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Abstract

CRISPR interference (CRISPRI), the targeting of a catalytically dead Cas protein to
block transcription, is the leading technique to silence gene expression in bacteria.
Genome-scale CRISPRI essentiality screens provide one data source from which rules
for guide design can be extracted. However, depletion confounds guide efficiency with
effects from the targeted gene. Using automated machine learning, we show that
depletion can be predicted by a combination of guide and gene features, with
expression of the target gene having an outsized influence. Further, integrating data
across independent CRISPRi screens improves performance. We develop a
mixed-effect random forest regression model that learns from multiple datasets and
isolates effects manipulable in guide design, and apply methods from explainable Al to
infer interpretable design rules. Our method outperforms the state-of-the-art in
predicting depletion in an independent saturating screen targeting purine biosynthesis
genes in Escherichia coli. Our approach provides a blueprint for the development of

predictive models for CRISPR technologies in bacteria.
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Introduction
CRISPR interference (CRISPRI), in which a catalytically dead Cas protein incapable of
DNA cleavage (dCas) is targeted to interfere with transcription of a gene of choice
(Bikard et al., 2013; Qi et al., 2013), is the most widely used CRISPR technology in
bacteria. In contrast to eukaryotes, many bacteria lack the necessary repair pathways to
survive genome editing by the double-stranded break induced by CRISPR-Cas9.
Applications of CRISPR-Cas9 as a sequence-specific antibiotic notwithstanding (Bikard
et al., 2014; Citorik et al., 2014; Gomaa et al., 2014), the main impact of CRISPR-Cas in
engineering bacteria has come from using it as a platform on which to develop new
technologies that can be guided to a specific locus in a programmable fashion. CRISPRI
is the simplest example of this, where the dCas protein itself serves as an effector to
silence gene expression by physically blocking the procession of the RNA polymerase.
The development of CRISPRI has opened up a range of biological applications,
from down-regulating individual genes for genetic studies to performing genome-wide
fitness screens or engineering genetic circuits (Luo et al., 2016; Vigouroux and Bikard,
2020). As an alternative screening technology to transposon mutagenesis (Cain et al.,
2020), CRISPRi has the advantage that particular genes of interest can be directly
targeted, avoiding the need for large mutant libraries to achieve gene saturation.
Another area of application is engineering synthetic regulatory circuits (Jusiak et al.,
2016) or metabolic networks (Cho et al., 2018a; Mougiakos et al., 2018), where
collections are gRNAs are used to coordinately downregulate and upregulate
associated genes and pathways. However, all of these applications critically depend on
the efficiency of silencing provided by selected guides. Genetic screens already
routinely employ tens of thousands of guides simultaneously, and it is impractical to
individually test each guide’s efficiency. This problem will only be accentuated as the
scale of applications increases through the use of CRISPR array technology that allows
multiplexed expression of suites of guides simultaneously (Liao et al., 2019; Reis et al.,
2019) to dissect and engineer increasingly complex phenotypes. Reliable prediction of
guide efficiency will therefore become increasingly important as applications of CRISPRI

become increasingly ambitious.
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Given the impact of CRISPR-based genome engineering in eukaryotes,
significant effort has been expended in developing methods for predicting editing
efficiency. The first attempts used classical machine learning methods on relatively
small datasets comprising efficiency measurements for thousands of gRNAs. The
applied methods include logistic regression (Doench et al., 2014), support vector
machines (Labun et al., 2016; Wong et al., 2015), linear regression (Moreno-Mateos et
al., 2015), and gradient-boosted decision trees (Doench et al., 2016). As the amount of
Cas9 editing data has increased, deep learning approaches have become increasingly
popular. These include convolutional neural networks (Chuai et al., 2018), which apply a
collection of adaptive filters to automatically extract local sequence features, and long
short-term memory networks (LSTM) (Wang et al., 2019), which retain a memory that
potentially allows for the detection of long-range interactions between sequence
features. Newer methods have put substantial effort into engineering deep learning
architectures to further boost performance (Kim et al., 2019). It is important to note that
many of these deep learning methods have been trained on tens of thousands of
measurements of guide efficiency, and fusing datasets has played an important role in
further increasing performance (Xiang et al., 2021).

So far, relatively little attention has been paid to predicting guide efficiency for
bacterial CRISPRIi. The only study to date developed a LASSO regression model for
predicting CRISPRi guide efficiency (Calvo-Villamafian et al., 2020) with a limited
sequence feature set using data from a single genome-wide CRISPRIi screen in
Escherichia coli (Rousset et al., 2018). Given the trajectory of prediction methods for
eukaryotic genome engineering applications towards larger datasets and more complex
machine learning approaches, we asked if a similar approach could improve our ability
to extract design rules for gRNAs for bacterial CRISPRi applications. Starting with an
investigation of features driving guide depletion in CRISPRI screens using automated
machine learning, we find that gene effects that are not modifiable in guide design
dominate. Starting from this foundation, we develop a machine learning approach that
separates gene and guide effects while learning from multiple independent CRISPRI

screens, allowing us to arrive at a predictive model of guide efficiency that we show
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improves on the state-of-the-art using a saturating depletion screen of purine

biosynthesis genes during growth in minimal media.

Results

Automated machine learning and feature engineering identifies gene-specific
effects in CRISPRI depletion screens
We set out to devise design rules for CRISPRI in bacteria by combining machine

learning with large experimental datasets. The largest available datasets come from
genome-wide depletion screens. However, it is currently unknown how well depletion in
these screens can be predicted given known guide and genomic features. We thus
began our investigation by applying automated machine learning (autoML) (Figure 1A).
AutoML refers to a collection of techniques that attempt to automate the often
labor-intensive process of model selection and optimization. Rather than sequentially
fitting different types of models and individually optimizing their hyperparameters as
typically done in applying ML to a new problem, autoML techniques turn model selection
itself into an optimization problem. We used the Auto-Sklearn package (Feurer et al.,
2015) that wraps classification and regression models implemented in the Python
Scikit-learn package (Pedregosa et al., 2011) in a Bayesian optimization framework.

We first asked how well we could predict gRNA depletion log, fold-changes
(logFCs) for essential genes as defined by the Keio collection (Baba et al., 2006), and
what features would be required for accurate prediction. As essential genes should
have an infinite fitness cost upon complete silencing, we assumed differences in
depletion would mainly depend on gRNA silencing efficiency. We leveraged a published
E. coli CRISPRI essentiality screen using dCas9 performed in rich media (Rousset et
al., 2018), which included 1,951 guides targeting 293 essential genes. To predict
depletion in this data set, we engineered a series of feature sets of increasing
complexity (Figure S1; Table S1) starting with the one-hot-encoded gRNA and PAM
sequence as well as the one-hot encoded dinucleotide sequence including four bases
upstream of the gRNA sequence and three bases following the NGG PAM. This
resulted in a poorly performing model with a median Spearman’s p of ~0.20 in 10-fold
cross-validation (Figure 1B; Table S2). We therefore iteratively added a set of

additional features while monitoring changes in model performance. As targeting
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efficiency has been suggested to depend on distance to the transcriptional start site (Qi
et al., 2013; Wang et al., 2018), the set included absolute and relative distance to the
start codon. We also included a suite of thermodynamic features describing
gRNA:target interactions predicted using the ViennaRNA package (Lorenz et al., 2011):
minimum free energy of the folded gRNA, hybridization of two gRNAs, and hybridization
of the targeted DNA and gRNA (Lorenz et al.,, 2012). These additional feature sets
resulted in only moderate improvement in Spearman correlation (p ~ 0.24) for our
predictions.

