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ABSTRACT

How does the human brain generate coherent, subjective perceptions—transforming yellow and
oblong visual sensory information into the perception of an edible banana '? This is a hard
problem. The standard viewpoint posits that anatomical and functional networks somehow
integrate local, specialized processing across the brain to construct unique percepts. Here, we
provide evidence for a novel organizational concept: we uncover task-specific information
distributed across the human brain. We use functional magnetic resonance imaging (fMRI)-based
decoding models to probe the presence of task-specific information. In doing so, we show that
brain regions that are empirically almost entirely task-independent (considered to be “noise”—
i.e., t-statistics = 0—in standard univariate fMRI analyses) can decode various tasks, even without
statistical learning tools. Thus, task-specific information is present and readily accessible
throughout the neocortex, challenging the sensitivity of traditional linear, univariate analytical
approaches. Remarkably, even subcortical structures and the cerebellum contain task-specific
signals in voxels that would univariately be considered "noise”. Finally, using data from an
auditory study with different levels of sedation, we show that the widespread signal in regions
remote from the primary and secondary sensory cortices (auditory cortex) depends on the level of
sedation, suggesting the brain’s widespread, task-specific information is related to perception’
rather than the encoding of the sensory stimulus. Our analysis uncovers task-specific and
consciousness level-dependent information across the human brain, which we hypothesize to be
the basis for coherent, subjective perceptions.

SIGNIFICANCE

Brain imaging studies commonly rely on linear, univariate analyses to identify task-specific
information. In such studies, it is assumed that such task-specific information is localized to
specific “blobs.” Our data challenge this notion: We show that task-specific information can be
reliably uncovered across the entire human brain, even in regions that linear, univariate analyses
would imply are “noise.” In turn, the common, linear, univariate analysis of brain imaging data
cannot detect real, widespread, task-specific information. Finally, we demonstrate that widespread,
task-specific information degrades with sedation, except in the primary sensory cortex, suggesting
that brain-wide information tracks perception and is a neural correlate of consciousness.

MAIN TEXT

fMRI has transformed how we study the brain, allowing the non-invasive measurement of
correlates of neural activity with a spatial resolution on the scale of millimeters. This high
resolution enables the comparison of blood oxygenation level-dependent (BOLD) activity within
and between tasks to unravel the function of local neural circuits. Such task-based fMRI studies
commonly use forward inference to identify task-related brain areas: they rely on the correlation
between each voxel's activation timecourse with the task’s temporal profile. Subsequently,
neuroimagers contrast brain activity maps of different tasks to create a contrast map, which is then
thresholded to yield localized blobs. The standard assumption of these mass-univariate analyses is
that only the identified blobs reliably contain task-specific information.? In this report, we
challenge this assumption by showing the reliable presence of task-specific information throughout

! By perception, we refer to the conscious experience resulting from sensory input. This experience is the product of
and thus includes memory, attention, and expectations.

2 Here, we use information not as an inference regarding neuronal function, but rather from a decoding perspective
relating to the nature and specificity of the variance that can be extracted from our proxies of neuronal activity.
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85  the entire neocortex—including regions identified as "noise" by univariate measures (#-statistics =
86  0)—which is uncovered by integrating over large swaths of voxels. After discovering pan-
87  neocortical information content, we probe for and uncover task-specific information in the
88  subcortex and cerebellum. Next, we assess how different levels of sedation perturb the presence
89  ofinformation. We show that omnipresent information degrades with increasing levels of sedation.
90  Rather than being task-specific, this brain-wide spread of information appears to reflect perceptual
91 (conscious) processes and, therefore, may be involved in extracting subjective, wholistic concepts
92  from incoming sensory inputs, as in the identification of the edible banana.
93 One approach to assessing the information contained in neuroimages is to decode them.
94  Decoders transmute brain activity into a single number related to a task of interest. A suitable
95  decoder's output will be high for the task of interest and low for the task(s) of no interest. The
96  discriminability between the tasks of interest and no interest is indicative of the information in the
97  data. Using six datasets with different sensory stimuli (Table S1; N=293 subjects) >, we built
98  simple decoding models using only the #-statistics from mass-univariate contrasts (Fig 1, top left;
99  Fig S1). The first part of our study uses five of these datasets, four of which contain two stimuli
100  and one of which includes four stimuli, totaling ten different stimulus pairs or contrasts (4(%) +

101 (;‘) =10). We binned the #-statistics by magnitude to create ten decoders for each contrast; the first

102 decoder comprised of all voxels with the highest #-statistics (10" decile) and the last decoder
103 comprised of all voxels with the lowest #-statistics (1% decile) (Fig 1, top right). We tested each
104  decoder by calculating the dot product between the decoder (sign, magnitude, and location of #-
105  statistics within a single decile; e.g., Fig 1, bottom right) and each brain activity map (general
106  linear model (GLM)-derived maps of parameter estimates), yielding a weighted sum of task-
107  related activity across all voxels comprising the decoder (Fig 1, bottom middle). We used the
108  0.623+ bootstrap to obtain unbiased estimates of between-subject areas under the receiver
109  operating characteristic curve (AUC) as an indicator of discrimination performance (Fig 1, bottom
110 left). To succinctly describe our results, we meta-analyzed the resulting AUCs and their
111 bootstrapped variance-covariances (Methods).

