

1 **Widespread, perception-related information in the human brain scales with levels of**
2 **consciousness**

5 Andrew D. Vigotsky ^{1,2,3,4}
6 Rami Jabakhanji ^{3,4}
7 Paulo Branco ^{3,4}
8 Gian Domenico Iannetti ^{5,6}
9 Marwan N. Baliki ^{4,7,8}
10 A. Vania Apkarian ^{3,4,8,9,*}

11 ¹ Department of Biomedical Engineering, Northwestern University, Evanston, IL

12 ² Department of Statistics, Northwestern University, Evanston, IL

13 ³ Department of Neuroscience, Northwestern University, Chicago, IL

14 ⁴ Center for Translational Pain Research, Northwestern University, Chicago, IL

15 ⁵ Division of Biosciences, University College London, London, United Kingdom

16 ⁶ Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome, Italy

17 ⁷ Shirley Ryan AbilityLab, Chicago, IL

18 ⁸ Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL

19 ⁹ Department of Anesthesiology, Northwestern University, Chicago, IL

22 * Corresponding author:

23 A. Vania Apkarian

24 a-apkarian@northwestern.edu

26 **Funding**

27 This research was supported in part through the computational resources and staff contributions
28 provided for the Quest high-performance computing facility at Northwestern University, which is
29 jointly supported by the Office of the Provost, the Office for Research, and Northwestern
30 University Information Technology. This material is based upon work supported by the National
31 Science Foundation Graduate Research Fellowship under Grant No. DGE-1324585. GDI is
32 supported by the Wellcome Trust and the ERC Consolidator Grant PAINSTRAT. This work is
33 funded by the National Institute of Drug Abuse at National Institutes of Health (1P50DA044121)
34 and the National Institute Of Neurological Disorders And Stroke of the National Institutes of
35 Health under Award Number F31NS126012. The content is solely the responsibility of the authors
36 and does not necessarily represent the official views of the National Institutes of Health.

38 **Acknowledgments**

39 We would like to thank Drs. Christof Koch, Todd Parrish, and Lucas Pinto, in addition to the
40 Apkarian Lab members, for their thoughtful comments and feedback. Our acknowledgment does
41 not imply endorsement of our views by these colleagues, and we remain solely responsible for the
42 views expressed herein.

43 **ABSTRACT**

44 *How does the human brain generate coherent, subjective perceptions—transforming yellow and*
45 *oblong visual sensory information into the perception of an edible banana¹? This is a hard*
46 *problem. The standard viewpoint posits that anatomical and functional networks somehow*
47 *integrate local, specialized processing across the brain to construct unique percepts. Here, we*
48 *provide evidence for a novel organizational concept: we uncover task-specific information*
49 *distributed across the human brain. We use functional magnetic resonance imaging (fMRI)-based*
50 *decoding models to probe the presence of task-specific information. In doing so, we show that*
51 *brain regions that are empirically almost entirely task-independent (considered to be “noise”—*
52 *i.e., t-statistics ≈ 0 —in standard univariate fMRI analyses) can decode various tasks, even without*
53 *statistical learning tools. Thus, task-specific information is present and readily accessible*
54 *throughout the neocortex, challenging the sensitivity of traditional linear, univariate analytical*
55 *approaches. Remarkably, even subcortical structures and the cerebellum contain task-specific*
56 *signals in voxels that would univariately be considered “noise”. Finally, using data from an*
57 *auditory study with different levels of sedation, we show that the widespread signal in regions*
58 *remote from the primary and secondary sensory cortices (auditory cortex) depends on the level of*
59 *sedation, suggesting the brain’s widespread, task-specific information is related to perception¹*
60 *rather than the encoding of the sensory stimulus. Our analysis uncovers task-specific and*
61 *consciousness level-dependent information across the human brain, which we hypothesize to be*
62 *the basis for coherent, subjective perceptions.*

63

64 **SIGNIFICANCE**

65 Brain imaging studies commonly rely on linear, univariate analyses to identify task-specific
66 information. In such studies, it is assumed that such task-specific information is localized to
67 specific “blobs.” Our data challenge this notion: We show that task-specific information can be
68 reliably uncovered across the entire human brain, even in regions that linear, univariate analyses
69 would imply are “noise.” In turn, the common, linear, univariate analysis of brain imaging data
70 cannot detect real, widespread, task-specific information. Finally, we demonstrate that widespread,
71 task-specific information degrades with sedation, except in the primary sensory cortex, suggesting
72 that brain-wide information tracks perception and is a neural correlate of consciousness.

73

74 **MAIN TEXT**

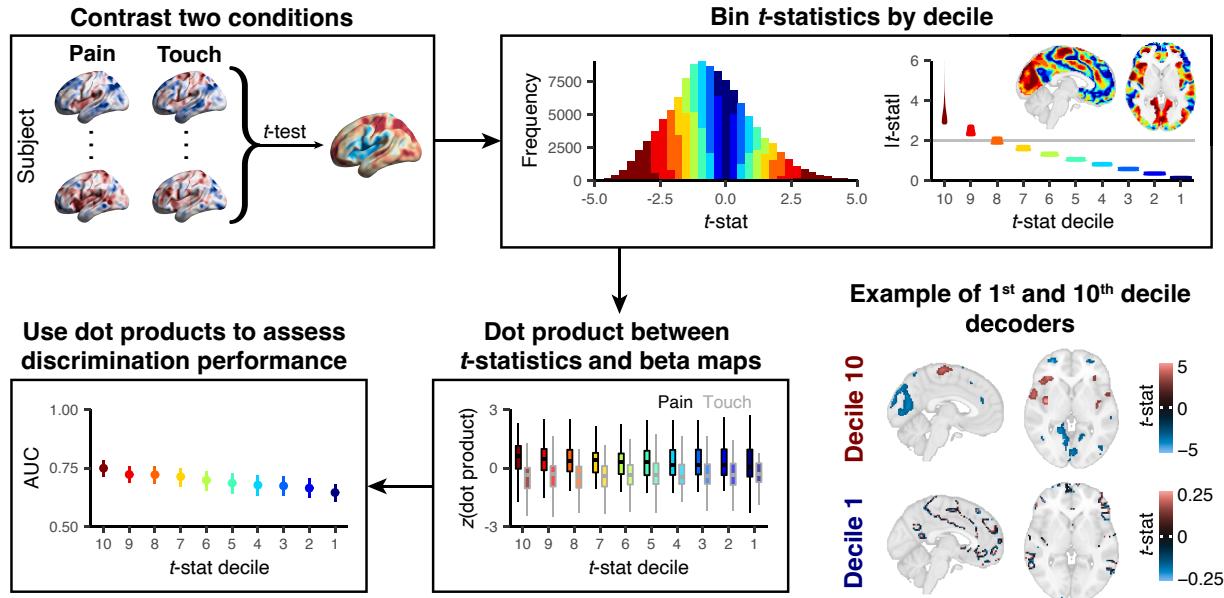
75 fMRI has transformed how we study the brain, allowing the non-invasive measurement of
76 correlates of neural activity with a spatial resolution on the scale of millimeters. This high
77 resolution enables the comparison of blood oxygenation level-dependent (BOLD) activity within
78 and between tasks to unravel the function of local neural circuits. Such task-based fMRI studies
79 commonly use forward inference to identify task-related brain areas: they rely on the correlation
80 between each voxel's activation timecourse with the task's temporal profile. Subsequently,
81 neuroimagers contrast brain activity maps of different tasks to create a contrast map, which is then
82 thresholded to yield localized blobs. The standard assumption of these mass-univariate analyses is
83 that only the identified blobs reliably contain task-specific information.² In this report, we
84 challenge this assumption by showing the reliable presence of task-specific information throughout

¹ By *perception*, we refer to the conscious experience resulting from sensory input. This experience is the product of and thus includes memory, attention, and expectations.

² Here, we use *information* not as an inference regarding neuronal function, but rather from a decoding perspective relating to the nature and specificity of the variance that can be extracted from our proxies of neuronal activity.