Given that features describing the guide sequences themselves were inadequate
to predict guide depletion, we developed a series of features associated with each
targeted gene that we reasoned may have some explanatory power (Figure 1B). First
we used gene ID alone as a predictor, reasoning that incomplete silencing of essential
genes may lead to different rates of depletion. While doing so improved the accuracy of
predictions, the Spearman correlation between predicted and measured log-change
remained below 0.4. We reasoned that additional information about each gene might
improve our capacity to predict depletion, and so we constructed eight additional
features describing each gene. We collected publicly available RNA expression data
over growth in minimal media (Conway et al., 2014) and computed minimum and
maximum expression values. We collected transcription unit (TU) information from
RegulonDB (Santos-Zavaleta et al., 2019) and calculated the distance from the target
site to the start of the TU, the number of downstream genes in each TU, and the
presence of other essential genes in the TU. Finally we also included gene GC content.
Incorporating these additional gene features led to a major improvement in prediction
accuracy, with cross-validation performance jumping to a Spearman’s p of ~0.68

To understand the contribution of these features to the prediction of gRNA
depletion, we used SHapley Additive exPlanation values (SHAP values) computed with
TreeExplainer (Lundberg et al., 2020) on the best performing random forest regression
model produced by Auto-Sklearn (Figure 1C; Table S3). SHAP values are a
game-theoretic approach to feature importance that capture the marginal contribution of
a given feature to a prediction. Looking at average absolute SHAP values provides a

measure of feature importance, while plotting individual SHAP values shows how each
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feature affects each individual prediction. Of all considered features, maximal RNA
expression had the single largest average effect on depletion, making an average of a
~1.7 fold difference to the predictions. Unexpectedly, high target gene expression
tended to be associated with higher depletion. There was also clear evidence for polar
effects from CRISPRI, as the number of downstream essential genes was highly
predictive of increased depletion. The most predictive effects that could actually be
modified by guide design were associated with guide distance to the transcriptional start
site, but on average these had fairly small effects compared to features associated with
the target gene. In summary, we found that autoML can rapidly produce predictive
models of CRISPRIi guide depletion, and the predictions made by these models are
dominated by the effects of gene features that can not be modified in guide design.
These findings outline key features that need to be accounted for to accurately infer

guide efficiency from genome-wide depletion screens.
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Figure 1: Automated machine learning predicts depletion in CRISPRi essentiality screens. (A) An
overview of CRISPRI essentiality screens. gRNAs are designed targeting every gene in the genome and
cloned into an appropriate plasmid for expression. This plasmid collection is then transformed into the
target bacteria, and depletion is measured as the change in guide frequency over growth determined by
sequencing relative to a set of non-targeting gRNAs. The measured depletion (logFC) is then a mixture of

the fitness effect of gene knockdown with the efficiency of silencing itself. (B) Comparison of Spearman
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correlation between actual and predicted guide depletion in 10-fold cross-validation (CV) of the best
model trained with Auto-Sklearn with different feature combinations, using data from (Rousset et al.,
2018). (C) The ten most predictive features determined using TreeExplainer on the optimal random forest
model trained with Auto-Sklearn and 574 guide and gene features. Mean absolute SHAP value (left)
provides a global measure of feature importances, while the beeswarm plot (right) shows the effect of

each feature on each individual gRNA prediction.

Data fusion improves prediction performance
As we had exhausted new features to explore, we next asked whether the size of

our dataset was limiting the accuracy of our predictions. To this end, we collected data
from two additional CRISPRI screens of E. coli in rich media. First, we included data
from an additional screen using the same gRNA library but with dCas9 expressed from
a stronger promoter, which we refer to here as E18 Cui (Cui et al., 2018). Second, we
included data from a completely independent screen using a higher density library
containing twice as many guides targeting essential genes (4197; 528 are identical to
gRNAs contained in Cui/Rousset), which we refer to as Wang (Wang et al., 2018). We
refer to the original data set as E75 Rousset. It is also worth noting that while the E18
Cui and E75 Rousset libraries were grown repeatedly to stationary phase, the Wang
screen was collected in log phase. The level of depletion in each dataset exhibited
qualitative differences, with Wang showing a clearer bimodal separation between
depleted and non-depleted guides (Figure 2A). There was a reasonable correlation of
depletion between datasets, with E18 Cui and E75 Rousset exhibiting a Spearman’s p
of ~0.9. The correlation between Wang and the other two datasets was lower
(p~0.75-0.79), but this seemed mostly attributable to a saturation effect in Wang,
possibly due to the shorter growth period (Figure S2).

To investigate the impact of fusing these datasets on model performance, we
trained a series of models using Auto-Sklearn with each dataset individually or in
combination including a dataset indicator as a potential predictor, and we tested them
on sets of guides held out from each dataset as well as a mixed test set (Figure 2B;
Table S4). Unsurprisingly, models trained on single datasets tended to perform best on
their cognate test set. Similarly, models trained on E18 Cui and E75 Rousset appeared

to generalize better to each other than to the Wang dataset and vice versa. Combined
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training datasets, particularly those mixing at least one of the Cui/Rousset sets with
Wang, generalized better across datasets without degrading performance relative to
models trained on individual datasets. In some cases, particularly with the Cui dataset,
fused training sets actually improved performance on a test set drawn from a single
dataset. In each case, the best performing model chosen by Auto-Sklearn was either a
random forest regression or a gradient-boosted decision tree model.

To illustrate that the performance increases we saw when combining datasets
was not an artifact of our autoML procedure, we tested data fusion with both an
alternative autoML package, H20 (LeDell and Poirier, 2020) (Table S4) as well as a
suite of individual model types (Figure S3; Table S5). Different model types responded
differently to the fused data, with linear regression-based models showing little
improvement (e.g. linear regression, lasso linear regression, elastic net linear
regression; Figure S3 A-C), while tree-based methods (e.g. random forest regression,
histogram-based gradient boosted trees; Figure S3 E,F) showed clear improvement.
Importantly, none of the tested models appeared to degrade in performance when
trained with fused data. These findings suggest that both increased generalizability and
accuracy can be achieved by integrating multiple data sources for training tree-based
models for CRISPRi depletion.
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Figure 2: Data fusion improves prediction of depletion in genome-wide CRISPRi screens. (A)
Distribution of logFCs of gRNAs targeting essential genes from three CRISPRi genome-wide essentiality
screens in E. coli. (B) Comparison of Spearman correlation from 10-fold CV of the best Auto-Sklearn
trained model on one dataset or the indicated combination of datasets.


https://paperpile.com/c/Z9xYCo/CPNH
https://doi.org/10.1101/2022.05.27.493707
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.27.493707; this version posted May 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Segregating guide and gene effects produces a predictive model for CRISPRIi
guide efficiency
Our exploration of the features most predictive of gRNA depletion in competitive

screens highlighted that features describing the targeted gene often made much larger
contributions to the prediction than features describing the guide sequence. This is
problematic for predicting guide efficiency from depletion screens, as this large
gene-to-gene variation in depletion must be removed to properly extract the contribution
of guide efficiency.

