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ABSTRACT 43 
How does the human brain generate coherent, subjective perceptions—transforming yellow and 44 
oblong visual sensory information into the perception of an edible banana 1? This is a hard 45 
problem. The standard viewpoint posits that anatomical and functional networks somehow 46 
integrate local, specialized processing across the brain to construct unique percepts. Here, we 47 
provide evidence for a novel organizational concept: we uncover task-specific information 48 
distributed across the human brain. We use functional magnetic resonance imaging (fMRI)-based 49 
decoding models to probe the presence of task-specific information. In doing so, we show that 50 
brain regions that are empirically almost entirely task-independent (considered to be “noise”—51 
i.e., t-statistics ≈ 0—in standard univariate fMRI analyses) can decode various tasks, even without 52 
statistical learning tools. Thus, task-specific information is present and readily accessible 53 
throughout the neocortex, challenging the sensitivity of traditional linear, univariate analytical 54 
approaches. Remarkably, even subcortical structures and the cerebellum contain task-specific 55 
signals in voxels that would univariately be considered "noise”. Finally, using data from an 56 
auditory study with different levels of sedation, we show that the widespread signal in regions 57 
remote from the primary and secondary sensory cortices (auditory cortex) depends on the level of 58 
sedation, suggesting the brain’s widespread, task-specific information is related to perception1 59 
rather than the encoding of the sensory stimulus. Our analysis uncovers task-specific and 60 
consciousness level-dependent information across the human brain, which we hypothesize to be 61 
the basis for coherent, subjective perceptions. 62 
 63 
SIGNIFICANCE 64 
Brain imaging studies commonly rely on linear, univariate analyses to identify task-specific 65 
information. In such studies, it is assumed that such task-specific information is localized to 66 
specific “blobs.” Our data challenge this notion: We show that task-specific information can be 67 
reliably uncovered across the entire human brain, even in regions that linear, univariate analyses 68 
would imply are “noise.” In turn, the common, linear, univariate analysis of brain imaging data 69 
cannot detect real, widespread, task-specific information. Finally, we demonstrate that widespread, 70 
task-specific information degrades with sedation, except in the primary sensory cortex, suggesting 71 
that brain-wide information tracks perception and is a neural correlate of consciousness. 72 
 73 
MAIN TEXT 74 
fMRI has transformed how we study the brain, allowing the non-invasive measurement of 75 
correlates of neural activity with a spatial resolution on the scale of millimeters. This high 76 
resolution enables the comparison of blood oxygenation level-dependent (BOLD) activity within 77 
and between tasks to unravel the function of local neural circuits. Such task-based fMRI studies 78 
commonly use forward inference to identify task-related brain areas: they rely on the correlation 79 
between each voxel's activation timecourse with the task’s temporal profile. Subsequently, 80 
neuroimagers contrast brain activity maps of different tasks to create a contrast map, which is then 81 
thresholded to yield localized blobs. The standard assumption of these mass-univariate analyses is 82 
that only the identified blobs reliably contain task-specific information.2 In this report, we 83 
challenge this assumption by showing the reliable presence of task-specific information throughout 84 

 
1 By perception, we refer to the conscious experience resulting from sensory input. This experience is the product of 
and thus includes memory, attention, and expectations. 
2 Here, we use information not as an inference regarding neuronal function, but rather from a decoding perspective 
relating to the nature and specificity of the variance that can be extracted from our proxies of neuronal activity.  
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the entire neocortex—including regions identified as "noise" by univariate measures (t-statistics ≈ 85 
0)—which is uncovered by integrating over large swaths of voxels. After discovering pan-86 
neocortical information content, we probe for and uncover task-specific information in the 87 
subcortex and cerebellum. Next, we assess how different levels of sedation perturb the presence 88 
of information. We show that omnipresent information degrades with increasing levels of sedation. 89 
Rather than being task-specific, this brain-wide spread of information appears to reflect perceptual 90 
(conscious) processes and, therefore, may be involved in extracting subjective, wholistic concepts 91 
from incoming sensory inputs, as in the identification of the edible banana. 92 

One approach to assessing the information contained in neuroimages is to decode them. 93 
Decoders transmute brain activity into a single number related to a task of interest. A suitable 94 
decoder's output will be high for the task of interest and low for the task(s) of no interest. The 95 
discriminability between the tasks of interest and no interest is indicative of the information in the 96 
data. Using six datasets with different sensory stimuli (Table S1; N=293 subjects) 2-7, we built 97 
simple decoding models using only the t-statistics from mass-univariate contrasts (Fig 1, top left; 98 
Fig S1). The first part of our study uses five of these datasets, four of which contain two stimuli 99 
and one of which includes four stimuli, totaling ten different stimulus pairs or contrasts (4(

