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Abstract 
Following gastrulation, the three primary germ layers develop into the major organs in a 
process known as organogenesis. Single-cell RNA sequencing has enabled the profiling of 
the gene expression dynamics of these cell fate decisions, yet a comprehensive map of the 
interplay between transcription factors and cis-regulatory elements is lacking, as are the 
underlying gene regulatory networks. Here we generate a multi-omics atlas of mouse early 
organogenesis by simultaneously profiling gene expression and chromatin accessibility from 
tens of thousands of single cells. We develop a computational method to leverage the multi-30 
modal readouts to predict transcription factor binding events in cis-regulatory elements, which 
we then use to infer gene regulatory networks that underpin lineage commitment events. 
Finally, we show that these models can be used to generate in silico predictions of the effect 
of transcription factor perturbations. We validate this experimentally by showing that Brachyury 
is essential for the differentiation of neuromesodermal progenitors to somitic mesoderm fate 
by priming cis-regulatory elements. The data set can be interactively explored at 
https://www.bioinformatics.babraham.ac.uk/shiny/shiny_multiome_organogenesis/ 

Introduction 
In mammals, specification of the basic body plan occurs during gastrulation, when the 
pluripotent epiblast is patterned to give rise to the three primary germ layers. Subsequently, 40 
these progenitors generate all major organ systems in a process known as organogenesis 
(Arnold and Robertson, 2009; Bardot and Hadjantonakis, 2020; Tam and Loebel, 2007). In 
the mouse, germ layer formation and early organogenesis have been profiled using a variety 
of genomics technologies, including single-cell RNA-sequencing (scRNA-seq), which led to 
the annotation of multiple cell types and the characterisation of differentiation trajectories (Cao 
et al., 2019; Ibarra-Soria et al., 2018; Pijuan-Sala et al., 2019). Some efforts to profile the 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.06.15.496239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496239
http://creativecommons.org/licenses/by/4.0/


 

epigenome during these stages have produced bulk chromatin accessibility using ATAC-seq 
and histone profiling with ChIP-seq at E7.5 (Xiang et al., 2020), single-nucleus (sn) chromatin 
accessibility maps at E8.25 with snATAC-seq (Pijuan-Sala et al., 2020) and single-cell 
transcriptome, nucleosome positioning and DNA methylation up to E7.5 with scNMT-seq 50 
(Argelaguet et al., 2019). These data demonstrate the dynamic remodelling that the 
epigenome undergoes during development. However, a comprehensive characterisation of 
the epigenome changes and the cis-regulatory elements involved in the transition from 
gastrulation to early organogenesis is still lacking, as well as an integration of this information 
with the transcriptome. Furthermore, the genomic positions and the target genes of the various 
transcription factors (TFs) that control these developmental trajectories have only been 
explored for a limited set of TFs and using in vitro systems. A catalogue of TF binding sites 
during mouse early organogenesis in vivo is lacking.  
 
Single-cell multimodal technologies have huge potential for the study of gene regulation (Chen 60 
et al., 2019; Clark et al., 2018; Luo et al., 2022; Ma et al., 2020; Zhu et al., 2019, 2021). In 
particular, the ability to link epigenomic with transcriptomic changes allows the inference of  
gene regulatory networks (GRNs)(Aibar et al., 2017; Davidson and Erwin, 2006; Kamimoto et 
al., 2020; Kartha et al., 2021; Materna and Davidson, 2007). GRNs are able to capture the 
interplay between TFs, cis-regulatory DNA sequences and the expression of target genes 
(Garcia-Alonso et al., 2019; Levine and Davidson, 2005; Stadhouders et al., 2018), and can 
hold predictive power of cell fate transitions and gene perturbations (Kamimoto et al., 2020). 
Methods that derive GRNs from single-cell genomics data have been developed (Aibar et al., 
2017; Fleck et al., 2021; Kamimoto et al., 2020; Kartha et al., 2021) and applied to the 
developing fly brain (Janssens et al., 2022) but similar analyses of mammalian development 70 
are lacking. In addition, GRN inference relies on accurate TF binding data, yet limited 
knowledge of TF binding exists for early embryonic development due to limitations in 
experimental methods such as ChIP-seq or CUT&RUN, which require large numbers of cells 
(Skene and Henikoff, 2017) and faithful antibodies. It is thus unrealistic to profile a large 
fraction of all TFs even in a single biological context (Lambert et al., 2018; Park, 2009). 
Instead, TF binding sites are typically inferred from the presence of a sequence motif within 
accessible chromatin (Castro-Mondragon et al., 2021; Schep et al., 2017; Weirauch et al., 
2014). This approach can be successful for some TFs that display non-redundant DNA motifs 
with high sequence specificity, but the presence of a TF motif does not guarantee the 
existence of an active binding site (Wang et al., 2012). Moreover, the use of DNA motifs as a 80 
proxy for TF binding is not well suited for the study of TFs that share similar DNA motifs, and 
also for TFs linked to short motifs. Thus, alternative methods for predicting TF binding sites 
are required. 
 
Recent technological advances have enabled the simultaneous profiling of RNA expression 
and epigenetic modalities from single cells at high-throughput (Chen et al., 2019; Ma et al., 
2020; Zhu et al., 2019). This provides a unique opportunity to systematically decode the TF 
activities and the GRN structure that underpins cell fate transitions. Here, we perform snATAC-
seq and snRNA-seq from the same nuclei from a time course of mouse embryonic 
development from E7.5 to E8.75. We develop a computational method to leverage the multi-90 
modal readouts to predict TF binding events in cis-regulatory elements, which we then use to 
build GRNs that underlie cell fate transitions. Finally, we show that these models can be used 
to generate in silico predictions of the effect of TF perturbations. 
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Results 
 
Simultaneous profiling of RNA expression and chromatin accessibility during 
mouse early organogenesis at single-cell resolution 
 
We employed the 10x Multiome technology to profile RNA expression and chromatin 100 
accessibility from single nuclei collected between E7.5 and E8.75 (Figure 1a). A total of 
61,781 cells passed quality control for both data modalities, with a median detection of 4,322 
genes expressed per cell and a median of 29,710 ATAC fragments per cell (Figure S1). Cell 
types were assigned by mapping the RNA expression profiles to a reference atlas from similar 
stages (Pijuan-Sala et al., 2019) (Figure 1b-c, Figure S2). To evaluate the cell type 
assignments we performed multi-modal dimensionality reduction with MOFA+ (Argelaguet et 
al., 2020), revealing that both molecular layers contain sufficient information to distinguish cell 
type identities (Figure 1c). Similar results are obtained when applying dimensionality 
reduction to single data modalities. To further validate the measurements obtained from both 
data modalities, we compared the RNA expression and chromatin accessibility profiles with 110 
published data sets profiled with scRNA-seq (E7.5 to E8.5 embryos)(Pijuan-Sala et al., 2019) 
and snATAC-seq (E8.25 embryos)(Pijuan-Sala et al., 2020). Despite differences in the 
technology and in the molecular input (i.e. whole cell versus single nuclei in the case of RNA 
expression) we observe close agreements in both gene expression (Figure S3) and chromatin 
accessibility measurements (Figure S4).  
 
A catalogue of cis-regulatory elements 
 
To define open chromatin regions that represent putative cis-regulatory elements we 
performed peak calling on the snATAC-seq data using the ArchR pipeline (Granja et al., 2021). 120 
Briefly, peaks are defined by an iterative overlapping strategy where cells are aggregated by 
cell type into pseudo-bulk replicates. This approach has been shown to optimally preserve cell 
type-specific peaks (Granja et al., 2021). We obtained a total of 192,251 ATAC peaks, which 
we classified into four groups depending on their genomic location: Promoter (16.92%), Exonic 
(5.77%), Intronic (41.57%) and Intergenic (35.75%) (Figure S5a-b). 81% of peaks display 
differential accessibility in at least one cell type comparison (Methods). 69% of peaks were 
assigned to genes based on genomic proximity (less than 50kb from the gene body), with an 
average of ~20 peaks linked to a gene and an average of ~2.3 genes associated to a peak 
(Figure S5c-d). ~35% of peak-to-gene associations displayed significant positive correlation 
with the RNA expression levels of at least one of the proximal genes, whereas ~11% displayed 130 
a negative correlation (Figure S5e-f). 
 