85 the entire neocortex—including regions identified as "noise" by univariate measures (t -statistics \approx
86 0)—which is uncovered by integrating over large swaths of voxels. After discovering pan-
87 neocortical information content, we probe for and uncover task-specific information in the
88 subcortex and cerebellum. Next, we assess how different levels of sedation perturb the presence
89 of information. We show that omnipresent information degrades with increasing levels of sedation.
90 Rather than being task-specific, this brain-wide spread of information appears to reflect perceptual
91 (conscious) processes and, therefore, may be involved in extracting subjective, wholistic concepts
92 from incoming sensory inputs, as in the identification of the edible banana.

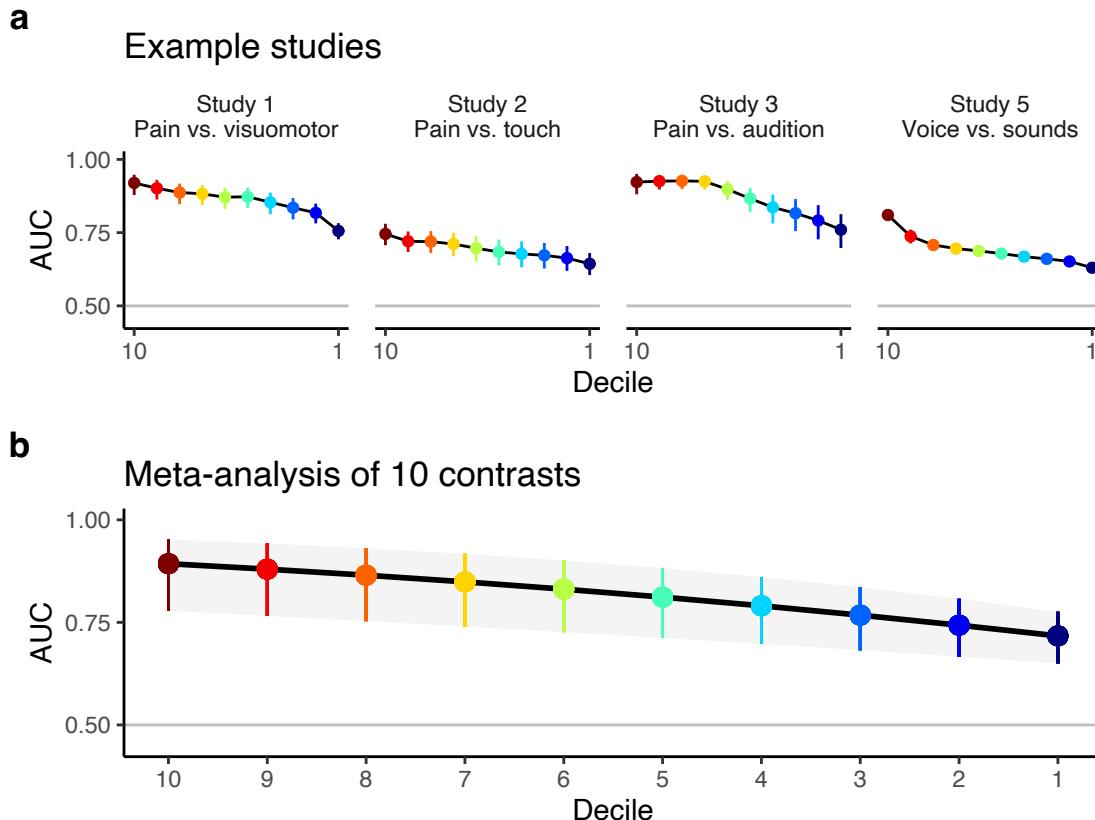
93 One approach to assessing the information contained in neuroimages is to decode them.
94 Decoders transmute brain activity into a single number related to a task of interest. A suitable
95 decoder's output will be high for the task of interest and low for the task(s) of no interest. The
96 discriminability between the tasks of interest and no interest is indicative of the information in the
97 data. Using six datasets with different sensory stimuli (Table S1; $N=293$ subjects)²⁻⁷, we built
98 simple decoding models using only the t -statistics from mass-univariate contrasts (Fig 1, top left;
99 Fig S1). The first part of our study uses five of these datasets, four of which contain two stimuli
100 and one of which includes four stimuli, totaling ten different stimulus pairs or contrasts $(4\binom{2}{2} +$
101 $\binom{4}{2}) = 10$). We binned the t -statistics by magnitude to create ten decoders for each contrast; the first
102 decoder comprised of all voxels with the highest t -statistics (10th decile) and the last decoder
103 comprised of all voxels with the lowest t -statistics (1st decile) (Fig 1, top right). We tested each
104 decoder by calculating the dot product between the decoder (sign, magnitude, and location of t -
105 statistics within a single decile; e.g., Fig 1, bottom right) and each brain activity map (general
106 linear model (GLM)-derived maps of parameter estimates), yielding a weighted sum of task-
107 related activity across all voxels comprising the decoder (Fig 1, bottom middle). We used the
108 0.623+ bootstrap to obtain unbiased estimates of between-subject areas under the receiver
109 operating characteristic curve (AUC) as an indicator of discrimination performance (Fig 1, bottom
110 left). To succinctly describe our results, we meta-analyzed the resulting AUCs and their
111 bootstrapped variance-covariances (*Methods*).
112
113



114
115 **Figure 1. Generation of decoders to assess the presence of task-related signals.** Voxel-wise paired t -tests were
116 performed on subjects' brain activity maps using a task of interest (e.g., pain) and no interest (e.g., touch). These t -
117 statistics were then binned into deciles based on their absolute magnitudes. The grey line depicts the standard
118 minimum threshold used to dichotomize brain regions that discriminate between tasks (univariate "statistical
119 significance" at $\alpha=0.05$; uncorrected for multiple comparisons). Each decile of t -statistics and their locations in the
120 brain became a decoder. On the bottom right, we show examples of these decoders for the 10th (comprised of large
121 blobs) and 1st deciles (scattered voxels). Although the deciles were derived using the absolute value of t -statistics, the
122 decoders incorporated the t -statistics' signs. We then calculated dot products between the decoder derived from each
123 decile and brain activity maps. These dot products are analogous to 'linear predictors' from a regression model. Here,
124 we z -scored the dot products within each decile for visualization purposes. We calculated AUCs based on these dot
125 products, where higher dot products were assumed to correspond to the task of interest. We used the 0.632+ bootstrap
126 to obtain unbiased AUCs when testing our decoders.
127

128 Task-specific information is widespread across the human brain

129 Decoding performance was consistently above chance ($AUC > 0.5$) for all deciles across nine out
130 of ten contrasts. Despite univariate t -statistics in the lowest decile being close to zero, decoding
131 performance was only marginally poorer in the lowest decile as compared to the highest decile
132 (Fig 2, Table S2). Therefore, regions in neocortical grey matter commonly thought to be
133 orthogonal to the task in univariate analyses in fact contain robust task-related information. These
134 findings complement recent work using statistical learning to optimize voxel weights for predictive
135 performance⁸⁻¹² and demonstrate that the presence of information is far more distributed across
136 the brain than previously thought. Moreover, our analyses establish for the first time how
137 accessible this information truly is: our models simply use mass-univariate t -statistics without any
138 regularization or consideration of the t -statistics' joint distribution. Evidently, regularization and
139 multivariable modeling are not necessary and even voxels with t -statistics close to zero can jointly
140 discriminate tasks from one another. Therefore, our results indicate the presence of task-related
141 information throughout the neocortex, which degrades slowly as a function of the univariate
142 signal-to-noise metric (t -statistic).
143



144
145 **Figure 2. Voxels across the entire neocortex contain task-specific information.** (A) Four example studies of
146 neocortical decoding performance across all t -statistic deciles. Although all four studies contain task-specific
147 information in all 10 deciles, the degree to which the tasks can be discriminated differs slightly between studies. Error
148 bars indicate \pm SE. (B) A mixed-effects meta-analysis across 10 contrasts reveals that all ten deciles can, on average,
149 discriminate between tasks. The ability to discriminate between tasks implies the presence of task-specific
150 information, meaning that even voxels with t -statistics close to zero (decile 1) contain marked task-specific
151 information. Error bars indicate \pm CI_{95%}.

