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Abstract

Foraging animals must use decision-making strategies that dynamically adapt to the changing
availability of rewards in the environment. A wide diversity of animals do this by distributing their
choices in proportion to the rewards received from each option, Herrnstein’s operant matching
law. Theoretical work suggests an elegant mechanistic explanation for this ubiquitous behavior,
as operant matching follows automatically from simple synaptic plasticity rules acting within
behaviorally relevant neural circuits. However, no past work has mapped operant matching onto
plasticity mechanisms in the brain, leaving the biological relevance of the theory unclear. Here
we discovered operant matching in Drosophila and showed that it requires synaptic plasticity
that acts in the mushroom body and incorporates the expectation of reward. We began by
developing a novel behavioral paradigm to measure choices from individual flies as they learn to
associate odor cues with probabilistic rewards. We then built a model of the fly mushroom body
to explain each fly’'s sequential choice behavior using a family of biologically-realistic synaptic
plasticity rules. As predicted by past theoretical work, we found that synaptic plasticity rules
could explain fly matching behavior by incorporating stimulus expectations, reward
expectations, or both. However, by optogenetically bypassing the representation of reward
expectation, we abolished matching behavior and showed that the plasticity rule must
specifically incorporate reward expectations. Altogether, these results reveal the first synaptic
level mechanisms of operant matching and provide compelling evidence for the role of reward
expectation signals in the fly brain.

Introduction

An animal’s survival depends on its ability to adaptively forage between multiple potentially
rewarding options(1, 2). To guide these foraging decisions appropriately, animals learn
associations between options and rewards(3-5). Learning these associations in natural
environments is complicated by the uncertainty of rewards, and both vertebrates and
invertebrates employ decision-making strategies that account for this uncertainty (6—18). A
commonly observed strategy across the animal kingdom is to divide choices between options in
proportion to the rewards received from each(9-19). It has been hypothesized that animals that
use this operant matching strategy make use of the expectation of reward — the
recency-weighted rolling average over past rewards - to learn option-reward
associations(18-20). Many studies further posit that this learning involves synaptic plasticity
(21-23), and theoretical work has identified a characteristic relationship between operant
matching and a specific form of expectation-based plasticity rule that incorporates the
covariance between reward and neural activity(24—26). Despite this strong link between
plasticity rules and the matching strategy, there has been no mapping of these rules onto
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particular synapses or plasticity mechanisms in any animal. As a result, deeply investigating
these theories by manipulating and testing the nature of plasticity rules underlying operant
matching has been intractable.

The fruit fly, Drosophila melanogaster, offers a promising system within which to address these
challenges. Over the last half century, researchers have shown that flies can learn a wide
variety of Pavlovian associations between cues and rewards(27-38). With the help of advances
in functional and anatomical tools(39-45), they have identified the mushroom body (MB) as the
neural substrate for these learning processes, including the assignment of value to sensory
cues, and the underlying plasticity mechanisms have been extensively characterized(46-62).
Recent theoretical work has also attempted to formalize the features of the learning rule that is
mediated by these plasticity mechanisms(63-67). Despite this progress, evidence has been
mixed as to whether this learning rule makes use of reward expectations(68—72), and there is a
dearth of understanding about how flies learn in natural environments (but see (73, 74)).
Studying foraging behaviors would allow us to not only clarify these gaps in the understanding
of fly learning but could also provide an insightful framework for testing the neural computations
underlying decision-making strategies such as matching.

Leveraging this foraging framework in flies requires us to address several open questions. First,
animals in real foraging scenarios have to be able to form associations between multiple
different options and rewards, yet evidence in flies suggests that some associations are labile
and easily overwritten(34). Second, choice behavior has rarely been investigated at the
individual fly level(74—76), and never in the context of flies making repeated choices between
two probabilistically rewarding options. Whether flies can learn associations between options
and probabilistic rewards and if so what behavioral strategies they use as a result, including
whether they exhibit matching behavior, is therefore unknown. Finally, it is unknown whether
they can integrate probabilistic reward events over multiple past experiences to form analog
expectations. Even if such analog expectations can be formed, it is unclear if they lead to
matching behavior through covariance-based plasticity in the fly brain.

We answered these questions using a novel olfactory two-alternative forced choice (2-AFC) task
built for individual Drosophila. The assay allows us to measure hundreds of sequential choices
from flies as we vary the probability of reward associated with two different odor cues. We found
that flies can indeed learn multiple simultaneous associations between cues and probabilistic
rewards, and this learning depended on the MB. We then designed a dynamic foraging
paradigm inspired by mammalian tasks(14, 15, 18, 19) where reward probabilities associated
with each odor change over blocks of many trials. We found that flies are able to keep track of
these changing probabilities over time and adjust their behavior accordingly. We specifically
showed that flies display operant matching behavior, and our analyses indicate that they do so
by integrating information about reward and choice over multiple trials in the recent past. To test
if this observed matching behavior requires particular types of plasticity rules we developed a
MB-inspired model that generated de novo simulated behavior and found that matching was
only observed if covariance-based plasticity rules that incorporated sensory expectation, reward
expectation or both were utilized. Additionally, we restructured this model to predict fly behavior
in our task and found that covariance-based rules better explained behavior than a simple rule
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that does not include expectation terms. We then directly demonstrated the requirement of a
covariance-based plasticity rule that specifically incorporates reward expectation with
experiments where we bypass computation of reward expectation by training animals with direct
activation of dopaminergic neurons that drive plasticity. The behavior resulting from these
bypass experiments were better explained by the simple plasticity rule that does not include
expectation terms. Together these results offer the first synaptic level mapping and manipulation
of learning rules underlying operant matching and provide compelling evidence for the role of
reward expectation signals in the fly brain.

Results
Flies can learn multiple probabilistic cue-reward associations

We designed a Y-arena to study the decision-making strategies of individual flies when faced
with probabilistically rewarding cues (Fig. 1A; Methods; Supp. Info. 1). The design of this assay
was inspired by an earlier behavior assay for flies(77—81) and foraging related 2AFC tasks in
vertebrates(13-15, 18). In our Y-arena, a single fly begins a trial in an arm filled with clean air
and can choose between two odor cues that are randomly assigned to the other two arms (see
Supp. Fig. 1A for estimates of odor boundaries). The fly can freely move between arms, with a
choice defined as the fly crossing into the reward zone at the end of the arm (Fig. 1A). Once a
choice is made, we provide reward by optogenetically activating sugar-sensing neurons using a
Gr64f driver(82—-84). The Y-arena then resets, with the arm chosen by the fly filled with clean air
and the other two arms randomly filled with the two odors. This task design permits us to
precisely control reward delivery without satiating the fly, and enables us to monitor the choices
of a single fly over hundreds of trials.

We first established that flies learn effectively in this apparatus by reliably rewarding flies only
when they chose one of the odors - what we term a 100:0 protocol. Each fly first experienced
the two odors (3-octanol; OCT and 4-methylcyclohexanol; MCH) unrewarded for a block of 60
trials, and then reward delivery was activated for the following block of 60 trials. As observed
previously, although individual flies exhibited different odor biases in this naive phase(75, 76,
85), those biases averaged out over the population (Fig. 1B + inset). In this phase, Flies spent
a lot of time in the air arm and made variable choices, with little preference for either odor (Fig.
1C left, example fly). Once reward was made available, flies rapidly shifted to choosing the
rewarded odor (Fig 1B). This was accompanied by a faster interval between choices (Supp.
Fig. 1B), and a decrease in meandering trajectories (Fig. 1C).

To analyze this choice behavior at a more elemental level , we adopted the common framework
of considering foraging choices as a series of accept-reject decisions, where the animal decides
whether or not to pursue an option(86). We defined reject decisions as when a fly enters an
odorized arm but turns around and exits the arm before reaching the reward zone, while accept
decisions reflect cases where the fly reaches the reward zone (see Methods). Associating
options with rewards changed the probability of accept decisions gradually over the course of a
block. Acceptance probability increased for the rewarded odor and decreased for the
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unrewarded odor (Fig. 1D, Supp. Fig. 1E). On average, flies were around four times more likely
to reject the unrewarded odor and seven times more likely to accept the rewarded odor (Supp.
Fig. 1D). Interestingly, flies tended to reject odors quite close to the tip of the arm (Supp. Fig.
1F), suggesting that flies might accumulate evidence over time to make and commit to their
decision — an aspect of fly behavior that has previously been studied(87). These results indicate
that fly choice behavior in this task can be thought of as a series of accept-reject decisions.

We found that the odor-reward associations learnt by flies in our assay were MB dependent.
Learning-related plasticity in the MB circuit requires the activity of dopaminergic neurons (DANs)
(33, 34, 51, 55-58, 60, 88). Dopamine is sensed by odor-representing Kenyon cells (KCs) and
induces synaptic plasticity between these KCs and downstream mushroom body output neurons
(MBONSs)(33, 55, 57). To interfere with this plasticity, we used a tissue-specific CRISPR
knock-out strategy(89) to knock out DopR1 receptors selectively in the KCs (Methods), which
are necessary for flies to associate odors with rewards in other paradigms(60). These flies
showed no detectable learning in the 100:0 protocol, compared to control animals (Fig. 1E).
These findings establish that odor-reward associations in our novel behavioral essay are
mediated by MB plasticity.

We then asked whether flies could link odor cues with probabilistic rewards and distinguish
between different reward probabilities, a key aspect of natural foraging. Importantly, we
incorporated reward baiting into our probabilistic reward tasks(15, 18). This means that rewards
probabilistically become available and then persist until the reward is collected (Methods).
Baiting is commonly used in mammalian 2AFC tasks, as it is thought to mimic the natural
processes of resource depletion and replenishment over time. We began with experiments in
which a single odor was rewarded with a range of probabilities: 1, 0.8 or 0.4. Flies showed a
preference towards the rewarded odor in all cases (Fig. 1F). The extent of the preference varied
with the probability of reward - a higher probability of reward led to a stronger preference.
Interestingly, flies made faster choices when rewards were more probable (Supp. Fig. 1C).

These results show that flies can learn from probabilistic rewards but do not determine if they
can store two associations simultaneously - another necessity for foraging. To test this, we
designed a paradigm with a third odor, pentyl acetate (PA) included. This served as the
unrewarded cue while we tested memory formation with the other two odors (Fig. 1G top). Flies
first made 80 unrewarded choices consisting of 40 choices between OCT and PA and 40
choices between MCH and PA. In the next 80 (Training) trials, one of OCT or MCH was
assigned a high reward probability (0.8) and the other a low probability (0.4). We interleaved the
training trials for the two different odors, to ensure both relationships would be learnt
simultaneously. After pairing, flies preferred both rewarded odors over PA (Fig. 1G bottom). This
choice preference was also reflected in their accept/reject behavior, with flies exhibiting a clear
preference for accepting the high-rewarding odor (Supp. Fig 1G right). Interestingly, in trials with
the low-reward cue presented, there was an increased probability of rejecting both rewarded
and unrewarded odors, as compared to naive trials (Supp. Fig. 1G left). This suggests the
possibility that flies keep track of all the odor options potentially available in the environment,
and actually increase their rejection rate in the absence of the high-reward odor.
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Overall, these experiments establish the fly as a capable animal model for studying foraging
behaviors. Individual flies in the Y-arena can learn multiple odor-reward associations and can do
so in the face of probabilistic reward. Importantly, these relationships are mediated by synaptic
plasticity at the KC-MBON synapses in the MB. This establishes a foundation to test how these
animals perform in dynamic foraging tasks, and assess how they respond to reward
probabilities that change over time.