Molecular characterisation of lineage-specific cis-regulatory elements 
 
Next, we sought to characterise the transcriptomic and epigenetic variability of lineage-
defining genes. We used the pairwise differential RNA expression results between cell types 
to define cell type-specific upregulated marker genes (Figure 1d left, Methods). Then, we 
quantified the average RNA expression and chromatin accessibility (at promoter regions) for 
each class of marker genes and each cell type (Figure 1e right, Figure S6). As a positive 
control, we performed the same quantification for a set of canonical housekeeping genes, 140 
which are constitutively expressed and have an open chromatin profile. As a negative control, 
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we included a set of olfactory receptors genes, which are not expressed until later in 
development and display a closed chromatin profile (Figure 1e left, Figure S6). In marker 
genes, we observe the highest levels of expression and chromatin accessibility in the cell 
types that they mark, as expected. In all other cell types expression of these marker genes is 
still detected but at reduced levels. Promoter accessibility is also lower for marker genes in 
the cell types that they mark, however the differences are much less pronounced than for gene 
expression (Figure 1e). This suggests that promoter accessibility may have a limited function 
in driving differences in gene expression across cell types. Then, we asked whether cis-
regulatory elements that are distal to promoter regions (Intronic and Intergenic peak sets) also 150 
display the same behaviour. We defined cell type-specific marker peaks by performing 
pairwise differential accessibility analysis (Figure 1d right, Methods), and then compared the 
average chromatin accessibility at promoter regions of marker genes versus marker peaks 
(Figure 1f). We find distal cis-regulatory elements to be more dynamic, with accessibility levels 
similar to promoters in the cell types where they become active, but much lower accessibility 
in the cell types where they are not active (Figure 1f). Consistent with previous reports 
(Argelaguet et al., 2019; Cusanovich et al., 2018), our results indicate a more prominent role 
of distal regulatory regions in cell fate decisions. A representative example is the Gata6 locus 
shown in (Figure 1g). This gene is expressed in late mesodermal cell types, including 
Cardiomyocytes, Pharyngeal mesoderm and Allantois. However, the promoter region is 160 
homogeneously open across all cell types, whereas three regulatory regions located within 50 
kilobases of the gene body gain accessibility exclusively in the cell types where Gata6 is 
expressed. Other representative examples are shown in Figure S6. 
 
 
Multi-modal prediction of transcription factor binding sites 
Cell fate decisions are molecularly characterised by changes in GRNs orchestrated by the 
interaction between TFs and their target genes (Levine and Davidson, 2005). Nevertheless, 
limited knowledge of TF binding exists for early embryonic development. First, experimental 
methods such as ChIP-seq or CUT&RUN require large numbers of cells to accurately profile 170 
TF binding events making it challenging to apply to embryos (Skene and Henikoff, 2017). 
Second, the success of the experiments depend on properties of available antibodies and on 
the properties of the TF itself, making it unrealistic to profile even a fraction of all transcription 
factors in the genome (Lambert et al., 2018; Park, 2009). Current methods for ATAC-seq data 
analysis link TFs to regulatory regions by the presence of TF motifs (Castro-Mondragon et al., 
2021; Schep et al., 2017; Weirauch et al., 2014). This approach can be successful for some 
TFs that display non-redundant DNA motifs with high sequence specificity, but it has important 
shortcomings. First, the presence of a TF motif does not guarantee the existence of an active 
binding site (Wang et al., 2012). Second, a large fraction of TFs belong to families that share 
the same motif, even when having different functions and expression patterns. Representative 180 
examples are the GATA, HOX and the FOX family of transcription factors (Figure S7a-b). As 
a result of these issues, it is extremely challenging to link TFs to regulatory elements when 
exclusively using a combination of genomic and epigenomic information. This can be 
illustrated by the large number of TF motifs that can be identified within each ATAC peak 
(Figure S7c-d). To address this, we developed a computational approach that integrates 
genomic, epigenomic and transcriptomic information to predict TF binding events. 
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Intuitively, we consider an ATAC peak i to be a putative binding site for TF j if it contains the j 
motif and its chromatin accessibility is correlated with the RNA expression of the TF (Figure 
2a). We combine three metrics (motif score, average chromatin accessibility and correlation) 190 
to devise a quantitative in silico binding score for each combination of TF and ATAC peak 
(Methods). Note that our approach is unsupervised and does not require ChIP-seq data as 
input. This stands in contrast with other approaches that have been proposed to predict TF 
binding from multi-omics data, which employ supervised models that require labelled training 
data from ChIP-seq experiments (Avsec et al., 2021; Karimzadeh and Hoffman, 2019). We 
will refer to this approach as in silico ChIP-seq. The number of predicted binding sites for each 
TF is a function of the minimum score threshold, which ranges from 0 to 1 after scaling (Figure 
2b). Notably, the incorporation of RNA expression massively reduces the amount of predicted 
binding sites for each TF as well as the amount of TFs that can be linked to each regulatory 
element (Figure 2c-d). 200 
 
To validate the in silico ChIP-seq library, we used publicly available ChIP-seq experiments for 
a set of TFs that are known to play key roles during mouse gastrulation and early 
organogenesis, and defined this as the ground truth for TF binding events. Due to the limited 
availability of in vivo ChIP-seq datasets, we had to rely on in vitro models that more closely 
resemble the gastrulating embryo (Supplementary Table 1). Yet, we observe remarkable 
agreement between the in silico TF binding scores and the observed ChIP-seq signal (Figure 
2d-e). Worse agreement is obtained when excluding the transcriptomic information from the 
model (Figure 2d). Representative examples of TF binding predictions are shown alongside 
ChIP-seq data in Figure 2f-g. Interestingly, for all TFs we benchmarked, the consistency with 210 
ChIP-seq measurements exclusively holds true for ATAC peaks that are positively correlated 
with TF expression (Figure S8), which is consistent with these TFs acting as chromatin 
activators. Our approach also predicts repressive interactions with chromatin (not to be 
confused with transcriptional repression of target genes, as we will discuss below). Chromatin 
repressors are known to be important for gene regulation, and they generally involve the 
recruitment of chromatin remodelers, including  histone modifiers, to turn chromatin from an 
open to a closed state (Berest et al., 2019; Gaston and Jayaraman, 2003; Iurlaro et al., 2021; 
Janssens et al., 2022; Lambert et al., 2018). However, insufficient ChIP-seq data exists for 
chromatin repressors in the context of embryonic development, thus limiting our benchmark. 
In consequence, we only consider activatory links between TFs and regulatory regions for 220 
downstream analyses. We refer the reader to the Supplementary Information for a more 
detailed discussion on the methodology, benchmark, limitations of the method and comparison 
to related approaches.  
 