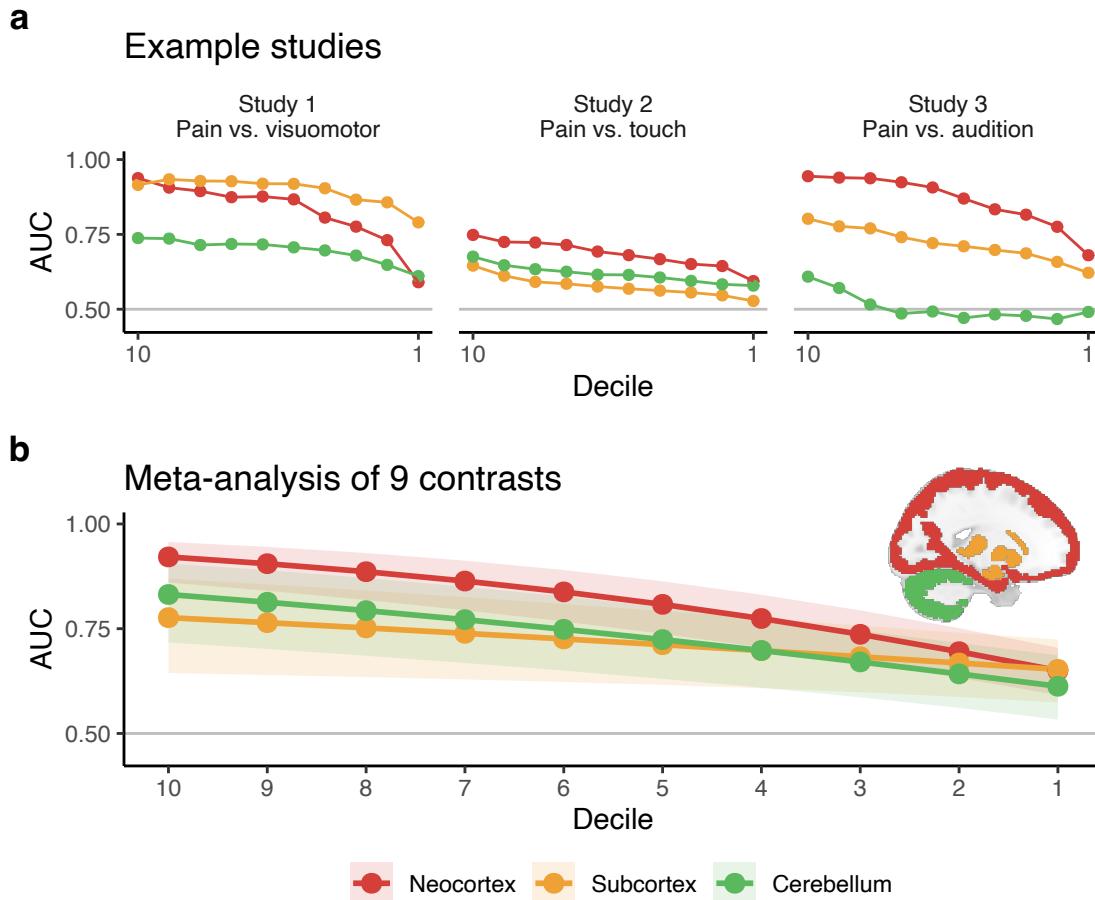
152
153
154 When decoding tasks from neuroimages, one cannot draw inferences about the causal role
155 of the predictors (voxels) in the decoding outcome (task)¹³. There are many reasons why
156 information may be present in acausal structures. For example, physiological and non-
157 physiological noise may have task specificity¹⁴. We attempted to rule out such confounds by
158 decoding tasks using white matter and cerebrospinal fluid (cf. grey matter). In general, decoding
159 performance was poor in these regions (Fig S2), suggesting these negative controls contain less
160 signal than the neocortex. In addition, white matter and cerebrospinal fluid decoding performance
161 covaried substantially ($r = 0.7$), but they only weakly covaried with grey matter, implying vastly
162 different signal sources between these structures (Fig S2). Finally, head motion artifact—another
163 potential candidate of task-related noise that contaminates the BOLD signal—only minimally
164 correlated with decoder responses; orthogonalizing the decoders’ dot products to head motion only
165 slightly decreased discrimination (maximum Δ AUC < 0.05). Thus, our observed effects are
166 unlikely to be attributable to task-specific, non-neural confounds.

167 To assess the general sensitivity of the decoders, we built them using different numbers of
168 voxels and different amounts of added noise. Decoders with fewer voxels performed poorly and

169 were more sensitive to added noise (Fig S3). As one might expect, the ability to successfully
170 decode using voxels with low *t*-statistics is principally attributable to the number of included
171 voxels. There is a continuum of explanations as to why this might be the case. On one extreme,
172 each voxel may contain a tiny amount of task-specific information. Integrating many small bits of
173 information allows one to accumulate enough information to discriminate between tasks. On the
174 other extreme, since *t*-statistics are derived empirically and thus may not be stable, “signal” voxels
175 may mix with “noise” voxels, creating instability in our deciles. In this case, by sampling more
176 voxels, we are more likely to capture “signal” voxels in our “noise” decile(s), which would enable
177 successful decoding. Where our findings fall along this continuum remains to be determined.

178 Next, we tested whether information content is specific to the neocortex. Repeating our
179 analyses in the subcortex and cerebellum revealed that information is present throughout both
180 regions, even where *t*-statistics are approximately zero (Fig S4, Fig S5). Cerebellar information
181 varied more between task pairs than the neocortex (three examples shown in Fig 3A). These results
182 complement recent work by Nakai and Nishimoto ¹⁵, who used the subcortex and cerebellum to
183 decode 103 cognitive tasks using a within-subject approach based on more complex models which
184 were trained using statistical learning. In contrast, we used *t*-statistics from regional activity maps
185 to decode across- rather than within-subjects. Our meta-analysis across contrasts showed that the
186 performance of the subcortical and cerebellar decoders was slightly inferior to the performance of
187 the neocortex-based decoders, even after controlling for the number of voxels (Fig 3B, Fig S6).
188 Overall, we observed that subcortical and cerebellar structures contain widespread, task-specific
189 information, evidencing that information spread is not restricted to the neocortex but is present
190 across the entire human brain.

191



192
193 **Figure 3. Task-relevant information is pervasively present throughout the subcortex and cerebellum but to a lesser**
194 **extent than in the neocortex.** (A) Three example studies demonstrate marked differences in regional task-specific
195 information. In Study 1, the relative task-specific information in the neocortex shifts from being closer to the subcortex
196 to the cerebellum. In Study 2, all three regions are similar, while in Study 3, there is a consistent pattern with the three
197 areas being starkly different. (B) After controlling for the number of voxels in the neocortex, subcortex, and
198 cerebellum, a meta-analysis across 9 contrasts (excluding Study 5) reveals that task-related information exists across
199 all regions and deciles. Task-related information in the neocortex dominates for higher deciles, but this superiority
200 vanishes in smaller deciles. Error ribbons indicate $\pm \text{CI}_{95\%}$.

201
202 The notion of widespread, task-specific cortical dynamics is gaining traction across
203 multiple fields of neuroscience. Human fMRI work demonstrates that 100 repetitions of the same
204 task (three participants, 9–10 sessions over three months) can uncover neocortex-wide information
205¹⁶. Decoding studies, which rely on statistical learning approaches, evidence the existence of task-
206 specific information outside of GLM areas^{8–12}. Similarly, recent fMRI evidence from macaque
207 monkeys demonstrates the presence of retinotopic tuning in cortical and subcortical regions remote
208 from the visual cortex¹⁷. To complement fMRI evidence, wide-field calcium imaging and
209 Neuropixels recordings in rodent models have been shown to capture mesoscopic neocortical and
210 subcortical dynamics on a moment-by-moment basis, revealing brain-wide, task-specific activity
211 across several cognitive domains^{18–21}. Our results complement this prior work by demonstrating
212 the presence of brain-wide, task-specific information in human brain fMRI and the ease with which
213 this information can be extracted.