Flies follow Herrnstein’s operant matching law

Foraging tasks are cognitively complex, involving two cues paired with different reward
probabilities that change with time. This requires animals to keep track of choice and reward
history and form expectations to make adaptive choices. We designed our own dynamic
foraging protocol to investigate how flies behave in such a scenario. The protocol consisted of
three consecutive blocks of 80 trials each. Flies made choices between two odors (OCT &
MCH) that were paired with different reward probabilities (Methods). These probabilities
remained fixed within a block and changed across blocks (Fig. 2A, example).

We found that flies exhibit operant matching behavior, similar to observations in monkeys, mice
and honeybees(11, 14, 15, 18). Individual flies exhibited a strong correlation between choice
ratio and reward ratio either calculated over entire blocks or over a short (ten-trial) window, to
capture short-term dynamics/fluctuations (Fig 2A,B - example fly; Supp. Fig. 2 - all 18 flies). This
holds true across flies, as seen in the relationship between block-averaged reward ratios and
their choice ratios (Fig. 2C). In such a plot the matching law predicts that all points will fall along
a line with slope equal to one (the unity line). Flies appear to approximately follow the matching
law with a slight amount of undermatching, signified by a slope less than one. Undermatching is
commonly observed across species(14, 15, 17-19), and several reasons have been suggested
for this tendency(17, 26) (see Discussion).

Past work has suggested that animals form expectations of reward and use this to guide
behavior in such dynamic foraging tasks(17-19, 24). When rewards are delivered
probabilistically, animals can only derive an expectation of reward by tallying information over
multiple trials. However, such tallying could reflect a computation beyond the capabilities of flies.
We wanted to explicitly address the alternative hypothesis that flies follow a simple
win-stay/lose-switch strategy (Supp. Fig. 3A), which would suggest that their behavior is dictated
by only the most recent reward/omission experience. Simulating choice sequences using this
learning rule produced output that qualitatively resembled that of the fly (example in Supp. Fig.
3B). However, it poorly captured the stay/switch probabilities actually observed in fly behavior
data (Fig 2D). In particular, switching occurred much more frequently than predicted. As further
evidence that multiple past outcomes affected behavior, choices of an individual fly at block
transitions showed a lag between the choice ratio curve and the updated reward ratio at
transition points (Fig. 2B), suggesting that the fly takes a few ftrials to adjust its behavior.
Quantifying this across multiple transitions for all flies in the task showed flies require 15-20
trials to reach a new steady state choice behavior following block switches (Fig. 2E). To test the
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role of multiple past trials on present choice more explicitly, we first looked at the decision made
by flies on a given choice as a function of their past choices and outcomes. We focussed on
choices following particular triplets of past experiences, inspired by recent work in mice(8) (Fig.
2F). For example, following three unrewarded choices of one particular odor, flies’ next choice
was roughly random. However, when an odor was rewarded on the most recent trial or more
distant trials, choices were biased towards that option (Fig 2F left). In another comparison, flies’
tendency to switch back to an earlier choice (i.e. choose the green odor after an unrewarded
choice of the orange odor) increased based on how that odor was rewarded in the past (Fig 2F
right).

To measure the relationship between current choice and past outcomes more systematically, we
used logistic regression to determine how a fly’s decisions depended on choice and reward
history. Like other animals(8, 15), flies showed a small amount of habitualness choosing options
that had been recently chosen more often; regression coefficients for a small history of most
recent choices were significantly positive (Fig. 2G bottom). However, more significantly, this
approach showed that the reward history was important for predicting choice, with recent
rewards weighted more than those in the more distant past; regression coefficients for the 15
most recent rewards were significantly non-zero across the population of flies (Fig. 2G top).
Further, we compared regression models that predicted behavior based on different lengths of
outcome histories (15, 7 and 1 trial) and found that the percentage of deviance explained over a
null model with a O-trial history was great for models that used longer outcome histories (Fig.
2H; Methods). An example fit from a regression model with a 15-trial history is shown(Fig. 2I).
Additionally, we fit behavior of individual flies with a leaky integrator model(18) which assigns
value to options using exponentially weighted reward histories (Supp. Fig. 3C-G). This analysis
found that an average exponential timescale of 7 trials was best for predicting behavior (Supp.
Fig. 3D), in agreement with the regression coefficient of rewards 7 trials in the past being about
half the value of the coefficient of the most recent reward in the logistic regression model (Fig.
2G). Both these approaches support the finding that flies integrate several past trials and don't
rely on just the most recently experienced outcome. Together, these results show that flies’
choices follow operant matching, with each choice depending on the history of many past
outcomes.

Covariance-based learning is required for matching behavior in a model of the MB

Theoretical work has placed strong, testable constraints on the nature of learning rules that
could underlie this ubiquitous operant matching strategy. An elegant theory put forward by
Loewenstein and Seung(24) proves that operant matching is the inevitable outcome of synaptic
plasticity rules that modify value-representing synaptic weights according to the covariation of
reward and neural activity. Here covariance is defined by the product of these two variables,
with at least one of these terms being subtracted by its expectation or mean (Supp. Fig. 4A -
box). The steady-state behavior of covariance-based rules provides an intuition for their link to
operant matching(24). For example, consider a rule that only subtracts the reward term by its
reward-expectation(Supp. Fig. 4A - box). If such a rule is at a steady state when animals forage,
which means that synapses on average are not changing anymore, it will require the animals to
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make choices such that the rewards they receive are equal to the reward expectation. This
requirement nicely resonates with the definition of operant matching. By definition, operant
matching is a strategy in which choices are divided between options such that the average
number of rewards received over a given number of trials is the same for both options. Only an
animal that follows operant matching would receive rewards at a rate equal to the reward
expectation for both options, suggesting that the steady state behavior of a covariance-based
rule has to be operant matching. Loewenstein and Seung mathematically formalized this
intuition and further showed that operant matching can only arise from covariance-based rules
when synaptic plasticity is involved.

Loewenstein & Seung used a simple neural circuit model to illustrate their theory (Supp. Fig.
4A). In this toy-model choice options were signaled by two sensory neurons, which synapse
onto two motor neurons to drive two different actions. The value associated with each option is
represented in the weight of those synapses, and the outcome of a decision is based on a
winner-take-all interaction between the motor neurons - whichever is strongest dictates the
decision. We simulated this model circuit and confirmed that operant matching only arises when
synaptic weights are updated according to covariance-based rules (Supp. Fig. 4B-E).
Interestingly, the structure of this model maps nicely onto the circuitry of the fly MB (Fig. 3A).
The odor choices are represented by the KCs, each odor activating a sparse subset of the KC
population(90-93). KCs synapse onto MBONs, which guide action by signaling the valence of
an odor i.e. it's attractive/repulsive quality, rather than a specific action(31, 56, 62). KC-MBON
synapses are modified by a plasticity rule that depends on the coincident activity of
odor-representing KCs and release of dopamine by reward-signaling DANs (33, 34, 51, 55-58,
60, 88, 94) (Fig. 3A - box). Current evidence indicates that post-synaptic activity of the MBON
does not play a role in the plasticity (47), so only the covariance between sensory and reward
activity needs to be considered.

This overall structure aligns reasonably well with the toy-model, however there are differences
both at the level of the MB circuitry and the structure of our task. While the theory of L&S is
incredibly general and makes very limited assumptions about the nature of any potential
underlying neural circuitry, we wanted to ensure that incorporating the biological realities of MB
circuit architecture does not affect the relationship between covariance-based rules and
matching. First, rather than having two input neurons, odors are represented by noisy
populations of KCs. We thus parameterized input representation in the model to incorporate
noise and overlap of KC subsets between options (Fig. 3B-1; Methods). Further, flies only
experience one odor at a time in our task. Therefore only one of the inputs (and resulting
overlap in the other input) to the model agent were active at any time (Fig. 3B-1, 3B-4).
Secondly, plasticity between MBONs and KCs are modified by a synaptic depression rule(55,
56). We thus flipped the sign of the weight update rule to produce depression from positive
covariance signals (Fig. 3B-2). Finally, output in the MB is driven by the MBONs, whose
activities determine whether flies accept or reject an odor rather than a winner-take-all choice
mechanism(30, 31, 56) (Fig. 3A). We modeled output to reflect this by having model MBON
activity encode the probability of rejecting an odor, with higher activity having a greater
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probability to reject. To account for possible stochasticity in this process, we passed model
MBON activations through a sigmoidal nonlinearity to determine behavioral output (Fig. 3B-3).

With this modified model in place we simulated behavior resulting from covariance rules that
incorporated stimulus-expectation, reward-expectation or both. All three covariance-based rules
that produced matching in the original model continued to produce matching in our modified
model (Fig. 3C left; Supp Fig. 5A,B left), consistent with the theory. We also observed that the
covariance-based rules could replicate the trial-by-trial behavior of flies in the dynamic foraging
paradigm, tracking changes in the reward contingencies across blocks, with the resulting
instantaneous choice ratio biased towards the more rewarded option in each block (Fig. 3C
right; Supp Fig. 5A,B right). In contrast, a rule that did not incorporate either reward or stimulus
expectation did not produce matching (Fig. 3D left) and did not appropriately capture
instantaneous behavior either, with choices made roughly equally to both options throughout
(Fig. 3D right). This deviation from matching is in agreement with Loewenstein and Seung’s
theory. It also makes intuitive sense if one considers the nature of this non-covariance rule. A
rule that depends simply on the product of neural activity and the presence of reward will only
cause unidirectional plasticity, eventually pushing synapses related to both options to saturation
though at slightly different time-scales. This would result in both options being chosen roughly
equally. These results, paired with our observation of operant matching in Drosophila, indicate
that flies use a covariance-based rule to learn option-reward associations in the MB .

Identifying learning rules underlying dynamic foraging in the mushroom body

To test if our theoretical prediction of a covariance-based rule is supported by the observed
behavior, we developed an approach that estimated the form of the plasticity rule being used in
the fly MB. Our goal was to break the plasticity rule into components that span a large space of
possible rules in the fly MB and use optimization approaches focussed on accurately predicting
behavior to assign optimal coefficients to each of these components. In this way we would
identify the form of the plasticity rule that best explained observed behavior and be able to
conclude if this rule was a covariance-based rule.