Quantification of cell type-specific transcription factor chromatin activities 
using chromVAR-Multiome 
 
The output of the in silico ChIP-seq model is a matrix of TF binding scores for each cis-
regulatory element. It does not directly provide a quantification of the TF activities for each 
sample (where samples can correspond to cells, metacells or cell type, depending on the 230 
chosen data resolution, see discussion in the Supplementary Information). The most 
popular method to quantify TF activities per sample using chromatin accessibility data is 
chromVAR (Schep et al., 2017). Briefly, this method computes, for each sample and TF motif, 
a z-score that measures the difference between the total number of fragments that map to 
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motif-containing peaks and the expected number of fragments (Figure 3a). While useful when 
only having access to chromatin accessibility data, chromVAR scores are often not 
representative of true TF activities, mainly because accessible DNA motifs are not always 
good proxies for actual TF binding events. This can be illustrated with the Fox family of 
transcription factors, which all share a similar DNA motif, but nevertheless have different roles 
during mouse gastrulation: whereas Foxb1 is a pioneer TF in the ectodermal lineage (Labosky 240 
et al., 1997), Foxc2 is active in the mesodermal lineage (Wilm et al., 2004). Their distinct roles 
are evidenced by the different cell types and spatial locations where they are expressed in the 
embryo (Lohoff et al., 2022) (Methods, Figure 3b-c). Yet, due to their motif similarity, the 
chromVAR scores of these two TFs are indistinguishable (Figure 3b-c). Here, we modified 
the chromVAR algorithm to use the putative TF binding sites from the in silico ChIP-seq library, 
instead of all TF motif instances. We refer to this approach as chromVAR-Multiome, and the 
resulting values as TF activity scores.  
 
Overall we find that chromVAR-Multiome yields TF activity scores that are more consistent 
with the known expression patterns of the corresponding TFs (Figure 3b), albeit with some 250 
exceptions. By exploring the residuals of a linear model linking chromVAR-Multiome scores 
with TF RNA expression one can identify outlier cell types that are candidates for epigenetic 
priming (Figure S9). An example is Foxb1: while high levels of RNA expression and TF activity 
are observed in mature ectodermal lineages, including Spinal cord and Brain, Epiblast cells 
display high Foxb1 activity despite the TF not being expressed (Figure S9). Notably, this 
observation is consistent with our previous work (Argelaguet et al., 2019), where we proposed 
that pluripotent epiblast cells are epigenetically primed for neuroectoderm differentiation via 
epigenetic priming of cis-regulatory elements. 
 
A catalogue of cell type-specific transcription factor activities in mouse early 260 
organogenesis 
 
Next, we used the chromVAR-Multiome scores to perform pairwise differential analysis 
between cell types and parse the results to quantify TF markers for each cell type (Methods) 
(Figure 4a-b). Reassuringly, using this approach we recover canonical TF markers for a 
variety of cell types, including Foxa2 and Sox17 for endodermal cell types; Mesp11/2 and 
Mixl1 for the Primitive Streak and mesodermal cell types; Sox2 and Rfx4 for ectodermal cell 
types; Tbx5 and Nkx2-5 for Cardiomyocytes; Runx1 and Tal1 for Blood progenitors and 
Erythroids (Figure 4c). Notably, the resolution of the data enables us to provide quantifications 
of TF activities for cell types that are challenging to study due the low cell numbers and difficult 270 
cell isolation, including Primordial Germ Cells (PGCs) and Neural crest cells (Figure 4d). For 
the Neural crest, we recover many TFs that have been previously associated with Neural crest 
identity in different species: Pax7, Foxd3, Tfap2a, Tfap2b, Sox10, Sox5, Ets1, Nr2f1 and 
Mef2c (Figure S10, Supplementary Table 2). For example, Tfap2a has been shown to be 
essential for Neural crest specification in Xenopus embryos (de Crozé et al., 2011). In mice, 
disruption of the Tfap2a gene results in craniofacial malformations and embryonic 
lethality(Schorle et al., 1996). In humans, missense mutations in the corresponding 
orthologous gene results in branchio-oculo-facial syndrome, which is also characterised by 
craniofacial abnormalities (Milunsky et al., 2008).  For PGCs we also recover TFs described 
to be important for PGC specification in mice, including Prdm1 (also called Blimp-1), Esrrb 280 
and Pou5f1 (also called Oct4) (Figure S10, Supplementary Table 2). For example, Blimp-1 
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has been shown to be essential for the repression of the somatic programme upon PGC 
specification(Ohinata et al., 2005). In addition, we also predict several TFs with unknown roles 
in PGC formation that could be suitable candidates for further characterisation, including Ybx2, 
Bbx and Klf8 (Figure S10). 
 
Interestingly, visualisation of TF activities across all cell types reveals that (1) cell types are 
defined by a combinatorial activity of multiple TFs and (2) most TFs are active across multiple 
cell types (Figure 4e). The first observation can be illustrated with the Neural crest: Of the 
canonical TFs shown in Figure 4f, none are uniquely active in the Neural crest, with the 290 
exception of Dlx2 and Sox10. The second observation sometimes arises from the hierarchical 
nature of lineage specification (such as Pax7 being active in multiple ectodermal-derived cell 
types, Foxa2 in all endodermal-derived cell types and Tal1 in all cell types that are linked to 
blood formation). However, in other cases we observe the same TF active in cell types from 
different germ layer origins, thus suggesting widespread pleiotropic activity where TFs define 
cellular identities via combinatorial context-dependent activity (Reiter et al., 2017; Spitz and 
Furlong, 2012). Representative examples are Sox9, active in the Neural crest, Brain, Definitive 
endoderm, and Notochord; Tfap2c, active in the Neural crest, ExE ectoderm and PGCs; and 
Ets1, active in Neural crest, Endothelium and Blood Progenitors (Figure 4f). 
  300 
 
Mapping the transcription factor regulatory network that underlies 
differentiation of neuromesodermal progenitors 
 
In the previous section, we used the chromVAR-Multiome scores to generate a catalogue of 
TF activities linked to cell types. In this approach, however, we ignored interactions between 
TFs. Next, we sought to quantify interactions between TFs by inferring gene regulatory 
networks (GRNs) and connecting them to continuous cellular trajectories.  
 
We employed a multi-step algorithm to infer GRNs (Methods, Figure S11). First, we subset 310 
cells of interest and infer metacells (Persad et al., 2022), with the goal of achieving a resolution 
that retains the cellular heterogeneity while overcoming the sparsity issues of single-cell data. 
Second, we used the in silico ChIP-seq method to link TFs to cis-regulatory elements. Third, 
we linked cis-regulatory elements to potential target genes by genomic proximity (here a 
conservative maximum distance of 50kb), which is a reasonable approximation in the absence 
of 3D chromatin contact information (Janssens et al., 2022; Kamal et al., 2021). This results 
in a directed network where each parent node corresponds to a TF, and each child node 
corresponds to a target gene. Finally, following the approach of (Kamimoto et al., 2020), we 
estimated the weights of the edges by fitting a linear regression model of target gene 
expression as a function of the parent TF’s expression. Importantly, while our benchmark of 320 
the in silico ChIP-seq does not support the inclusion of repressive links between TFs and cis-
regulatory elements, evidence exists that TFs can repress the expression of target genes 
(Gaston and Jayaraman, 2003; Liang et al., 2017). Thus, in the GRN model we allowed for 
negative associations between TF expression and target gene expression. 
 