112
113
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Figure 1. Generation of decoders to assess the presence of task-related signals. Voxel-wise paired t-tests were
performed on subjects' brain activity maps using a task of interest (e.g., pain) and no interest (e.g., touch). These ¢-
statistics were then binned into deciles based on their absolute magnitudes. The grey line depicts the standard
minimum threshold used to dichotomize brain regions that discriminate between tasks (univariate “statistical
significance” at =0.05; uncorrected for multiple comparisons). Each decile of #-statistics and their locations in the
brain became a decoder. On the bottom right, we show examples of these decoders for the 10" (comprised of large
blobs) and 1% deciles (scattered voxels). Although the deciles were derived using the absolute value of ¢-statistics, the
decoders incorporated the z-statistics’ signs. We then calculated dot products between the decoder derived from each
decile and brain activity maps. These dot products are analogous to ‘linear predictors’ from a regression model. Here,
we z-scored the dot products within each decile for visualization purposes. We calculated AUCs based on these dot
products, where higher dot products were assumed to correspond to the task of interest. We used the 0.632+ bootstrap
to obtain unbiased AUCs when testing our decoders.

Task-specific information is widespread across the human brain

Decoding performance was consistently above chance (AUC > 0.5) for all deciles across nine out
of ten contrasts. Despite univariate -statistics in the lowest decile being close to zero, decoding
performance was only marginally poorer in the lowest decile as compared to the highest decile
(Fig 2, Table S2). Therefore, regions in neocortical grey matter commonly thought to be
orthogonal to the task in univariate analyses in fact contain robust task-related information. These
findings complement recent work using statistical learning to optimize voxel weights for predictive
performance 32 and demonstrate that the presence of information is far more distributed across
the brain than previously thought. Moreover, our analyses establish for the first time how
accessible this information truly is: our models simply use mass-univariate z-statistics without any
regularization or consideration of the z-statistics’ joint distribution. Evidently, regularization and
multivariable modeling are not necessary and even voxels with #-statistics close to zero can jointly
discriminate tasks from one another. Therefore, our results indicate the presence of task-related
information throughout the neocortex, which degrades slowly as a function of the univariate
signal-to-noise metric (z-statistic).
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Figure 2. Voxels across the entire neocortex contain task-specific information. (A) Four example studies of
neocortical decoding performance across all #-statistic deciles. Although all four studies contain task-specific
information in all 10 deciles, the degree to which the tasks can be discriminated differs slightly between studies. Error
bars indicate + SE. (B) A mixed-effects meta-analysis across 10 contrasts reveals that all ten deciles can, on average,
discriminate between tasks. The ability to discriminate between tasks implies the presence of task-specific
information, meaning that even voxels with f-statistics close to zero (decile 1) contain marked task-specific
information. Error bars indicate + Clos.

When decoding tasks from neuroimages, one cannot draw inferences about the causal role
of the predictors (voxels) in the decoding outcome (task) !3. There are many reasons why
information may be present in acausal structures. For example, physiological and non-
physiological noise may have task specificity '*. We attempted to rule out such confounds by
decoding tasks using white matter and cerebrospinal fluid (cf. grey matter). In general, decoding
performance was poor in these regions (Fig S2), suggesting these negative controls contain less
signal than the neocortex. In addition, white matter and cerebrospinal fluid decoding performance
covaried substantially (» = 0.7), but they only weakly covaried with grey matter, implying vastly
different signal sources between these structures (Fig S2). Finally, head motion artifact—another
potential candidate of task-related noise that contaminates the BOLD signal-—only minimally
correlated with decoder responses; orthogonalizing the decoders’ dot products to head motion only
slightly decreased discrimination (maximum AAUC < 0.05). Thus, our observed effects are
unlikely to be attributable to task-specific, non-neural confounds.