The approach we developed made use of the structure of the MB-inspired generative model
described in the previous section (Fig. 3B) to predict accept/reject decisions made by the fly
based on sensory and reward inputs (Fig. 4A, Methods). The key distinction here was that
rather than incorporating a pre-defined plasticity rule such as one of the covariance-based rules,
this model used a rule that consisted of four terms that spanned the space of
biologically-plausible rules in the MB. We then transformed this into a logistic regression
problem (Methods). At every iteration of the regression, behavior predicted by the model was
compared to true fly behavior and regression coefficients assigned to each component of the
plasticity rule was updated. The set of coefficients for each of the components of the plasticity
rule that minimized the error between predicted behavior and the fly’s actual behavior could then
be identified as the plasticity rule used in the fly MB.
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The activity of KCs and DANs are the only known factors to affect synaptic plasticity(47, 63). We
thus included in the model four terms: a constant term, a KC-related term, a DAN-dependent
term, and a term dependent on the product of KC and DAN. (Fig. 4A center box). KC terms
reflect stimulus information while DAN terms reflect reward information. We set up the model so
that these terms may or may not be subtracted by their respective expectation values. By
definition, when either of these terms incorporates the mean subtraction, the DAN, KC product
term becomes a covariance term. This resulted in four different models, three of which could
give rise to covariance-based rules if the product term was assigned a large coefficient. This
method allowed us to explore the space of possible plasticity rules in an unbiased way and ask
if covariance-based rules were in fact the rules that best predicted fly behavior.

We first validated this approach by simulating choice sequences using each of the three
covariance-based rules, as well as the simple non-covariance rule, and checking whether the
model fitting identified the correct rule. Indeed, data simulated with a covariance-based rule that
included reward expectation was better fit by a model that incorporated this reward expectation
subtraction into its plasticity rule (Supp. Fig. 6A,B). Moreover, the model correctly assigned the
largest weights to the DAN-KC product term, the term that calculates covariance between these
two elements(Supp. Fig. 6C). We also found that the extent of matching produced by the model
was largely unaffected by the degree of overlap in KC activity patterns (Supp. Fig. 6D-G), and
the regression model accurately recaptured simulated data when biologically-plausible overlap
values(92) were used (Supp. Fig. 6H). Similar analysis revealed that the approach also gave
consistent results across a range of timescales for calculating accrued value(Supp. Fig. 61). We
therefore assumed that overlap was 0 and used an exponential timescale of 3.5 trials (similar to
logistic regression in Fig. 2G) in all future analysis.

We then applied our approach to fit data from flies performing the dynamic foraging protocol.
Regressions that utilized expectation subtractions in their plasticity rules usually captured fly
behavior better, as can be seen with a representative example fly (Fig. 4B, Supp. Fig. 7B). To
compare fit quality of the different models for every individual fly, we calculated the percentage
deviance explained for each. This metric showed that rules that subtract sensory expectation,
reward expectation or both were better fits for fly behavior (Fig. 4C, Supp. Fig 7A). Interestingly,
we found that in some flies the simple expectation free non-covariance rule was a better fit. One
explanation for this result is that these flies showed operant matching to a lesser extent. We
quantified matching by calculating the mean squared error between instantaneous choice and
reward ratios. This analysis found that flies did exhibit different strengths of matching and that
this was correlated with how well an expectation free plasticity rule fit the behavior data. Flies
that were better fit by the expectation free rule tended to show more undermatching, in line with
our predictions (Fig. 4E).

Regressions that subtracted sensory, reward or both expectations were generally better fits for
fly behavior. However, this alone does not mean that a covariance-rule is used by the fly. This
would only be true if the largest coefficient that results from these regressions was assigned to
the DAN-KC product term. We therefore examined the regression coefficients resulting from this
analysis to assess which terms were important for predicting behavior. When a rule that
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incorporated reward expectation was used to fit fly behavior, we found that the best-fit model
parameters had a similar profile as when this rule was used to fit simulated data in Supp. Fig.
6A. The largest regression coefficients were assigned to DAN-KC product term showing that
flies do in fact use a covariance based rule to guide their behavior (Fig. 4D). We compared the
value assigned to the product term for a given fly against the extent of matching and found this
coefficient was larger for flies that matched better (Fig. 4F), further clarifying that this product
term in the plasticity rule is related to the extent of matching, as expected by the Loewenstein
and Seung theory. Other parameters were on average assigned values near zero with some
fly-to-fly variability (Fig. 4D; Supp. Fig. 7C,E,G) and correlations between components that were
typical of statistical models yet hard to interpret (Supp. Fig. 7D,F,H,I). This importance of the
product term was also observed when sensory expectation or both sensory and reward
expectation were incorporated into the plasticity rule (Supp. Fig. 7C,E,G). Together, these
results link the previous theoretical finding to real behavioral data and further support the idea
that a covariance-based rule is implemented in the MB.

Behavioral evidence of reward expectation in DANs

While the regression analysis confirmed that covariance-based rules were better at predicting fly
behavior, it could not distinguish between different covariance-based rules. However the
mathematical differences between the three rules suggested a way forward. In particular, the
rules differ in which terms - sensory input or reward - incorporate an expectation. Thus, to
distinguish between the possible different covariance-based rules in the MB, we designed an
experiment to manipulate the calculations of reward expectation using genetic tools that
override the natural activity of the DANs. Specifically, we provided reward via optogenetic
activation of the reward-related protocerebral anterior medial (PAM) DANs. This would bypass
any upstream computation of reward expectation and simply provide a consistent reward signal
on every trial. Such a manipulation would change the learning rule from a covariance-based rule
to a non-covariance rule if the following conditions were met: i) the animal’s learning rule
depended on the product of DAN and KC activities; ii) DAN activity incorporated reward
expectation; iii) KC activity did not incorporate sensory expectation. This would in turn result in
modified behavior. For this test we initially focused on a task consisting of two blocks (naive and
training) of 60 trials each, with a reward ratio of either 100:0 or 80:20.

We first predicted how the behavior in these protocols would differ between covariance-based
and non-covariance rules using simulations. As expected, covariance-based models learnt to
choose the more rewarded option more often, with choice ratios reflecting reward probabilities
(Fig. 5A, Supp. Fig. 8A,B). On the other hand, non-covariance rules failed to show a strong
effect on the choice ratio, and preference saturated around 75% in 100:0 and 50% with the
80:20 reward ratio (Fig. 5B). These theoretically predicted preferences very closely match our
observations of fly behavior in the DAN bypass experiments. We observed low plateau
performance in both tasks (Fig. 5F), with values strikingly similar to that predicted by the
non-covariance rule (Fig. 5D). The behavior of the model with any covariance-based rule was
similar to the fly behavior when it was rewarded using the sugar neurons (Fig. 5C,E).
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This observation that a non-covariance plasticity rule saturates at 75% preference in a 100:0
experiment and 50% in the 80:20 experiment is somewhat counter-intuitive. It arises because
the non-covariance learning rule can only modify synapses in one direction - depression. In
combination with the fact that a fly’s initial encounter with an odor is random (because we
randomize right/left assignment of odors on each trial), we can account for the low preference of
the non-covariance model. Consider the 100:0 case. Synapses related to the rewarded odor will
have decreased to its minimum value, causing agents to always accept this odor. But agents
only experience this odor 50% of the time. The other 50% of the time they experience the
unrewarded odor. Agents accept and reject this unrewarded odor equally as they have never
learnt anything in response to this. A first approximation would suggest therefore that this model
would at max choosed the rewarded odor 75% of the time. A similar logic explains the 50%
plateau performance in the 80:20 task. Given a sufficient number of reward pairings, responses
to all odors will saturate at the most depressed state, and so the probability of accepting both
cues becomes identical.

One potential concern with these experiments is that differences in optogenetic activation of the
central DANs versus the peripheral Gr64f neurons could contribute to these behavioral
differences. To address this, we tested whether similar levels of performance were achieved in
a Pavlovian paradigm using these two different forms of optogenetic reward. Pavlovian learning
was tested in a circular arena with LED intensity (2.3 mW/cm?) matched as closely as feasible to
that used in the Y-arena (1.9 mW/cm?). Both PAM DAN and Gr64f sugar neuron activation
support similar levels of learning performance in this assay (Supp. Fig. 9A-D) suggesting that
optogenetic activation was sufficient to activate both types of neurons.

We next examined how bypassing reward expectation affects matching behavior. When tested
with the same three-block matching design as earlier, but now providing a consistent reward
signal via direct DAN stimulation, flies exhibited strongly diminished matching behavior (Fig.
5G,H). The slope of the choice-ratio, reward-ratio relationship was lower than that observed
with Gr64f-driven reward, and approached the flat line predicted by simulations of behavior with
a non-covariance based learning rule (Fig. 51). The instantaneous choice ratio and reward ratio
of an example fly (Fig. 5G) suggested that this flattening arises because choice ratios are never
strongly biased to either odor. This is again explained by the uni-directional nature of the
non-covariance rule. In agreement with this, changes in choice ratio at block transitions were
much flatter with DAN reward than with Gr64f (Supp. Fig. 8C,D). To quantitatively evaluate
whether providing reward with DAN activation changed the learning rule from covariance-based
to a non-covariance rule, we fit our MB-inspired regression models (Fig. 4A) to fly data produced
with DAN reward. We found that the non-covariance rule was the better fit (Fig. 5J,K). We find
through these experiments that bypassing the computation of reward expectation changes fly
choices from resembling behavior produced by a covariance-based learning rule, to behavior
expected from a non-covariance rule. In particular, the results suggest this covariance-based
rule is located in the fly MB and incorporates reward expectation but not sensory expectation.

All together, our results support the theory that covariance-based learning rules that incorporate
reward expectation are necessary for operant matching. It suggests that reward expectation
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signal is calculated in the DANs of the fly MB and provides the first mapping of learning rules
underlying operant matching onto plasticity mechanisms at a specific synapse.

Discussion

The foraging strategies used by animals play a key role in their survival. Operant matching is
one simple and ubiquitous behavioral strategy, utilized in dynamically-changing and probabilistic
environments. Despite the ubiquity of this strategy and strong theoretical background, little is
known about the underlying biological mechanisms. We leveraged the growing body of
knowledge regarding learning in the fruit fly and the plethora of available anatomical tools to
tackle this knowledge gap. We developed a foraging task that allowed us to monitor choices of
individual fruit flies and showed, for the first time, that flies follow Herrnstein’s operant matching
law. Combining experimental results with computational modeling, we found that this behavior
requires synaptic plasticity and uses a rule that incorporates expectation of reward. Follow-up
experiments manipulating neural circuitry found that reward expectation signals were
incorporated via the rewarding PAM DANs. Our results provide the first mapping of the learning
rule underlying operant matching onto the plasticity of specific synapses — the KC-MBON
synapses in the MB.

Does the ubiquity of operant matching imply a common mechanistic framework?