We took two distinct approaches to separating guide and gene effects. The first
was to explicitly model both effects jointly using Mixed-Effect Random Forest (MERF)
regression (Hajjem et al.,, 2014). The MERF model handles data with an underlying
cluster structure by defining two separate models: a linear model that captures random
effects associated with the cluster, and a random forest (or other complex model) that
captures fixed effects associated with each individual measurement. These models are
then jointly optimized in an iterative process using the expectation-maximization
algorithm. In our case, random effects correspond to features associated with each
gene (e.g. gene ID, expression level) as well as dataset, while fixed effects correspond
to features that could be manipulated in gRNA design (e.g. PAM and guide sequence,
thermodynamic properties).

For the second approach, which we refer to as median subtracting (MS), we
subtract the gene-wise median logFC from each gRNA depletion value to calculate
relative “activity scores” following previous work (Calvo-Villamanan et al., 2020).
However, this leads to problems in integrating multiple datasets, as the range of
depletion values varies across datasets (Figure 2A). We adapted a previously
described approach used for fusing CRISPR gene deletion datasets (Xiang et al.,
2021). First, we averaged the logFCs between E75 Rousset and E18 Cui which share
all guides in common. We then calculated a linear scale factor for guides shared
between Wang and the averaged Rousset/Cui data set to make logFCs for the
unshared guides in Wang comparable to logFCs derived from Rousset/Cui (Figure
S4A-C). For cross-validation, scaling was performed within each test fold to avoid

possible leakage of information between test and training sets.
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Both the fixed effect model from the MERF and activity scores in the MS method
remove gene-specific effects to estimate guide efficiency, making guide-wise
cross-validation difficult as the true guide efficiency is unknown. As an alternative to
guide-wise cross-validation, we developed a gene-wise cross-validation scheme. We
trained new models using 10-fold cross validation, this time holding out all guides
targeting a set of held-out genes, evaluating the Spearman correlation between
predictions and measured depletion within each gene under the assumption that rank
order should reflect guide efficiency within a gene.

We trained and tested three models. Since tree-based models performed best on
predicting gRNA depletion, we trained both a MERF model and a random forest trained
on MS data. These were compared to both a published LASSO model based on the MS
approach (Calvo-Villamanan et al., 2020) (hereafter referred to as “Pasteur”) and a
LASSO model we trained to evaluate the effect of our expanded feature and data sets
on prediction accuracy. It should be noted that the Pasteur model was trained on the
E75 Rousset data, so our benchmark results are not independent of its training data
and will tend to overestimate the performance of the Pasteur model.

As we had previously observed in our evaluation of predictions of guide-wise
depletion, data fusion between multiple CRISPRi screens consistently improved
performance across models. In aggregate, the random forest models performed slightly
better than the LASSO-based models (median p=0.375 (MERF) and 0.378 (MS) vs.
0.357 (Pasteur)). When we broke this down into performance on held-out genes in
individual datasets (Table 1), the MERF and Pasteur performed roughly similarly on the
E75 Rousset data on which the Pasteur model was trained (p=0.418 vs. 0.429) and the
E18 Cui data from the same lab (p=0.418 vs. 0.411). Both random forest models
performed better than the Pasteur model on the independent Wang dataset (0.354 and
0.344 vs. 0.298, respectively). A similar trend was seen in comparison with the MS
LASSO model, where the Pasteur model performed better on the E75 Rousset and E18
Cui data, and worse on Wang. The MERF and MS random forest models performed
generally similarly to one another, likely due to the high correlation observed between
median gene-wise logFC and the MERF-predicted random effects across our datasets

(Figure S4D). In sum, we find that random forests trained on multiple datasets
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outperform simpler regression models on predicting guide efficiency for held-out genes,
and that the MERF approach provides a straight-forward means of integrating datasets

while isolating effects important for guide efficiency.

Table 1: Evaluating predictions of guide efficiency after removing gene effects. Spearman
correlations between predictions and measured logFC for held-out genes. Genes were held out in 10-fold

cross-validation, and the reported median Spearman correlation was calculated across all held-out genes.

Median Spearman Correlation across held-out genes

Model Training data
E75 Rousset  E18 Cui Wang Mixed
MERF E75 Rousset 0.333 0.300 0.264 0.300
E18 Cui 0.371 0.389 0.280 0.331
Wang 0.321 0.382 0.350 0.351
3 datasets 0.418 0.418 0.354 0.375
MS (RF) E75 Rousset 0.365 0.333 0.281 0.318
E18 Cui 0.373 0.404 0.297 0.341
Wang 0.357 0.393 0.343 0.354
3 datasets 0.400 0.401 0.344 0.378
MS (LASSO) E75 Rousset 0.321 0.298 0.259 0.286
E18 Cui 0.306 0.314 0.305 0.308
Wang 0.314 0.318 0.327 0.320
3 datasets 0.385 0.400 0.332 0.361
Pasteur - 0.429 0.411 0.298 0.357

Model interpretation with explainable Al illustrates rational design rules for
CRISPRI
To understand the features underlying model performance, we again examined SHAP

values for our random forest models using TreeExplainer (Lundberg et al., 2020). We
observed similar features with large impacts on predictions from both random forest
models (Figure 3A; S4E; Table S7). In the MERF model, the strongest average effects
were seen for a guanine at the +1 position following the PAM, followed by distances
from the start codon. In particular, we found that targeting positions further from the start
codon led to reduced guide efficiency, as has been inferred previously (Qi et al., 2013).
Other top features involved the nucleotide at position 20 of the guide, directly adjacent
to the PAM sequence (Figure 3A & B). Here guanine and particularly adenine at this

position negatively impacted silencing efficiency, while cytosine and thymine increased
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efficiency — almost the exact inverse of previous reports for Cas9 efficiency in
eukaryotic genome editing applications (Doench et al., 2014). Within and following the
PAM sequence, our SHAP values were qualitatively similar to previous observations in
Cas9 genome editing. Cytosine was favored at the variable position of the NGG PAM,
and a guanine residue immediately following the PAM had a negative impact on
silencing, though we additionally observed a positive impact of cytosine at this position.
These effects within and around the PAM sequence appeared to interact with each
other, as we saw additional effects for dinucleotide sequences covering the end of the
guide sequence and first residue of the PAM where -cytosine-cytosine and
thymine-cytosine residues improved performance while guanine-guanine residues had a
strong negative effect.