2
2) +100 

(
4
2) = 10). We binned the t-statistics by magnitude to create ten decoders for each contrast; the first 101 

decoder comprised of all voxels with the highest t-statistics (10th decile) and the last decoder 102 
comprised of all voxels with the lowest t-statistics (1st decile) (Fig 1, top right). We tested each 103 
decoder by calculating the dot product between the decoder (sign, magnitude, and location of t-104 
statistics within a single decile; e.g., Fig 1, bottom right) and each brain activity map (general 105 
linear model (GLM)-derived maps of parameter estimates), yielding a weighted sum of task-106 
related activity across all voxels comprising the decoder (Fig 1, bottom middle). We used the 107 
0.623+ bootstrap to obtain unbiased estimates of between-subject areas under the receiver 108 
operating characteristic curve (AUC) as an indicator of discrimination performance (Fig 1, bottom 109 
left). To succinctly describe our results, we meta-analyzed the resulting AUCs and their 110 
bootstrapped variance-covariances (Methods). 111 

 112 
  113 
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 114 
Figure 1. Generation of decoders to assess the presence of task-related signals. Voxel-wise paired t-tests were 115 
performed on subjects' brain activity maps using a task of interest (e.g., pain) and no interest (e.g., touch). These t-116 
statistics were then binned into deciles based on their absolute magnitudes. The grey line depicts the standard 117 
minimum threshold used to dichotomize brain regions that discriminate between tasks (univariate “statistical 118 
significance” at 𝛼=0.05; uncorrected for multiple comparisons). Each decile of t-statistics and their locations in the 119 
brain became a decoder. On the bottom right, we show examples of these decoders for the 10th (comprised of large 120 
blobs) and 1st deciles (scattered voxels). Although the deciles were derived using the absolute value of t-statistics, the 121 
decoders incorporated the t-statistics’ signs. We then calculated dot products between the decoder derived from each 122 
decile and brain activity maps. These dot products are analogous to ‘linear predictors’ from a regression model. Here, 123 
we z-scored the dot products within each decile for visualization purposes. We calculated AUCs based on these dot 124 
products, where higher dot products were assumed to correspond to the task of interest. We used the 0.632+ bootstrap 125 
to obtain unbiased AUCs when testing our decoders.  126 
 127 
Task-specific information is widespread across the human brain 128 
Decoding performance was consistently above chance (AUC > 0.5) for all deciles across nine out 129 
of ten contrasts. Despite univariate t-statistics in the lowest decile being close to zero, decoding 130 
performance was only marginally poorer in the lowest decile as compared to the highest decile 131 
(Fig 2, Table S2). Therefore, regions in neocortical grey matter commonly thought to be 132 
orthogonal to the task in univariate analyses in fact contain robust task-related information. These 133 
findings complement recent work using statistical learning to optimize voxel weights for predictive 134 
performance 8-12 and demonstrate that the presence of information is far more distributed across 135 
the brain than previously thought. Moreover, our analyses establish for the first time how 136 
accessible this information truly is: our models simply use mass-univariate t-statistics without any 137 
regularization or consideration of the t-statistics’ joint distribution. Evidently, regularization and 138 
multivariable modeling are not necessary and even voxels with t-statistics close to zero can jointly 139 
discriminate tasks from one another. Therefore, our results indicate the presence of task-related 140 
information throughout the neocortex, which degrades slowly as a function of the univariate 141 
signal-to-noise metric (t-statistic). 142 
 143 
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 144 
Figure 2. Voxels across the entire neocortex contain task-specific information. (A) Four example studies of 145 
neocortical decoding performance across all t-statistic deciles. Although all four studies contain task-specific 146 
information in all 10 deciles, the degree to which the tasks can be discriminated differs slightly between studies. Error 147 
bars indicate ± SE. (B) A mixed-effects meta-analysis across 10 contrasts reveals that all ten deciles can, on average, 148 
discriminate between tasks. The ability to discriminate between tasks implies the presence of task-specific 149 
information, meaning that even voxels with t-statistics close to zero (decile 1) contain marked task-specific 150 
information. Error bars indicate ± CI95%. 151 
 152 
 153 

When decoding tasks from neuroimages, one cannot draw inferences about the causal role 154 
of the predictors (voxels) in the decoding outcome (task) 13. There are many reasons why 155 
information may be present in acausal structures. For example, physiological and non-156 
physiological noise may have task specificity 14. We attempted to rule out such confounds by 157 
decoding tasks using white matter and cerebrospinal fluid (cf. grey matter). In general, decoding 158 
performance was poor in these regions (Fig S2), suggesting these negative controls contain less 159 
signal than the neocortex. In addition, white matter and cerebrospinal fluid decoding performance 160 
covaried substantially (r = 0.7), but they only weakly covaried with grey matter, implying vastly 161 
different signal sources between these structures (Fig S2). Finally, head motion artifact—another 162 
potential candidate of task-related noise that contaminates the BOLD signal—only minimally 163 
correlated with decoder responses; orthogonalizing the decoders’ dot products to head motion only 164 
slightly decreased discrimination (maximum ΔAUC < 0.05). Thus, our observed effects are 165 
unlikely to be attributable to task-specific, non-neural confounds. 166 