The operant matching strategy we observed in flies is wide-spread across the animal kingdom.
When choosing between options that predict reward with different probabilities, mammals, birds
and insects all follow Herrnstein’s matching law(11, 12, 14, 15, 17-19, 95, 96). This is clear at
the global, trial-averaged level, where choice ratios are roughly equal to reward ratios, but is
also true at the trial-by-trial level (Fig. 2A). In fact, we found that individual choices made by flies
depended on choice and reward information received over multiple past trials (Fig 2G-H). This is
in agreement with what has been observed in mice and monkeys(15, 19) and suggests that
these animals all make use of similar kinds of information to guide their behavior. Flies also
show an increase in speed of choice when rewarded, another common signature of learnt
behavior in mice and monkeys(14, 15) (Supp. Fig. 1B,C).

It is unclear whether these behavioral similarities result from underlying mechanisms that are
shared across species. At its surface, mechanistic similarities seem likely. For example, neural
signals that subtract reward expectation from reward — a key component of the plasticity rules
underlying matching shown here — can be found in the form of a reward prediction error in
many different animals(6, 97-99). Nevertheless, such a signal on its own is not sufficient to
produce matching; it needs to be incorporated into a covariance-based plasticity rule in a
behaviorally relevant circuit. Note that mechanistic similarity would not require this specific use
of reward prediction error, as covariance-based rules can also be implemented in a variety of
other ways, as discussed at length in the Results. On the other hand, while learning values of
options via synaptic plasticity is the traditional mechanistic framework thought to underlie such
foraging decisions(21, 22), recent work has found signatures of graded neural responses
proportional to value during inter-trial-intervals, suggesting a persistent-activity-based
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mechanism for foraging decisions that may not require synaptic plasticity(15, 100). Associated
modeling efforts, including the work of Loewenstein and Seung, suggest that matching can arise
from models that don’t incorporate synaptic learning(24, 101).

While both synaptic plasticity and non-plasticity mechanisms can explain the observed
behaviors, each makes different testable assumptions about the underlying neural
architecture(23) and the effect of changing environmental conditions on the behavior. For
example, if one eliminated reward baiting in our experiment, a circuit using a covariance-based
plasticity rule would still give rise to behavior that follows Herrnstein’s matching law. In this case,
following such a law would lead the animal to always choose the option with higher reward
probability. On the other hand, if matching behavior was produced using a different mechanism,
the lack of reward-baiting might give rise to different strategies, such as the probability matching
strategy commonly observed in mice under these conditions(8). Experiments to identify which
mechanisms are used by different brains, and theoretical work to understand why, would
therefore provide important insight into circuit function and the neural basis of operant matching.

Plasticity in multiple MB compartments could explain deviations from matching

One complication to the framework of expectation-based learning rules and matching is that
flies, like several other animals, don’t perfectly follow the matching law; rather they undermatch.
Two hypotheses have been proposed to account for this deviation. The first proposes that
animals that undermatch make use of a learning rule that deviates from a strictly
covariance-based rule(26). One possibility for how this could occur is to have plasticity at
multiple sites contributing to the overall learning, with different plasticity rules at each site.
Indeed, the MB is divided into multiple compartments that contribute to behavior but exhibit
important differences in learning(31, 34). It is possible that some compartments make use of
reward expectation in a covariance-based learning rule, while others do not. Alternatively,
undermatching can also result if reward expectations are estimated over long timescales(17),
even if all compartments made use of a covariance-based rule. This idea suggests that in a
dynamic environment where reward probabilities change quickly, the memory of past
experiences acts as a bias that prevents the animal from correctly estimating the present
cue-reward relationships. This is possible in the MB, as different compartments form and decay
over different time scales(34). Whether either or both of these hypotheses explain
undermatching in flies can be studied in future experiments by manipulating different
compartments of the MB circuitry and analyzing the effect of such a manipulation on
undermatching. Relatedly, it would be interesting to check animals adapt the timescales used to
estimate reward expectations to the dynamics of the behavior task.

An approach for inferring learning rules from behavior
Here we introduced a statistical method that uses logistic regression to infer learning rules from
behavioral data. While we specifically applied our approach to infer learning rules for the fly

mushroom body, the inference of learning rules is of importance to many areas of
neuroscience(102, 103) this method could be similarly applied to model other learnt behaviors in
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the fly and other animals. In the current work, we considered learning rules that only depended
on the current sensory stimulus (KC response) and reward (DAN response), but our
methodology would also generalize to the inference of learning rules that incorporated a longer
time-scale history of sensory input and reward. For example, the framework would be able to
estimate rules that incorporated the weighted average of recent sensory experience.

However, it's important to realize that the logistic regression formalization would break down
entirely for learning rules that depend on the magnitudes of synaptic weights or postsynaptic
activity. Such terms would induce different nonlinear dependencies between the choice
sequence and learning rule parameters, preventing us from converting these choice and reward
histories into regression inputs related to each component of the learning rule (see Methods).
Our approach was appropriate here because the plasticity rule in the mushroom body was
known to not involve these terms. However, many biological learning rules do depend on
postsynaptic activity and current synaptic weights, and future work should explore more flexible
methodologies from modern machine learning to develop generally applicable approaches.

Circuit mechanisms for matching and reward expectation in Drosophila

We have shown that operant matching is mediated by synaptic plasticity in the fly mushroom
body that requires the calculation of a reward expectation. However the mechanisms underlying
this calculation remain unclear.

The proposed mechanism underlying the calculation of reward prediction error (RPE) in
mammals provides a hint at one option(97, 104). Here dopaminergic neurons implicitly
represent expectation by calculating the difference between the received reward and the reward
expectation. This has been found to involve the summation of positive ‘reward’ inputs and
negative GABA-ergic ‘expected reward’ inputs to the dopaminergic neurons(105). MB DANs
could represent reward expectation in a similar way. In fact, the recently released hemi-brain
connectome(44) has found many direct and indirect feedback connections from MBONSs to
DANs that theoretical work has shown could support such a computation(65, 94). In the MB
circuit, MBON activity is related to the expectation of reward associated with a given odor(31,
56). An inhibitory feedback loop, via GABA-ergic interneuron(s) for example, could potentially
carry reward expectation related information from MBONs to DANs. The negative expected
reward signal from this interneuron could be combined in the DANs with a positive reward signal
from sensory neurons, allowing DAN activity to represent the type of reward expectation signal
needed by a covariance-based rule.

It is important to note that such a mechanism would have a major difference from mammalian
RPEs. Since MBON activity is linked to the presence of odor, the reward expectation signal
would vary across stimuli and only be present when the stimulus was too. Thus, this signal
would not have the temporal features of mammalian RPEs. This difference in temporal structure
of the reward expectation signal could explain the mixed observations from past studies aimed
at identifying reward expectation in flies. For instance, a study that used temporally distinct cues
and reinforcements suggested that DANs do not incorporate reward expectation(68), while
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studies that used temporally overlapping cues and reinforcements did find signatures of reward
expectation(69, 72), albeit with different temporal properties than the typical mammalian RPE.

It's also possible that reward expectations are incorporated into mushroom body plasticity by
adjusting the levels of reward and punishment needed to achieve a given dopamine signal. In
this scheme reward-related dopamine neurons could represent how much a reward exceeds
expectations, and punishment-related dopamine neurons could respond when expectations are
not met. This is reminiscent of the idea from Felsenberg and colleagues that interactions
between reward and punishment-related compartments in the MB can guide bi-directional
learning(36, 66, 67, 71). However, here we extend the idea by proposing that reward would not
only modify KC-MBON synapses, but also modulate the baseline dopamine release or firing
threshold of reward-related dopaminergic neurons. Similarly, upon missing an expected reward,
learning would do the same for MBONs and DANs in punishment-related compartments. The
resulting behavior would depend on balance between the activity of both reward and
punishment compartments, and if the reward and punishment baselines were updated correctly,
such a mechanism could produce a covariance-based rule and support operant matching. This
mechanism would also tie into the notion that phasic dopamine release (i.e. the difference of
dopamine from its baseline level) mediates the RPE signal in mammals(106).

Future experiments can distinguish between these mechanistic hypotheses. For instance,
neural recordings can probe how DAN activity changes over the course of the task, and
connectomics can identify other neurons in the system that may be important for the computing
reward expectation. These types of experiments are easily doable in the Drosophila
melanogaster model. Paired with further modeling efforts and the foraging framework we
developed, the fly MB promises to be a system in which we can understand decision making at
a level of detail that is presently unparalleled in the field of systems neuroscience.
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Materials & Methods
Fly strains and rearing:

Drosophila melanogaster used for behavior experiments were raised on standard cornmeal food
supplemented with 0.2 mM all-trans-retinal at 25 C [for Gr64f-Gal4 lines - see table] or 21 C [for
other lines - see following table] with 60% relative humidity and kept in dark throughout. The
details of all flies used for experiments in this manuscript can be found in the table below:

Genotype

Expression target/reporter
description

Bloomington stock number

IReference (if applicable)

w; Gr64f-Gal4/CyO;
Gr64f-Gal4/TM3 X
20XUAS-CsChrimson-mVenu
s attp18

Optogenetic activation of
Gr64f expressing sugar
sensory neurons in behavior
experiments

(Dahanukar et. al. 2007;
Haberkern et. al. 2019) (84,
107)

X
BDSC:55134(Klapoetke et.
al. 2014) (41)

w; +; 58E02-Gal4
X
20XUAS-CsChrimson-mVenu
s attp18

Optogenetic activation of
PAM cluster DAN in behavior
experiments

BDSC:41347(Jenett et. al.
2012) (40)
X
BDSC:55134(Klapoetke et.
al. 2014) (41)

w; 10XUAS-opCas9wt in
ZH51C; DopR1-4gRNA
JK65C/Cy0O:: TM6B
X
w; +; 13F02-Gal4 attP2,
Gre4LexAp65 JK73A,
13XLexAop-IVS-Syn
21-Chrimson88::tdT/TM3

Optogenetic activation of
Gr64f expressing sugar
sensory neurons and
CRISPR mediated knockout
of DopR1 receptors in KCs
for behavior experiments

New Stocks - see Cloning
sub-section below

w; T0XUAS-opCas9wt in
ZH51C; DopR1-4gRNA
JK65C/Cy0O:: TM6B
X
w; +; Gr64LexAp65 JK73A,
13XLexAop-IVS-Syn
21-Chrimson88::tdT/TM3

Optogenetic activation of
Gr64f expressing sugar
sensory neurons without
expression of cas9 protein
needed for knockout of
DopR1 in behavior
experiments

New Stocks - see Cloning
sub-section below
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Cross progeny (2-5 days old) were sorted on a cold plate at around 4 C and females of the
appropriate genotype were ftransferred to starvation vials. Starvation vials contained
nutrient-free 1% agarose to prevent desiccation. Flies were starved between 28 - 42 hrs before
being aspirated into the Y-arena for experiments.

Cloning:

The Gr64f promoter was PCR amplified using Q5 High-Fidelity 2x Master Mix (New England
Biolabs) from the Gr64f-GAL4 (107) and cloned into the Fsel/ EcoRI digested backbone of
pBPLexAp65 (39) using NEBuilder HiFi DNA Assembly (New England Biolabs). Primer
sequences were:

NEB_GR64f fwd | GAGGCCCTTTCGTCTTCAAGAATTCCAGCGATTGTCTCTTAGCTGTTAAAATC

NEB_GR64f rev | CCCCGGGCGAGCTCGGCCGGCCCCTAGGACCTGCTGGGGTAAAC

Four gRNA for the gene Dop1R1 were designed using https://flycrispr.org/target-finder/ (89).
The gRNA were then cloned into pCFD5_5 following the protocol published in Port and Bullock,
2016(108) .

