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Polymer physics-based classification of neurons
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Abstract
Recognizing that diverse morphologies of neurons are reminiscent of structures of branched polymers,
we put forward a principled and systematic way of classifying neurons that employs the ideas of polymer
physics. In particular, we use 3D coordinates of individual neurons to calculate the form factor, F(q),
a Fourier transform of density-density correlation of particles comprising an object of interest. For a

D at an

polymer-like object consisting of n monomers, F'(q) scales with the wavenumber ¢ as F(q) ~ ¢~
intermediate range of ¢, where D is the fractal dimension or the inverse scaling exponent (D = v~!)
characterizing the geometrical feature (r ~ n”) of the object over a length scale r(= 27/q). F(q) can be
used to describe a neuron morphology in terms of its size (R,) and the extent of branching quantified
by D. By assessing the similarity between F'(q)s calculated for a set of neurons, we tackle the neuron
classification problem. Our F(q)-based classification, applied to publicly available neuron datasets from
three different organisms, not only complements other classification methods but also offers a physical

picture of how the dendritic and axonal branches of an individual neuron fill the space of dense neural

networks inside the brain.
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INTRODUCTION

Form determines function in biology. Neurons, which are the basic signaling units of the nervous
system, are not an exception [1]. Since Ramén y Cajal provided evidence that this general hypoth-
esis is also at work in neurons [2], the problem of classifying neurons based on their morphology
has been a subject of considerable interest in brain research. Along with a causal relationship
for the correlation between the neuronal morphologies and spiking patterns of electrophysiological
recordings [3], the morphological detail of a neuron has been suggested as one of the key deter-
minants of physiology and functional differentiation of neurons [4-8|, engendering a number of
morphology-based classification methods [9-23].

Neurons, demonstrating a variety of elaborate arborization and branching patterns, are consid-
ered fractal objects, which has led several studies to calculate fractal dimensions to characterize
neurons by the box-counting method [7, 24-28]. As a physical object, many neurons entangled
and filling the space inside the brain are reminiscent of a solution or a melt of branched polymers.
Since structures of polymer chains in various solvent conditions or polymer concentrations have
long been investigated with scattering experiments [29, 30], we put forward calculating the form
factor F(¢q) to quantify the structures of individual neurons, and then grouping the neurons based
on the similarity between the calculated F(gq)s.

Here we apply our F(q)-based analysis of neurons to publicly available datasets reconstructing
neuron morphologies from (i) C. elegans nervous system [31], (i) Drosophila olfactory projec-
tion neurons [13], and (iii) the mouse primary visual cortex (V1) neurons in the Allen Cell Type
database [11]. The F(q)-based analysis leverages the full 3D coordinates of neurons reconstructed
from images without resorting to any prior knowledge of the neuron morphology. The outcomes
from our classification method are found comparable to other existing analyses; yet, they offer mor-

phological insights into neurons in the language of branched polymers under various conditions.

THEORETICAL BACKGROUND
Two length scales in neuron morphology

Individual neurons tend to feature densely branched structures, and hence their morphological

characteristics can be analyzed in terms of polymer physics describing the conformation of
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branched polymers. Since branched polymers are composed of multiple sections of linear polymers,
two distinct ranges of length scale (r) are of relevance in our discussion (Fig. 1A) [32]: (i) The
first range is defined at b < r < [, where b is the mean segment size defined between the data
points in the reconstructed neurons and I(= N; ' 32N ;) is the average length of linear sections
(branches) between branch points or from one branch point to an axonal or dendritic tip. There
is a great variation in length (/;) (Fig. 1B). The neurons over this scale are effectively described
as a linear polymer. If the flexibility of a polymer in this length scale is large, one could divide
the polymer chain into multiple segments of Kuhn length; yet we have found that neurons
in this length scale are typically stiff, lacking flexibility. (ii) The second range is defined at
[ < r < R,, where R, is the average size of the neuron, which is tantamount to the gyration radius
(R? = 5= SV Zj.v:l(ri —r;)?) for a globular object (i.e., R, = R,). In this range, the structural

features of a neuron can be best represented through those of branched polymers.