To assess the general sensitivity of the decoders, we built them using different numbers of 167 
voxels and different amounts of added noise. Decoders with fewer voxels performed poorly and 168 
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were more sensitive to added noise (Fig S3). As one might expect, the ability to successfully 169 
decode using voxels with low t-statistics is principally attributable to the number of included 170 
voxels. There is a continuum of explanations as to why this might be the case. On one extreme, 171 
each voxel may contain a tiny amount of task-specific information. Integrating many small bits of 172 
information allows one to accumulate enough information to discriminate between tasks. On the 173 
other extreme, since t-statistics are derived empirically and thus may not be stable, “signal” voxels 174 
may mix with “noise” voxels, creating instability in our deciles. In this case, by sampling more 175 
voxels, we are more likely to capture “signal” voxels in our “noise” decile(s), which would enable 176 
successful decoding. Where our findings fall along this continuum remains to be determined.  177 

Next, we tested whether information content is specific to the neocortex. Repeating our 178 
analyses in the subcortex and cerebellum revealed that information is present throughout both 179 
regions, even where t-statistics are approximately zero (Fig S4, Fig S5). Cerebellar information 180 
varied more between task pairs than the neocortex (three examples shown in Fig 3A). These results 181 
complement recent work by Nakai and Nishimoto 15, who used the subcortex and cerebellum to 182 
decode 103 cognitive tasks using a within-subject approach based on more complex models which 183 
were trained using statistical learning. In contrast, we used t-statistics from regional activity maps 184 
to decode across- rather than within-subjects. Our meta-analysis across contrasts showed that the 185 
performance of the subcortical and cerebellar decoders was slightly inferior to the performance of 186 
the neocortex-based decoders, even after controlling for the number of voxels (Fig 3B, Fig S6). 187 
Overall, we observed that subcortical and cerebellar structures contain widespread, task-specific 188 
information, evidencing that information spread is not restricted to the neocortex but is present 189 
across the entire human brain. 190 
 191 
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 192 
Figure 3. Task-relevant information is pervasively present throughout the subcortex and cerebellum but to a lesser 193 
extent than in the neocortex. (A) Three example studies demonstrate marked differences in regional task-specific 194 
information. In Study 1, the relative task-specific information in the neocortex shifts from being closer to the subcortex 195 
to the cerebellum. In Study 2, all three regions are similar, while in Study 3, there is a consistent pattern with the three 196 
areas being starkly different. (B) After controlling for the number of voxels in the neocortex, subcortex, and 197 
cerebellum, a meta-analysis across 9 contrasts (excluding Study 5) reveals that task-related information exists across 198 
all regions and deciles. Task-related information in the neocortex dominates for higher deciles, but this superiority 199 
vanishes in smaller deciles. Error ribbons indicate ± CI95%. 200 

 201 
The notion of widespread, task-specific cortical dynamics is gaining traction across 202 

multiple fields of neuroscience. Human fMRI work demonstrates that 100 repetitions of the same 203 
task (three participants, 9–10 sessions over three months) can uncover neocortex-wide information 204 
16. Decoding studies, which rely on statistical learning approaches, evidence the existence of task-205 
specific information outside of GLM areas 8-12. Similarly, recent fMRI evidence from macaque 206 
monkeys demonstrates the presence of retinotopic tuning in cortical and subcortical regions remote 207 
from the visual cortex 17. To complement fMRI evidence, wide-field calcium imaging and 208 
Neuropixels recordings in rodent models have been shown to capture mesoscopic neocortical and 209 
subcortical dynamics on a moment-by-moment basis, revealing brain-wide, task-specific activity 210 
across several cognitive domains 18-21. Our results complement this prior work by demonstrating 211 
the presence of brain-wide, task-specific information in human brain fMRI and the ease with which 212 
this information can be extracted.  213 
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Understanding the nature of this brain-wide information is more challenging than 214 
identifying its existence. Recent work in mice demonstrates widespread cortical dynamics to be 215 
necessary for behavior—preventing local clusters of activation impairs performance, suggesting a 216 
functional rather than epiphenomenal role 19. If activation across the entire brain is necessary for 217 
task performance, it is more likely that the information we detected across brain regions is 218 
complementary than redundant. In other words, different brain regions capture distinct properties 219 
of the task. However, we remain agnostic as to the role of this widespread information in conscious 220 
perception instead of simply being a task correlate. To address this, we will now link these findings 221 
to consciousness.  222 
 223 
Widespread, task-specific information scales with consciousness 224 
Neurophysiological theories of consciousness rely on brain-wide information sharing, posited to 225 
be necessary but not sufficient for consciousness 22. Conceivably, the association between 226 
information sharing and consciousness 23 suggests that task-specific brain-wide information should 227 
attenuate with increasing levels of sedation. If information is not readily shared across the brain, 228 
it cannot be omnipresent. But how do states of consciousness interact with task-specific, brain-229 
wide information content? To assess this, we analyzed a dataset in which individuals listened to 230 
an auditory stimulus (five-minute audio from a movie) while under different levels of sedation 6,7. 231 
Since there was no task vector associated with the auditory stimulus, we averaged participants’ 232 
auditory cortex time courses to serve as the task vector and used a separate resting-state scan as a 233 
negative control. 234 