Dop1R1 gRNA target sites (5’-3’)

Dop1R1 gRNA 1 GACATCCAACTGCTGACAAA

Dop1R1 gRNA 2 GCTGCAGCTCACGACCGCCA

Dop1R1 gRNA3 CGTGGAATTCGTGGAGAATC

Dop1R1 gRNA 4 ACTGGTGTGATTCCCGCCGA

Primer sequences were:

GCGGCCCGGGTTCGATTCCCGGCCGATGCGACATCCAACTGCTG
f.PCR1-4gRNA-Dop1R1 ACAAA GTTTTAGAGCTAGAAATAGCAAG
r.PCR1-4gRNA-Dop1R1 TGGCGGTCGTGAGCTGCAGCTGCACCAGCCGGGAATCGAACCC
f.PCR2-4gRNA-Dop1R1 GCTGCAGCTCACGACCGCCAGTTTTAGAGCTAGAAATAGCAAG
r.PCR2-4gRNA-Dop1R1 GATTCTCCACGAATTCCACGTGCACCAGCCGGGAATCGAACCC
f.PCR3-4gRNA-Dop1R1 CGTGGAATTCGTGGAGAATCGTTTTAGAGCTAGAAATAGCAAG

ATTTTAACTTGCTATTTCTAGCTCTAAAACTCGGCGGGAATCACAC
r.PCR3-4gRNA-Dop1R1 CAGTTGCACCAGCCGGGAATCGAACCC
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Transgenic injections were performed by Genetivision using fC31 integrase mediated integration
into attP dock sites. Gr64f-LexAp65 was integrated into P{CaryP}JK73A and Dop1R1 was
integrated into P{CaryP}JK65C.

Y-arena:

Single fly behavior experiments were performed in a novel olfactory Y-arena designed in
collaboration with the Janelia Experimental Technology team (JET).

Apparatus design:

A detailed description of the apparatus is provided in Supplementary Information 1. The Y
chamber consists of two layers of white opaque plastic. The bottom is a single continuous
circular layer and serves as the floor of the Y that flies navigate. The top is a circular layer with a
Y shaped hole in the middle. The length of each arm from center to tip is 5 cm and the width of
each arm is 1 cm. These two layers are placed underneath an annulus of black aluminum. A
transparent glass disk is located in the center of this annulus and acts as the ceiling of the Y -
allowing for video recording of experiments. This transparent disk is rotatable and contains a
small hole used to load flies. The black annulus houses three clamps that hold the circular disk
in place. All three layers are held together and made airtight with the help of 12 screws that
connect the layers.

The Y chamber is mounted above an LED board that provides infrared illumination to monitor
the fly's movements, and red (617 nm) light for optogenetic activation. The LED board consists
of a square array of red (617 nm peak emission, Red-Orange LUXEON Rebel LED, 122 Im at
700mA, 1.9mW/cm?) and infrared (IR) LEDs that shine through an acrylic diffuser to illuminate
flies. Experiments were recorded from above the Y using a single USB3 camera (Flea3, model:
FL3-U3-13E4M-C: 1.3 MP, 60 FPS, e2v EV76C560, Mono; Teledyne FLIR, with longpass filter
of 800 nm).

Each arm of the Y has a corresponding odor delivery system, capable of delivering up to 5
odors. For our experiments, olfactometers injected air/odor streams into each arm at a flow rate
of 100 ml/min. A crisp boundary between odors and air is formed at the center of the Y (Supp.
Fig. 1A). Odors and concentrations used for each experiment are detailed in the behavioral task
structure and design section of the methods. The center of the Y contains an exhaust port
connected to a vacuum, which was set at 300 ml/min using a flow meter (Dwyer, Series VF
Visi-Float® acrylic flowmeter) - matching total input flow in our experiments.

Fly tracking and operation:
We wrote custom MATLAB code (MATLAB 2018b, Mathworks) to control the Y-arena and run

experiments. The data collected by the USB3 camera was loaded into MATLAB in real time and
the fly’s location was identified using the MATLAB image processing toolbox as follows. A
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background image was calculated just before beginning the experiment by averaging multiple
frames as the fly moved around in the Y. This background was subtracted from the frame being
processed and the resulting image was thresholded, leaving the fly as a white shape on a black
background. The location of the centroid of the fly was estimated using the MATLAB’s
bwconncomp and regionprops functions and then assigned to 1 of 6 regions in the Y. If the fly
was located in one of the reward zones, a trial was deemed complete and rewards were
provided by switching on the red LEDs as defined by the reward contingencies of the task. The
arena was then reset with air being pumped into the chosen arm and odors randomly
reassigned to the two other arms (Fig. 1B). The location of the fly along with other information,
such as reward presence and odor-arm assignments, were saved as a .mat file for further
analysis. All analysis in Figures 1, 2 and 3 were based on this saved information.

Circular olfactory arena:

Group learning experiments in Supp. Fig. 9 were performed in a previously described circular
olfactory arena(31).

Behavioral experiments:
Odorant information:

For all experiments in the paper, two or three of the following odorants were used to form
cue-reward relationships:

1. 3-Octanol (OCT) [Sigma-Aldrich 218405]. Y-arena: diluted in paraffin oil [Sigma-Aldrich
18512] at a 1:500 concentration and then air-diluted to a fourth of this concentration.
Circular olfactory arena: diluted in paraffin oil at a 1:1000 concentration in the circular
arena.

2. 4-Methyl-cyclo-hexanol (MCH) [Sigma-Aldrich 153095]. Y-arena: diluted in paraffin oil
[Sigma-Aldrich 18512] at a 1:500 concentration and then air-diluted to a fourth of this
concentration. Circular olfactory arena: diluted in paraffin oil at a 1:750 concentration in
the circular arena.

3. Pentyl Acetate (PA) [Sigma-Aldrich 109584]. Y-arena: diluted in paraffin oil
[Sigma-Aldrich 18512] at a 1:5000 concentration and then air-diluted to a fourth of this
concentration

Y-arena behavioral task structure and design:
In the 100:0 protocol flies were inserted randomly into one of the three arms. This arm was
injected with a clean airstream and OCT and MCH were randomly assigned to the other two

arms. For a given fly, one of OCT or MCH was paired with reward 100% of the time. Once a fly
reached the choice zone of either the odor arm a choice was considered to have been made. If
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the rewarded odor was chosen, the fly was rewarded with a 500ms flash of red LED (617 nm,
1.9mW/cm?) to activate the appropriate reward-related neurons. The arena was then reset with
the arm chosen by the fly injected with clean air and OCT and MCH randomly assigned to the
other two arms. This was repeated for many ftrials. In the version of this task seen in Fig. 1C,
flies were allowed to choose between OCT and MCH for 30 minutes when neither option was
rewarding and then for 30 minutes when one of the options was consistently rewarding. In the
version of this task used for analysis in Fig. 1B-D, and Fig. 5A-F, flies made 60 naive choices
where neither option was rewarding and 60 training choices where one option was consistently
rewarded. In the version used for analysis in Fig. 1E flies made 60 rewarded choices where one
option was consistently rewarded, and in Supp.1B,D-F flies made 120 rewarded choices where
one option was consistently rewarded.

In a probabilistic version of this task used in Fig. 1F, Supp. Fig. 1C, and Fig. 5A-F, rather than
one of the options being consistently rewarded and the other not, both options were rewarded
probabilistically. The sum of reward probabilities for both options for this version of the task was
either 1 or 0.5. Whenever probabilistic rewards were included in our tasks, reward baiting was
also incorporated as follows. If an unchosen action would have been rewarded, the reward was
delivered on the next choice of that alternative with 100% certainty. This means that the
likelihood an odor cue holds a reward increases over time if it is unchosen for many trials.
Importantly, the fly performing the task is never informed as to whether the unchosen option
would have been rewarding on any given trial.

In Fig. 1G and Supp. Fig. 1G, we analyzed a version of this task where flies learnt multiple
simultaneous probabilistic cue-reward pairings. Here every fly experienced all three odors. For a
given fly OCT and MCH arbitrarily paired with reward 80% and 40% (or 40% and 80%) of the
time, respectively. EL was unpaired. Any given trial of these experiments consisted of a choice
between OCT and EL or MCH and EL. These two options were interleaved together. Flies
experienced 40 naive trials of each combination where no rewards were provided. This was
followed by 40 rewarded trials.

The dynamic foraging task in Fig. 2 was adapted from monkey and mouse versions (13—-15, 18)
and incorporated features such as baiting and probabilistic reward described earlier. OCT and
MCH were the two odors used in this task. An example protocol of this task with details about
the three block structure and number of trials per block can be seen in Fig. 2A. The relative
reward ratios between the two odors for a given block were drawn from the following set [1:1,
1:2, 1:4, 1:8]. The sum of reward probabilities for both options for this version of the task was
either 1 or 0.5.

Circular olfactory arena behavioral task structure and design:
A schematic of the task performed in the circular arena is shown in Supp. Fig. 9A. OCT and
MCH were used as odors for these experiments. Odors were presented sequentially and

separated in time for one minute each, with one of the odors paired with reward. To mimic the
relationship between odor time and reward time experienced by the fly in the Y-arena, 1 sec of
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reward (red light, 617nm, 2.3mW/cm?), was provided for every 3 seconds of odor experience.
Flies were finally tested by dividing the circular arena into four quadrants with two opposite
quadrants receiving one odor and the other two quadrants receiving the other.

Quantitative analysis and behavioral modeling:
All analysis and modeling was performed using MATLAB 2020b (Mathworks).
Analysis of fly location in the circular arena:

Videos of a fly’'s movements in the Y-arena were read into MATLAB frame by frame and the
location of the fly’s centroid was identified using the MATLAB image processing toolbox. Once
identified, the number of flies in each quadrant was used to calculate the preference index (PI)
metric. Pl is defined as the difference between the number of flies in each pair of odor-matched
quadrants divided by the total number of flies.

Analysis of fly movement and choices in the Y-arena:

The (x,y) coordinates of the fly were analyzed to calculate: i) the distance of the fly from the
center of the Y; ii) when the fly entered and exited a given odor arm; and iii) the time taken per
trial to enter into the reward zone at the end of an odorized arm. These quantities were then
used to produce the plots in Fig. 1, 2, 5 and Supp. Fig. 1, 2.