To assess the general sensitivity of the decoders, we built them using different numbers of
voxels and different amounts of added noise. Decoders with fewer voxels performed poorly and
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169  were more sensitive to added noise (Fig S3). As one might expect, the ability to successfully
170  decode using voxels with low f-statistics is principally attributable to the number of included
171  voxels. There is a continuum of explanations as to why this might be the case. On one extreme,
172 each voxel may contain a tiny amount of task-specific information. Integrating many small bits of
173  information allows one to accumulate enough information to discriminate between tasks. On the
174  other extreme, since ¢-statistics are derived empirically and thus may not be stable, “signal” voxels
175  may mix with “noise” voxels, creating instability in our deciles. In this case, by sampling more
176  voxels, we are more likely to capture “signal” voxels in our “noise” decile(s), which would enable
177  successful decoding. Where our findings fall along this continuum remains to be determined.

178 Next, we tested whether information content is specific to the neocortex. Repeating our
179  analyses in the subcortex and cerebellum revealed that information is present throughout both
180  regions, even where z-statistics are approximately zero (Fig S4, Fig S5). Cerebellar information
181  varied more between task pairs than the neocortex (three examples shown in Fig 3A). These results
182  complement recent work by Nakai and Nishimoto >, who used the subcortex and cerebellum to
183  decode 103 cognitive tasks using a within-subject approach based on more complex models which
184  were trained using statistical learning. In contrast, we used #-statistics from regional activity maps
185  to decode across- rather than within-subjects. Our meta-analysis across contrasts showed that the
186  performance of the subcortical and cerebellar decoders was slightly inferior to the performance of
187  the neocortex-based decoders, even after controlling for the number of voxels (Fig 3B, Fig S6).
188  Overall, we observed that subcortical and cerebellar structures contain widespread, task-specific
189  information, evidencing that information spread is not restricted to the neocortex but is present

190  across the entire human brain.
191
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Figure 3. Task-relevant information is pervasively present throughout the subcortex and cerebellum but to a lesser
extent than in the neocortex. (A) Three example studies demonstrate marked differences in regional task-specific
information. In Study 1, the relative task-specific information in the neocortex shifts from being closer to the subcortex
to the cerebellum. In Study 2, all three regions are similar, while in Study 3, there is a consistent pattern with the three
areas being starkly different. (B) After controlling for the number of voxels in the neocortex, subcortex, and
cerebellum, a meta-analysis across 9 contrasts (excluding Study 5) reveals that task-related information exists across
all regions and deciles. Task-related information in the neocortex dominates for higher deciles, but this superiority
vanishes in smaller deciles. Error ribbons indicate + Closv.

The notion of widespread, task-specific cortical dynamics is gaining traction across
multiple fields of neuroscience. Human fMRI work demonstrates that 100 repetitions of the same
task (three participants, 9—10 sessions over three months) can uncover neocortex-wide information
16, Decoding studies, which rely on statistical learning approaches, evidence the existence of task-
specific information outside of GLM areas '2. Similarly, recent fMRI evidence from macaque
monkeys demonstrates the presence of retinotopic tuning in cortical and subcortical regions remote
from the visual cortex !”. To complement fMRI evidence, wide-field calcium imaging and
Neuropixels recordings in rodent models have been shown to capture mesoscopic neocortical and
subcortical dynamics on a moment-by-moment basis, revealing brain-wide, task-specific activity
across several cognitive domains '#2!. Our results complement this prior work by demonstrating
the presence of brain-wide, task-specific information in human brain fMRI and the ease with which
this information can be extracted.
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214 Understanding the nature of this brain-wide information is more challenging than
|215 identifying its existence. Recent work in mice demonstrates widespread cortical dynamics to be
216  necessary for behavior—preventing local clusters of activation impairs performance, suggesting a
217  functional rather than epiphenomenal role !°. If activation across the entire brain is necessary for
218  task performance, it is more likely that the information we detected across brain regions is
219  complementary than redundant. In other words, different brain regions capture distinct properties
220  of'the task. However, we remain agnostic as to the role of this widespread information in conscious
221  perception instead of simply being a task correlate. To address this, we will now link these findings
222 to consciousness.

223

224 Widespread, task-specific information scales with consciousness

225  Neurophysiological theories of consciousness rely on brain-wide information sharing, posited to
226  be necessary but not sufficient for consciousness ?2. Conceivably, the association between
227  information sharing and consciousness 2* suggests that task-specific brain-wide information should
228  attenuate with increasing levels of sedation. If information is not readily shared across the brain,
229 it cannot be omnipresent. But how do states of consciousness interact with task-specific, brain-
230  wide information content? To assess this, we analyzed a dataset in which individuals listened to
231  an auditory stimulus (five-minute audio from a movie) while under different levels of sedation 7.
232 Since there was no task vector associated with the auditory stimulus, we averaged participants’
233 auditory cortex time courses to serve as the task vector and used a separate resting-state scan as a
234 negative control.