Consistent with our analyses above, information was omnipresent across the neocortex 235 
when participants were awake. However, this information degraded with increasing levels of 236 
sedation and was partially restored while recovering from sedation (Fig 4A and B). We performed 237 
a region-of-interest (ROI)-based analysis to complement the decile analysis. In the awake state, 238 
different regions exhibited distinct abilities to discriminate the task from resting-state, with the 239 
auditory cortex exhibiting the greatest discrimination. Moreover, the auditory cortex’s task-240 
specific signal was invariant to sedation level, but task-specific information degraded with deeper 241 
levels of sedation across all other ROIs (posterior, anterior, visual, and motor cortices) (Fig 4C). 242 
These results imply that brain-wide, task-specific information content is related to the perception 243 
rather than the encoding of the sensory stimulus. 244 

The brain’s modularity and interconnected functional and structural networks must underly 245 
our observed brain-wide distribution of information 24-27. In particular, long-range connections and 246 
small-world networks to which they give rise provide a mechanism for efficient information 247 
sharing. The properties of these networks are thus likely to be critical for how information is 248 
communicated and captured across the brain. We elucidated the relevance of functional 249 
connectivity to our findings by examining intersubject functional connectivity (ISFC) using the 250 
auditory cortex as a seed. We quantified the temporal relationship between a participant’s auditory 251 
cortex and all other participants’, say, posterior cortex. ISFC decreased with more sedation, much 252 
like decoding performance (Fig 4D). However, within-subject functional connectivity remained 253 
largely unperturbed (Fig S7). Thus, ISFC seems to track sedation-dependent perceptual states.  254 

Our results complement previous work in which transcranial magnetic stimulation (TMS) 255 
was used to induce electrical potentials that differentially propagated over the neocortex as a 256 
function of consciousness state 23. Here, we leveraged passive sensory stimuli, but our findings are 257 
consistent: loss of consciousness degrades brain-wide information content via a downregulation in 258 
corticocortical information sharing. Therefore, consciousness seems a necessary condition for the 259 
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presence of widespread task-related cortical information. Practically, our simple decoding 260 
approach may be sufficient to identify neural correlates of consciousness using natural sensory 261 
stimuli without artificially stimulating the brain (cf. TMS 23).  262 

 263 

 264 
Figure 4: Sedation affects the neocortical distribution of task-relevant information in a region-specific manner. 265 
(A) Widespread cortical task-relevant information decreases with deeper levels of sedation, as indicated by the 266 
decrease in AUCs from awake to light to deep, along with the increase in AUC from deep to recovery. (B) Intercepts 267 
(defined by decile = 1) and slopes of the curves in (A) reveal stark decoding differences between levels of anesthesia. 268 
Awake’s first decile (intercept) has the strongest performance of the different levels of sedation. Its slope (on the logit 269 
scale; OR = odds ratio) is also greatest since it is more difficult to improve performance as AUC → 1. (C) The primary 270 
and secondary sensory cortices (auditory cortex) retain information across sedation levels. In contrast, other cortical 271 
regions' information content drops off with increasing levels of sedation. (D) Task-specific intersubject functional 272 
connectivity decreases with deeper sedation. All error bars indicate ± CI95%. 273 
 274 

Task-related confounds, such as head motion, are likely greater when individuals are 275 
awake. However, our sedation level-dependent findings were unrelated to head motion (Fig S8). 276 
Moreover, we observed similar results whether we used auditory cortex activity from the awake 277 
or deep anesthesia conditions (Fig S9). This latter point is remarkable: auditory cortex activity 278 
with deep sedation is arguably “purer” than that in the awake condition, as higher-level processes 279 
and feedback loops will not modulate it, and similarly, head motion should be negligible. The 280 
generalizability of our findings across participants and levels of sedation reinforces that our 281 
findings represent consciousness-related neural information rather than task-related artifacts. 282 

The neocortex is not the only neural structure involved in consciousness. Much has been 283 
discussed and debated regarding the role of the thalamus, other subcortical structures, and the 284 
cerebellum 22. Like the neocortex, the subcortex’s task-specific information content demonstrates 285 
a dose-dependence on the level of sedation. Similarly, so does the cerebellum, although its 286 
dependence on sedation level is more complex (Fig S10). We should emphasize that the presence 287 
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of brain-wide information reflects the state of consciousness rather than demonstrating its 288 
mechanism(s). 289 
 290 
Concluding Remarks 291 
Our results render the brain-wide presence of information indisputable and elucidate the ease with 292 
which this information can be decoded, even in brain regions that mass-univariate analyses suggest 293 
are approximately orthogonal to the tasks being studied. We also show that the ubiquity of this 294 
information is not without bounds—consciousness is itself a necessary condition for the brain-295 
wide spread of task-related information. Many of the tasks that we compared are trivially simple, 296 
only involving passive sensory stimuli; yet, related information is spread across the entire brain. 297 
Neurocognitively, our results imply that perceptual states engage the entire brain. We speculate 298 
that the details of the distribution of information may define the nuanced properties of perception; 299 
for example, the edibility of the oblong, yellow object. Finally, these results strongly challenge the 300 
notion of localization of information in the brain without precluding regional specialization of 301 
function. For example, although language-specific information can be uncovered across the entire 302 
neocortex 28, the functional role of Broca’s area is incontrovertible 29.  Unraveling the unique 303 
contribution of diverse brain regions to perceptual states requires future investigation, including 304 
the necessity of some and the sufficiency of others, including methods beyond traditional linear, 305 
univariate analyses of brain activity. 306 
  307 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.19.508437doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508437
http://creativecommons.org/licenses/by-nc/4.0/