214 Understanding the nature of this brain-wide information is more challenging than
215 identifying its existence. Recent work in mice demonstrates widespread cortical dynamics to be
216 necessary for behavior—preventing local clusters of activation impairs performance, suggesting a
217 functional rather than epiphenomenal role¹⁹. If activation across the entire brain is necessary for
218 task performance, it is more likely that the information we detected across brain regions is
219 complementary than redundant. In other words, different brain regions capture distinct properties
220 of the task. However, we remain agnostic as to the role of this widespread information in conscious
221 perception instead of simply being a task correlate. To address this, we will now link these findings
222 to consciousness.

223

224 **Widespread, task-specific information scales with consciousness**

225 Neurophysiological theories of consciousness rely on brain-wide information sharing, posited to
226 be necessary but not sufficient for consciousness²². Conceivably, the association between
227 information sharing and consciousness²³ suggests that task-specific brain-wide information should
228 attenuate with increasing levels of sedation. If information is not readily shared across the brain,
229 it cannot be omnipresent. But how do states of consciousness interact with task-specific, brain-
230 wide information content? To assess this, we analyzed a dataset in which individuals listened to
231 an auditory stimulus (five-minute audio from a movie) while under different levels of sedation^{6,7}.
232 Since there was no task vector associated with the auditory stimulus, we averaged participants'
233 auditory cortex time courses to serve as the task vector and used a separate resting-state scan as a
234 negative control.

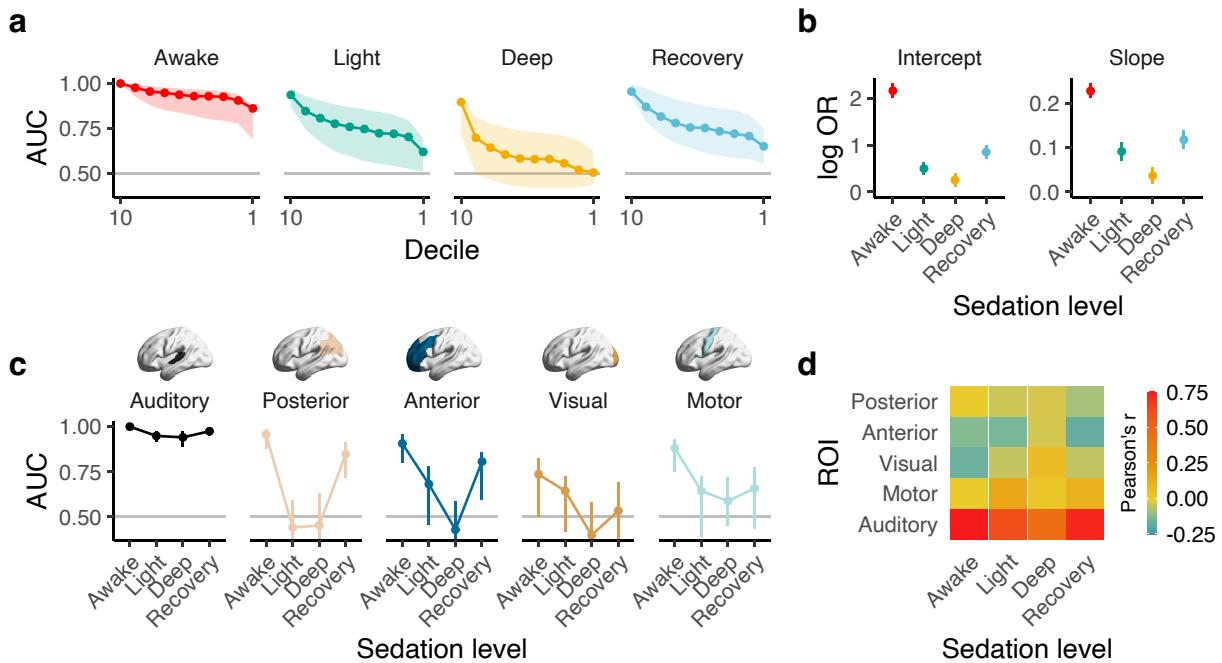
235 Consistent with our analyses above, information was omnipresent across the neocortex
236 when participants were awake. However, this information degraded with increasing levels of
237 sedation and was partially restored while recovering from sedation (Fig 4A and B). We performed
238 a region-of-interest (ROI)-based analysis to complement the decile analysis. In the awake state,
239 different regions exhibited distinct abilities to discriminate the task from resting-state, with the
240 auditory cortex exhibiting the greatest discrimination. Moreover, the auditory cortex's task-
241 specific signal was invariant to sedation level, but task-specific information degraded with deeper
242 levels of sedation across all other ROIs (posterior, anterior, visual, and motor cortices) (Fig 4C).
243 These results imply that brain-wide, task-specific information content is related to the perception
244 rather than the encoding of the sensory stimulus.

245 The brain's modularity and interconnected functional and structural networks must underly
246 our observed brain-wide distribution of information²⁴⁻²⁷. In particular, long-range connections and
247 small-world networks to which they give rise provide a mechanism for efficient information
248 sharing. The properties of these networks are thus likely to be critical for how information is
249 communicated and captured across the brain. We elucidated the relevance of functional
250 connectivity to our findings by examining intersubject functional connectivity (ISFC) using the
251 auditory cortex as a seed. We quantified the temporal relationship between a participant's auditory
252 cortex and all other participants', say, posterior cortex. ISFC decreased with more sedation, much
253 like decoding performance (Fig 4D). However, within-subject functional connectivity remained
254 largely unperturbed (Fig S7). Thus, ISFC seems to track sedation-dependent perceptual states.

255 Our results complement previous work in which transcranial magnetic stimulation (TMS)
256 was used to induce electrical potentials that differentially propagated over the neocortex as a
257 function of consciousness state²³. Here, we leveraged passive sensory stimuli, but our findings are
258 consistent: loss of consciousness degrades brain-wide information content via a downregulation in
259 corticocortical information sharing. Therefore, consciousness seems a necessary condition for the

260 presence of widespread task-related cortical information. Practically, our simple decoding
 261 approach may be sufficient to identify neural correlates of consciousness using natural sensory
 262 stimuli without artificially stimulating the brain (cf. TMS ²³).
 263

Four levels of sedation with a listening task



264
 265 **Figure 4: Sedation affects the neocortical distribution of task-relevant information in a region-specific manner.**
 266 (A) Widespread cortical task-relevant information decreases with deeper levels of sedation, as indicated by the
 267 decrease in AUCs from awake to light to deep, along with the increase in AUC from deep to recovery. (B) Intercepts
 268 (defined by decile = 1) and slopes of the curves in (A) reveal stark decoding differences between levels of anesthesia.
 269 Awake's first decile (intercept) has the strongest performance of the different levels of sedation. Its slope (on the logit
 270 scale; OR = odds ratio) is also greatest since it is more difficult to improve performance as $\text{AUC} \rightarrow 1$. (C) The primary
 271 and secondary sensory cortices (auditory cortex) retain information across sedation levels. In contrast, other cortical
 272 regions' information content drops off with increasing levels of sedation. (D) Task-specific intersubject functional
 273 connectivity decreases with deeper sedation. All error bars indicate $\pm \text{CI}_{95\%}$.
 274

275 Task-related confounds, such as head motion, are likely greater when individuals are
 276 awake. However, our sedation level-dependent findings were unrelated to head motion (Fig S8).
 277 Moreover, we observed similar results whether we used auditory cortex activity from the awake
 278 or deep anesthesia conditions (Fig S9). This latter point is remarkable: auditory cortex activity
 279 with deep sedation is arguably “purer” than that in the awake condition, as higher-level processes
 280 and feedback loops will not modulate it, and similarly, head motion should be negligible. The
 281 generalizability of our findings across participants and levels of sedation reinforces that our
 282 findings represent consciousness-related neural information rather than task-related artifacts.