To further investigate potential interactions between features, we estimated
SHAP interaction values that quantify situations in which the presence of one feature
changes the impact of another, so that the combined SHAP value for both features
together is not the simple sum of each feature’s SHAP value. To provide a visualization
of these interactions, we calculated expected effects using the median SHAP value for
each feature from guides containing only one of the interacting features, and compared
the expected sum to the actual SHAP values for guides containing both features
(Figure 3C; Table S8).

The majority of these interactions involved distance features or bases in the
vicinity of the PAM. For instance, we saw a range of interactions between position 20 of
the guide and the +1 position immediately downstream of the PAM. This can lead to
guides with either reduced (Figure 3C 1) or increased efficiency (Figure 3C l&lll)
compared to expectations based on single feature SHAP values. We also observed
interactions between the variable position of the NGG PAM and surrounding bases,
where for instance having an otherwise nearly neutral thymine at the variable PAM
position (P1) can lead to a stronger reduction in efficiency when a guanine is present
immediately downstream of the PAM (+1) (Figure 3C IV). The existence of such
interactions between features in the guide sequence may provide one explanation for
the superior performance of tree-based methods over linear regression, as tree

regressors are particularly well suited to capture interaction effects.
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Figure 3: Important features for CRISPRi guide efficiency illustrate sequence preferences and
interactions. (A) SHAP values for the top 10 features from MERF optimized random forest model. Global
feature importance is given by the mean absolute SHAP value (left), while the beeswarm plot (right)
illustrates feature importance for each guide prediction. (**: derived from dinucleotide features) (B) A
summary of effects of sequence features. Increased SHAP values indicate features that lead to reduced
guide efficacy, while decreased SHAP values indicate increased guide efficacy. The guide sequence is
numbered G1 to G20 and the three positions of the PAM sequence are labeled P1, P2, P3. Negative and
positive numbers refer to positions preceding the guide sequence and following the PAM, respectively. (C)
An llustration of feature interactions. The schematic on the left illustrates the positions of three
representative interacting positions in the vicinity of the PAM sequence. (I-IV) show SHAP values for
features in guides containing one (+/-) or the other (-/+) feature, or both (+/+). The expected SHAP value

(red line) is calculated as the sum of the median SHAP values observed for each feature when occurring
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independently. 20 C/G/A: C/G/A in 20th gRNA position, +1 C/G: C/G downstream of PAM, P1 T/C: T/C in
1st PAM position.

Deep learning approaches do not improve prediction performance
Given that we saw better performance with tree-based methods over linear regression,

we next asked if model complexity was a limiting factor in prediction. Deep learning
approaches have been applied to predicting guide efficiency for a number of CRISPR
technologies (Chuai et al., 2018; Kim et al., 2018, 2019; Wang et al., 2019; Xiang et al.,
2021). Considering this, we asked if deep learning models would also improve
performance in predicting gRNA efficiency for CRISPRI in bacteria. As a representative
architecture, we implemented a one-dimensional convolutional neural network (CNN),
which runs a series of kernel filters across the sequence to extract local features. In
addition to a custom CNN architecture, we reimplemented and tested the
state-of-the-art deep learning architecture used for predicting Cas9 gene editing
efficiency by CRISPRon (Xiang et al., 2021), only trained using our CRISPRI data.

For our custom CNN architecture, we used the convolutional layers to extract
sequence features before concatenating them to the rest of our guide feature set
(Figure S5A). This concatenated feature set was then fed through a fully connected
4-layer multilayer perceptron (MLP) for regression using MS values for guide efficiency.
Both the custom CNN and CRISPRon models exhibited lower Spearman correlations as
compared to our previously trained random forest models when tested on held-out gene
sets (Figure S5B; Table S6; CNN p=0.326, CRISPRon p=0.333, vs. MERF p=0.375).
These results show that conventional machine learning approaches can outperform
deep learning architectures and suggest that data may currently be limiting for more

complex machine learning approaches.

A saturating screen of purine biosynthesis genes independently validates
performance of tree-based models and data fusion
Our previous benchmarking indicated that tree-based methods trained on multiple

datasets outperformed other methods in predicting guide efficiency. However, these

results were based entirely on cross-validation within our training datasets. To produce
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a truly independent test set, we first targeted a plasmid-encoded GFP construct with 19
gRNAs across a range of predicted guide efficiencies, and measured the reduction in
cell fluorescence by flow cytometry (Figure 4A). Measuring performance by Spearman
correlation, we found both random forest methods performed best (p=0.70 MS RF, 0.68
MERF) followed by our LASSO model (p=0.55), while the Pasteur model performed
comparatively poorly (p=0.26). Replicating this study in Salmonella Typhimurium gave
qualitatively similar results, though with lower Spearman correlations (Figure S6A).
However, when we reanalyzed the data from a Miller assay (measuring B-Galactosidase
activity) previously used to validate the Pasteur model (Calvo-Villamafan et al., 2020)
(Figure 4B; Table S$10), we found that the Pasteur model performed best (p=0.71),
followed by the MERF and MS random forests (p=0.65, 0.59) and the LASSO model.
We also tested three tools designed for predicting Cas9 guide efficiency for genome
editing in eukaryotes (Doench et al., 2016; Kim et al., 2019; Wilson et al., 2018), and all
performed universally poorly on both data sets.

While the exact reasons for the discrepancies in performance between our GFP
measurements and the Miller assay are unclear, one plausible explanation is that these
data sets simply have sample sizes too small to discriminate between prediction
methods. To resolve this, we performed a high-throughput screen targeting nine genes
from the purine biosynthesis pathway of E. coli known to be essential in minimal media,
spread across seven independent transcriptional units (Figure 4C). To avoid any bias in
guide selection, we saturated all potential target sites in each gene, ending with a total
of 750 gRNAs, including between 35 and 223 guides per gene. Duplicate samples were
then collected at three time points during growth in M9 minimal medium, and gRNA
depletion was measured with reference to input samples, normalized using a set of 50
gRNAs designed not to target any E. coli sequence.

Comparing the experimentally determined depletion values to predictions from
our tested models confirmed the results of our previous cross-validation (Figure 4D;
Table S13): the MERF and MS random forest models performed best, with the MERF
performing slightly better overall (median p~0.56 vs. ~0.55 across all time points).
Comparing the MERF trained on the three fused data sets to the MERF trained on any

single data set also showed improved performance. The choice of a tree-based model
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also made a clear difference in performance, as a LASSO model trained on the same
data and feature set showed worse performance (p~0.49—0.50) than either random
forest. Both of our random forest models as well as our LASSO model performed better
than the Pasteur model (p~0.43—0.48).

Beyond validating the performance of our models, our saturating screen of purine
biosynthesis genes also revealed previously unobserved features of CRISPRI depletion
screens. First, there were two genes, purE and purK, on which all methods performed
poorly as measured by Spearman correlation. Upon inspection of the depletion values,
it became clear that this was because there was surprisingly little variation in guide
efficiency along these transcripts (Figure 4E; S6C). This meant that for these genes,
differences in ranking reflected very small differences in depletion, likely within the error
of our experimental measurements. We examined our initial training set to see if this
might be a more widespread phenomenon, finding a substantial number of genes with
low variation in their guide depletion values (Figure S6D). This may be a factor in the
overall low average Spearman correlations we report in our cross-validation.