235 Consistent with our analyses above, information was omnipresent across the neocortex
236  when participants were awake. However, this information degraded with increasing levels of
237  sedation and was partially restored while recovering from sedation (Fig 4A and B). We performed
238  a region-of-interest (ROI)-based analysis to complement the decile analysis. In the awake state,
239  different regions exhibited distinct abilities to discriminate the task from resting-state, with the
240  auditory cortex exhibiting the greatest discrimination. Moreover, the auditory cortex’s task-
241  specific signal was invariant to sedation level, but task-specific information degraded with deeper
242 levels of sedation across all other ROIs (posterior, anterior, visual, and motor cortices) (Fig 4C).
243 These results imply that brain-wide, task-specific information content is related to the perception
244 rather than the encoding of the sensory stimulus.

245 The brain’s modularity and interconnected functional and structural networks must underly
246  our observed brain-wide distribution of information 24?7, In particular, long-range connections and
247  small-world networks to which they give rise provide a mechanism for efficient information
248  sharing. The properties of these networks are thus likely to be critical for how information is
249  communicated and captured across the brain. We elucidated the relevance of functional
250  connectivity to our findings by examining intersubject functional connectivity (ISFC) using the
251  auditory cortex as a seed. We quantified the temporal relationship between a participant’s auditory
252 cortex and all other participants’, say, posterior cortex. ISFC decreased with more sedation, much
253  like decoding performance (Fig 4D). However, within-subject functional connectivity remained
254 largely unperturbed (Fig S7). Thus, ISFC seems to track sedation-dependent perceptual states.
255 Our results complement previous work in which transcranial magnetic stimulation (TMS)
256  was used to induce electrical potentials that differentially propagated over the neocortex as a
257  function of consciousness state 2°. Here, we leveraged passive sensory stimuli, but our findings are
258  consistent: loss of consciousness degrades brain-wide information content via a downregulation in
259  corticocortical information sharing. Therefore, consciousness seems a necessary condition for the
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260  presence of widespread task-related cortical information. Practically, our simple decoding
261  approach may be sufficient to identify neural correlates of consciousness using natural sensory
262  stimuli without artificially stimulating the brain (cf. TMS 23).

263
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265 Figure 4: Sedation affects the neocortical distribution of task-relevant information in a region-specific manner.
266 (A) Widespread cortical task-relevant information decreases with deeper levels of sedation, as indicated by the
267 decrease in AUCs from awake to light to deep, along with the increase in AUC from deep to recovery. (B) Intercepts
268 (defined by decile = 1) and slopes of the curves in (A) reveal stark decoding differences between levels of anesthesia.
269  Awake’s first decile (intercept) has the strongest performance of the different levels of sedation. Its slope (on the logit
270 scale; OR = odds ratio) is also greatest since it is more difficult to improve performance as AUC — 1. (C) The primary
271 and secondary sensory cortices (auditory cortex) retain information across sedation levels. In contrast, other cortical
272 regions' information content drops off with increasing levels of sedation. (D) Task-specific intersubject functional
273 connectivity decreases with deeper sedation. All error bars indicate = Clos.

275 Task-related confounds, such as head motion, are likely greater when individuals are
276  awake. However, our sedation level-dependent findings were unrelated to head motion (Fig S8).
277  Moreover, we observed similar results whether we used auditory cortex activity from the awake
278  or deep anesthesia conditions (Fig S9). This latter point is remarkable: auditory cortex activity
279  with deep sedation is arguably “purer” than that in the awake condition, as higher-level processes
280  and feedback loops will not modulate it, and similarly, head motion should be negligible. The
281  generalizability of our findings across participants and levels of sedation reinforces that our
282  findings represent consciousness-related neural information rather than task-related artifacts.

283 The neocortex is not the only neural structure involved in consciousness. Much has been
284  discussed and debated regarding the role of the thalamus, other subcortical structures, and the
285  cerebellum 22, Like the neocortex, the subcortex’s task-specific information content demonstrates
286 a dose-dependence on the level of sedation. Similarly, so does the cerebellum, although its
287  dependence on sedation level is more complex (Fig S10). We should emphasize that the presence
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288  of brain-wide information reflects the state of consciousness rather than demonstrating its
289  mechanism(s).