Here we applied the GRN methodology described above to study the TF regulatory network 
underlying differentiation of  Neuromesodermal progenitors (NMPs).  Briefly, NMPs are a 
population of bipotent stem cells that fuel axial elongation by simultaneously giving rise to 
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Spinal cord cells, an ectodermal cell type, as well as posterior somites, a mesodermal cell type 
(Sambasivan and Steventon, 2020) (Figure 5a). Molecularly, NMPs are characterised by the 330 
co-expression of the mesodermal factor Brachyury and the neural factor Sox2 (Henrique et 
al., 2015), but studies have suggested that these are just two players of a complex regulatory 
landscape (Gouti et al., 2017). Consistently, besides Sox2 and Brachyury, we identify a 
network of 33 additional TFs with 379 activatory and 48 repressive interactions, respectively 
(Figure 5b), Notably, we find the homeobox Cdx and Hox TFs display the highest centrality 
of the network by establishing an activatory self-regulatory loop that sustains NMP identity 
(Figure 5c,d). This observation agrees with studies that showed that all three Cdx genes 
contribute additively to axial elongation and the development of posterior embryonic 
structures, with the most important one being Cdx2 (Chawengsaksophak et al. 2004; van 
Rooijen et al. 2012; Metzis et al. 2018). To further validate the predicted interaction between 340 
Cdx and Hox genes, we used ChIP-seq data for Cdx2 profiled in Epiblast Stem Cells exposed 
to Wnt and Fgf signalling, which induces posterior axis elongation and generates cells that 
resemble NMPs (Amin et al., 2016). Consistent with the inferred GRN, we find widespread 
binding of Cdx2 within the Hoxb cluster of genes (Figure 5e). This interaction between Cdx 
and Hox genes also agrees with in vitro studies that described the upregulation of posterior 
Hox genes in NMP-like cells upon induction of Cdx factors (Amin et al., 2016; Neijts et al., 
2016). Interestingly, in addition to its role as transcriptional activator of Hox genes, we also 
find that Cdx2 displays a pleiotropic role by repressing TFs that direct the transition to Somitic 
mesoderm (Foxc2, Brachyury, Meox1) and Spinal cord (Pax6) (Figure 5f and Figure S12). 
 350 
Brachyury controls the differentiation of Neuromesodermal progenitors to 
Somitic mesoderm by epigenetic priming cis-regulatory elements 
 
Our results above indicate that Cdx and Hox factors sustain the bipotent NMP identity but can 
also act as a fate switch by repressing TFs that direct the transition to Somitic mesoderm, 
most notably Brachyury. To validate whether this role of Brachyury is captured by the gene 
regulatory networks, we employed the GRN of NMP differentiation to predict the 
consequences of Brachyury knock-out using the CellOracle framework (Kamimoto et al., 
2020) (Methods). Briefly, CellOracle enables network configurations to be interrogated in 

silico by simulating the effects of TF perturbations. By leveraging the visualisation framework 360 
of RNA velocity, CellOracle can be used to predict how cell state shifts after perturbation of 
individual genes. Notably, we find that the in silico knock-out of Brachyury disrupts the 
transition from NMP to Somitic mesoderm (Figure 5g). Although this result was expected 
based on experimental evidence (Guibentif et al., 2021), it demonstrates how GRNs inferred 
from unperturbed single-cell multi-omics data have the potential to provide functional insights 
into cell fate transitions. 
 
To further validate our predictions and obtain additional mechanistic insights, we generated 
Brachyury KO embryos by direct delivery of CRISPR/Cas9 as a ribonucleoprotein (RNP) 
complex via electroporation, targeting exon 3 of the Brachyury (T) gene in zygotes at one-cell 370 
stage (Methods, Figure 6a). Control embryos received Cas9 protein only. Embryos were 
transferred into pseudopregnant females and collected at E8.5 for 10x Multiome sequencing. 
In total, we obtained 6,797 cells from 3 embryos at E8.5 with a wildtype (WT) background and 
6,572 cells from 7 embryos with a Brachyury KO background. Cell types were again annotated 
by mapping the RNA expression to the transcriptomic gastrulation atlas (Figure 6b). 
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Consistent with our predictions and the results of (Gouti et al., 2017; Guibentif et al., 2021), 
we observe a relative underrepresentation of (posterior) Somitic mesoderm and Allantois cells 
in the Brachyury KO embryos, together with a relative overrepresentation of NMP cells (Figure 
6c). No significant differences are observed in the abundance of Spinal cord cells, suggesting 
that the neural differentiation capacity of NMPs is not affected in the absence of Brachyury. 380 
Interestingly, we also observe defects in the Erythropoiesis trajectory (Figure 6c), suggesting 
pleiotropic effects of Brachyury across multiple developmental trajectories (Bruce and 
Winklbauer, 2020). To further explore the effect of the Brachyury KO in NMPs, we mapped 
the cells onto the NMP differentiation trajectory reconstructed from the transcriptomic 
reference atlas (Pijuan-Sala et al., 2019) (Figure 6d). Again, we find that WT cells map across 
the entire trajectory, but Brachyury KO cells map only onto the transition between NMP and 
Spinal cord. Additionally, RNA velocity analysis of these cells shows that WT NMP cells 
transition towards both Spinal cord and Somitic mesoderm fates, whereas in the Brachyury 
KO only the Spinal cord displays a coherent differentiation trajectory (Figure 6e).  
 390 
Next, we performed differential accessibility analysis between WT and Brachyury KO NMP 
cells (Methods), and found 399 differentially accessible (DA) ATAC peaks. Notably, most of 
them (N=344) are open in WT cells but unable to open in Brachyury KO cells (Figure 7a). This 
set of DA peaks display enrichment for the T-box motif and a higher in silico TF binding score 
for Brachyury than non DA peaks (Figure 7b-c), hence indicating a direct regulation by 
Brachyury. Interestingly, some of these putative cis-regulatory elements are linked to 
mesodermal genes that become expressed in the Somitic mesoderm, including Tbx6, Mesp1 
and Fgf4 (Figure 7d-e, Figure S13). Visualisation of the chromatin accessibility dynamics at 
these loci reveals that they attain the highest level of accessibility in the Somitic mesoderm 
cells, consistent with the increased expression of their target genes. Interestingly, however, 400 
we find these elements to be open in the progenitor NMP cells, before any expression of 
mesodermal genes is observed (Figure 7d-e, Figure S13). This behaviour is suggestive of 
epigenetic priming, whereby the chromatin of cis-regulatory elements becomes accessible 
before transcription of the target gene (Argelaguet et al., 2019; Ma et al., 2020). A 
representative example is shown in Figure 7f, which shows a cis-regulatory element that is 
targeted by Brachyury and is located upstream of Mesp1. This element becomes partially open 
in WT NMP cells, but not in Brachyury KO NMP cells, and attains its highest accessibility levels 
in WT Somitic mesoderm cells, while becoming closed in Spinal cord cells. Similar patterns 
can be observed for the cis-regulatory elements linked to Tbx6 and Fgf4 (Figure S14). In 
conclusion, our results suggest that formation of posterior Somitic mesoderm is associated 410 
with Brachyury-driven epigenetic priming of cis-regulatory elements in NMP cells. 

Conclusion 
We have generated a single-cell multi-omic atlas of mouse early organogenesis by 
simultaneously profiling RNA expression and chromatin accessibility between E7.5 and E8.75, 
spanning late gastrulation and early organogenesis. Taking advantage of the simultaneous 
profiling of TF expression and cognate motif accessibility, we developed a tool to quantitatively 
predict TF binding events in cis-regulatory elements, which we used to quantify celltype-
specific TF activities and infer gene regulatory networks that underlie cell fate transitions. We 
show that computational models trained on unperturbed data can be used to predict the effect 
of transcription factor perturbations. We validate this experimentally by showing that Brachyury 420 
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is essential for the differentiation of neuromesodermal progenitors to somitic mesoderm fate 
by priming cis-regulatory elements. 
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Figure 1: Simultaneous profiling of RNA expression and chromatin accessibility from single cells during mouse early organo-
genesis
(a) Schematic display of the experimental design. Mouse embryos are dissociated into single cells then lysed to extract nuclei which are

processed for simultaneous snATAC and snRNA-seq from the same cell using the 10x Multiome protocol.
(b) Partition-based graph abstraction (PAGA) (Wolf et al., 2019) of the reference atlas (Pijuan-Sala et al., 2019), where each node

corresponds to a different cell type. Cell types are coloured as per (Pijuan-Sala et al., 2019).
(c) Multi-modal dimensionality reduction using MOFA, followed by UMAP (Argelaguet et al., 2020). Cells are coloured by cell type (top,

see (b) for key) and stage (bottom).
(d) Number of marker genes (left) and marker peaks (right) per cell type. See (b) for cell type colour key.
(e) RNA expression and promoter chromatin accessibility values of different gene sets quantified separately for each cell type. The left

panel shows olfactory receptors (negative control, non-expressed genes with closed chromatin) and housekeeping genes (positive
control, highly expressed genes with open chromatin). The right panel shows different gene sets of cell type marker genes. Each dot
corresponds to a pseudobulk cell type, coloured as in (b). Note that RNA expression and chromatin accessibility values are quantified
as an average across all genes from each gene set.