Distance from center was calculated by projecting the (x,y) location of the fly (P:) onto a
skeleton of the Y. Here the subscript t denotes the time point at which the (x,y) location was
observed. The skeleton consisted of three lines running down the middle of each arm to the
center of the Y (o). Based on which arm the fly was located in, its (x,y) position was projected

onto the appropriate (z'th) skeleton line using the following equations for projecting a point onto
a line:

[|all (0

where b = pr — g , @ =v; — Vo, and Vi is the (x,y) coordinates of the end of the i" arm. The
entries/exits of a fly into/from a particular odorant or air were estimated by tracking the region
that the fly was located in at every time point and comparing it to the known odor-arm identity
map (stored in the experiment .mat file). A turn (reversal) was considered to have been made
whenever a fly entered an odor and then exited this odor without reaching the reward zone. An
approach was considered to have been made whenever a fly entered an odor arm and then
traveled all the way into the reward zone of that same arm without ever exiting it.

To calculate the time taken per trial, we made use of the timestamp vector that we saved along
with the (x,y) vector. Time taken from the entire trial was calculated by subtracting the
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timestamp for the frame that the previous trial was completed by the timestamp of the frame
when the current trial was completed. Time taken from first exit of the air arm was calculated by
subtracting the timestamp of the frame that the fly first exited the air arm after a trial began by
the timestamp of the frame when the current trial was completed.

Choices themselves were determined by identifying the arm in which the fly crossed into the
reward zone and mapping that arm to its assigned odor on that trial.

Logistic regression to estimate influence of past rewards and choices on behavior:

To estimate the role of choice and reward histories in determining fly choices in the dynamic
foraging task, we fit the following logistic regression for each fly as

ln( P(C<t — ZBR (t —1) +ZBC (t—1)+ B,
2

where ¢ is the present trial and ¢ is the variable used to iterate over the past 7' trials. C(t) =1
if the chosen odor was OCT and -1 if the chosen odor was MCH. £2(?) = 1 if chosen OCT option
produced reward, -1 if chosen MCH option produced reward, and 0 otherwise. Bo represents the

c .
weight assigned to the bias term, B; represents the weight assigned to the ith past choice and

ﬁiR represents the weight assigned to the ith past reward. We chose to look at the past 7' = 15
trials to align with previous studies (15, 19). The regression coefficients generated were 10-fold
cross-validated, and the regression model included an elastic net regularization (MATLAB
function - lassoglm). The weight of lasso versus ridge optimization was set to 0.1 as this value
provided best behavioral fits. These fly-specific regression coefficients could be combined with
the flies reward and choice histories to predict trial choice probability and estimate the
log-likelihood (/) and percent deviance explained (PD):

Tmaz

E—ZIHZ p(xj;) - zji)
j=1

(3)

-2 fnull + 2- gmodel

PD = :
-2 gnull (4)

where Tmaz is the total number of trials in the data being fit, 7 indexes trials, J indexes possible

options, p(Zji) is the probability with which the model predicts that choice J occurs on trial 7,
and Tji is the choice that actually took place on trial 7.

Leaky-integrator model:
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We also developed a leaky-integrator model to predict behavior in the dynamic foraging task
inspired by earlier work (18). This model determines choices on a given trial by comparing
values assigned to each option the agent has to choose between based on choice and reward
history.

The values (Q)were calculated for a given trial ¢ using the following equations. If OCT is
chosen by the model, values are updated according to

QOCT(t + 1) =T:" QOCT(t) + (1 - T) . R(t) 3 (5)
Quen(t+1) =71-Qucu(t) , (6)

where 7 is a constant related to the learning rate. Similarly, if MCH is chosen by the model,
values are updated according to

Qocr(t+1) =71-Qocr(t) , (7)
QMCH(t+1) :T~QMCH(t)+(1—T)'R<t) . (8)

These values are then compared and passed through a sigmoidal nonlinearity to determine the
probability of each choice,

1
P(C(t) = OCT) - 1 + e B Qocr()—Qucu(®) 9

The probability of choosing MCH was one minus that of OCT. The probability generated by this
operation is compared with a value drawn from a uniform distribution over the [0,1] interval to
determine whether the resulting choice is OCT or MCH. These predicted choices could be
compared to fly behavior to compute the model’s fraction deviance explained. The parameters

B and 7 are fit for each fly so as to maximize the percentage deviance explained (values of
these parameters can be seen in Fig 2G and Supp. Fig. 3A,B).

Win - stay, Lose - switch model:

A third model to predict behavior incorporated information only about the most recent choice
made by the fly unlike the logistic regression and leaky-integrator alternatives. In this
“stay-switch” model the agent chooses randomly on the first trial. If the chosen option produces
a reward the agent picks the option again on the next trial (stays). If it doesn’t produce a reward
the agent picks the other option on the next trial (switches). This procedure repeats to generate
a sequence of choices. The accuracy of this model was calculated by observing correctly
predicted switches and stays as well as incorrectly predicted switches as stays (Supp. Fig. 3E).

Neural circuit model of dynamic foraging:
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We designed a neural circuit model, inspired by work from Loewenstein and Seung (24), that
was used to simulate behavior in a dynamic foraging task. Two versions of this model were
used.

Replicating Loewenstein and Seung’s Model:

The first version aimed to directly replicate the model used by Loewenstein and Seung (Supp.
Fig. 4A). It generated behavior on a trial-by-trial basis in the dynamic foraging task. The number
of trials to simulate were input by the user prior to simulation (typically 60, 240 or 2000 trials).
The model consisted of two sensory neurons (51 and S2) whose activity was drawn at the
beginning of each trial from a normal distribution with mean 1 and standard deviation 0.1. These
neurons synapse with weights (W1 and W2) onto two motor neurons (M1 and M2) ,whose
activity was given by the weighted sum of sensory neuron activity. The activity of M1 and M-
were compared and the choice was driven by whichever neuron had the larger activity.

Once the choice was made, rewards were provided as determined by the reward contingencies
of the task. These were input by the user prior to running the simulation. The weights between
S and M were updated after each choice and followed the following rules

AW (t) =1 R(t) - Si(t) . (10)
Wilt) = Wit — 1) — AW (1) , (11)

where R=R orR=R—E(R), Si=S5; orS;=S; — E(Si)based on the learning rule,
and i iterates over odors. Note thatEZ(R)and E(5:) depended on time and were
calculated in one of two ways: i) by calculating the mean over the last 10 trials, ii) by filtering the
entire history with an exponential filter with exponential timescale( 7 )of 3.5 trials. The various
covariance and non-covariance rules were achieved by selecting the appropriate combinations
of pand gs,.

Task and Mushroom-body Inspired Version:

The second version incorporated modifications to the model that made it more appropriate for
the task we designed for fruit flies (Fig.3B). This model consisted of two sensory inputs that
represented activity of populations of Kenyon cells (KCs). However, this version of the model
looped through odor experiences, rather than looping through trials determined by
two-alternative forced choices. Therefore the activity of the sensory neurons was drawn
differently. Rather than both values being drawn from normal distribution with mean 1 and
standard deviation ¢ = 0.1, this was only true for the odor that was deemed to have been
“‘experienced” by the model on a given odor experience. The activity of the other neuron was
drawn from a normal distribution with mean a= 0.1 (Fig. 3,4; Supp. Fig. 5,6) and standard
deviation ¢ = 0.1 Here, a represents the similarity, or overlap, between the two inputs. This
was included because the KC representations of the two different odors used in our task are
thought to have some amount of overlap (92). However, we found that modulating this term did
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not affect the resulting matching behavior (Supp. Fig 6D-G) and so for Fig. 5, we chose a= 0.
We also explored incorporating noise covariance between the two sensory inputs (with
correlation coefficient ¢ = 0.1), but this correlation was empirically unimportant and we usually
setc=0.

Another difference is that an odor experience could lead to either an approach (choice) or a turn
away. The behavior chosen by the model on any given odor experience depended on the
response of the single output neuron incorporated into this model. The activity of this output
neuron (M) was the weighted sum of the two inputs. This was then passed through a sigmoidal
nonlinearity

P(A = Accept) = G - (12)

where =4, b= 1(this value was chosen to encourage exploration at the beginning of
learning) and A is the action produced by the model. When A = 0 the odor is accepted and
when A =1 the odor is rejected . A random number from the interval [0,1] was drawn and
compared to Y to determine whether an approach/choice or turn was made. If a turn was made,
no reward was provided, and the weights remained unchanged. The model then experienced a
new odor and the process repeated. If a choice was made then a reward was provided based
on the choice contingencies and weights were updated according to the rules in egs. 10 and 11.

Logistic regression model for estimating learning rules:

To determine the learning rules that best predict fly behavior, we designed a logistic regression
model that made use of the known relationship between MBON activity and behavior. This
model predicted behavior between input and weights that give rise to MBON activity following
the relationships

Alt) = Z Wi(t) - Si(t)

Wi(t) = W;(0) + Z AW(T) ,
T)A=0 (14)

(13)

where A(t) is the predicted action on odor experience t, T|A =0 indicates all past odor

experiences where the fly chose to accept the odor, and Wi(t) represents the synaptic weights
associated with neurons representing odor ¢ at time t. Now the change in synaptic weights

AW;(t) depends on the learning rule that is used by the circuit. It was here that we wanted to
have the regression model identify the rule that provided the best fit to actual data. To do this we
allowed the model to use a learning rule with 4 different terms whose coefficients could be
modified,

AW, (T)=a+b-S;(T)+c-R(T)+d-R(T)-S(T) . (15)
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Here, a, b, ¢, and d are the coefficients assigned to each component of the learning rule. The
regression model takes the sensory stimuli and synaptic weights at a given time as inputs to
predict the output action. However, when fitting this model to behavior we have only sensory
stimulus and reward information readily available. We therefore used eq. 14 and 15 to convert
synaptic weights and sensory stimuli to inputs that consisted of sensory stimuli and rewards and
a constant input that serves as a bias term. The resulting inputs could be represented as

I(T)=1, (16)

L(T) =Y (T 1)-5(T).
i=1 a7

I(T) = Zsi(T) ) Sit)
i=1 t=1 (18)

L(T)=>_8(T)- ) R(t),
i=1 t=1 (19)

1y(T) = Z Si(T) - Zsi(t) - R(1) -

i=1 t=1 (20)

The coefficients assigned to each of the five inputs could then be used to identify the learning
rule that the model predicted as the best estimate for producing the behavior that was tested.
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Figure 1: Flies learn multiple probabilistic cue-reward associations

A Schematic of Y-arena (leff). Airflow travels from tips of each arm to an outlet in the center.
Reward zones are demarcated by lines (not visible to the fly). A choice is registered when a fly
crosses into the reward zone of an odorized arm, triggering delivery of an optogenetic reward by
activating Gr64f sugar sensory neurons with a 500 ms pulse of red light. The next trial then
commences as the chosen arm switches to air and the two odors (represented as green and
orange) are randomly reassigned to the other two arms (right).

B Cumulative choices made towards each option are shown (n = 9 flies, mean + individual flies).
No rewards are available for the first 60 trials (Naive - black) and become available for the green
option from the 61st trial onwards (Training - red). Inset: Percentage rewarded choices
calculated naive (left) and training (right) blocks. Flies prefer the rewarded option in the training
block compared to naive (Wilcoxon signed-rank test: p = 0.0039, n = 9).