MATERIALS AND METHODS 308 
Datasets 309 
Six datasets were used in this paper; all are part of published studies and were either provided by their 310 
authors (Datasets 1–4) or downloaded from public repositories (Datasets 5 & 6). Datasets 1–4 consist of 311 
voxel-wise, whole brain, task-dependent general linear model (GLM) analysis activation maps 312 
(ftp://openpain.org/LimitsDecoding/Data/Beta_maps/). Datasets 5 & 6 consist of BOLD timeseries which 313 
were processed using standard fMRI pre- and post-processing methods described below. 314 
 315 
Dataset 1 316 
Fifteen (15), right-handed, adult subjects (mean age: 35 ± 11 years, 7 females). Subjects had no history of 317 
pain, psychiatric, or neurological disorders. fMRI data were collected while subjects received thermal 318 
stimuli across 3 temperatures: 47, 49, and 51 degrees Celsius. Subjects continuously rated, using a finger 319 
span device 30,31, their pain from 0 (not painful) to 100 (worst imaginable pain) (“pain rating” task). A 320 
control scan was performed while subjects used the finger span device to track a moving bar projected on 321 
the screen (“visual rating” task; moving bar replicated for each subject the specific pain rating task temporal 322 
pattern). The dataset includes one GLM beta map per subject per stimulus type. The dataset was previously 323 
described in 32. 324 
 325 
Dataset 2 326 
Fifty-one (51) healthy, right-handed, adult subjects (age = 24 ± 2 years, 34 females). Subjects had no history 327 
of brain injuries, pain disorders, or psychiatric or neurological diseases. fMRI data was collected while 328 
subjects received painful heat stimuli on the right foot dorsum using a CO2 laser, as well as tactile stimuli 329 
to the same area using electrical stimulation. Stimuli were not delivered at the same time. Perceived 330 
intensities were recorded for every stimulus and only the stimuli with matched perceived intensity for 331 
painful heat and touch were selected for GLM analysis. The dataset includes one activation map per subject 332 
per stimulus modality – painful heat and touch. The dataset was previously described in 4,33. 333 
 334 
Dataset 3 335 
Fourteen (14) healthy, right-handed, adult subjects (age = 20–36 years old, 6 females). fMRI data were 336 
collected while subjects received painful heat stimuli on the right foot dorsum using a CO2 laser, tactile 337 
stimuli to the same area using electrical stimulation, visual stimuli using a white disk presented above the 338 
right foot, and auditory stimuli delivered via pneumatic earphones.  Stimuli were not delivered at the same 339 
time. Perceived intensities were recorded for every stimulus and only the stimuli with matched perceived 340 
intensity across the four modalities were selected for GLM analysis. The dataset includes one activation 341 
map per subject per stimulus modality – painful heat, tactile, auditory, and visual. The dataset was 342 
previously described and published in 4. 343 
 344 
Dataset 4 345 
Thirty-three (33) healthy, right-handed, adult subjects (age = 28 ± 9 years, 22 females). Subjects had no 346 
history of pain, psychiatric, or neurological disorders. fMRI data was collected while subjects received 347 
thermal stimuli that varied in one-degree Celsius increments across six temperatures from 44.3 up to 348 
49.3°C. Subjects then evaluated each stimulus as warm, and scored it from 0, not perceived up to 99, about 349 
to become painful, or as painfully hot, and scored it from 100 (no pain) to 200 (worst imaginable pain). The 350 
dataset includes an average GLM activation map per subject per stimulus temperature, as well as the 351 
corresponding average stimulus ratings. When this dataset was applied dichotomously (pain vs. no pain), 352 
we averaged the brain activity maps from the painful and nonpainful conditions; we omitted subjects who 353 
had fewer than two brain activity maps for each condition, resulting in 29 subjects for dichotomous ratings. 354 
The dataset was previously described in 3,34.  355 
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Dataset 5 356 
Two-hundred thirteen (213) healthy, adult subjects (age = 24 ± 7 years, 101 females). Subjects had no 357 
history of physical or mental health conditions. fMRI data were collected while subjects performed a voice 358 
localizer task. Forty blocks of vocal sounds (20) and non-vocal sounds (20) interspersed with periods of 359 
silence were presented while the subjects lay silent and passively listened with their eyes closed in the 360 