A second unexpected feature was the overall lack of a clear relationship between
guide efficiency and distance to the transcriptional start site. Of the nine tested genes,
only two, purC and purM, showed a clear linear dependency of depletion on position
within the gene sequence. This was particularly surprising, as distance features were
clearly important to our model predictions. We attempted to train a model excluding
distance features, but this substantially degraded performance on predicting depletion in
our high-throughput screen (Figure S6B). Whether this is an artifact of our training data,
based on screens which used small collections of guides biased towards the 5' end of
genes, or if other guide features compensate for positional differences in guide
efficiency remains unclear. In support of the latter, our analysis of feature interactions
found many of the strongest effects came from interactions between distance features
and sequence features in the vicinity of the PAM (Table S8), suggesting that sequence
features have larger effects on efficacy as the distance from the transcription start site
increases. In sum, our screen of guides targeting purine biosynthesis genes
independently validated the better performance of our random forest models compared

to the state-of-the-art, while also highlighting some unexpected features of CRISPRI.
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Figure 4: Independent validation of model performance using a saturating screen of purine

biosynthesis genes. (A) The activity of 19 gRNAs targeting a plasmid-expressed deGFP gene was

measured in E. coli using a flow cytometry-based assay. The measured activity compared to the control

gRNA is plotted against the score predicted by the MERF model. The inset barplot illustrates Spearman
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correlations for seven methods for predicting guide efficiency. (B) The activity of 30 gRNAs targeting lacZ
measured with a Miller assay by Calvo-Villamafan et al., plotted as in A. (C,D,E) High-throughput
screening of 750 gRNAs targeting 9 purine biosynthesis genes in E. coli K12 MG1655. (C) Transcriptional
architecture of the targeted genes. All possible gRNAs were designed for each gene; each blue vertical
line represents a gRNA. Grey boxes represent genes, black arrows transcriptional start sites. (D)
Spearman correlations between the predicted scores and measured logFC across collected timepoints.

(E) Measured logFCs for each guide as a function of distance to the start codon for each gene.

Discussion

In this study, we developed a predictive model for CRISPRI guide efficiency using
integrated data from three gene essentiality screens in E. coli. We extensively explored
the process of model development, evaluating how feature engineering, data
integration, and model selection affect performance. We have shown that this model
improves on the previous state-of-the-art using both gene-wise cross-validation on our
training data as well as a fully independent screen of guides targeting purine
biosynthesis genes essential in minimal media. These investigations provide a blueprint
for developing similar predictive models, both for other CRISPR-Cas systems (Vialetto
et al., 2021) and technologies, as well as for CRISPRI in different bacteria where design
rules may vary. We have made a web server for predicting CRISPRi guide efficiency

using our MERF publicly available at: https://ciao.helmholtz-hiri.de.

Prediction of guide efficiency will become increasingly important with more
complex applications of CRISPR technologies. In particular, the potential for
multiplexing CRISPRI presents could be transformative when compared to established
technologies. One example of this would be in screening for fithess interactions
between genes. The current state-of-the-art is based on arrayed mating of single gene
deletion libraries (Butland et al., 2008; Typas et al., 2008), which is both labor intensive
and technically challenging, and becomes increasingly so when querying higher-order
interactions (Kuzmin et al., 2018). A similar example is in metabolic engineering where

multiplexed CRISPRi can be used to modulate biosynthetic pathways to optimize
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production of a particular metabolite for industrial applications (Lian et al., 2017). The
development of CRISPR array technologies that can coexpress as many as 22 guides
simultaneously (Liao et al., 2019; Reis et al., 2019) should accelerate the development
of these approaches. However, large-scale, multiplex applications will require better
tools for guide design to ensure robust results. Individually screening guides for activity
quickly becomes prohibitive when one considers applications that require hundreds or
thousands of guides. The machine learning approach presented here provides a
straight-forward solution to this problem.

Applying machine learning to any problem presents a series of challenges.
These include collecting data, engineering relevant features, model selection and
optimization, and validation. Here, we have approached each of these challenges
systematically. We have shown that incorporating data from multiple, independent
CRISPRI screens improves model performance. This result suggests two things: that
individual datasets may contain batch effects that affect generalizability, as training on
combined datasets improved performance across datasets; and that available data may
be a limiting factor in model performance, as training on combined datasets also
improved performance within individual datasets, particularly those with fewer guides.
We have also shown that a rich, biologically relevant feature set is important for
predicting CRISPRI depletion. Strikingly, we found that gene identity alone was a poor
predictor of depletion when compared to including measures of gene expression and
potential for polar interactions within transcriptional units. In particular, gene expression
was the single largest contributor to gene depletion as measured by SHAP values, and
higher expression was counterintuitively associated with higher depletion. As the
availability of transcriptomics data may be lacking for some organisms, we also tested
the possibility of using the codon adaptive index (CAl) as a proxy, with promising results
(Figure S6B). While these results do not necessarily imply a direct causal relationship
between expression and depletion, they do suggest that caution should be taken when
comparing guide depletion levels between genes in a screen as factors other than gene
fitness may strongly influence the degree of depletion.

Model selection and tuning also had a large impact on prediction performance.

The standard approach to developing a machine learning model for a particular
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application generally involves a significant degree of trial and error. This is true both for
selecting a type of model and tuning model hyperparameters, which is often critical to
performance. To avoid this, we applied automated machine learning, which turns model
selection and tuning into an optimization problem. Auto-Sklearn (Feurer et al., 2015)
searches over a set of twelve regressors and their hyperparameters and was able to
reliably select a final model comparable in performance to hand-tuning. For all of our
various data and feature sets, Auto-Sklearn tended to select tree-based regressors.
This is in contrast to previous work that suggested linear regression was adequate to
capture guide efficiency (Calvo-Villamafan et al., 2020). Possibly this is due to the more
complex feature set we constructed, containing a wide range of features beyond simple
sequence features. We also applied several deep learning approaches, including the
architecture successfully used by CRISPRon to predict Cas9 genome editing efficiency
(Xiang et al., 2021), but these failed to achieve similar performance to tree ensemble
regressors. This again suggests that the availability of data for training may be a limiting
factor, as deep learning models often require large sample sizes to achieve high
performance.