Form Factor

Regardless of whether a given object is a polymer chain or a neuron, if the object is composed
of N monomers whose relative displacement in space is given as r; —r; (4,5 = 1,2,...,N), the

corresponding form factor F'(q) [33-36] can be calculated using

Al = (Do) = g 31y 0

qrij;

where r; is the position vector of the i-th segment (or monomer), and q is the scattering wave
vector. Averaging over the angle between q and r; — r; leads to the second expression with ¢ = |q|
and 7;; = |r; —r;|. F(q) corresponds to the Fourier transform of the pair correlation function
of the density field of monomers at two positions, p(r,) = > . 0(re —1;) (@ = 1, 2). With the
density field p(r,), Eq. 1 is expressed in the form of F(q) = + [ [{p(r1)p(r2))e 41 ) dr dry,
which can be further cast into F(q) = + [ [{p(r12)p(r2))e "™ 12dr 5dry = [ p(r)e*97dr. Here, the
term (p(ri2)p(ra)) is the joint probability that one monomer is located at rip(= r; — ry) relative to
another monomer at position ro, which is equivalent to the conditional probability of the monomer

at r given that another monomer is at the origin (rg) multiplied by the mean local monomer density,

Le. (p(ria)p(ra)) = {p(rlro))p(ro) = p(r)p(xo).
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For | < r < R, with r = |r|, p(r) corresponds to the density of monomers inside a volume of
a radius 7, i.e., p(r) ~ n/r? where n is the average number of monomers inside the volume ~ r¢
at d dimensions. There is a scaling relationship between n and r, r ~ n” with v the size scaling
exponent (or the inverse fractal dimension D = 1/v that satisfies n ~ rP), which reflects how the

n monomers comprising the object are organized over the space defined by the length scale r [37].

The dimensional analysis with p(r) ~ 7/*~% and dr ~ r%2dr yields [33]

Flg) ~ / drp(r)e " ~ g Y~ . 2)

Depending on the wavenumber in the range of either 27/l < ¢ < 27/b or 7/R,, < q < 27/l which
translates into the physical length scale via r = 27/q, F(q) reveals different structures of neurons
in terms of the scaling exponent v (or D).

On the other hand, for ¢R, ~ 1, corresponding to the Guinier regime,

F(Q)N/drp(r) [1—i(q-r)—%(q.r)2+...

¢*(R2) 4> (R2)
3

:N{l— (3)

} ~ F(0)e

The radius of gyration of an object, R; = ﬁ [ r?p(r)dr, can be obtained from the slope of log F'(q)

Olog F(q)

vs ¢* at small ¢, such that (R?) = —3lim,0 —5

In what follows, we review the scaling exponents of a linear or a branched polymer chain under

various conditions [32, 33, 36].

A polymer chain in dilute solution

According to the basic theory of polymer physics, the size (Rp, Flory radius) of a polymer chain
scales with its length N as Rrp ~ NV, where the scaling exponent v is determined by the solvent
quality. In three dimensions (d = 3), a single flexible linear polymer adopts swollen conformations
in a good solvent with v = 0.588 but collapses to a globular form in a poor solvent with v = 1/3 [33].
At the ©-condition, which is a tri-critical point between a good and poor solvent condition where
the attraction and repulsion at the level of two-body interaction compensate each other, a flexible

polymer adopts conformation like those of ideal polymer that obeys the scaling law of Rp ~
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N1/2 (33, 38, 39]. Meanwhile, for a stiff polymer characterized by a large persistence length, one
finds Rp ~ N with v = 1 regardless of the solvent quality.