290

291  Concluding Remarks

292 Our results render the brain-wide presence of information indisputable and elucidate the ease with
293 which this information can be decoded, even in brain regions that mass-univariate analyses suggest
294 are approximately orthogonal to the tasks being studied. We also show that the ubiquity of this
295  information is not without bounds—consciousness is itself a necessary condition for the brain-
296  wide spread of task-related information. Many of the tasks that we compared are trivially simple,
297  only involving passive sensory stimuli; yet, related information is spread across the entire brain.
298  Neurocognitively, our results imply that perceptual states engage the entire brain. We speculate
299  that the details of the distribution of information may define the nuanced properties of perception;
300 for example, the edibility of the oblong, yellow object. Finally, these results strongly challenge the
301  notion of localization of information in the brain without precluding regional specialization of
302  function. For example, although language-specific information can be uncovered across the entire
303  neocortex 28, the functional role of Broca’s area is incontrovertible 2°. Unraveling the unique
304  contribution of diverse brain regions to perceptual states requires future investigation, including
305  the necessity of some and the sufficiency of others, including methods beyond traditional linear,
306  univariate analyses of brain activity.

307
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308  MATERIALS AND METHODS

309  Datasets

310  Six datasets were used in this paper; all are part of published studies and were either provided by their
311  authors (Datasets 1-4) or downloaded from public repositories (Datasets 5 & 6). Datasets 1-4 consist of
312  voxel-wise, whole brain, task-dependent general lincar model (GLM) analysis activation maps
313  (ftp://openpain.org/LimitsDecoding/Data/Beta_maps/). Datasets 5 & 6 consist of BOLD timeseries which
314  were processed using standard fMRI pre- and post-processing methods described below.

315

316  Dataset I

317  Fifteen (15), right-handed, adult subjects (mean age: 35 + 11 years, 7 females). Subjects had no history of
318  pain, psychiatric, or neurological disorders. fMRI data were collected while subjects received thermal
319  stimuli across 3 temperatures: 47, 49, and 51 degrees Celsius. Subjects continuously rated, using a finger
320  span device ***', their pain from 0 (not painful) to 100 (worst imaginable pain) (“pain rating” task). A
321 control scan was performed while subjects used the finger span device to track a moving bar projected on
322  the screen (“visual rating” task; moving bar replicated for each subject the specific pain rating task temporal
323  pattern). The dataset includes one GLM beta map per subject per stimulus type. The dataset was previously
324 described in *.

325

326  Dataset 2

327  Fifty-one (51) healthy, right-handed, adult subjects (age = 24 + 2 years, 34 females). Subjects had no history
328  of brain injuries, pain disorders, or psychiatric or neurological diseases. fMRI data was collected while
329  subjects received painful heat stimuli on the right foot dorsum using a CO, laser, as well as tactile stimuli
330  to the same area using electrical stimulation. Stimuli were not delivered at the same time. Perceived
331 intensities were recorded for every stimulus and only the stimuli with matched perceived intensity for
332  painful heat and touch were selected for GLM analysis. The dataset includes one activation map per subject
333 per stimulus modality — painful heat and touch. The dataset was previously described in ***.

334

335  Dataset 3

336  Fourteen (14) healthy, right-handed, adult subjects (age = 20-36 years old, 6 females). fMRI data were
337  collected while subjects received painful heat stimuli on the right foot dorsum using a CO; laser, tactile
338  stimuli to the same area using electrical stimulation, visual stimuli using a white disk presented above the
339  right foot, and auditory stimuli delivered via pneumatic earphones. Stimuli were not delivered at the same
340  time. Perceived intensities were recorded for every stimulus and only the stimuli with matched perceived
341 intensity across the four modalities were selected for GLM analysis. The dataset includes one activation
342  map per subject per stimulus modality — painful heat, tactile, auditory, and visual. The dataset was
343  previously described and published in *.

344

345  Dataset 4

346  Thirty-three (33) healthy, right-handed, adult subjects (age = 28 + 9 years, 22 females). Subjects had no
347  history of pain, psychiatric, or neurological disorders. fMRI data was collected while subjects received
348  thermal stimuli that varied in one-degree Celsius increments across six temperatures from 44.3 up to
349  49.3°C. Subjects then evaluated each stimulus as warm, and scored it from 0, not perceived up to 99, about
350  to become painful, or as painfully hot, and scored it from 100 (no pain) to 200 (worst imaginable pain). The
351 dataset includes an average GLM activation map per subject per stimulus temperature, as well as the
352  corresponding average stimulus ratings. When this dataset was applied dichotomously (pain vs. no pain),
353  we averaged the brain activity maps from the painful and nonpainful conditions; we omitted subjects who
354  had fewer than two brain activity maps for each condition, resulting in 29 subjects for dichotomous ratings.
355  The dataset was previously described in ***.
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356  Dataset 5