scanner. This dataset was previously described in 35. Raw fMRI data were downloaded from OpenNeuro 361 
(ds000158). We used minimal pre-processing for this study which was performed using the FMRIB 5.0.8 362 
software library (FSL) 36, MATLAB2018a and in-house scripts. The following steps were performed: 363 
motion correction, intensity normalization, nuisance regression of 6 motion vectors, signal-averaged overall 364 
voxels of the eroded white matter and ventricle region, and global signal of the whole brain, and band-pass 365 
filtering (0.008–0.1 Hz) by applying a 4th-order Butterworth filter. All pre-processed fMRI data were 366 
registered to the 2×2×2 mm MNI152 template using a two-step procedure: the mean of preprocessed fMRI 367 
data was registered with a 7-degrees-of-freedom affine transformation (x, y, z, α, β, γ, and scale factor k) to 368 
its corresponding T1 brain (FLIRT); next, transformation parameters were computed by nonlinearly 369 
registering individual T1 brains to the MNI152 template (FNIRT). Combining the two transformations 370 
yielded a mapping from the preprocessed fMRI data to standard space. Task-related activation maps (vocal 371 
vs. silence, and non-vocal vs. silence) were derived from a whole-brain GLM regression analysis using the 372 
FMRIB Software Library (FSL) 36-38. 373 
 374 
Dataset 6 375 
Seventeen (17) healthy, adult subjects (4 women; age = 24 ± 5 years) partook in this study, which involved 376 
listening to a natural stimulus (5 min plot-driven audio story) and resting-state (first 5 min of 8 min scan) 377 
while under different levels of anesthesia 6,7. Sedation levels under propofol were determined by the Ramsey 378 
scale (awake, no propofol; light sedation, Ramsey = 3; deep sedation, Ramsey = 5; recover, Ramsey = 2, 379 
approximately 11 minutes after cessation of propofol) 6. We used minimal pre-processing for this study 380 
which was performed using the FMRIB 5.0.8 software library (FSL) 36, MATLAB2018a and in-house 381 
scripts. The following steps were performed: motion correction, intensity normalization, nuisance 382 
regression of 6 motion vectors, signal-averaged overall voxels of the eroded white matter and ventricle 383 
region, and global signal of the whole brain, and band-pass filtering (0.008–0.1 Hz) by applying a 4th-order 384 
Butterworth filter. All pre-processed fMRI data were registered to the 2×2×2 mm MNI152 template using 385 
a two-step procedure: the mean of preprocessed fMRI data was registered with a 7-degrees-of-freedom 386 
affine transformation (x, y, z, α, β, γ, and scale factor k) to its corresponding T1 brain (FLIRT); next, 387 
transformation parameters were computed by nonlinearly registering individual T1 brains to the MNI152 388 
template (FNIRT). Combining the two transformations yielded a mapping from the preprocessed fMRI data 389 
to standard space. Task-related activation maps (vocal vs. silence, and non-vocal vs. silence) were derived 390 
from a whole-brain GLM regression analysis using R. 391 
 392 
Decoder Construction and Evaluation 393 
Brain activity maps were masked to include only neocortical grey matter voxels using the Harvard-Oxford 394 
neocortical mask thresholded at 0.5. For each contrast, we performed a voxel-wise paired t-test using two 395 
brain activity maps from each subject, resulting in a t-statistic for each voxel in the grey matter. The t-396 
statistic map was then binned into deciles by |t|—decile 10 contained the highest absolute value t-statistics 397 
(the “most significant”) and decile 1 contained the lowest absolute value t-statistics (the “least significant”). 398 
These deciled t-statistic maps served as our decoders. 399 
 We evaluated the decoders (𝐃 ∈ ℝ𝑝×10) by multiplying them with the brain activity maps of interest 400 
(𝐁𝑰 ∈ ℝ𝑛×𝑝) and no interest (𝐁𝑵𝑰 ∈ ℝ𝑛×𝑝), for p voxels and n subjects. This resulted in two matrices of dot 401 
products between the decoders and brain activity maps: one matrix of dot products from the activity maps 402 
of interest (𝐑𝑰 = 𝐁𝑰 𝐃) and one matrix of dot products from the activity maps of no interest (𝐑𝑁𝑰 = 𝐁𝑁𝑰 𝐃). 403 
The columns of 𝐑𝑰  and 𝐑𝑁𝑰  were then compared to calculate an AUC via the Mann-Whitney U-statistic 404 
(𝐴𝑈𝐶 = 𝑈1 𝑛2⁄ ). That is, column 1 in 𝐑𝐼  was compared with column 1 in 𝐑𝑁𝑰 , column 2 in 𝐑𝐼  was 405 
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compared with column 2 in 𝐑𝑁𝑰 , and so on for all 10 columns, producing 10 AUCs—one for each decile. 406 
In doing so, we treated the subjects as dependent for decoder training (paired t-test) but independent for 407 
testing.  408 