For | < r < R,, the neuron morphology can be studied by considering the structure of a
branched polymer. In general, the Flory free energy of a polymer consisting of N monomers with
the statistical segment of size b can be written as

2

BF(R) ~ o+ 5 )R+ SR+ (1
The first term (R2) is the mean square size of an ideal polymer: (RZ) ~ b*N for linear polymers,
whereas (R2) ~ b>N'/2 for randomly branched ideal polymers [36, 40]. The first term constrains
the size of the polymer purely elastically so that any attempt to elongate the polymer engenders a
restoring force of —kR with the spring constant of & ~ 1/(R%). The remaining terms arise from the
interaction between the monomers whose effective density inside the pervaded volume of a polymer
of size R is given as (p) ~ N/R? The second and third terms are due to two-body and three-
body interactions. Bs is the second virial coefficient, which decides the strength of the two-body
interaction; By > 0 is for the interaction between monomers in good solvent conditions, making the
two-body interaction repulsive. Under a simplifying assumption of zero correlation ((p™) = (p)"),

the Flory free energy up to the two-body interaction term is written as

R? By N?

BF(R)”W—UQJFE@, (5)

which is minimized via OF(R)/0R|r=gr, = 0 with By = v, yielding
1
v\ a2 5
Rp~b (b—d> N7@, (6)
Thus, the size scaling exponent of a randomly branched polymer in a good solvent at d = 3 is
v=1/2(D=2) [32].
Under the ©-solvent condition, the second virial coefficient vanishes (B; = 0), and the Flory
radius of a branched polymer is determined from the balance between the elastic free energy and

the three-body interaction term with B3 = w in Eq.4 as

1

Rr ~b <%> 2a+1) N4(d7+1)_ (7)

Thus, the size scaling exponent of a randomly branched polymer under ©-solvent condition at

d=3isv="7/16 (D =1/v =2.29) [32).
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TABLE I: Scaling exponent v of polymer chain under various conditions.

Type Solvent property v D
Poor 1/3 ] 3
Linear polymer in dilute solution O-condition 1/2 ] 2
Good 0.588|1.70
Ideal 1/4 | 4
Branched polymer in dilute
©-condition 7/16 |2.29
polymer solution
Good 1/2 ] 2

Branched polymer in semidilute |Semi-dilute (good solvent)|0.395|2.53

polymer solution

Branched polymer in dense Melts 1/4 | 4

polymer solution

A polymer chain in semi-dilute/dense polymer solution.

When the concentration of polymer solution increases, the individual chains start overlapping,
influencing the chain conformation of neighboring polymers, which defines the overlap volume
fraction @, ~ Nb*/ R} ~ N'73_ In the semi-dilute regime (®. < ® < 1), it is no longer discernible
whether two spatially adjacent monomers are from the same chain or different chains, and the
original strength of the intra-polymer two-body interaction (Bs = v) is screened to yield By ~

v/N'/2. In this case, the Flory free energy is written as

R? 1/ v \ N?
P~ v + 5 () 7o ®
and OF(R)/OR R 0 yields the Flory radius of
=Rp
V\TE 2
Rp=1» (ﬁ) N, 9)

Thus, the size scaling exponent of a randomly branched polymer in a semi-dilute polymer solution
under good solvent condition is v = 2/(d + 2) = 2/5 = 0.4. This number is close to the exponent
v = 0.395, the inverse fractal dimension of percolating clusters at percolation threshold (p = p.),

D = 1/v = 2.53, estimated from computer simulations [41].
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For dense melts of branched polymers (®. < ® ~ 1), the interactions between polymer segments
are fully screened. In this case, individual branched polymers behave as if they are effectively in
an ideal condition, giving rise to the scaling relationship of Rp ~ NY* and interesting scaling
F(q) ~ ¢~* emerges in the range of intermediate q (7/R, < q < 2r/l). Since the linear sections
of neurons (b < r < [) are stiff and effectively rigid rod-like, the length of the statistical segment
(Kuhn length) is ~ [, and the number of statistical segments comprising the branched polymer
is bN/I. Therefore, the size of polymer scales as Rp ~ [(bN/1)"/* = b(l/b)>/*N'/*. The fractal
dimension of D = 4 may sound geometrically impossible; however, an object with fractal dimension
D = 4 is still permissible in the range of I < r < Rp because the stiff linear section creates extra
space at b < r < [ [36].

