. p<0.001). Post-hoc Šidák relative to Starting 

Point values. g, Model for learning initially distantly separated T1àT2 sequences. Time not drawn 

to scale. **** p < 0.0001. *** p < 0.001. ** p < 0.01. * p < 0.05. n.s. – not significant. All bar plots 

indicate mean +/- S.E.M. See Supplementary Information for statistical/sample details. 
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