C An example trajectory of a fly in the Y before (left) and after (right) MCH (green) is paired with
reward. Distance down the air arm is represented as negative values in black, while distances
down an odorized arm are represented as positive values in green or orange to indicate odors.
Choices are represented by colored raster ticks. At choice points the arena resets and that arm
switches to air, so the fly’s position jumps to the tip of the air arm.

D The probability of accept decisions are plotted as a function of time in the 100:0 protocol.
Flies show a high probability of accepting the rewarded odor (left). The probability of accepting
the unrewarded odor is initially high and drops over time as rewards are made available (right).
E The percentage of choice made towards the rewarded option by control (/eff) and DopR1 K.O.
(right) flies in one 100:0 block of 60 trials. Controls show a stronger preference for the rewarded
option than DopR1 K.O. flies (Mann-Whitney rank-sum test: p = 0.0022).

F Flies learn to associate odors with probabilistic rewards. Cumulative rewarded and
unrewarded choices, across 40 trials, for three different reward probabilities : 1, 0.8, 0.4 (top).
Slope of all curves indicate that flies show a preference for the rewarded odor in all cases
(Mann-Whitney rank-sum test: probability = 1, p = 4.4500*10%, n = 18; probability= 0.8, p =
5.8927*10°, n = 10; probability = 0.4, p = 0.0014, n = 10).

G Top: Schematic of the protocol for training flies with two simultaneous probabilistic cue-reward
contingencies. Two different odor choices are interleaved throughout a naive block of 80 total
trials, and a reward block, where options were rewarded with probability of 0.4 or 0.8. The blue
arm indicates that the unrewarded odor is always the same. Bottom: Performance (percentage
of choices in which potentially rewarding option was chosen) on the low and high reward
choices, showing that individual flies learn both associations (Mann-Whitney rank-sum test: p =
2.3059*10* for high rewarding odor; n = 10 p = 0.01 for low rewarding odor, n = 10).
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Figure 2: Flies follow the operant matching law

A Matching of instantaneous choice ratio (blue) and reward ratio (black) in an example fly.
Reward probabilities for trial blocks are indicated by the Y-arena icons above (top). Individual
odor choices are denoted by rasters, tall rasters - rewarded choices, short rasters - unrewarded
choices. Curves show 10-trial averaged choice ratio and reward ratio, and horizontal lines the
corresponding averages over the 80-trial blocks.

B Cumulative choices of the same example fly. The slope of the black lines indicate the
block-averaged reward ratio in the three successive blocks; the blue line indicates the
cumulative choices with slope representing choice ratio. The parallel slopes of the two lines
indicate matching.

C Block-averaged choice ratio is approximately equal to reward ratio, following the matching
law, but with some undermatching (n=54 blocks from n=18 flies).

D Confusion matrix indicating the probability of true and false switches and stays predicted by
the “win-stay; lose-switch” model when compared to fly data.

E Change in instantaneous choice ratio around block changes (n = 16 transitions with large
changes in reward probabilities between blocks).

F Analysis of choices following particular histories of experience. Choices made by flies over
three consecutive past trials are represented by boxes of different colors. Colors represent
odors chosen, and rewarded choices are represented by filled boxes. Probabilities of choosing
the green and orange odor on the current trial conditional on this history are illustrated with
associated values. 6 out of 64 possible sequences are illustrated here.

G Coefficients from logistic regression performed on fly choice behavior to determine the
influence of 15 past rewards (fop) and choices (bottom) on a fly’s present choice (Mann-Whitney
rank-sum test: *** - p < 0.001, ** - p < 0.01, * - p<0.05, n = 18 flies).

H Model fit quality (percentage deviance explained) for 15-trial logistic regression, 7-trial logistic
regression and 1-trial logistic regression models. Null model used to calculate the quality metric
is a logistic regression with O-trial history and only bias.

I 15-trial logistic regression fit (purple) on behavior (blue) from the example fly from panel A,
plotted from the 15th trial onwards to avoid edge effects.
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Figure 3: Covariance-based learning is required for matching behavior in a model of the
MB

A Schematic representing the MB with all relevant neurons shown in different colors (key). Box -
right: reward dependent synaptic plasticity rule at the KC-MBON synapse .

B Schematic adapting the model developed by L&S to more closely resemble the MB and the
features of our olfactory task. 1. Sensory inputs represented by populations of KCs with overlap
between representations. In the modified task, agents only experience one odor at a time. 2.
Weights between inputs and MBON are modified according to plasticity rules shown in A. 3.
MBON output determines probability of rejecting an odor and is passed through a sigmoidal
nonlinearity to determine behavior. 4. Reward information is provided to this circuit via DAN
activity which either represents simply reward (R) or reward minus reward expectation (R-E[R]).

C Left: Block-averaged choice ratio produced by the [S-E(S))]*[R-E(R)] covariances-based rule
(box) plotted against reward ratio. The model exhibits matching behavior (slope is 1). Right: An
example simulation showing the performance in a 3 block task of a model incorporating a
covariance-based rule [Si-E(S)]*[R-E(R)]. Task reward contingencies are the same as shown for
the example fly in Fig. 2A.

D Same as (C), but simulated with a non-covariance learning rule. Left: The model produces
behavior that does not show matching (slope < 1). Right: performance in a 3 block task does not
show matching of choice and reward ratio.
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Figure 4: Identifying learning rules underlying dynamic foraging in the mushroom body
A Schematic detailing the logic of the MB-inspired regression model.

B Example fly data (blue) showing the probability of accepting odor 1 (left) and odor 2 (right)
calculated over a 6-trial window as a function of the number of times the fly experienced the
given odor. This data was fit using an MB-inspired regression model (A) that incorporates either
an covariance-based rule with reward-expectation (gray), or a non-covariance rule (red).

C Change in percentage deviance explained, computed by subtracting the percentage deviance
explained of the non-covariance-based model from a covariance-based rule that incorporates
reward expectation (n = 18 flies). On average, fly behavior was better predicted by the
covariance-based model (Wilcoxon signed-rank test: p = 0.0018). Individual flies that were
better fit by the covariance-based model have a positive value on this plot (gray region) while
flies better fit by the non covariance-based model have a negative value (red region).

D Regression coefficients assigned to each term of the plasticity rule when the MB-inspired
regression model using a covariance-based rule with reward-expectation was fit to the flies’
behavior. Largest coefficients were assigned to the product term.

E Change in percentage deviance explained (shown in C), plotted against a measure of
undermatching (mean square error between instantaneous choice ratio and reward ratio lines)
for each fly (n = 18).

F Coefficient value assigned to the product term term (shown in D), plotted against a measure of
undermatching for each fly (n = 18).
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Figure 5: Behavioral evidence of reward expectation in DANs

A Simulated instantaneous choice ratio plotted as a function of trial number, for an agent using
a covariance-based rule with reward expectation in 80:20 (orange) and 100:0 (red) reward
conditions.

B As (A), except for an agent using a non covariance rule. Dashed line indicates the maximum
possible performance of this agent in the 100:0 protocol.

C Flies’ instantaneous choice ratio when providing optogenetic reward using the sugar sensing
neuron driver Gr64F-Gal4 to drive UAS CSChrimson. Again reward ratios are 80:20 (n = 6 flies)
and 100:0 (n = 9 flies).

D As in C except reward provided via the PAM DANs using R58E02-Gal4 to drive
UAS-CSChrimson (n=8 flies in both 80:20 and 100:0). Dashed line indicated the maximum
possible performance of this agent in B in the 100:0 protocol.

E Average choice ratios of individual flies from C showing significant learning in both 100:0 and
80:20 protocols (Wilcoxon signed-rank test: 100:0, p = 0.0039; 80:20, p = 0.0312)

F Average choice ratios of individual flies from D. Flies showed a significant preference towards
the rewarded odor in 100:0 but not 80:20 (100:0, p = 0.0391; 80:20, p = 0.1875).

G Example fly data showing probability of accept odors as a function of odor experience
number(blue), from flies performing the dynamic foraging protocol with DANs activated as
reward.Fit using an MB-inspired regression model that incorporates either a covariance-based
rule with reward expectation (gray), or a non-covariance rule (red).

H Block-averaged choice ratios and reward ratios plotted against each other for flies with DAN
activationused as reward (n = 26 flies, 3 blocks each). The best fit line for the DAN reward data
is in blue. Best fit Gr64f sugar sensory reward behavior (Fig. 3C) is in red for comparison.

I Block-averaged choice ratios and reward ratios (n = 50 simulations * 3, 80 trial blocks) from
data simulated using a non-covariance-based rule are plotted against each other. The best fit
line for the simulated data is in black, and for DAN reward (G) is in blue.

J The instantaneous choice ratio of an example fly performing the dynamic foraging protocol
plotted against trial number. Reward probabilities for trial blocks are indicated by the Y-arena
icons above (top). Individual odor choices are denoted by rasters, tall rasters - rewarded
choices, short rasters - unrewarded choices. Curves show 10-trial averaged choice ratio and
reward ratio, and horizontal lines the corresponding averages over the 80-trial blocks.

K Change in percentage deviance explained, computed by subtracting the percentage deviance
explained of the non-covariance-based model from a covariance-based rule, plotted for each fly
(n = 26). On average, fly behavior was better predicted by the non-covariance-based model
(Wilcoxon signed-rank test: p = 0.0164). Individual flies that were better fit by the
covariance-based model have a positive value on this plot (gray region) while flies better fit by
the non covariance-based model have a negative value (red region).
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Supplementary Figure 1: Further quantification of learning of multiple probabilistic
cue-reward associations in the novel Y-arena

A A measurement of odor boundaries in the Y-arena. Moist blue litmus paper was placed in the
Y-arena while the arm at the bottom was filled with carbon dioxide. This caused the color of the
litmus paper to change, providing an estimate of how odor boundaries are formed at the center
of the Y.

B The time taken to make a choice decreases once reward is made available to the fly (mean
+/- SEM). Inset: Average trial time for the first 20 trials is longer than the average trial for the last
20 trials (Wilcoxon signed-rank test: p = 6.292*10%, n=18 flies).

C The average choice time across 80 trials, measured from first exit of the air arm till entry into
the reward zone, for two different summed probabilities of receiving reward (0.5 or 1). Average
choice time decreases as the summed probability increases (Mann-Whitney rank-sum test: p =
4.7653*10*, n = 18 for summed probability = 1; n = 20 for summed probability = 0.5).

D Percentage of odor arm entries that lead to accept or reject in a 100:0 protocol. Flies show
increased rejection of the unrewarded odor (Mann-Whitney rank-sum test: p = 3.2278 * 107, n =
18), and decreased rejection of the rewarded odor (Mann-Whitney rank-sum test: p= 3.2166 *
107, n = 18).

E Histogram showing the number of rejects over time for rewarded and unrewarded odor
choices. Rejects decrease over time for the rewarded odor (Wilcoxon signed rank test: p
=0.0171, n = 18, comparing bins 15-65 with 66-115 minutes - to exclude large time values when
many flies had already finished the task), but not the unrewarded one (Wilcoxon signed rank
test: p =0.1839, n = 18).