We constructed and tested all decoders using the 0.632+ bootstrap method with 100 replicates, 409 
which provides unbiased estimates of out-of-sample performance 39. Briefly, the 0.632+ bootstrap was 410 
performed as follows: 411 
1. Train and test a model using the original sample. Let the resulting AUC be called the “apparent” AUC, 412 

𝜃𝑎̂𝑝𝑝. 413 
2. Generate b bootstrap samples by resampling the original sample with replacement. Note, each bootstrap 414 

sample contains approximately 1 − 1 𝑒⁄ = 63.2% of the original sample. For each of the b bootstrap 415 
samples, we train the model on the bootstrap sample and test the model on the ~36.8% of individuals 416 
not part of the bootstrap sample. Let this AUC estimate be the “leave-one-out” (out-of-sample) 417 
bootstrap AUC, 𝜃𝑖̂

𝑏𝑜𝑜𝑡. 418 
3. Average the resulting out-of-sample bootstraps, 𝜃•̂

𝑏𝑜𝑜𝑡 = 1
𝑏

∑ 𝜃𝑖̂
𝑏𝑜𝑜𝑡𝑏

𝑖=1 . 419 
4. Obtain the 0.632+ estimate. 420 

a. Calculate the relative overfitting rate, 421 
 422 

𝑅̂ =
⎩⎪
⎨
⎪⎧ 1, 𝜃•̂

𝑏𝑜𝑜𝑡 ≤ 0.5
(𝜃𝑎̂𝑝𝑝 − 𝜃•̂

𝑏𝑜𝑜𝑡) (𝜃𝑎̂𝑝𝑝 − 0.5)/ , 𝜃𝑎̂𝑝𝑝 > 𝜃•̂
𝑏𝑜𝑜𝑡

0, otherwise
, 423 

 424 
where 0.5 indicates no information in the decoder. 425 
 426 

b. Calculate the weight for adjusting the 0.632 estimate, 427 
 428 

𝑤̂ = 0.632
1 − 0.368𝑅̂

. 429 
 430 

c. Calculate the 0.632+ estimate, 431 
 432 

𝜃0̂.632+ = (1 − 𝑤̂) ⋅ 𝜃𝑎̂𝑝𝑝 + 𝑤̂ ⋅ 𝜃•̂
𝑏𝑜𝑜𝑡. 433 

 434 
Note, we did not adjust 𝜃•̂

𝑏𝑜𝑜𝑡 with max(𝜃•̂
𝑏𝑜𝑜𝑡, 0.5) in 4c as is common 39,40, since this would create a floor 435 

effect such that 𝜃0̂.632+ ≥ 0.5, which would downwardly bias our variance estimates in the next step. This 436 
results in 𝜃0̂.632+ estimates that are identical to estimates with the adjustment when 𝜃0̂.632+ > 0.5, but allows 437 
our estimates to dip below chance (AUC = 0.5) since it removes the floor effect.  438 

Variances and covariances of the AUCs were estimated using a nested bootstrap with 500 replicates 439 
in the outer loop and 100 replicates in the inner loop 40, totaling 500×100 = 50,000 replicates of each study. 440 
All inner and outer bootstraps were performed on the subject level. This sampling was carried out on 441 
Northwestern University’s High Performance Computing clusters (Quest), which took ~12 hours to 442 
complete using 50 cores. 443 
	444 
Meta-analysis 445 
We performed a single-paper meta-analysis to consolidate our results 41. First, all AUCs were “squeezed” 446 
or shrunken toward 0.5 to avoid boundary effects 42, 447 
 448 