Although it is not directly relevant to our problem that discusses branched polymer-like neurons
comprised of rigid segments with large persistence length, a scaling behavior of F(q) ~ ¢~* could
also emerge in the Porod scattering F(q) ~ ¢~(®=P%) at large ¢ regime (¢ < b™') [42-44] when the
surface of a compact globule formed by a flexible chain under a poor solvent condition, contributing

to the scattering intensity, is smooth and has a surface fractal dimension of Dy = 2.

The scaling exponents (fractal dimensions) for different types of polymers are summarized in

Table 1.

RESULTS

Here we present our F'(¢)-based analysis on the datasets of neuron morphology reconstructions
from three distinct organisms with an increasing degree of complexity (Fig. 2): (i) the C. elegans
nervous system, (ii) projection neurons in the Drosophila olfactory system, and (iii) mouse primary

visual cortex neurons.

Neurons in C. elegans

C. elegans is one of the organisms whose neural connectivity has been fully mapped. Morpho-
logical reconstruction of the C. elegans nervous system is available as a part of the OpenWorm
initiative which created a complete connectome of the organism [31] (see Fig. 2A). C. elegans has

302 neurons with their morphologies and inter-neural connectivity being fully specified [45, 46].
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Because of its relative simplicity, it is an ideal organism to explore the basis of neural dynam-
ics and brain function [47-49]. Partial, but more detailed reconstructions are also available for
small parts of the sensory neurons [50-52]. Complex neural behaviors of both associative and
non-associative learning are realized through these neurons [46] which are functionally classified
into sensory, motor, interneurons, polymodal, and unknowns [31, 46, 53, 54] (Fig. 3). Respective
circuits for specific behaviors such as locomotion and chemosensory responses are well-documented
as well [46, 48, 51, 55].

The overall architecture of neurons in the C. elegans nervous system largely conforms to the
organism’s tubular body shape, which is reflected in the F'(q) plots of large neurons classified into
clusters CFE, C§E and CSP. The neurons in these clusters exhibit D ~ 1 at the wavenumber
smaller than the dips formed at ¢ &~ 27/dc(~ 0.13 pm™!) (dotted lines in Fig. 4A) where do(~ 47.9
pum) is the average diameter of the cross-section [56, 57]. The 2/3 of neurons (N = 198) come in a
pair projecting on the left and right sides of the body, and the rest (N = 104) are largely confined
either in the head or in the tail region.

The F(g)-based clustering groups 302 neurons into five clusters based on their overall morpho-
logical features (Figs. 4 and 5). (i) The neurons involved with the interneurons (N = 34) and motor
function (N = 37), which span across the entire body, are grouped into the cluster C® (N = 85).
The rest of the cluster is composed of 6 sensory neurons, a polymodal neuron, and 6 unknowns. (ii)
The cluster CSE is made of 2 PVD neurons (PVDL and PVDR), which are known to be responsi-
ble for the sensory detection of drastic changes in mechanical forces, osmolarity, and temperature
[58-60]. They feature a dendritic morphology of exceptional branching patterns repeating across
the entire body (Fig. 4B). The F(q) of the PVD neurons scales F'(q) ~ ¢~2, exhibiting the fractal
dimension of D = 2 at 27/dc < q < 27/l (Fig. 4A), indicating that the morphology of PVDs
with intricate branching pattern (C$E of Fig. 4B) is similar to the configuration of a self-avoiding
branched polymer in dilute solution. (iii) The neurons in the cluster C$® (N = 44), structurally
similar to those in CF® but are shorter in branch length (), are mostly motor neurons (N = 32).
The cluster also contains a small number of sensory (N = 5) and interneurons (N = 7). (iv) The
clusters CSE and CF® are comprised of small to mid-sized neurons mainly confined around the
head region. Unlike the other neuron clusters, the neurons grouped in cluster CSE (N = 100) are
diverse in terms of neuron type composition, containing 44 sensory neurons, 22 interneurons, 22