Our finding that gene features that cannot be modified during guide design are
dominant in determining depletion in CRISPRi screens highlighted the importance of
removing these before attempting to predict guide efficiency. Whereas predictive
methods for CRISPR-Cas genome engineering tools targeted at eukaryotes are often
trained on large datasets with direct measurements of guide efficiency (e.g. indel rates),
for bacterial CRISPRi the largest data sets come from essentiality screens, which
provide only indirect measurements of guide efficiency. We took two distinct approaches
to extract efficiency from CRISPRi screens — directly modeling and removing gene
effects using a mixed-effect random forest (MERF) (Hajjem et al., 2014), and
heuristically subtracting median values for each gene from guide depletion values as
described previously (Calvo-Villamafan et al., 2020). To our surprise, both approaches
produced models with roughly similar performance and appeared to identify largely
similar feature sets driving guide silencing efficiency. It is possible that the richer
description of gene effects enabled by the MERF may become more important when

incorporating data from additional screens in other conditions, or expanding beyond
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using only essential genes for training. The MERF can also infer its own normalization
between data sets as part of its random effect inference, which will greatly simplify
training of more complex models.

While we focused here on applications of CRISPRi with dCas9 in E. coli, the
techniques we have developed are in principle generic and could be extended to
CRISPRI with any catalytically-dead nuclease in any bacterium of interest, or even to
entirely different CRISPR systems. For instance, we recently applied the same basic
methodology to investigate the features underlying autoimmune activation of Cas13
targeting cellular RNA (Vialetto et al., 2021). It is becoming increasingly clear that the
performance of CRISPRi depends on both genetic background and the specific Cas
protein used. For instance, Streptococcus pyogenes dCas9 expression has low
silencing efficiency in some bacteria and can even be toxic (Cho et al., 2018b), forcing
the adoption of alternative Cas proteins (Rock et al., 2017). Alternative Cas proteins
have large differences in their PAM preferences and the stringency of the PAM
requirement (Collias and Beisel, 2021); presumably, alternative dCas proteins may also
respond differently to the other gene and guide features described here. The approach
outlined here, applying autoML and explainable Al to rapidly arrive at a description of
the design rules underlying the efficiency of CRISPRI silencing, provides a means to
rapidly characterize the behavior of new dCas proteins as genome-wide screening data

becomes available.
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Figure S1: lllustration of the genomic and sequence features used, see also Table S1.
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Figure S2: Comparison of guide depletion across datasets (A) The logFC of gRNAs in E75 Rousset
plotted against that in Wang for shared gRNAs. (B) The logFC of gRNAs in E18 Cui was plotted against
that in Wang for shared gRNAs. (C) The logFC of gRNAs in E18 Cui was plotted against that in E75

Rousset for overlapping gRNAs.
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Figure S3: Spearman correlation of 10-fold cross-validation of models trained with one or mixed
datasets. (A) linear regression, (B) LASSO, (C) Elastic net, (D) support vector regression (SVR), (E)
Random forest (RF) regression, (F) Histogram-based gradient boosting regression. (G) LASSO (same
hyperparameters as the MS LASSO model, gene-wise split). (H) Random forest (same hyperparameters
as the MS random forest model, gene-wise split).
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Figure S4: MS models for segregation of gene and guide effects. We subtract the gene-wise median
logFC from each gRNA depletion value upon data fusion to obtain the activity scores of each gRNA. The
distributions of activity scores (A) with and (B) without scaling are shown. (C) The logFC values in Wang
were scaled based on the linear regression between the original logFC of Wang and the average logFC of
E75 Rousset and E18 Cui for the 378 overlapping gRNAs. (D) Predicted scores of the random effect
model from MERF (y-axis) compared to the median logFC across gRNAs (x-axis) for each gene in each
dataset. (E) SHAP values for the top ten features in the MS random forest model.

26


https://doi.org/10.1101/2022.05.27.493707
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.27.493707; this version posted May 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure S5
A B 100 — — - 0T
|sequence features | guide features |
0.75
l = 050
L
T 025
1D CNN e v o
2 o000
£
l £ 025
2
| concatenate | e I Y
0.75 o3 ru—
T L S
-1.00 + +
| MLP | E75 Rousset E18 Cui Wang
l @ MERF 0.418 0.418 0.354
[ MS (CNN) 0.328 0.336 0.321
| output layer | @ MS (CRISPRon)  0.314 0.329 0.346

Figure S5: Deep learning approaches do not improve prediction performance. (A) Architectures of
the applied deep learning models. Guide features refer to guide-specific features apart from sequence
features. MLP: multilayer perceptron. (B) The Spearman correlation between predictions and measured
logFC for each held-out gene.
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Figure S6: Additional figures related to model validation and a saturating screen of purine
biosynthesis genes. (A) The activity of 19 gRNAs targeting deGFP gene was measured in Salmonella
Typhimurium SL1344 using flow-cytometry-based assay. The main panel compares measured logFC to
predictions from the MERF model, while the inset summarizes Spearman correlations of a similar
comparison between 7 methods (B) Performance on the purine screen of MERF random forest models
trained with individual or fused datasets, without distance features (drop distance features), and with CAl
values. (C) The predicted scores from the MERF random forest model were plotted against experimental
logFC in different time points. Guides targeting purE and purK were marked with orange and green

28


https://doi.org/10.1101/2022.05.27.493707
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.27.493707; this version posted May 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

respectively. (D) The distribution of the standard deviation of the logFC for guides targeting each gene in
the training data.

Methods

Training datasets

We collected the data from three previous CRISPRi genome-wide essentiality screens
in E.coli K12 MG1655 (Cui et al., 2018; Rousset et al., 2018; Wang et al., 2018). The
sequence, targeted gene, gene position, and fitness effect of each gRNA was retrieved
from the supplementary information of each study. Gene sequences and positions were
updated to be consistent with the latest reference genome version (NC_000913.3). We
discarded gRNAs from the Wang data set previously removed as having insufficient
read counts (Wang et al., 2018) or sequences from the Rousset and Cui datasets that
differed from the reference sequence due to differences in the genome versions. 8099
gRNAs targeting the coding-strand within the coding regions of essential genes were
extracted in total from all three datasets. Genes targeted by fewer than 5 gRNAs were

removed.

Feature engineering
A Python script (feature_engineering.py) was used to compute 574 sequence,

thermodynamic, genomic, and transcriptomic features. Sequence features including 556
single-nucleotide and dinucleotide features were one-hot encoded. Thermodynamic
features including minimum free energy for different interactions were computed using
the ViennaRNA Package (Lorenz et al.,, 2011): RNAduplex (version 2.4.12) for
RNA:RNA hybrids; RNAduplex (version 2.1.9h) for DNA:RNA hybrids (Lorenz et al.,
2012); RNAfold (version 2.4.12) for single RNA folding. Genomic features including
gene and operon organizations were based on the reference genome, essential genes
as determined in the Keio collection (Baba et al.,, 2006), and transcriptional unit
definitions from RegulonDB (Tierrafria et al., 2022). Transcriptomic data including gene
expression levels across growth at ten different ODs were obtained from a previous
study (Conway et al., 2014). Minimal or maximal expression levels were calculated

across the range of ODs until the growth phase when cells were collected in each
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CRISPRI screen: OD 1.4 for the Wang dataset, and all ODs for the Rousset and Cui
datasets. The codon adaptation index (CAl) for each gene was calculated using CAlcal
(Puigbo et al., 2008).