(f) Chromatin accessibility values of cell type marker genes (x-axis) and marker distal ATAC peaks from the same cell type (y-axis).
Each panel shows gene and peak sets for different cell types. The diagonal line shows the values where both promoter and peak
chromatin accessibility values are identical. Quantification of chromatin accessibility is done as in (e).

(g) Genome browser snapshot of the Gata6 locus. Each track displays pseudobulk ATAC-seq signal for a given cell type. Note the
dynamic patterns of distal regulatory regions both upstream and downstream of the gene, compared to the uniformly open promoter
region.
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Figure 2: In silico ChIP-seq: leveraging multi-modal information to predict transcription factor binding sites.
(a) Schematic of the in silico ChIP-seq methodology. Consider two different TFs (Pacmans), each one with different DNA binding

preferences encoded in the form of different position-specific weight matrices; and three cis-regulatory elements represented as
ATAC peaks (grey boxes), each one containing different instances of the TF motifs. Each row displays a different cell (or metacell or
cell type, depending on the level of data aggregation). Each cell type is associated with different values of TF RNA expression (see
changes in Pacman abundance) and chromatin accessibility of the cis-regulatory elements (see changes in the density histogram).
The in silico ChIP-seq model exploits the correlation between TF RNA expression and the chromatin accessibility of the ATAC peaks
that contain at least one instance of its TF motif to derive a quantitative TF binding score. In the schematic Peak A contains the TF 1
motif, and its accessibility correlates with the RNA expression of TF 1, thus leading to a high TF binding score. Peak B also contains
the TF 1 motif, but its accessibility correlates poorly with the TF’s RNA expression, which leads to a non-zero but low TF binding
score. Peak C does not contain the TF 1 motif, which leads to a zero TF binding score.

(b) Left: the number of predicted binding sites for 6 representative TFs as a function of the minimum in silico TF binding score. Dashed
line indicates the minimum score used in subsequent analyses. Right: Bar plots showing the number of predicted binding sites in the
in silico ChIP-seq model when incorporating the RNA expression (orange) versus just using ATAC information (green).

(c) A representative instance of an ATAC peak highlighting the large number of TF motifs contained within a 600bp locus. Shown are the
positions of all TF motifs within the ATAC peak (x-axis) against the in silico ChIP-seq score (y-axis). Note that only a subset of TF
motif instances display high in silico ChIP-seq score. The dashed line indicates the cutoff used to determine a putative binding site,
as in (b).

(d) Comparison of in silico TF binding scores (x-axis) versus experimental ChIP-seq signal (y-axis), using the same 6 TFs as in (b).
Orange line displays scores derived from the in silico ChIP-seq model, whereas the green line displays scores derived when just
using ATAC-seq information (i.e. omitting the TF RNA expression from the model). Scores were binned from 0 to 1 in intervals of
0.1,and each dot corresponds to the average value across all cis-regulatory regions from the interval. ChIP-seq datasets are all
derived from publicly available data sets that most closely resemble mouse embryos at the gastrulation and organogenesis stage
(Supplementary Table 1).

(e) Receiver Operating Characteristic (ROC) curves comparing the predicted TF binding sites vs the real TF binding sites (inferred from
peak calling on the experimental ChIP-seq data).

(f) Genome browser snapshot displaying Foxa2 binding sites. Each track displays pseudobulk ATAC-seq signal for a given celltype. The
experimental ChIP-seq values are shown in the bottom, together with the in silico TF binding scores for the ATAC peaks that have a
TF binding score higher than 0.20 (same threshold as in (b)).

(g) Same as in (f) but displaying Tal1 binding sites.
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Figure 3: Quantification of celltype-specific transcription factor chromatin activities with chromVAR-Multiome
(a) Schematic of chromVAR-Multiome. In the first step, the in silico ChIP-seq method is used to calculate putative transcription factor

(TF) binding sites. This results in a matrix of TF binding scores for each combination of TF and ATAC peak. In the second step, we
calculate celltype-specific TF activities using the chromVAR algorithm (Schep et al, 2017) but replacing the default input of all motif-
containing ATAC peaks with putative TF binding events. The chromVAR-Multiome algorithm yields z-scores for each combination of
TF and cell type (or metacell, depending on the chosen data resolution).

(b) Comparison of chromVAR and chromVAR-Multiome for quantification of TF chromatin activities for Foxb1 (top) and Foxc1 (bottom).
Scatter plots display the TF’s RNA expression (x-axis) and the chromatin accessibility of target regions (y-axis), quantified at the
pseudobulk level using chromVAR (left) or chromVAR-Multiome (right). Each dot corresponds to a different cell type.

(c) Spatially-resolved RNA expression (imputed values from Lohoff et al, 2021, coloured in green) and TF chromatin activity (coloured
in purple) for Foxb1 (top) and Foxc1 (bottom), quantified using chromVAR or chromVAR-Multiome. Note that spatially-resolved TF
chromatin activity values are inferred by mapping the 10x Multiome cells onto the spatial transcriptomic data set.
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Figure 4: A catalogue of cell type-specific transcription factor activities during mouse early organogenesis reveals widespread
pleiotropy.
(a) Barplot displaying the number of TF markers per cell type. TF markers are inferred using the TF activity scores, which results from

performing differential analysis with the chromVAR-Multiome values (Methods). The higher the score for TF i in celltype j, the more
active this TF is predicted to be in cell type j, with a minimum score of 0 and a maximum score of 1.

(b) Heatmap displaying TF activity scores for each celltype (rows) and each TF (column).
(c) Left: polar plots displaying the celltype TF activity scores for three different TFs: Foxa2 (top), Tal1 (middle) and Rfx4 (bottom).

Right: PAGA representation of the transcriptomic atlas as in Figure 1b for the three same TFs, with each node coloured by the RNA
expression of the TF (green) and the corresponding chromVAR-Multiome score (purple).

(d) Dot plots displaying the TF activity scores for all TFs in Neural Crest cells (left) and PGCs (right). TFs with the highest TF activity
score are labelled and coloured to indicate whether a known function has been reported and in which species the evidence was
obtained (Supplementary Table 1).

(e) Stacked bar plots displaying the (scaled) TF activity scores for each combination of TF and cell types. Each column corresponds to
a TF.

(f) as (c) but for TFs that display a pleiotropic effect (i.e. they are active across distinct cell types).
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Figure 5: Characterisation of the transcription factor regulatory network underlying Neuromesodermal progenitors.
(a) Force-atlas layout of the NMP differentiation trajectory. Each dot corresponds to a metacell, coloured by cell type identity.
(b) TF regulatory network inferred using the NMP trajectory. Each node corresponds to a TF, coloured by the cell type where the TF dis-

plays the highest expression. Edges denote regulatory relationships: red edges represent activatory relationships (the expression of
the parent node is positively correlated with the expression of the child node), whereas blue edges represent repressive relationships
(the expression of the parent node is negatively correlated with the expression of the child node).

(c) Left: same layout as in (a) but highlighting each of the three cell types of the trajectory: Spinal cord (top), NMP (middle) or Somitic
mesoderm (bottom). Right: Same TF regulatory network as in (b), but nodes are coloured based on the average expression of the
TF in each of the three cell types of the trajectory: Spinal cord (top), NMP (middle) or Somitic mesoderm (bottom). For clarity, we
increased the transparency of edges.