motor neurons, 6 polymodal neurons, and 6 unknowns. The cluster CS® (N = 71) consists of 4
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sensory neurons, 33 interneurons, 26 motor neurons, and 4 polymodal neurons. The clusters C{F
and CS® can be further classified into smaller clusters by repeating the application of the same
clustering algorithm to each cluster (C$F and CSF in Fig. 5A, and Figs. 5B and 5C).

Taken together, it is found that the motor and interneurons grouped in CF® and CSE are
branchless and extend across the entire body of C. elegans. In contrast, the neurons with sensory
function (PVDs) grouped in CSF are characterized by the pattern of extensive branching. Although
the neurons classified in the clusters CS® and CFF are still in a mixture of many neurons with
different functional types, their sizes (contour lengths) are smaller than those in CFF, CSE and
CSE. Overall, the F(g)-based clustering, which captures the morphological features of neurons, has
grouped the neurons in C. elegans nervous system into their respective functional type to a first

approximation.

Projection neurons in three neuropils of Drosophila olfactory system

The full Drosophila hemibrain connectome constructed from electron microscope images [13, 61]
offers neuron morphologies at high resolution. The neurons constituting the second-order layer
of the Drosophila olfactory system are made of three types of projection neurons, which include
uniglomerular PNs (uPNs), multiglomerular PNs (mPNs), and local neurons (LNs). Among them,
uPNs (N = 111) are bundled together into on average 3 uPNs and comprise ~ 50 distinct glomeruli,
which receive signals from ~ 50 different types of olfactory receptor neurons (ORNs) where a diverse
array of chemical signals are encoded via the combinatorial coding [62-66]. The uPNs extend across
the layer of second-order neurons, bridging between ORNs and higher olfactory centers (see Fig. 2B).
The multiglomerular PNs (mPN) (N = 30) extend over multiple glomeruli, and the local neurons
(LNs) (IV = 12) are confined within the neuropil.

The PNs extend their dendritic and axonal branches and these branches are densely entangled
to form three neuropils. Along the neural signal transmission pathway, the antennal lobe (AL) is
the first neuropil, consisting of the ~ 50 glomeruli and the axonal extensions of the uPNs in AL
project to the other two neuropils, mushroom body (MB) calyx and lateral horn (LH), which are
the sites that synapse with Kenyon cells and lateral horn neurons for learned and innate responses
to olfactory signals, respectively [67-71]. Since neuron projections in each neuropil feature unique

morphology which is discernible from one neuropil to another, we segmented the uPNs into the
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parts contributing to each of the three neuropils [72] and analyzed them separately.

In AL, F(q)-based clustering results in seven clusters (Fig. 6), characterized by 2 < D < 4 at
7/R, < q < 27 /l. The clusters C**, C2, C4F) and CF, which represent the major population of
the 127 PN projections to AL, are characterized by the structure of a branched polymer in melts
(D = 4), semi-dilute polymer solution (D = 2.53), and dilute polymer solution under ©-solvent
(D = 2.29) or good solvent (D = 2) condition.