Applying machine learning methods
The automated machine learning toolkits auto-sklearn (version 0.10.0) (Feurer et al.,

2015) and H20O (version 3.30.1) (LeDell and Poirier, 2020) were used to develop
optimized machine learning regression models. For auto-sklearn, all possible estimators
were included. The following parameters were used: “time_left_for_this _task” = 3600,
“per_run_time_limit” = 360, ‘resampling_strategy”= ‘cv, and
‘resampling_strategy arguments” = {*fold”: 10}, “metric” =
autosklearn.metrics.mean_squared_error. The selected model parameters were saved
and used with scikit-learn for downstream analysis. For H20, the “StackedEnsemble”
algorithm was excluded and parameters “max_runtime_secs = 0” and “seed = 1” were
used. If not otherwise specified, parameters were left as default. Simple linear
regression, LASSO, elastic net, SVR, random forest, and histogram-based gradient
boosting models were trained using scikit-learn (version 0.22.2) (Pedregosa et al.,
2011).

Deep learning models were trained using pytorch (version 1.8.1) (Paszke et al., 2019)
and pytorch-lightning (version 1.5.10). For our custom 1D CNN model, sequence
features were processed using 1D convolutional layers and later concatenated with
other guide features. Concatenated features were further processed with fully
connected layers. Three 1D convolutional layers were implemented sequentially with
input channels 4, 64, and 64, output channel 64, 64, and 32, kernel size 5, 3, and 1, and
stride 2, 2, and 1 respectively. For fully connected layers, output dimensions are 128,
64, 32 and 1 (which is predicted gRNA efficiency). The first three fully connected layers
are accompanied by batch normalization (loffe and Szegedy, 2015), ReLU and dropout
(Srivastava et al., 2014) (p=0.5). We trained the model using AdamW (Loshchilov and
Hutter, 2017) optimiser with learning rate of 0.001 and batch size of 32. For CRISPROn,

we followed the same architecture (CGx) with different numbers of non-sequential
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features concatenated to processed sequential features. We trained the model using
the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 0.001 and batch size
of 32. Models were trained and evaluated with 10-fold cross-evaluation based on the

gRNA sequences to predict gRNA depletion.

Tree-based models were interpreted using TreeExplainer from the python shap package
(version 0.39.0) (Lundberg et al., 2020). SHAP value plots were generated with the

‘summary_plot’ function in shap.

Segregation of guide and gene effects
We removed genes with less than 5 gRNAs in each dataset to stabilize estimates of

median gRNA activity scores (see below), resulting in 7400 gRNAs in total. This
included 1618 gRNAs targeting 171 genes in E75 Rousset/E18 Cui and 4164 targeting
300 genes in Wang.

MERF models were trained using package merf (version 1.0). Hyperparameters for the
fixed-effect random forest model were taken from auto-sklearn. 564 guide-specific
features were assigned as fixed effects, while 9 gene-specific features except gene 1D
were assigned as random effects. 301 unique gene IDs were used as cluster IDs. The
trained fixed-effect model was used to predict gRNA efficiency. To train simplified
models excluding transcriptomic measurements (Figure S6B), CAl value, gene length,

gene GC content, and dataset were included for the random-effect model.

For median subtracting (MS) models, logFC values were scaled to integrate the
datasets, as an adaptation of a previously applied data fusion method (Xiang et al.,
2021). First, the mean of logFCs of E75 Rousset and E18 Cui were calculated and used
as the scaled logFC (Figure S4A&B). Then linear regression was performed between
the logFCs in Wang and scaled logFCs in E75 Rousset for 378 overlapping gRNAs. All
of the logFCs from Wang were then scaled by the fitted slope and intercept (Figure

S4C). The 378 overlapping gRNAs in Wang were excluded in the subsequent training
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for MS models. Activity scores were calculated by subtracting the scaled logFC of each

gRNA from median scaled logFC for each gene across all 3 datasets.

MS models were trained with guide-specific features to predict activity scores for each
gRNA. The hyperparameters of the MS random forest model were the same as for
MEREF, while those of the LASSO model were optimized using hyperopt (version 0.2.5)
(Bergstra et al., 2013) with a search space for alpha ranging from 0 to 0.1. The trained

models were directly used to predict activity scores.

Training and test sets were split gene-wise based on gene identifier. 10-fold

cross-validation was used to evaluate model performance.

The fixed-effect model from MERF and the MS (RF) model were interpreted using the
shap package (Lundberg et al., 2020). SHAP interaction values were calculated using
the shap_interaction_values function in TreeExplainer with 1000 guides. Absolute SHAP
interaction values were averaged over 1000 samples. The rank of interaction was
obtained based on the sorted mean absolute SHAP interaction values across all unique
feature pairs. To compare interaction effects to expectations based on single-feature
SHAP values, four feature combinations were considered: both absent (-/-), only the first
feature present (+/-), only the second feature present (-/+), and both present (+/+). For
the top 5,000 interacting feature pairs, the SHAP values for each feature in samples
with each combination of features were extracted. For each feature pair (F1 and F2),
the expected value for +/+ was calculated as the sum of the median F1 SHAP values for
+/- samples with the median of F2 SHAP values for -/+ samples, while the expected
value for -/- was calculated as the sum of the median F1 SHAP values for -/+ samples

and the median of F2 SHAP values for +/- samples.

Strains and growth conditions

All strains, plasmids, and primers are listed in Supplementary Table $S14 and S15. E.

coli cells were grown in Lysogeny Broth (LB) (10 g/L NaCl, 5g/L yeast extract, 10 g/L
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tryptone) at 37 °C with shaking at 250 rpm. To maintain plasmids, the antibiotics
ampicillin, chloramphenicol, and/or kanamycin were added at 50 ug/mL, 34 ug/mL, and
50 ug/mL, respectively as necessary. For screening experiments, E. coli MG1655 was
grown in M9 minimal medium (1x M9 salts, 1 mM thiamine hydrochloride, 0.4% glucose,
0.2% casamino acids, 2 mM MgSO4, 0.1 mM CaCl2) supplemented with the

appropriate antibiotics.

Validation of GFP silencing by flow cytometry in E. coli and S. Typhimurium

To investigate gene repression efficiency, 19 sgRNAs were selected to target the coding
strand of a degfp reporter gene at different positions in E. coli BL21(DE3) (Table S9).
Cells were initially transformed with three compatible plasmids encoding dCas9, a
degfp-targeting sgRNA, and a deGFP reporter (Table S16). For normalization purposes,
a positive control strain harboring a non-targeting sgRNA and a negative control strain
lacking the degfp encoding reporter plasmid was included. Overnight cultures of cells
harboring the above-mentioned plasmids were back-diluted to ODgy ~0.01 in LB
medium with ampicillin, chloramphenicol and/or kanamycin and incubated with shaking
at 250 rpm at 37 °C, until reaching an ODgy, of 1. Cultures were then diluted 1:25 in 1x
phosphate-buffered saline (PBS) and analyzed on an Accuri C6 flow cytometer with C6
sampler plate loader (Becton Dickinson) equipped with CFlow plate sampler, a 488-nm
laser, and a 530+/- 15-nm bandpass filter. Forward scatter (cutoff of 11,500) and side
scatter (cutoff of 600) were used to eliminate non-cellular events. The mean green
fluorescence value (measured by the FL1-H channel) across 30,000 events within a
gate set for E. coli was used for further analysis. The log fold repression of each gRNA
was calculated as the ratio between the difference in fluorescence values between the
gRNA and negative control, and the difference between the positive and the negative
control, followed by log transformation. The mean log fold repression across three
replicates was compared to predicted values from the machine learning models (Table
S11).
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For experiments with S. Typhimurium, the procedure was similar, but cells were grown
until an ODgy, of ~0.8 before analysis on an Accuri C6 flow cytometer. To eliminate
non-cellular events, the forward scatter (cutoff of 10,000) was used and the mean green
fluorescence value (FL1-H) across 30,000 events within a gate set for S. Typhimurium

was used for data analysis as described above across four replicates.