357  Two-hundred thirteen (213) healthy, adult subjects (age = 24 + 7 years, 101 females). Subjects had no
358  history of physical or mental health conditions. fMRI data were collected while subjects performed a voice
359  localizer task. Forty blocks of vocal sounds (20) and non-vocal sounds (20) interspersed with periods of
360 silence were presented while the subjects lay silent and passively listened with their eyes closed in the
361  scanner. This dataset was previously described in *°. Raw fMRI data were downloaded from OpenNeuro
362  (ds000158). We used minimal pre-processing for this study which was performed using the FMRIB 5.0.8
363  software library (FSL) *, MATLAB2018a and in-house scripts. The following steps were performed:
364  motion correction, intensity normalization, nuisance regression of 6 motion vectors, signal-averaged overall
365  voxels of the eroded white matter and ventricle region, and global signal of the whole brain, and band-pass
366 filtering (0.008-0.1 Hz) by applying a 4™-order Butterworth filter. All pre-processed fMRI data were
367  registered to the 2x2x2 mm MNI152 template using a two-step procedure: the mean of preprocessed fMRI
368  data was registered with a 7-degrees-of-freedom affine transformation (x, y, z, a, 8, , and scale factor k) to
369 its corresponding T; brain (FLIRT); next, transformation parameters were computed by nonlinearly
370  registering individual T; brains to the MNI152 template (FNIRT). Combining the two transformations
371  yielded a mapping from the preprocessed fMRI data to standard space. Task-related activation maps (vocal
372  vs.silence, and non-vocal vs. silence) were derived from a whole-brain GLM regression analysis using the
373  FMRIB Software Library (FSL) *%%,

374

375  Dataset 6

376  Seventeen (17) healthy, adult subjects (4 women; age = 24 + 5 years) partook in this study, which involved
377 listening to a natural stimulus (5 min plot-driven audio story) and resting-state (first 5 min of 8 min scan)
378  while under different levels of anesthesia *’. Sedation levels under propofol were determined by the Ramsey
379  scale (awake, no propofol; light sedation, Ramsey = 3; deep sedation, Ramsey = 5; recover, Ramsey = 2,
380  approximately 11 minutes after cessation of propofol) ®. We used minimal pre-processing for this study
381  which was performed using the FMRIB 5.0.8 software library (FSL) *, MATLAB2018a and in-house
382  scripts. The following steps were performed: motion correction, intensity normalization, nuisance
383  regression of 6 motion vectors, signal-averaged overall voxels of the eroded white matter and ventricle
384  region, and global signal of the whole brain, and band-pass filtering (0.008-0.1 Hz) by applying a 4™-order
385  Butterworth filter. All pre-processed fMRI data were registered to the 2x2x2 mm MNI152 template using
386  a two-step procedure: the mean of preprocessed fMRI data was registered with a 7-degrees-of-freedom
387  affine transformation (x, y, z, a, f, y, and scale factor k) to its corresponding T, brain (FLIRT); next,
388  transformation parameters were computed by nonlinearly registering individual T, brains to the MNI152
389  template (FNIRT). Combining the two transformations yielded a mapping from the preprocessed fMRI data
390 to standard space. Task-related activation maps (vocal vs. silence, and non-vocal vs. silence) were derived
391  from a whole-brain GLM regression analysis using R.

392

393 Decoder Construction and Evaluation

394  Brain activity maps were masked to include only neocortical grey matter voxels using the Harvard-Oxford
395  neocortical mask thresholded at 0.5. For each contrast, we performed a voxel-wise paired ¢-test using two
396  brain activity maps from each subject, resulting in a z-statistic for each voxel in the grey matter. The z-
397  statistic map was then binned into deciles by |f—decile 10 contained the highest absolute value #-statistics
398  (the “most significant”) and decile 1 contained the lowest absolute value z-statistics (the “least significant”).
399  These deciled #-statistic maps served as our decoders.

400 We evaluated the decoders (D € R”*1?) by multiplying them with the brain activity maps of interest
401 (B, € R™P)and no interest (B, € R™?P), for p voxels and » subjects. This resulted in two matrices of dot
402  products between the decoders and brain activity maps: one matrix of dot products from the activity maps
403  ofinterest (R; = B;D) and one matrix of dot products from the activity maps of no interest (R ; = By D).
404  The columns of R; and Ry, were then compared to calculate an AUC via the Mann-Whitney U-statistic

405 (AUC = Uym®). That is, column 1 in R; was compared with column 1 in Ry;, column 2 in R; was
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406  compared with column 2 in Ry, and so on for all 10 columns, producing 10 AUCs—one for each decile.
407  In doing so, we treated the subjects as dependent for decoder training (paired -test) but independent for
408  testing.