(d) Eigenvalue centrality for each TF in the network.
(e) Genome browser snapshot of the Hoxb loci. Each track displays pseudobulk ATAC-seq signal for a given celltype. Shown in the

bottom is the in silico ChIP-seq predictions for Cdx2 and the experimental ChIP-seq signal for Cdx2 profiled in NMP-like cells.
(f) Regulatory connections between Cdx2 and downstream TFs. As in (b), nodes are coloured by the cell type where the TF displays

the highest expression.
(g) in silico knock-out of Brachyury using CellOracle (Kamimoto et al, 2021). Shown is the same layout as in (a), with arrows displaying

the predicted changes in cell state for different parts of the trajectory when knocking out Brachyury.
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Figure 6: Brachyury is essential for the differentiation of neuromesodermal progenitors to somitic mesoderm.
(a) Schematic showing the experimental design. We generated Brachyury KO embryos by electroporation of Cas9 protein and a single

guide RNA (sgRNA) targeting the Brachyury gene (T). Control embryos received Cas9 but no sgRNA. Embryos were transferred into
pseudopregnant females and collected at E8.5 for 10x Multiome sequencing.

(b) Mapping WT and Brachyury KO cells to the reference atlas (Pijuan-Sala et al., 2019). Highlighted are cells in the reference dataset
that are nearest neighbours to WT cells (red) or Brachyury KO cells (blue) in this experiment.

(c) PAGA representation of the reference atlas, where each node corresponds to a cell type. Nodes are coloured by differences in cell
type abundance between WT and Brachyury KO cells. Positive values indicate more abundance in the Brachyury KO, negative values
indicate less abundance in the Brachyury KO.

(d) Force-directed layout of the trajectory that connects Neuromesodermal Progenitor (NMP) cells to either Spinal cord or Somitic meso-
derm, inferred using the reference atlas. Left: each cell is coloured by cell type. Right: mapping cells to the reference NMP trajectory.
Highlighted are cells in the reference trajectory that are nearest neighbours to WT cells (red) or Brachyury KO cells (blue) in this
experiment.

(e) RNA velocity analysis of the NMP trajectory using scVelo (Bergen et al. 2020) on the 10x Multiome cells. Shown are WT cells (left)
and Brachyury KO cells (right). The arrow highlights the trajectory from NMP to Somitic mesoderm that is present in WT cells but
absent in Brachyury KO cells.
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Figure 7: Brachyury controls the transition from neuromesodermal progenitors to somitic mesoderm by priming cis-regulatory
elements.
(a) Volcano plot displays differential accessible ATAC peaks between WT and Brachyury KO NMP cells. Coloured in red are ATAC peaks

that pass statistical significance threshold.
(b) TF motif enrichment analysis in differentially accessible peaks per cell type (x-axis). The y-axis displays the FDR-adjusted p-values

of a Fisher exact test. Each dot corresponds to a different TF motif, coloured by the cell type where the differential accessibility
analysis is performed.

(c) Box plots display in silico TF binding scores for Brachyury within ATAC peaks that contain the Brachyury motif. ATAC peaks are
split based on their differentially accessibility significance when comparing WT and Brachyury KO NMP cells. Note that the in silico

ChIP-seq is inferred using metacells from the NMP trajectory from the reference atlas and does not include Brachyury KO cells.
(d) Force-atlas layout of the NMP differentiation trajectory. Each dot corresponds to a metacell, coloured by the RNA expression of

Mesp1.
(e) Same layout as in (d), but metacells are coloured by the chromatin accessibility of the cis-regulatory element linked to Mesp1.
(f) Genome browser snapshot of the chromatin accessibility signal around the Mesp1 loci. Each track displays pseudobulk ATAC-seq

signal for a given celltype from the reference atlas. Shown in the bottom is the experimental ChIP-seq signal for Brachyury profiled
in Embryoid Bodies (Tosic et al 2019) and the corresponding in silico ChIP-seq predictions. Highlighted is a Brachyury-targeted
regulatory element located downstream of Mesp1.

(g) Genome browser snapshot of the same loci displayed in (f), but showing the ATAC-seq signal for a given celltype and genotype (WT
in blue and Brachyury KO in red).
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Methods 

RNA data processing  470 
Raw sequencing files were processed with CellRanger arc 2.0.0 using default arguments. 
Reads were mapped to the mm10-2020-A-2.0.0 genome and counted with GRCm38.92 
annotation. Low-quality cells were filtered based on the distribution of QC metrics. Cells were 
required to have a minimum of 2000 UMIs per cell, a maximum of 40% mitochondrial reads 
and a maximum of 20% ribosomal reads. The resulting count matrix was stored using a 
SingleCellExperiment (Amezquita et al., 2019)  (v 1.14.1) object. Normalisation and log 
transformation was performed using scran (Lun et al., 2016) (v1.20.1) and scuttle (McCarthy 
et al., 2017)(v1.2.1). Doublet detection was performed using the hybrid approach in the scds 
(v1.8.0) package. 
  480 
ATAC data processing 
We used the ArchR package (Granja et al., 2021)(v1.0.1) for preprocessing of ATAC data. 
Briefly, arrow files were created from the ATAC fragment files. Cells were required to have a 
minimum of 3500 fragments per cell, a minimum TSS enrichment of 9, and a maximum 
blacklist ratio of 0.05. Pseudo-bulk replicates were obtained per cell type and peak calling was 
performed using macs2 (Zhang et al., 2008) (v2.2.7.1) using the cell type identified from the 
RNA expression as a group. A consensus peak set was obtained by an iterative overlapping 
strategy which is better at preserving cell type-specific peaks. Motif annotations were extracted 
from the CISBP (Weirauch et al., 2014)  (v2) and JASPAR 2000 database (Castro-Mondragon 
et al., 2021). Motif matches for each peak were obtained using motifmatchr  (v1.14.1), with a 490 
minimum motif width of 7 and a maximum q-value of 1e-4. Bigwig files were exported for each 
cell type for visualisation on the IGV browser (Robinson et al., 2011) (v2.11.0). 
 
Velocity analysis 
Spliced and unspliced count matrices were extracted using velocyto (La Manno et al., 
2018)(v0.17.17). Velocity analysis was performed using scVelo (Bergen et al., 2020) (v0.2.1)  
in dynamical mode. 
  
Metacell inference 
When exploring continuous trajectories we summarised the data into metacells with the goal 500 
of achieving a resolution that retains the heterogeneity while overcoming the sparsity issues 
of single-cell data. We identified metacells (i.e. groups of cells that represent singular cell-
states from single-cell data) using SEACells (Persad et al., 2022). Following the method 
guidelines, metacells were computed separately for each sample using approximately one 
metacell for every seventy-five cells. Following metacell identification, we regenerated gene 
expression and chromatin accessibility count matrices summarised at the metacell level. 
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Sample-specific count matrices were then concatenated and normalised using log-
transformed counts per million. 
  