Generation of the sgRNA library

For the sgRNA library targeting the purine biosynthesis pathway in E. coli MG1655,
plasmid DC512 served as a backbone, following a previously established protocol (Liao
et al,, 2019). To generate a library with 800 sgRNAs (including 50 non-targeting
sgRNAs; Table S12), 800 forward and reverse oligonucleotides each encoding one
spacer and a 4-nt junction, were synthesized as an oPool (1600 oligos at 10pmol/oligo)
by Integrated Device Technology (IDT). The same 5' and 3' assembly junction
sequences were used for all spacer pairs leading to the same integration site within the
backbone (5" TAGT overhang at the 5" end and a 3' AAAC overhang at the 3' end).
Supplementary Table S16 contains the specific oligonucleotides and assembly
junctions used for the library generation. The oligos were phosphorylated and annealed
to form dsDNA with a 5’ and 3' overhang. The steps of phosphorylation and annealing
were combined and conducted in one pot, by adding 8,000 fmol of the oPool and 1 ul
T4 polynucleotide kinase (10 units) to 5 pl 10x T4 ligation buffer and then, adding water
until reaching a final volume of 50 pl. After mixing briefly by pipetting the mix was
incubated at 37°C for 30 minutes in a thermocycler and then incubated at 65°C for 20
minutes in a thermocycler to heat-inactivate the kinase. For the annealing of the forward
and reverse oligo pairs, the following thermocycler steps were added: 95°C for 5 min,
94°C for 15 s, decrease by 1°C, and hold for 30 seconds for 79 cycles. For integrating
the dsDNA inserts into DC512, 400 fmol of the dsDNA, 20 fmol of backbone plasmid,
0.5 uL of T4 ligase (1000 units), and 1.5 pL of Bbsl (15 units) were added to 2 yL of 10x
T4 ligation buffer, then water was added to reach a total volume of 20 pl. A thermocycler
was used to perform 35 cycles of digestion and ligation (37 °C for 2 min, 16 °C for 5 min)

followed by a final digestion step (60 °C for 10 min) and a heat inactivation step (80 °C
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for 10 min). After Ndel digestion (37°C, 1h) of the ligation mix to remove any remaining
original backbone plasmids and subsequent ethanol precipitation, 10 ul of the ligation
mix was transformed into electrocompetent E. coli NEB10 beta (NEB, Ipswich, MA,
USA), following the manufacturer’s instructions. After transformation and recovery in 1
ml SOC for 1h at 37 °C with shaking at 250 rpm, different dilutions of the recovered
cells were plated on LB agar containing the appropriate antibiotic and incubated for 16 h
to check the number and color of the resulting colonies (ensuring a ~58X coverage).
The rest of the recovered culture was added to 100 mL LB media containing the
appropriate antibiotic and incubated at 37 °C with shaking at 250 rpm to ODgy = 1. Cells
were harvested by centrifugation and subjected to plasmid extraction. Sanger

sequencing was used to validate the library plasmid DNA.

Screening experiment

E. coli strain MG1655 was initially transformed with a dCas9 encoding plasmid (2.0 kV,
200 Omega, and 25 pF). The resulting strain SG332 was then transformed with the
sgRNA library by electroporation and recovered in 900 yl SOC for 1.5h at 37 °C with
shaking at 250 rpm. Different dilutions of the recovered cells were plated on LB agar
containing the appropriate antibiotics and incubated for 16 h to check the number of the
resulting colonies (~56° colonies). The recovered culture was back-diluted to ODgy, 0.01
in LB medium with appropriate antibiotics and incubated at 37 °C with shaking for 13h.
Subsequently, 5 mL of the culture was sampled and the library was extracted by
miniprep (Nucleospin Plasmid, Macherey-Nagel) to obtain the initial sgRNA distribution.
The calculated amount of culture to reach ODgy, 0.01 in 50 ml M9 minimal medium, was
sampled and washed twice with M9 minimal medium to remove traces of the LB
medium. The culture was incubated at 37°C with shaking until it reached ODgy 1,
allowing ~6 replications. 5 ml of the culture was sampled at ODgy, 0.2 and ODg,, 0.6 and
at ODgy 1 and the library was extracted by miniprep. The experiment was performed in
duplicate starting from two independent transformations of MG1655 with the plasmid

library.
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Library sequencing

The sequencing library was generated using the KAPA HiFi HotStart Library
Amplification Kit for lllumina® platforms (Roche) and the primers listed in
Supplementary Table S16. The first PCR adds the first index. The second PCR adds the
second index and flow cell-binding sequence. The amplicons of the first and second
PCR reactions were purified using solid-phase reversible immobilization beads (AMPure
XP, Beckman Coulter) following the manufacturer’s instructions to remove excess
primers and possible primer dimers. The sequencing library samples, with the required
DNA concentrations ranging from 100 pg - 200 ng in a total volume of 10 yL, were
submitted to the HZI NGS sequencing facility (Braunschweig, Germany) for paired-end
2x50bp deep sequencing with 800,000 reads per sample on a NovaSeq 6000

sequencer.

Sequencing data processing
Paired-end reads were merged using BBMerge (version 38.69) with parameters

“gtrim2=t, ecco, trimg=20, -Xmx1g”. Merged reads with perfect matches were assigned
to the gRNA library using a Python script. After filtering guides for at least 1 count per
million in at least 4 samples, read counts of each gRNA were normalized by factors
derived from non-targeting guides using the trimmed mean of m-values method in
edgeR (version 3.28.0) (Robinson et al., 2009). An extra column was added to the
design matrix to capture batch effects between the two replicate experiments.
Differential abundance (logFC) of gRNAs between time points and the input library were
estimated using edgeR, and a quasi-likelihood F test was used to test for significance

after fitting in a generalized linear model.
Code and data availability

All code necessary to reproduce this results in the manuscript are available at:

https://qgithub.com/BarquistLab/CRISPRI_guide efficiency bacteria. Raw sequencing

data for the CRISPRI purine screen has been deposited in GEO under accession
GSE196911. A webserver implementation of the final MERF model is available at:
http://ciao.helmholtz-hiri.de.
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