283 The neocortex is not the only neural structure involved in consciousness. Much has been
 284 discussed and debated regarding the role of the thalamus, other subcortical structures, and the
 285 cerebellum ²². Like the neocortex, the subcortex's task-specific information content demonstrates
 286 a dose-dependence on the level of sedation. Similarly, so does the cerebellum, although its
 287 dependence on sedation level is more complex (Fig S10). We should emphasize that the presence

288 of brain-wide information reflects the state of consciousness rather than demonstrating its
289 mechanism(s).

290

291 **Concluding Remarks**

292 Our results render the brain-wide presence of information indisputable and elucidate the ease with
293 which this information can be decoded, even in brain regions that mass-univariate analyses suggest
294 are approximately orthogonal to the tasks being studied. We also show that the ubiquity of this
295 information is not without bounds—consciousness is itself a necessary condition for the brain-
296 wide spread of task-related information. Many of the tasks that we compared are trivially simple,
297 only involving passive sensory stimuli; yet, related information is spread across the entire brain.
298 Neurocognitively, our results imply that perceptual states engage the entire brain. We speculate
299 that the details of the distribution of information may define the nuanced properties of perception;
300 for example, the edibility of the oblong, yellow object. Finally, these results strongly challenge the
301 notion of localization of information in the brain without precluding regional specialization of
302 function. For example, although language-specific information can be uncovered across the entire
303 neocortex ²⁸, the functional role of Broca's area is incontrovertible ²⁹. Unraveling the unique
304 contribution of diverse brain regions to perceptual states requires future investigation, including
305 the necessity of some and the sufficiency of others, including methods beyond traditional linear,
306 univariate analyses of brain activity.

307

308 **MATERIALS AND METHODS**

309 **Datasets**

310 Six datasets were used in this paper; all are part of published studies and were either provided by their
311 authors (Datasets 1–4) or downloaded from public repositories (Datasets 5 & 6). Datasets 1–4 consist of
312 voxel-wise, whole brain, task-dependent general linear model (GLM) analysis activation maps
313 (ftp://openpain.org/LimitsDecoding/Data/Beta_maps/). Datasets 5 & 6 consist of BOLD timeseries which
314 were processed using standard fMRI pre- and post-processing methods described below.

315

316 **Dataset 1**

317 Fifteen (15), right-handed, adult subjects (mean age: 35 ± 11 years, 7 females). Subjects had no history of
318 pain, psychiatric, or neurological disorders. fMRI data were collected while subjects received thermal
319 stimuli across 3 temperatures: 47, 49, and 51 degrees Celsius. Subjects continuously rated, using a finger
320 span device ^{30,31}, their pain from 0 (not painful) to 100 (worst imaginable pain) (“pain rating” task). A
321 control scan was performed while subjects used the finger span device to track a moving bar projected on
322 the screen (“visual rating” task; moving bar replicated for each subject the specific pain rating task temporal
323 pattern). The dataset includes one GLM beta map per subject per stimulus type. The dataset was previously
324 described in ³².

325

326 **Dataset 2**

327 Fifty-one (51) healthy, right-handed, adult subjects (age = 24 ± 2 years, 34 females). Subjects had no history
328 of brain injuries, pain disorders, or psychiatric or neurological diseases. fMRI data was collected while
329 subjects received painful heat stimuli on the right foot dorsum using a CO₂ laser, as well as tactile stimuli
330 to the same area using electrical stimulation. Stimuli were not delivered at the same time. Perceived
331 intensities were recorded for every stimulus and only the stimuli with matched perceived intensity for
332 painful heat and touch were selected for GLM analysis. The dataset includes one activation map per subject
333 per stimulus modality – painful heat and touch. The dataset was previously described in ^{4,33}.

334

335 **Dataset 3**

336 Fourteen (14) healthy, right-handed, adult subjects (age = 20–36 years old, 6 females). fMRI data were
337 collected while subjects received painful heat stimuli on the right foot dorsum using a CO₂ laser, tactile
338 stimuli to the same area using electrical stimulation, visual stimuli using a white disk presented above the
339 right foot, and auditory stimuli delivered via pneumatic earphones. Stimuli were not delivered at the same
340 time. Perceived intensities were recorded for every stimulus and only the stimuli with matched perceived
341 intensity across the four modalities were selected for GLM analysis. The dataset includes one activation
342 map per subject per stimulus modality – painful heat, tactile, auditory, and visual. The dataset was
343 previously described and published in ⁴.

344

345 **Dataset 4**

346 Thirty-three (33) healthy, right-handed, adult subjects (age = 28 ± 9 years, 22 females). Subjects had no
347 history of pain, psychiatric, or neurological disorders. fMRI data was collected while subjects received
348 thermal stimuli that varied in one-degree Celsius increments across six temperatures from 44.3 up to
349 49.3°C. Subjects then evaluated each stimulus as warm, and scored it from 0, not perceived up to 99, about
350 to become painful, or as painfully hot, and scored it from 100 (no pain) to 200 (worst imaginable pain). The
351 dataset includes an average GLM activation map per subject per stimulus temperature, as well as the
352 corresponding average stimulus ratings. When this dataset was applied dichotomously (pain vs. no pain),
353 we averaged the brain activity maps from the painful and nonpainful conditions; we omitted subjects who
354 had fewer than two brain activity maps for each condition, resulting in 29 subjects for dichotomous ratings.
355 The dataset was previously described in ^{3,34}.

356 Dataset 5
357 Two-hundred thirteen (213) healthy, adult subjects (age = 24 ± 7 years, 101 females). Subjects had no
358 history of physical or mental health conditions. fMRI data were collected while subjects performed a voice
359 localizer task. Forty blocks of vocal sounds (20) and non-vocal sounds (20) interspersed with periods of
360 silence were presented while the subjects lay silent and passively listened with their eyes closed in the
361 scanner. This dataset was previously described in ³⁵. Raw fMRI data were downloaded from OpenNeuro
362 (ds000158). We used minimal pre-processing for this study which was performed using the FMRIB 5.0.8
363 software library (FSL) ³⁶, MATLAB2018a and in-house scripts. The following steps were performed:
364 motion correction, intensity normalization, nuisance regression of 6 motion vectors, signal-averaged overall
365 voxels of the eroded white matter and ventricle region, and global signal of the whole brain, and band-pass
366 filtering (0.008–0.1 Hz) by applying a 4th-order Butterworth filter. All pre-processed fMRI data were
367 registered to the $2 \times 2 \times 2$ mm MNI152 template using a two-step procedure: the mean of preprocessed fMRI
368 data was registered with a 7-degrees-of-freedom affine transformation ($x, y, z, \alpha, \beta, \gamma$, and scale factor k) to
369 its corresponding T_1 brain (FLIRT); next, transformation parameters were computed by nonlinearly
370 registering individual T_1 brains to the MNI152 template (FNIRT). Combining the two transformations
371 yielded a mapping from the preprocessed fMRI data to standard space. Task-related activation maps (vocal
372 vs. silence, and non-vocal vs. silence) were derived from a whole-brain GLM regression analysis using the
373 FMRIB Software Library (FSL) ³⁶⁻³⁸.
374