409 We constructed and tested all decoders using the 0.632+ bootstrap method with 100 replicates,
410  which provides unbiased estimates of out-of-sample performance *°. Briefly, the 0.632+ bootstrap was
411  performed as follows:

412 1. Train and test a model using the original sample. Let the resulting AUC be called the “apparent” AUC,
413 gare .

414 2. Generate b bootstrap samples by resampling the original sample with replacement. Note, each bootstrap

415 sample contains approximately 1 — 1/e = 63.2% of the original sample. For each of the b bootstrap
416 samples, we train the model on the bootstrap sample and test the model on the ~36.8% of individuals
417 not part of the bootstrap sample. Let this AUC estimate be the “leave-one-out” (out-of-sample)
418 bootstrap AUC, 8.
419 3. Average the resulting out-of-sample bootstraps, 2" = % f’z | o>,
420 4. Obtain the 0.632+ estimate.
421 a. Calculate the relative overfitting rate,
422

1, 6" <05
423 R=1 (6 — gty /(9 —05),  § > §boo,

0, otherwise
424
425 where 0.5 indicates no information in the decoder.
426
427 b. Calculate the weight for adjusting the 0.632 estimate,
428
429 p=—00%2

1 -0.368R

430
431 c. Calculate the 0.632+ estimate,
432
433 GO = (1= ) - 60 + D - 6
434

435  Note, we did not adjust 82° with max (62, 0.5) in 4c as is common **, since this would create a floor

436  effect such that 8°%3>* > 0.5, which would downwardly bias our variance estimates in the next step. This
437  results in §%932+ estimates that are identical to estimates with the adjustment when §%93%* > 0.5, but allows
438  our estimates to dip below chance (AUC = 0.5) since it removes the floor effect.

439 Variances and covariances of the AUCs were estimated using a nested bootstrap with 500 replicates
440  in the outer loop and 100 replicates in the inner loop *°, totaling 500x100 = 50,000 replicates of each study.
441  All inner and outer bootstraps were performed on the subject level. This sampling was carried out on
442  Northwestern University’s High Performance Computing clusters (Quest), which took ~12 hours to
443  complete using 50 cores.

444

445  Meta-analysis

446  We performed a single-paper meta-analysis to consolidate our results *'. First, all AUCs were “squeezed”
447  or shrunken toward 0.5 to avoid boundary effects **,

448
1y, A0.632+
449 =D 8 405

n
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450

451  where n was the total number of brains used (i.e., twice the number of participants). Next, the 0.632+
452  bootstrap-estimated AUCs and their bootstrapped replicates were logit-transformed, and the logit-
453  transformed bootstrap replicates were used to generate a 100x100 variance-covariance matrix of sampling
454  errors. The logit-transformed AUCs were used as the response variable in a multivariate, multilevel linear
455  meta-regression . This allowed for within-study dependence to be properly accounted for, including the
456  dependence between deciles in a single contrast (e.g., decile 1 and decile 2 in Study 1) and the dependence
457  between contrasts in Study 3 (e.g., decile 1 in touch vs. pain and decile 2 in visuomotor vs. pain). We were
458  principally interested in the effect of decile on discrimination performance; we treated decile continuously
459  and used it as a linear moderator (fixed-effect). Similarly, decile was treated continuously in the random-
460  effect specification, wherein contrasts were nested within studies.

461
462  Perturbations
463  Noise

464  Since voxels with low signal-to-noise ratios (i.e., low #-statistics) were capable of decoding, we aimed to
465  evaluate this finding’s boundary conditions. Each brain activity map contains a correlation coefficient r; for
466  each voxel i, along with a #-statistic .. We started with a brain of #-statistics, to which we added Gaussian
467  noise (H(0, c|t;]), where ¢ € {0,1,2,3,4,5}). This procedure ensured that the noise added to each voxel was
468  proportional to its signal-to-noise ratio to avoid biasing the regions with high signal. The ¢-statistics with
469  added noise were then converted to Pearson’s », on which we performed the decoding. Noise was added
470  within each 0.632+ bootstrap replicate such that the resulting AUCs were averaged over 500 iterations (as
471  opposed to 100 for other analyses) of added noise.

472

473  Voxel Sampling

474  Since the ability to decode with low signal-to-noise voxels likely arises from integrating over so many small
475  bits of information, we randomly subsampled voxels. The full decoders contained approximately 10,735
476  voxels per decile, which could come from anywhere within our grey matter mask. We built and assessed
477  decoders by subsampling the brain activity maps, such that the resulting decile-based decoders contained
478 100, 250, 500, 1000, 2500, 5000, 7500, and 10735 voxels each. Voxels were sampled within each 0.632+
479  bootstrap replicate such that the resulting AUCs were averaged over 500 iterations (as opposed to 100 for
480  other analyses) of sampled voxels.