Multi-modal prediction of TF binding sites with in silico ChIP-seq 510 
The in silico ChIP-seq library is a computational approach to link TFs to cis-regulatory 
elements in the form of ATAC peaks. Intuitively, we consider an ATAC peak i to be a putative 
binding site for TF j if i contains the j motif and its chromatin accessibility correlates with the 
RNA expression of j. Formally, we calculate the in silico TF binding score for ATAC peak i and 
TF j with the following equation: 

!!" 	= 	$!" 	%&'%(!(*!"+!) 
where $!" is the correlation between the chromatin accessibility of peak i and the RNA 
expression of TF j. *!" is the motif score for peak i and TF j, and +! is the maximum chromatin 
accessibility of peak i (across all samples). Note that the TF binding score ranges from -1 to 1 
due to the minmax normalisation. A negative in silico TF binding score value denotes a 520 
repressive event, where the chromatin accessibility of ATAC peak i is negatively regulated by 
TF j. In contrast, a positive value denotes an activatory event, where the chromatin 
accessibility of peak i is positively regulated by TF j. Although the TF in silico score is 
continuous, some analysis require a binarised association between TFs and cis-regulatory 
elements. In this case the in silico TF binding score can be modulated as a hyperparameter, 
such that  small values will lead to many predicted TF binding events, a high false positive 
rate and a low true positive rate. Large values will lead to fewer predicted TF binding events, 
but a low false positive rate and a high true positive rate. We performed grid search and found 
that values between 0.10 and 0.30 provide reasonable trade-offs between the number of 
predicted TF binding events and the accuracy of the predictions. 530 
 
Quantification of transcription factor activities per cell type using chromVAR and 
chromVAR-Multiome 
TF activities were calculated using the chromVAR algorithm (Schep et al., 2017). The method 
takes as input the ATAC peak matrix and a set of position-specific weight matrices (PWMs) 
encoding TF sequence affinities. Here we used the JASPAR (2022)(Castro-Mondragon et al., 
2021) and CISBP (v2.0)(Weirauch et al., 2014) databases. Briefly, for each TF motif contained 
within an ATAC peak and each cell (or cell type, when calculated at the pseudo-bulk level), 
chromVAR calculates a z-score that measures the difference between the total number of 
fragments that map to motif-containing peaks and the expected number of fragments (based 540 
on the average of all cells). Importantly, the normalisation and scaling that chromVAR applies 
is aimed at mitigating technical biases between cells (Tn5 tagmentation efficiency, PCR 
amplification, etc.) and features (GC content, mean accessibility, etc.). Here we modified the 
chromVAR algorithm to use the putative TF binding sites from the in silico ChIP-seq library, 
instead of all TF motif instances. We refer to this approach as chromVAR-Multiome 
 
Multi-modal dimensionality reduction 
We generated a multi-modal latent embedding using MOFA+ (Argelaguet et al., 2020). Briefly, 
the method takes as input multiple data modalities and performs multi-view matrix factorisation 
to generate a set of latent factors that can be used for a variety of downstream tasks. Here we 550 
used as input to MOFA the RNA expression and ATAC peak matrix. Feature selection was 
performed to enrich for highly variable features (3,000 genes and 25,000 ATAC peaks). 
Optionally, one can also use as input latent variables that result from linear dimensionality 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.06.15.496239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496239
http://creativecommons.org/licenses/by/4.0/


 

reduction (Principal Component Analysis in the case of the RNA expression and Latent 
Semantic Indexing in the case of ATAC peaks). This leads to a significant increase in speed 
and also mitigates challenges linked to class imbalance (i.e. the two views having many 
different features). We ran MOFA with a fixed set of 30 factors, which we subsequently used 
as input to the UMAP algorithm(McInnes et al., 2018) to generate a (non-linear) two-
dimensional embedding that is suitable for visualisation. 
 560 
TF marker scores 
We used the chromVAR-Multiome values to define TF marker scores for each combination of 
cell type and TF. We adopted a similar algorithm as used for the definition of marker genes in 
Seurat (FindMarkers function) and scran (findMarkers function). First, we performed 
differential analysis between each pair of cell types using a t-test. Then, for each TF i and cell 
type j we counted the number of significant differential comparisons between cell type j and 
all other cell types different from j. Instead of aggregating the p-values and fold changes, as 
done in Seurat and scran, we adopt a more intuitive metric and define the TF marker score as 
the fraction of differential comparisons. Intuitively, the higher the score of TF i in cell type j the 
more active that TF i is in cell type j when comparing the chromVAR-Multiome values to the 570 
other cell types. The maximum TF marker score value is 1, when all differential comparisons 
are significant. When defining the catalogue of TF activities per cell type (Figure 3f), we set a 
minimum TF marker score of 0.75. 
 
Gene accessibility scores 
Here we quantified promoter accessibility by adding all reads that map to the region that is 
500bp upstream and 100bp downstream of the transcription start site (TSS). TSS annotations 
are obtained from the BioMart database using the Bioconductor GenomicFeatures package 
(v1.48.1). Note that here we disabled ArchR’s default gene accessibility model, which 
incorporates information from cis-regulatory elements that are located near the TSS. Although 580 
this approach is more predictive of changes in gene expression, it is problematic when applied 
to genomic regions with high gene density, as cis-regulatory elements cannot be confidently 
linked to genes.  
 
Pooling cells from the same cell type into pseudo-bulk replicates 
The sparsity of the single-cell data limits the statistical analysis, the visualisation strategies 
and overall the biological insights that can be extracted from the data (Squair et al., 2021). For 
some analysis that involve cell type comparisons (including differential analysis, peak calling 
or in silico ChIP-seq inference), we create “pseudo-bulk” replicates by aggregating reads from 
all cells that belong to the same cell type. The pseudo-bulk strategy is particularly important 590 
for snATAC-seq data, as ATAC peaks typically have very few reads per cell. For differential 
analysis between cell types, we follow the approach suggested in(Crowell et al., 2020) and 
create the same number of replicates per cell type by bootstrapping cells assigned to the same 
cell type. Besides reducing sparsity, this approach also helps address the problem of having 
a different number of samples per group when doing differential analysis at single-cell 
resolution, which often leads to p-values being systematically different depending on the 
number of samples per group. 
 
Genome Browser visualisation 
We use the getGroupBW function in ArchR to group, summarise and export a bigwig file for 600 
each cell type. Briefly, the function calculates normalised accessibility values along the 
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genome using 100bp tiles. We visualise the ATAC bigwig files as separate tracks in the IGV 
Browser (v2.11.0)(Thorvaldsdottir et al., 2013) 
 
Differential RNA expression and chromatin accessibility 
Following the guidelines from previous studies (Squair et al., 2021), we performed differential 
analysis using pseudo-bulk replicates for each cell type (and genotype, in the Brachyury KO 
study). For each group we derived 5 replicates by bootstrapping different subsets of cells at 
random. Each pseudo-bulk replicate contained 30% of the total number cells, with at least 25 
cells per replicate. Subsequently, read counts were aggregated for each group, followed by 610 
normalisation with log-transformed counts per million (CPMs). Note that this “pseudo-bulk-
with-replicates” approach yields the same number of samples per group, which facilitates 
differential analysis comparisons. Differential analysis was performed using the negative 
binomial model with a quasi-likelihood test implemented in edgeR (Robinson et al., 2010). 
Significant hits were called with a 1% FDR (Benjamini–Hochberg procedure) and a minimum 
log2 fold change of 1. Hits with small average expression values (log normalised counts <=2) 
were ignored, as this can lead to artificially large fold change values. 
  
Identification of celltype marker genes and regulatory elements 
Cell type-specific marker genes and peaks were identified using the reference cells (i.e. the 620 
cells form the Brachyury KO study were excluded). First, we performed differential analysis 
between each pair of cell types using the strategy outlined above. Then, for each cell type, we 
labelled as marker genes or as marker peaks those hits that are differentially 
expressed/accessible and upregulated in the cell type of interest in more than 85% of the 
comparisons. 
 