375 Dataset 6
376 Seventeen (17) healthy, adult subjects (4 women; age = 24 ± 5 years) partook in this study, which involved
377 listening to a natural stimulus (5 min plot-driven audio story) and resting-state (first 5 min of 8 min scan)
378 while under different levels of anesthesia ^{6,7}. Sedation levels under propofol were determined by the Ramsey
379 scale (awake, no propofol; light sedation, Ramsey = 3; deep sedation, Ramsey = 5; recover, Ramsey = 2,
380 approximately 11 minutes after cessation of propofol) ⁶. We used minimal pre-processing for this study
381 which was performed using the FMRIB 5.0.8 software library (FSL) ³⁶, MATLAB2018a and in-house
382 scripts. The following steps were performed: motion correction, intensity normalization, nuisance
383 regression of 6 motion vectors, signal-averaged overall voxels of the eroded white matter and ventricle
384 region, and global signal of the whole brain, and band-pass filtering (0.008–0.1 Hz) by applying a 4th-order
385 Butterworth filter. All pre-processed fMRI data were registered to the $2 \times 2 \times 2$ mm MNI152 template using
386 a two-step procedure: the mean of preprocessed fMRI data was registered with a 7-degrees-of-freedom
387 affine transformation ($x, y, z, \alpha, \beta, \gamma$, and scale factor k) to its corresponding T_1 brain (FLIRT); next,
388 transformation parameters were computed by nonlinearly registering individual T_1 brains to the MNI152
389 template (FNIRT). Combining the two transformations yielded a mapping from the preprocessed fMRI data
390 to standard space. Task-related activation maps (vocal vs. silence, and non-vocal vs. silence) were derived
391 from a whole-brain GLM regression analysis using R.
392

393 **Decoder Construction and Evaluation**

394 Brain activity maps were masked to include only neocortical grey matter voxels using the Harvard-Oxford
395 neocortical mask thresholded at 0.5. For each contrast, we performed a voxel-wise paired *t*-test using two
396 brain activity maps from each subject, resulting in a *t*-statistic for each voxel in the grey matter. The *t*-
397 statistic map was then binned into deciles by $|t|$ —decile 10 contained the highest absolute value *t*-statistics
398 (the “most significant”) and decile 1 contained the lowest absolute value *t*-statistics (the “least significant”).
399 These deciled *t*-statistic maps served as our decoders.

400 We evaluated the decoders ($\mathbf{D} \in \mathbb{R}^{p \times 10}$) by multiplying them with the brain activity maps of interest
401 ($\mathbf{B}_I \in \mathbb{R}^{n \times p}$) and no interest ($\mathbf{B}_{NI} \in \mathbb{R}^{n \times p}$), for p voxels and n subjects. This resulted in two matrices of dot
402 products between the decoders and brain activity maps: one matrix of dot products from the activity maps
403 of interest ($\mathbf{R}_I = \mathbf{B}_I \mathbf{D}$) and one matrix of dot products from the activity maps of no interest ($\mathbf{R}_{NI} = \mathbf{B}_{NI} \mathbf{D}$).
404 The columns of \mathbf{R}_I and \mathbf{R}_{NI} were then compared to calculate an AUC via the Mann-Whitney U-statistic
405 ($AUC = U_1/n^2$). That is, column 1 in \mathbf{R}_I was compared with column 1 in \mathbf{R}_{NI} , column 2 in \mathbf{R}_I was

406 compared with column 2 in \mathbf{R}_{NI} , and so on for all 10 columns, producing 10 AUCs—one for each decile.
 407 In doing so, we treated the subjects as dependent for decoder training (paired *t*-test) but independent for
 408 testing.

409 We constructed and tested all decoders using the 0.632+ bootstrap method with 100 replicates,
 410 which provides unbiased estimates of out-of-sample performance³⁹. Briefly, the 0.632+ bootstrap was
 411 performed as follows:

- 412 1. Train and test a model using the original sample. Let the resulting AUC be called the “apparent” AUC,
 $\hat{\theta}^{app}$.
- 414 2. Generate b bootstrap samples by resampling the original sample with replacement. Note, each bootstrap
 415 sample contains approximately $1 - \frac{1}{e} = 63.2\%$ of the original sample. For each of the b bootstrap
 416 samples, we train the model on the bootstrap sample and test the model on the $\sim 36.8\%$ of individuals
 417 not part of the bootstrap sample. Let this AUC estimate be the “leave-one-out” (out-of-sample)
 418 bootstrap AUC, $\hat{\theta}_i^{boot}$.
- 419 3. Average the resulting out-of-sample bootstraps, $\hat{\theta}_\bullet^{boot} = \frac{1}{b} \sum_{i=1}^b \hat{\theta}_i^{boot}$.
- 420 4. Obtain the 0.632+ estimate.

421 a. Calculate the relative overfitting rate,

$$423 \hat{R} = \begin{cases} 1, & \hat{\theta}_\bullet^{boot} \leq 0.5 \\ (\hat{\theta}^{app} - \hat{\theta}_\bullet^{boot}) / (\hat{\theta}^{app} - 0.5), & \hat{\theta}^{app} > \hat{\theta}_\bullet^{boot}, \\ 0, & \text{otherwise} \end{cases}$$

424

425 where 0.5 indicates no information in the decoder.

426

427 b. Calculate the weight for adjusting the 0.632 estimate,

428

$$429 \hat{w} = \frac{0.632}{1 - 0.368\hat{R}}.$$

430

431 c. Calculate the 0.632+ estimate,

432

$$433 \hat{\theta}^{0.632+} = (1 - \hat{w}) \cdot \hat{\theta}^{app} + \hat{w} \cdot \hat{\theta}_\bullet^{boot}.$$

434

435 Note, we did not adjust $\hat{\theta}_\bullet^{boot}$ with $\max(\hat{\theta}_\bullet^{boot}, 0.5)$ in 4c as is common^{39,40}, since this would create a floor
 436 effect such that $\hat{\theta}^{0.632+} \geq 0.5$, which would downwardly bias our variance estimates in the next step. This
 437 results in $\hat{\theta}^{0.632+}$ estimates that are identical to estimates with the adjustment when $\hat{\theta}^{0.632+} > 0.5$, but allows
 438 our estimates to dip below chance (AUC = 0.5) since it removes the floor effect.

439 Variances and covariances of the AUCs were estimated using a nested bootstrap with 500 replicates
 440 in the outer loop and 100 replicates in the inner loop⁴⁰, totaling $500 \times 100 = 50,000$ replicates of each study.
 441 All inner and outer bootstraps were performed on the subject level. This sampling was carried out on
 442 Northwestern University’s High Performance Computing clusters (Quest), which took ~ 12 hours to
 443 complete using 50 cores.

444

445 *Meta-analysis*

446 We performed a single-paper meta-analysis to consolidate our results⁴¹. First, all AUCs were “squeezed”
 447 or shrunken toward 0.5 to avoid boundary effects⁴²,

448

$$449 \hat{\theta}^* = \frac{(n - 1) \cdot \hat{\theta}^{0.632+} + 0.5}{n},$$

450
451 where n was the total number of brains used (i.e., twice the number of participants). Next, the 0.632+
452 bootstrap-estimated AUCs and their bootstrapped replicates were logit-transformed, and the logit-
453 transformed bootstrap replicates were used to generate a 100×100 variance-covariance matrix of sampling
454 errors. The logit-transformed AUCs were used as the response variable in a multivariate, multilevel linear
455 meta-regression⁴³. This allowed for within-study dependence to be properly accounted for, including the
456 dependence between deciles in a single contrast (e.g., decile 1 and decile 2 in Study 1) and the dependence
457 between contrasts in Study 3 (e.g., decile 1 in touch vs. pain and decile 2 in visuomotor vs. pain). We were
458 principally interested in the effect of decile on discrimination performance; we treated decile continuously
459 and used it as a linear moderator (fixed-effect). Similarly, decile was treated continuously in the random-
460 effect specification, wherein contrasts were nested within studies.

461
462 **Perturbations**

463 *Noise*

464 Since voxels with low signal-to-noise ratios (i.e., low t -statistics) were capable of decoding, we aimed to
465 evaluate this finding's boundary conditions. Each brain activity map contains a correlation coefficient r_i for
466 each voxel i , along with a t -statistic t_i . We started with a brain of t -statistics, to which we added Gaussian
467 noise ($\mathcal{N}(0, c|t_i|)$, where $c \in \{0, 1, 2, 3, 4, 5\}$). This procedure ensured that the noise added to each voxel was
468 proportional to its signal-to-noise ratio to avoid biasing the regions with high signal. The t -statistics with
469 added noise were then converted to Pearson's r , on which we performed the decoding. Noise was added
470 within each 0.632+ bootstrap replicate such that the resulting AUCs were averaged over 500 iterations (as
471 opposed to 100 for other analyses) of added noise.