481

482  Anatomical Specificity

483  Neocortex, Subcortex, and Cerebellum

484  Neocortical, subcortical (thalamus, striatum, hippocampus, and amygdala), and cerebellar grey matter
485  voxels were extracted from each brain activity map. The neocortical grey matter mask contained 112,651
486  voxels; the subcortical mask contained 6,882 voxels; and the cerebellar cortex mask contained 17,142
487  voxels. Since decoding power is sensitive to the number of voxels, we randomly subsampled 6,882 voxels
488  (or fewer for studies that were further masked) from each mask to control for voxel number. This
489  subsampling was completed within each 0.632+ inner bootstrap replicate.

490

491 Neocortical Grey Matter, White Matter, and Cerebral Spinal Fluid

492  Neocortical grey matter (GM), white matter (WM), and cerebral spinal fluid (CSF) voxels were masked
493  using the Harvard-Oxford atlas with conservative thresholds: 112,651 for GM; 61,324 for WM; and 1,926
494  for CSF. Within each study, we controlled for the number of voxels by resampling 1,925 voxels (since
495 1,926 < 61,324 < 112,651) from GM and WM within each bootstrap run.

496

497  Anesthesia Decoders

498  The anesthesia dataset employed a naturalistic audio stimulus and thus does not have a task vector
499  associated with it. Moreover, this was the only task performs. As such, we compared each anesthesia level’s
500 task (naturalistic listening) to resting state. To facilitate this, we used the average auditory cortex activity
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501  from the training sample as the task vector. Of course, this analysis is circular within the training sample,
502  but because the training sample’s brain activity was used as the vector in the testing sample and decoding
503  was assessed based on the resulting brain activity maps, the testing is not circular. To extract the auditory
504  cortex vector, we defined a region of interest (ROI) based on the Neurosynth association map for “auditory”,
505  which was thresholded using a z-score of 12.

506

507  Decile Decoders

508  Decile-based decoders for the anesthesia dataset were created in a similar manner to the other datasets. To
509  summarize the performance within each decile, we fit a single generalized least squares model on the logit-
510  transformed AUCs from all anesthesia states, y. To do so, all AUCs were “squeezed” towards 0.5 like they
511  were for the meta-analysis. Our weight matrix, W, was defined as the inverse of the variance-covariance

512 matrix of the logit-transformed bootstrapped AUCs, S The parameter estimates, ﬁ , and their standard errors
513 were calculated as

514

515 B = (X"WX)'X"Wy

516 SE[B] = \/diag((XTWX)-lXTWiWX(XTWX)—I),
517

518  where X is the design matrix,

519
520 X = (1 xdecile] ® [xawake xlight xdeep recover],

521

522 This differs from standard weighted least squares (a diagonal weight matrix) but has more favorable

523 properties since it accounts for covariation.

524

525  Region of Interest Decoders

526  We created posterior cortex, anterior cortex, visual cortex, and motor cortex ROIs using the Harvard-Oxford
527  neocortical atlas, thresholded at 25%. The posterior cortex was specified as areas 20-22; the anterior cortex,
528 areas 1, 4, and 5; the visual cortex, areas 36, 40, and 48; and the motor cortex, area 7. In addition, we used
529  the same auditory cortex ROI as described above. Again, the averaged auditory ROI time course from the
530 training sample was used as the task vector. A decoder was created using the z-statistics from each ROI
531  (without deciles), which was fit and tested using the same approach as the decile decoders.

532

533 Functional Connectivity

534  Pearson correlation coefficients were used to calculate within- and inter-subject (ISFC) functional
535  connectivity between the auditory cortex and the other ROIs, during both the auditory task and rest within
536  eachlevel of anesthesia. Within-subject functional connectivity was calculated by averaging the time course
537  between all voxels within each ROI, calculating the correlation between the auditory ROI and all other
538  ROIs, converting from Pearson’s r to Fisher’s z, averaging across participants, and then converting back to
539  Pearson’s . ISFC was calculated similarly to previous work *. When calculating subject 1’s ISFC, we
540  correlated subject 1’s auditory cortex time course with the average time course of, for example, posterior
541  cortex from subjects 2-#n. This was repeated for all subjects and the resulting auditory cortex-posterior
542  cortex ISFCs were averaged using Fisher’s z to obtain the final estimate of the auditory cortex-posterior
543 cortex ISFC. Again, this was repeated for the anterior, visual, and motor cortex; ISFC was also measured
544  between auditory cortices across all subjects.
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