Mapping to a reference atlas and cell type assignment 
Cell types were assigned by mapping the RNA expression profiles to a reference atlas from 
the same stages (Pijuan-Sala et al., 2019). The mapping was performed by matching mutual 
nearest neighbours with the fastMNN algorithm (batchelor R package v1.8.1)(Haghverdi et al., 630 
2018). First, count matrices from both experiments were concatenated and normalised 
together using scran (v1.20.1). Highly variable genes were selected(Lun et al., 2016) from the 
resulting expression matrix and were used as input for Principal Component Analysis. A first 
round of batch correction was applied within the atlas cells to remove technical variability 
between samples. A second round of batch correction was applied to integrate query and atlas 
cells within a joint PCA space. Then, for each query cell we used the queryKNN function in 
BiocNeighbors to identify the 25 nearest neighbours from the atlas. Finally, a cell type was 
inferred for each query cell by majority voting among the atlas neighbour cells. 
Mapping to the spatial atlas and imputation of spatially-resolved ChromVAR-Multiome scores 
Mapping of the 10x Multiome cells to the spatially-resolved transcriptomic atlas was done 640 
using the same approach described above for the scRNA-seq reference atlas. This integration 
is however more challenging due to the sparsity of the seqFISH data set and the different 
nature of the size factors. Here we followed the strategy outlined in(Lohoff et al., 2022) and 
applied cosine normalisation on the log-normalised counts. For simplicity, we used as 
reference a single z-slice from a representative E8.5 embryo. 
Finally, we used the mapping to impute spatially-resolved TF activities. We transferred the 
chromVAR-Multiome scores from the 10x Multiome cells onto the nearest neighbours of 
spatial atlas. Due to the noisy estimates in single-cell data and the presence of outliers, we 
performed kNN denoising before visualisation. 
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 650 
Inference of the TF regulatory network underlying differentiation of Neuromesodermal 
progenitors. 
First, we selected metacells of the NMP differentiation trajectory. Note that we discourage the 
use of data at single cell resolution, as the sparsity of snATAC-seq makes it challenging to 
obtain reliable associations between the RNA expression of TFs (which are typically lowly 
expressed genes) and chromatin accessibility of cis-regulatory regions. Second, we used the 
in silico ChIP-seq methodology to link TFs with cis-regulatory elements. Third, we linked cis-
regulatory regions to nearby genes via a maximum genomic distance of 50kb. Note that this 
step results in a many-to-many mapping, where each gene can be linked to multiple cis-
regulatory regions, and each cis-regulatory region can be linked to many genes. Fourth, we 660 
built a linear regression model of target gene RNA expression as a function of the TF’s RNA 
expression. Finally, we visualise the GRN as a directed graph where nodes correspond to TFs 
and target genes (which can also be other TFs), where the edge width is given by the slope 
of the linear regression models.  
 
In silico TF perturbation with CellOracle 
Briefly, CellOracle leverages a gene regulatory network and a differentiation trajectory to 
predict shifts in cellular identities by simulating the effects of TF perturbations on the GRN 
configuration. It simulates gene expression values upon TF perturbation, which are then 
compared with the gene expression of local neighbourhoods to estimate transition probabilities 670 
between cell states. Finally, CellOracle creates a transition trajectory graph to project the 
predicted identity of these cells upon TF perturbation. Here we used the GRN inferred from 
the NMP differentiation trajectory as input, where target genes are constrained to also be TFs. 
Given the improved signal-to-noise ratio in the metacell representation, we disable the default 
kNN denoising step. 
 
Embryos and nuclear isolation 
C57BL/6Babr mice were bred and maintained by the Babraham Institute Biological Support 
Unit. All mouse experimentation was approved by the Babraham Institute Animal Welfare and 
Ethical Review Body. Animal husbandry and experimentation complied with existing European 680 
Union and United Kingdom Home Office legislation and local standards. 
 
Following dissection, embryos from the same stages were pooled to give sufficient cell 
numbers. Embryos were dissociated into single-cells using 200μl of TriplE Express for 10 
minutes at 37°C on a shaking incubator. 1ml of ice-cold 10% FBS in PBS was added to quench 
and cells were filtered using a 40μM Flowmi cell strainer. Following centrifugation at 300g for 
5 minutes, the supernatant was discarded and cells were resuspended in 50μl of PBS 
containing 0.04% BSA. Cells were counted and viability assessed using trypan blue staining 
on a Countess II instrument (Invitrogen). >95% of cells were negative for trypan blue indicating 
high sample quality.  690 
 
Nuclear isolation was carried out according to the low-cell input version of the 10X protocol for 
cell lines and PBMCs 
(https://assets.ctfassets.net/an68im79xiti/6t5iwATCRaHB4VWOJm2Vgc/bdfd23cdc1d0a321
487c8b231a448103/CG000365_DemonstratedProtocol_NucleiIsolation_ATAC_GEX_Seque
ncing_RevB.pdf). Specifically, the 50μl cell suspension was transferred to a 0.2ml PCR tube 
and centrifuged at 300g for 5 minutes. After removing the supernatant, cells were resuspended 
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in 50μl ice cold nuclear extraction (NE) buffer (10mM Tris pH 7.5, 10mM NaCl, 3mM MgCl2, 
1% BSA, 0.1% Tween, 1mM DTT, 1U/ul RNaseIn (Promega), 0.1% NP40, 0.01% Digitonin) 
and incubated on ice for 4 minutes. 50μl of wash buffer (identical to NE buffer but lacking 700 
NP40 and digitonin) was added and nuclei were centrifuged at 500g for 5 minutes at 4°C. After 
removing the supernatant, nuclei were washed once in 50μl of diluted nuclei buffer (10x 
Genomics), span down and finally resuspended in 7ul of dilute nuclei buffer (10x Genomics). 
1μl was used to assess quality using a microscope and count nuclei using a Countess II 
instrument. >99% of nuclei stained positive for trypan blue and the nuclei were found to have 
the expected morphology. Nuclei were diluted such that a maximum of 16,000 were taken 
forward for 10x Multiome library preparation. 
 
Brachyury gene targeting 
One-cell stage zygotes were obtained from C57BL/6Babr superovulated matings. 710 
CRISPR/Cas9 reagent   consisted of Cas9 protein (200ng/ul) and a sgRNA targeting exon 3 
of the Brachyury gene (120ng/ul, ACTCTCACGATGTGAATCCG), diluted in Opti-MEM I 
(Thermo Fisher). Control embryos received Cas9 but no gRNA. Super electroporator NEPA21 
and platinum plate electrodes 1mm gap (CUY501P1-1.5) were used for electroporation. Four 
repeats of poring pulses (40V, 3.5ms length and 50ms intervals) and five repeats of transfer 
pulses (7V, 50ms length, 50ms intervals) were applied to zygotes. Approximately 50 embryos 
were added to 5-6ul of CRISPR/Cas9mix per electroporation. Embryos were cultured 
overnight and only 2-cell stage embryos were transferred into pseudo-pregnant recipients, 
which were later harvested to obtain E8.5 embryos. In total this yielded 3 control embryos and 
7 Brachyury KO embryos which were pooled for processing. 720 
 
For genotyping embryonic yolk sacs were lysed using QuickExtract buffer prior to PCR 
amplification of a region spanning the predicted cut site (forward: 
GTAGGCAGTCACAGCTATGA, reverse: GGGTTTAATGGTGTATAGCG). The resulting 
amplicon was Sanger sequenced and the trace was analysed using Synthego ICE analysis 
producing a KO score of 93% (https://www.synthego.com/products/bioinformatics/crispr-
analysis)(Conant et al., 2022). 
 
10x Multiome library preparation and sequencing 
Libraries were prepared using the 10x Genomics Chromium and sequenced on a Novaseq 730 
6000 instrument (Illumina) using the recommended read-lengths. This yielded medians of 720 
million RNA-seq reads and 481 million ATAC reads per sample. We recovered a median of 
7,700 cells per sample prior to quality control.  
 
 
ChIP-seq data processing 
ChIP-seq data for TFs Cdx2, Foxa2, Gata1, Gata4, Tal1 and Tbx5 was obtained from the 
Gene Expression Omnibus.  Due to the limited availability of in vivo ChIP-seq datasets, we 
used in vitro models that more closely resemble the gastrulating embryo (Supplementary 
Table 1). Reads were trimmed using Trim Galore (v0.4.5) and mapped to M. musculus 740 
GRCm38 using Bowtie2 (Langmead and Salzberg, 2012) (v2.3.2). Bigwig files were generated 
for genome browser visualisation using samtools (v1.13)(Li et al., 2009) and bamCoverage 
(v3.5.1)(Ramírez et al., 2016). Peak calling was performed using macs2 (v2.2.7.1)(Zhang et 
al., 2008) with the “--broad and --broad-cutff 0.1” arguments. 
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