472
473 *Voxel Sampling*

474 Since the ability to decode with low signal-to-noise voxels likely arises from integrating over so many small
475 bits of information, we randomly subsampled voxels. The full decoders contained approximately 10,735
476 voxels per decile, which could come from anywhere within our grey matter mask. We built and assessed
477 decoders by subsampling the brain activity maps, such that the resulting decile-based decoders contained
478 100, 250, 500, 1000, 2500, 5000, 7500, and 10735 voxels each. Voxels were sampled within each 0.632+
479 bootstrap replicate such that the resulting AUCs were averaged over 500 iterations (as opposed to 100 for
480 other analyses) of sampled voxels.

481
482 **Anatomical Specificity**

483 *Neocortex, Subcortex, and Cerebellum*

484 Neocortical, subcortical (thalamus, striatum, hippocampus, and amygdala), and cerebellar grey matter
485 voxels were extracted from each brain activity map. The neocortical grey matter mask contained 112,651
486 voxels; the subcortical mask contained 6,882 voxels; and the cerebellar cortex mask contained 17,142
487 voxels. Since decoding power is sensitive to the number of voxels, we randomly subsampled 6,882 voxels
488 (or fewer for studies that were further masked) from each mask to control for voxel number. This
489 subsampling was completed within each 0.632+ inner bootstrap replicate.

490
491 *Neocortical Grey Matter, White Matter, and Cerebral Spinal Fluid*

492 Neocortical grey matter (GM), white matter (WM), and cerebral spinal fluid (CSF) voxels were masked
493 using the Harvard-Oxford atlas with conservative thresholds: 112,651 for GM; 61,324 for WM; and 1,926
494 for CSF. Within each study, we controlled for the number of voxels by resampling 1,925 voxels (since
495 $1,926 < 61,324 < 112,651$) from GM and WM within each bootstrap run.

496
497 **Anesthesia Decoders**

498 The anesthesia dataset employed a naturalistic audio stimulus and thus does not have a task vector
499 associated with it. Moreover, this was the only task performed. As such, we compared each anesthesia level's
500 task (naturalistic listening) to resting state. To facilitate this, we used the average auditory cortex activity

501 from the training sample as the task vector. Of course, this analysis is circular within the training sample,
502 but because the training sample's brain activity was used as the vector in the testing sample and decoding
503 was assessed based on the resulting brain activity maps, the testing is not circular. To extract the auditory
504 cortex vector, we defined a region of interest (ROI) based on the Neurosynth association map for "auditory",
505 which was thresholded using a z -score of 12.

506

507 *Decile Decoders*

508 Decile-based decoders for the anesthesia dataset were created in a similar manner to the other datasets. To
509 summarize the performance within each decile, we fit a single generalized least squares model on the logit-
510 transformed AUCs from all anesthesia states, \mathbf{y} . To do so, all AUCs were "squeezed" towards 0.5 like they
511 were for the meta-analysis. Our weight matrix, \mathbf{W} , was defined as the inverse of the variance-covariance
512 matrix of the logit-transformed bootstrapped AUCs, $\hat{\Sigma}$. The parameter estimates, $\hat{\beta}$, and their standard errors
513 were calculated as

514

$$515 \hat{\beta} = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W} \mathbf{y}$$
$$516 \text{SE}[\hat{\beta}] = \sqrt{\text{diag}((\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W} \hat{\Sigma} \mathbf{W} \mathbf{X} (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1})},$$

517

518 where \mathbf{X} is the design matrix,

519

$$520 \mathbf{X} = [1 \quad x^{\text{decile}}] \otimes [x^{\text{awake}} \quad x^{\text{light}} \quad x^{\text{deep}} \quad x^{\text{recover}}].$$

521

522 This differs from standard weighted least squares (a diagonal weight matrix) but has more favorable
523 properties since it accounts for covariation.

524

525 *Region of Interest Decoders*

526 We created posterior cortex, anterior cortex, visual cortex, and motor cortex ROIs using the Harvard-Oxford
527 neocortical atlas, thresholded at 25%. The posterior cortex was specified as areas 20–22; the anterior cortex,
528 areas 1, 4, and 5; the visual cortex, areas 36, 40, and 48; and the motor cortex, area 7. In addition, we used
529 the same auditory cortex ROI as described above. Again, the averaged auditory ROI time course from the
530 training sample was used as the task vector. A decoder was created using the t -statistics from each ROI
531 (without deciles), which was fit and tested using the same approach as the decile decoders.

532

533 *Functional Connectivity*

534 Pearson correlation coefficients were used to calculate within- and inter-subject (ISFC) functional
535 connectivity between the auditory cortex and the other ROIs, during both the auditory task and rest within
536 each level of anesthesia. Within-subject functional connectivity was calculated by averaging the time course
537 between all voxels within each ROI, calculating the correlation between the auditory ROI and all other
538 ROIs, converting from Pearson's r to Fisher's z , averaging across participants, and then converting back to
539 Pearson's r . ISFC was calculated similarly to previous work ⁴⁴. When calculating subject 1's ISFC, we
540 correlated subject 1's auditory cortex time course with the average time course of, for example, posterior
541 cortex from subjects 2– n . This was repeated for all subjects and the resulting auditory cortex-posterior
542 cortex ISFCs were averaged using Fisher's z to obtain the final estimate of the auditory cortex-posterior
543 cortex ISFC. Again, this was repeated for the anterior, visual, and motor cortex; ISFC was also measured
544 between auditory cortices across all subjects.

545 **References**

546 1 Edelman, G. M. & Tononi, G. *A universe of consciousness : how matter becomes imagination*. 1st edn, (Basic
547 Books, 2000).

548 2 Pernet, C. R. *et al.* The human voice areas: Spatial organization and inter-individual variability in temporal
549 and extra-temporal cortices. *Neuroimage* **119**, 164-174, doi:10.1016/j.neuroimage.2015.06.050 (2015).

550 3 Wager, T. D. *et al.* An fMRI-based neurologic signature of physical pain. *N Engl J Med* **368**, 1388-1397,
551 doi:10.1056/NEJMoa1204471 (2013).

552 4 Liang, M., Su, Q., Mouraux, A. & Iannetti, G. D. Spatial Patterns of Brain Activity Preferentially Reflecting
553 Transient Pain and Stimulus Intensity. *Cereb Cortex* **29**, 2211-2227, doi:10.1093/cercor/bhz026 (2019).

554 5 Baliki, M. N., Geha, P. Y. & Apkarian, A. V. Parsing pain perception between nociceptive representation
555 and magnitude estimation. *J Neurophysiol* **101**, 875-887, doi:10.1152/jn.91100.2008 (2009).

556 6 Kandepan, S. *et al.* Modeling an auditory stimulated brain under altered states of consciousness using the
557 generalized Ising model. *Neuroimage* **223**, 117367, doi:10.1016/j.neuroimage.2020.117367 (2020).

558 7 Naci, L. *et al.* Functional diversity of brain networks supports consciousness and verbal intelligence. *Sci Rep*
559 **8**, 13259, doi:10.1038/s41598-018-31525-z (2018).

560 8 Kumar, S., Ellis, C. T., O'Connell, T. P., Chun, M. M. & Turk-Browne, N. B. Searching through functional
561 space reveals distributed visual, auditory, and semantic coding in the human brain. *PLoS Comput Biol* **16**,
562 e1008457, doi:10.1371/journal.pcbi.1008457 (2020).

563 9 Cox, C. R. & Rogers, T. T. Finding Distributed Needles in Neural Haystacks. *J Neurosci* **41**, 1019-1032,
564 doi:10.1523/JNEUROSCI.0904-20.2020 (2021).

565 10 Rish, I. & Cecchi, G. A. Holographic brain: Distributed versus local activation patterns in fMRI. *IBM Journal
566 of Research and Development* **61**, 3:1-3:9, doi:10.1147/jrd.2017.2648699 (2017).