𝜃∗̂ = (𝑛 − 1) ⋅ 𝜃0̂.632+ + 0.5
𝑛

, 449 
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 450 
where n was the total number of brains used (i.e., twice the number of participants). Next, the 0.632+ 451 
bootstrap-estimated AUCs and their bootstrapped replicates were logit-transformed, and the logit-452 
transformed bootstrap replicates were used to generate a 100×100 variance-covariance matrix of sampling 453 
errors. The logit-transformed AUCs were used as the response variable in a multivariate, multilevel linear 454 
meta-regression 43. This allowed for within-study dependence to be properly accounted for, including the 455 
dependence between deciles in a single contrast (e.g., decile 1 and decile 2 in Study 1) and the dependence 456 
between contrasts in Study 3 (e.g., decile 1 in touch vs. pain and decile 2 in visuomotor vs. pain). We were 457 
principally interested in the effect of decile on discrimination performance; we treated decile continuously 458 
and used it as a linear moderator (fixed-effect). Similarly, decile was treated continuously in the random-459 
effect specification, wherein contrasts were nested within studies. 460 
 461 
Perturbations 462 
Noise 463 
Since voxels with low signal-to-noise ratios (i.e., low t-statistics) were capable of decoding, we aimed to 464 
evaluate this finding’s boundary conditions. Each brain activity map contains a correlation coefficient ri for 465 
each voxel i, along with a t-statistic ti. We started with a brain of t-statistics, to which we added Gaussian 466 
noise (𝒩 (0, 𝑐|𝑡𝑖|), where c ∈ {0,1,2,3,4,5}). This procedure ensured that the noise added to each voxel was 467 
proportional to its signal-to-noise ratio to avoid biasing the regions with high signal. The t-statistics with 468 
added noise were then converted to Pearson’s r, on which we performed the decoding. Noise was added 469 
within each 0.632+ bootstrap replicate such that the resulting AUCs were averaged over 500 iterations (as 470 
opposed to 100 for other analyses) of added noise. 471 
 472 
Voxel Sampling	473 
Since the ability to decode with low signal-to-noise voxels likely arises from integrating over so many small 474 
bits of information, we randomly subsampled voxels. The full decoders contained approximately 10,735 475 
voxels per decile, which could come from anywhere within our grey matter mask. We built and assessed 476 
decoders by subsampling the brain activity maps, such that the resulting decile-based decoders contained 477 
100, 250, 500, 1000, 2500, 5000, 7500, and 10735 voxels each. Voxels were sampled within each 0.632+ 478 
bootstrap replicate such that the resulting AUCs were averaged over 500 iterations (as opposed to 100 for 479 
other analyses) of sampled voxels. 480 
 481 
Anatomical Specificity 482 
Neocortex, Subcortex, and Cerebellum 483 
Neocortical, subcortical (thalamus, striatum, hippocampus, and amygdala), and cerebellar grey matter 484 
voxels were extracted from each brain activity map. The neocortical grey matter mask contained 112,651 485 
voxels; the subcortical mask contained 6,882 voxels; and the cerebellar cortex mask contained 17,142 486 
voxels. Since decoding power is sensitive to the number of voxels, we randomly subsampled 6,882 voxels 487 
(or fewer for studies that were further masked) from each mask to control for voxel number. This 488 
subsampling was completed within each 0.632+ inner bootstrap replicate. 489 
 490 
Neocortical Grey Matter, White Matter, and Cerebral Spinal Fluid 491 
Neocortical grey matter (GM), white matter (WM), and cerebral spinal fluid (CSF) voxels were masked 492 
using the Harvard-Oxford atlas with conservative thresholds: 112,651 for GM; 61,324 for WM; and 1,926 493 
for CSF. Within each study, we controlled for the number of voxels by resampling 1,925 voxels (since 494 
1,926 < 61,324 < 112,651) from GM and WM within each bootstrap run. 495 
 496 
Anesthesia Decoders 497 
The anesthesia dataset employed a naturalistic audio stimulus and thus does not have a task vector 498 
associated with it. Moreover, this was the only task performs. As such, we compared each anesthesia level’s 499 
task (naturalistic listening) to resting state. To facilitate this, we used the average auditory cortex activity 500 
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from the training sample as the task vector. Of course, this analysis is circular within the training sample, 501 
but because the training sample’s brain activity was used as the vector in the testing sample and decoding 502 
was assessed based on the resulting brain activity maps, the testing is not circular. To extract the auditory 503 
cortex vector, we defined a region of interest (ROI) based on the Neurosynth association map for “auditory”, 504 
which was thresholded using a z-score of 12. 505 
 506 
Decile Decoders 507 
Decile-based decoders for the anesthesia dataset were created in a similar manner to the other datasets. To 508 
summarize the performance within each decile, we fit a single generalized least squares model on the logit-509 
transformed AUCs from all anesthesia states, y. To do so, all AUCs were “squeezed” towards 0.5 like they 510 
were for the meta-analysis. Our weight matrix, W, was defined as the inverse of the variance-covariance 511 
matrix of the logit-transformed bootstrapped AUCs, 𝚺̂. The parameter estimates, 𝜷 ,̂ and their standard errors 512 
were calculated as 513 
 514 

𝜷 ̂ = (𝐗T𝐖𝐗)
−1𝐗T𝐖𝐲 515 

SE[𝜷]̂ = √diag((𝐗T𝐖𝐗)−1𝐗T𝐖𝚺̂𝐖𝐗(𝐗T𝐖𝐗)−1), 516 
 517 
where X is the design matrix, 518 
 519 

𝐗 = [1 𝑥decile] ⊗ [𝑥awake 𝑥light 𝑥deep 𝑥recover]. 520 
 521 
This differs from standard weighted least squares (a diagonal weight matrix) but has more favorable 522 
properties since it accounts for covariation.  523 
 524 
Region of Interest Decoders 525 
We created posterior cortex, anterior cortex, visual cortex, and motor cortex ROIs using the Harvard-Oxford 526 
neocortical atlas, thresholded at 25%. The posterior cortex was specified as areas 20–22; the anterior cortex, 527 
areas 1, 4, and 5; the visual cortex, areas 36, 40, and 48; and the motor cortex, area 7. In addition, we used 528 
the same auditory cortex ROI as described above. Again, the averaged auditory ROI time course from the 529 
training sample was used as the task vector. A decoder was created using the t-statistics from each ROI 530 
(without deciles), which was fit and tested using the same approach as the decile decoders. 531 
 532 
Functional Connectivity 533 
Pearson correlation coefficients were used to calculate within- and inter-subject (ISFC) functional 534 
connectivity between the auditory cortex and the other ROIs, during both the auditory task and rest within 535 
each level of anesthesia. Within-subject functional connectivity was calculated by averaging the time course 536 
between all voxels within each ROI, calculating the correlation between the auditory ROI and all other 537 
ROIs, converting from Pearson’s r to Fisher’s z, averaging across participants, and then converting back to 538 
Pearson’s r. ISFC was calculated similarly to previous work 44. When calculating subject 1’s ISFC, we 539 
correlated subject 1’s auditory cortex time course with the average time course of, for example, posterior 540 
cortex from subjects 2–n. This was repeated for all subjects and the resulting auditory cortex-posterior 541 
cortex ISFCs were averaged using Fisher’s z to obtain the final estimate of the auditory cortex-posterior 542 
cortex ISFC. Again, this was repeated for the anterior, visual, and motor cortex; ISFC was also measured 543 
between auditory cortices across all subjects.  544 
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