F Histogram showing the number of reversals as a function of distance along the odorized arm.
The demarcation of “End” on the x-axis represents entry into the reward zone.

G The average percentages of accepting and rejecting each odor - high-rewarding (green),
low-rewarding (orange) and unrewarded (blue) are graphically represented in a schematic of the
Y-arena (n=10 flies). Flies increasingly accepted the high-rewarding odor(Mann-Whitney
rank-sum test: p= 1.8267*10*, n = 10), and displayed an increased probability of rejecting both
low-rewarding and unrewarded odors, as compared to naive trials (Supp. Fig. 1G left;
Mann-Whitney rank-sum test: unrewarded odor: p = 1.8165*10*, n = 10; rewarded odor: p =
7.6854*10*, n = 10).
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Supplementary Figure 2: All example instantaneous choice ratio and reward ratio plots
Matching of instantaneous choice ratio (blue) and reward ratio (black) in all example flies.
Curves show 10-trial averaged choice ratio and reward ratio, and horizontal lines the
corresponding averages over the 80-trial blocks.
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Supplementary Figure 3: Analysis of the “win-stay lose-switch” and “leaky-integrator”
models

A Schematic of the “win-stay; lose-switch” model

B Example choice data generated by the “win-stay; lose-switch” model showing instantaneous
choice ratio (blue) and reward ratio (black)

C Schematic representing how the past trial history is weighted to calculate value in the
“leaky-integrator” model.

D Estimated exponential timescales (t) for each fly shown in Supp Fig. 2

E Estimated inverse temperatures for each fly shown in Supp Fig. 2

F Relationship between exponential timescale and inverse temperature.

G Leaky-integrator model fit (purple) on behavior (blue) from the example fly in Fig. 2A, plotted
from the 15th trial onwards to avoid edge effects.
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A) Loewenstein & Seung Model

s -

Cue 2
Reward
G
[
AW1 AWz

T T
>
N Cue

Winner-Take-Al = p i

B) )
L&s M°de|
AWi=1.Si.R
100: N
: \ e
o ”‘ g‘? .
8 T Wkk X x
L :
’ O
0: Reward Ratio  100: .
D) )
L&s Model
AN SEIRER)
. 100:
2 )
o ,‘
S | # :
0: Reward Ratio  100: .

Non-Covariance Rules

Do Not Produce
Matching

AW,=1.S,.R

Covariance Rules
Produce Matching

AW =1.S, . [R-E(R)]
AW. =1 . [S-E(S)]. R

AWi =Nn. [SI'E(S‘)]
RER)]

L&S Model
AWi = n . [SFE(Si)] . [R]

Reward Ratio 100:

L&S Model
AWi = 1 . [SIFE(SI)] . [R-E(R)]

Reward Ratio 100:

51


https://doi.org/10.1101/2022.05.24.493252
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.24.493252; this version posted December 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Figure 4: Covariance-based learning rules are necessary for operant
matching

A Description of the model developed by Loewenstein and Seung to study the requirements of
matching behavior. The neural network consists of sensory neurons S, and S, that respond to
one of the two simultaneously provided stimuli and synapse onto motor neurons A, and A, via
synapses with weights W, and W,. Choices are determined via a winner-take-all computation
downstream of motor neurons. Upon choice, weights are updated according to one of the
shown plasticity rules (boxes-right). Here, S; is the activity of the i sensory neuron; R
represents the presence or absence of reward; E(S)) is the mean or expectation of the activity of
S; and E(R) is the expectation of reward.

B Block-averaged choice ratios versus reward ratios (n = 2000 simulations) from data simulated
using a non-covariance in the model described in 4A are plotted against each other.

C Block-averaged choice ratios versus reward ratios (n = 2000 simulations) from data simulated
using a covariance-based rule [S-E(S))]*R in the model described in 4C are plotted against
each other.

D Block-averaged choice ratios versus reward ratios (n = 2000 simulations) from data simulated
using a covariance-based rule S;*[R-E(R)] in the model described in 4A are plotted against each
other.

E Block-averaged choice ratios versus reward ratios (n = 2000 simulations) from data simulated
using a covariance-based rule [S-E(S)]*[R-E(R)] in the model described in 4A are plotted
against each other.
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Supplementary Figure 5: Models using covariance-based learning rules produce
behavior more similar to real fly behavior

A Left: Block-averaged choice ratio produced by the Si*[R-E(R)] covariances-based rule (box)
plotted against reward ratio. The model exhibits matching behavior (slope is 1). Right: An
example simulation showing the performance in a 3 block task of a model incorporating a
covariance-based rule S*[R-E(R)]. Task reward contingencies are the same as shown for the
example fly in Fig. 2A.

B Same as (A), but simulated with a [S-E(S))]*R rule. Left: The model exhibits matching
behavior (slope is 1). Right: performance in a 3 block task where reward contingencies are the
same as shown for the example fly in Fig. 2A.
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Supplementary Figure 6
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Supplementary Figure 6: Extent of sensory overlap does not affect the behavior of our
model

A Example simulated data showing the probability of accepting odor 1 (left) and odor 2 (right)
(blue), simulated using a covariance-based rule with reward expectation, and fit using an
MB-inspired regression model (A) that incorporates either the same rule (gray), or a
non-covariance rule (red). The predictions resulting from the model using the covariance-based
rule is a better fit for the simulated data.

B Change in percentage deviance explained, computed by subtracting the percentage deviance
explained of the non-covariance-based regression model from the covariance-based rule,
plotted for each simulation (n = 50). The covariance-based rule better fits the simulated behavior
than the non covariance-based rule (Wilcoxon signed-rank test: p = 6.7595 * 10)

C Regression coefficients assigned to each term of the learning rule when the MB-inspired
regression model using a covariance-based rule with reward expectation was fit to the simulated
behavior. Note the non-zero weight of the ¢ and d terms.

D Block-averaged choice ratios versus reward ratios (n = 300 simulations) from data simulated
using a covariance-based rule with reward expectation are plotted against each other. Sensory
overlap a = 0.

E Block-averaged choice ratios versus reward ratios (n = 300 simulations) from data simulated
using a covariance-based rule with reward expectation are plotted against each other. Sensory
overlap a = 0.05.

F Block-averaged choice ratios versus reward ratios (n = 300 simulations) from data simulated
using a covariance-based rule with reward expectation are plotted against each other. Sensory
overlap a = 0.15.

G Block-averaged choice ratios versus reward ratios (n = 300 simulations) from data simulated
using a covariance-based rule with reward expectation are plotted against each other. Sensory
overlap a = 0.2.

H Change in percentage deviance explained, computed by subtracting the percentage deviance
explained of the covariance-based regression model with overlap = 0.1, from that of regression
models with covariance-based rules and different amounts of overlap (0,0.05,0.15,0.2). Points
are plotted for each simulation (n = 50). Simulations were run with overlap a = 0.1.

I Change in percentage deviance explained, computed by subtracting the percentage deviance
explained of the covariance-based regression model with exponential timescale (t)= 3.5, from
that of regression models with covariance-based rules and different exponential timescales.
Points are plotted for each simulation (n = 50). Simulations were run with exponential timescale
(t)=3.5.
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Supplementary Figure 7: Covariance-based learning rules are better predictors on
individual choice behavior

A Change in percentage deviance explained, computed by subtracting the percentage deviance
explained of the non-covariance-based model from two models with covariance-based rules
(feft: incorporating both stimulus and reward expectations; right: incorporating just stimulus
expectation) plotted for each fly (n = 18) . Covariance-based rules were more predictive of fly
behavior on average (Wilcoxon signed-rank test:left. p=0.0074; right. p = 0.0168).

B Example fly data showing probability of accepting odors as a function of odor experience
number for odor 1 (left) and odor 2 (right)(blue) fit using an MB-inspired regression model (Fig.
5A) that incorporates a covariance rule with either sensory and reward expectations (brown), or
just sensory expectations (black).

C Regression coefficients assigned to each term of the learning rule when the MB-inspired
regression model using a covariance rule with sensory expectation was fit to the flies’ behavior.
D Correlation between regression coefficients resulting from MB-inspired regression model
using a covariance rule with sensory expectation.

E Regression coefficients assigned to each term of the learning rule when the MB-inspired
regression model using a covariance rule with sensory and reward expectations was fit to the
flies’ behavior.

F Correlation between regression coefficients resulting from MB-inspired regression model
using a covariance rule with sensory and reward expectations.

G Regression coefficients assigned to each term of the learning rule when the MB-inspired
regression model using a non-covariance rule was fit to the flies’ behavior.

H Correlation between regression coefficients resulting from MB-inspired regression model
using a non-covariance rule.

I Correlation between regression coefficients resulting from MB-inspired regression model using
a covariance rule with reward expectation.
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Supplementary Figure 8
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Supplementary Figure 8: Covariance-based learning rules produce similar behavior in
100:0 and 80:20 tasks

A Simulated instantaneous performance plotted as a function of trial number (defined as the
percentage of choices towards the option with higher pre-defined reward probability in a 10 trial
window) of an agent using a covariance-based rule with sensory and reward expectations in
80:20 (orange) and 100:0 (red) reward conditions.

B Simulated instantaneous performance plotted as a function of trial number (defined as the
percentage of choices towards the option with higher pre-defined reward probability in a 10 trial
window) of an agent using a covariance-based rule with sensory expectation in 80:20 (orange)
and 100:0 (red) reward conditions.

C Change in instantaneous choice ratio around block changes. Flies trained with Gr64f
activation in blue, DAN activation in red

D Change in instantaneous choice ratio around block changes from simulated data. Agents with
a covariance-based rule with reward expectation in blue. Agents with non-covariance rule in red.
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Supplementary Figure 9
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Supplementary Figure 9: Circular arena experiments to control for rewarding red LED
intensity

A Schematic of the experimental paradigm used to train flies in the circular arena. LED intensity
chosen to be 2.3 mW/cm? to match intensity in the Y-arena.

B Time averaged performance index plotted for DAN trained and Gr64f trained flies show that
both learn to prefer the reward-paired odor (Wilcoxon signed-rank test: Gr64f - p = 0.0312; DAN
-p =0.0078).

C Performance index plotted over timecourse of testing period (minute 9-10 in (A)) for DAN
trained flies.

D Performance index plotted over timecourse of testing period (minute 9-10 in (A)) for Gr64f
trained flies.
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Supplementary Information 1: Description of the Y-arena

4
GENERAL NOTES:
MATERIAL:
2. SPECIAL FINISH: NONE
. SURFACE ROUGHNESS (UNLESS SPECIFIED OTHERWISE): N/A (AVERAGE MICRO-INCHES)
INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1
5. DEBURR AND BREAK ALL SHARP EDGES, MAX 0.010" (UNLESS SPECIFIED OTHERWISE)
6. PARTS ARE TO BE CLEAN AND FREE OF OIL, GREASE, AND OTHER CONTAMINANTS
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ROST it
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