567 11 Rish, I., Cecchi, G. A., Heuton, K., Baliki, M. N. & Apkarian, A. V. in *Medical Imaging 2012: Image
568 Processing* (eds David R. Haynor & Sébastien Ourselin) (2012).

569 12 Mohr, H., Wolfensteller, U., Frimmel, S. & Ruge, H. Sparse regularization techniques provide novel insights
570 into outcome integration processes. *Neuroimage* **104**, 163-176, doi:10.1016/j.neuroimage.2014.10.025
571 (2015).

572 13 Jabakhanji, R. *et al.* Limits of Decoding Mental States with fMRI. *Cortex*, doi:10.1016/j.cortex.2021.12.015
573 (2022).

574 14 Liu, T. T. Noise contributions to the fMRI signal: An overview. *Neuroimage* **143**, 141-151,
575 doi:10.1016/j.neuroimage.2016.09.008 (2016).

576 15 Nakai, T. & Nishimoto, S. Preserved representations and decodability of diverse cognitive functions across
577 the cortex, cerebellum, and subcortex. *bioRxiv*, 2021.2012.2009.471939, doi:10.1101/2021.12.09.471939
578 (2021).

579 16 Gonzalez-Castillo, J. *et al.* Whole-brain, time-locked activation with simple tasks revealed using massive
580 averaging and model-free analysis. *Proc Natl Acad Sci U S A* **109**, 5487-5492, doi:10.1073/pnas.1121049109
581 (2012).

582 17 Klink, P. C., Chen, X., Vanduffel, W. & Roelfsema, P. R. Population receptive fields in nonhuman primates
583 from whole-brain fMRI and large-scale neurophysiology in visual cortex. *eLife* **10**, doi:10.7554/eLife.67304
584 (2021).

585 18 Ren, C. & Komiyama, T. Characterizing Cortex-Wide Dynamics with Wide-Field Calcium Imaging. *J
586 Neurosci* **41**, 4160-4168, doi:10.1523/JNEUROSCI.3003-20.2021 (2021).

587 19 Pinto, L. *et al.* Task-Dependent Changes in the Large-Scale Dynamics and Necessity of Cortical Regions.
588 *Neuron* **104**, 810-824 e819, doi:10.1016/j.neuron.2019.08.025 (2019).

589 20 Stringer, C. *et al.* Spontaneous behaviors drive multidimensional, brainwide activity. *Science* **364**, 255,
590 doi:10.1126/science.aav7893 (2019).

591 21 Gilad, A. & Helmchen, F. Spatiotemporal refinement of signal flow through association cortex during
592 learning. *Nat Commun* **11**, 1744, doi:10.1038/s41467-020-15534-z (2020).

593 22 Tononi, G. & Koch, C. Consciousness: here, there and everywhere? *Philos Trans R Soc Lond B Biol Sci* **370**,
594 doi:10.1098/rstb.2014.0167 (2015).

595 23 Casali, A. G. *et al.* A theoretically based index of consciousness independent of sensory processing and
596 behavior. *Sci Transl Med* **5**, 198ra105, doi:10.1126/scitranslmed.3006294 (2013).

597 24 Eguiluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M. & Apkarian, A. V. Scale-free brain functional
598 networks. *Phys Rev Lett* **94**, 018102, doi:10.1103/PhysRevLett.94.018102 (2005).

599 25 Knosche, T. R. & Tittgemeyer, M. The role of long-range connectivity for the characterization of the
600 functional-anatomical organization of the cortex. *Front Syst Neurosci* **5**, 58, doi:10.3389/fnsys.2011.00058
601 (2011).

602 26 Sporns, O., Tononi, G. & Edelman, G. M. Connectivity and complexity: the relationship between
603 neuroanatomy and brain dynamics. *Neural Netw* **13**, 909-922, doi:10.1016/s0893-6080(00)00053-8 (2000).

604 27 Sporns, O., Tononi, G. & Edelman, G. M. Theoretical neuroanatomy: relating anatomical and functional
605 connectivity in graphs and cortical connection matrices. *Cereb Cortex* **10**, 127-141,
606 doi:10.1093/cercor/10.2.127 (2000).

607 28 Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L. Natural speech reveals the
608 semantic maps that tile human cerebral cortex. *Nature* **532**, 453-458, doi:10.1038/nature17637 (2016).

609 29 Broca, P. Sur le siège de la faculté du langage articulé. *Bulletins de la Société d'anthropologie de Paris* **6**,
610 377-393, doi:10.3406/bmsap.1865.9495 (1865).

611 30 Apkarian, A. V., Krauss, B. R., Fredrickson, B. E. & Szeverenyi, N. M. Imaging the pain of low back pain:
612 functional magnetic resonance imaging in combination with monitoring subjective pain perception allows
613 the study of clinical pain states. *Neuroscience Letters* **299**, 57-60 (2001).

614 31 Baliki, M. N. *et al.* Chronic pain and the emotional brain: Specific brain activity associated with spontaneous
615 fluctuations of intensity of chronic back pain. *J Neurosci* **26**, 12165-12173, doi:10.1523/Jneurosci.3576-
616 06.2006 (2006).

617 32 Baliki, M. N., Geha, P. Y. & Apkarian, A. V. Parsing Pain Perception Between Nociceptive Representation
618 and Magnitude Estimation. *J Neurophysiol* **101**, 875-887, doi:10.1152/jn.91100.2008 (2009).

619 33 Su, Q. *et al.* Brain regions preferentially responding to transient and iso-intense painful or tactile stimuli.
620 *Neuroimage* **192**, 52-65, doi:10.1016/j.neuroimage.2019.01.039 (2019).

621 34 Woo, C. W., Roy, M., Buhle, J. T. & Wager, T. D. Distinct brain systems mediate the effects of nociceptive
622 input and self-regulation on pain. *PLoS Biol* **13**, e1002036, doi:10.1371/journal.pbio.1002036 (2015).

623 35 Pernet, C. R. *et al.* The human voice areas: Spatial organization and inter-individual variability in temporal
624 and extra-temporal cortices. *Neuroimage* **119**, 164-174 (2015).

625 36 Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl. *Neuroimage* **62**, 782-
626 790, doi:10.1016/j.neuroimage.2011.09.015 (2012).

627 37 Smith, S. M. *et al.* Advances in functional and structural MR image analysis and implementation as FSL.
628 *Neuroimage* **23 Suppl 1**, S208-219, doi:10.1016/j.neuroimage.2004.07.051 (2004).

629 38 Woolrich, M. W. *et al.* Bayesian analysis of neuroimaging data in FSL. *Neuroimage* **45**, S173-186,
630 doi:10.1016/j.neuroimage.2008.10.055 (2009).

631 39 Efron, B. & Tibshirani, R. Improvements on Cross-Validation: The 632+ Bootstrap Method. *Journal of the
632 American Statistical Association* **92**, 548-560, doi:10.1080/01621459.1997.10474007 (1997).

633 40 Noma, H., Shinozaki, T., Iba, K., Teramukai, S. & Furukawa, T. A. Confidence intervals of prediction
634 accuracy measures for multivariable prediction models based on the bootstrap-based optimism correction
635 methods. *Stat Med*, doi:10.1002/sim.9148 (2021).

636 41 McShane, B. B. & Böckenholt, U. Single Paper Meta-analysis: Benefits for Study Summary, Theory-testing,
637 and Replicability. *Journal of Consumer Research*, doi:10.1093/jcr/ucw085 (2017).

638 42 Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-
639 distributed dependent variables. *Psychological Methods* **11**, 54-71, doi:10.1037/1082-989x.11.1.54 (2006).

640 43 Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. *Journal of Statistical Software*
641 **36**, doi:10.18637/jss.v036.i03 (2010).

642 44 Simony, E. *et al.* Dynamic reconfiguration of the default mode network during narrative comprehension. *Nat
643 Commun* **7**, 12141, doi:10.1038/ncomms12141 (2016).

644