In MB calyx, F(q)-based clustering identifies six clusters (Fig. 7). The minor cluster CM® is
comprised of 3 regulatory neurons. These neurons are either an MB output neuron (MBON) or an
MB-C1 (inhibitory interneurons) [13], whose shapes greatly differ from typical PNs. Remarkably,
the F(q)-based clustering correctly separates them out. In the clusters C}B, CMB CMB and CMB,
the PNs exhibit boutons of the size around 3—6 pum [73] at the tip of protrusions stemming from the
main axon (Fig. 7). KCs form claw-like projections and envelope boutons at the synaptic site [74].
The structural characteristic of the two-layered hierarchy manifests itself in the F(q) plots with
D =~ 2.29, indicating that axonal branches adopt the configurations of branched polymer in the
O-solvent at two different length scales, below and above the ‘plateau’ at ¢ ~ 0.4 yum="* (r ~ 16 ym)
(see the arrows pointing the plateau of C}B and C3}® in Fig. 7). This trend is practically absent
in clusters C}'® and C3™ which have only a small number of boutons in each PN.

In LH, there are six clusters (Fig. 8). Similar to C}B and C}'® in MB calyx, the clusters C
and CI! in LH are characterized by the F'(q) displaying a ‘plateau’. Despite the overall similarity
in the shape of F'(q) in that a plateau is present at intermediate ¢, the details of F'(¢) and the
actual PN morphologies in LH are slightly different from those in MB calyx (Fig. 8). The plateaux
of CH and CI are identified at ¢ ~ 0.5 — 0.6 yum™' (r ~ 11 pum). Furthermore, visual inspection
of the morphologies indicates that smaller axonal branches are uniformly distributed over the main
branches of PNs in LH. From CI to CI* the PNs change their morphologies from that of the
melt of branched polymer (D = 4) to that of branched polymer in ©-solvent (D = 2.29) and to
that of branched polymer in a good solvent (D = 2). In the remaining clusters, C}?, CM and
CE PNs are small in size and relatively featureless (D = 1). The difference between the clusters
stems from the overall size (R,,).

In the second-order neurons of the Drosophila olfactory system, PNs with different morphology

are mixed to constitute synaptically dense MB calyx and LH.
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Neurons in mouse primary visual cortex

The Allen Cell Type database contains full and partial reconstructions of neurons in the mouse
primary visual cortex (V1), which plays a critical role in visual processing as the first cortical
region to receive visual input [75]. Visual signals processed in V1 are sorted [76] and relayed
to at least 18 different brain areas [77-79] which are deemed functionally distinct [80]. The V1
is divided into 6 functionally distinct layers [81]. For example, the layers 2 and 3 house many
direction-selective oriented cells [82]. Layer 5 is known for mostly non-oriented cells with a large
receptive field [82]. Diverse types of neurons with varying sizes spanning across multiple layers
(see Fig. 2A) comprising V1 are rich in pyramidal cells, whose organization maps the orientation
preferences [83]. Gouwens et al. performed hierarchical clustering on the Allen Cell Type database
using a combination of morphometric features such as branch number and the total contour length
of the neurons [11]. All neurons in the Allen dataset are categorized under two different dendrite
types, either spiny or aspiny based on the existence of dendritic spines, which are small protrusions
along the dendrite where synaptic inputs occur. Although individual neurons are labeled with
dendrite type information, these minuscule structures are not represented in the morphological
reconstructions. Here, instead of relying on morphometry, we calculated the F'(¢)s of V1 neurons
by leveraging the 3D coordinates provided in the database to assess the similarity between them
and repeated Gouwens et al’s clustering procedure.

In comparison with Gouwens et al. who classified V1 neurons into 19 clusters for spiny neurons
and 19 clusters for aspiny neurons [11], our F(g)-based clustering produced 11 and 8 clusters for
spiny and aspiny neurons, respectively (Fig. 9 and Fig. 10). The difference in the number of
clusters likely stems from the fact that information on relative soma depth, for instance, utilized in
morphometry-based clustering, is not explicitly included in the F'(g)-based clustering.

From the F'(q) plots, it becomes clear that neurons are classified based on the fractal dimensions
and the neuron size into several distinct subgroups. For spiny neurons, clusters C{P™ | C5P™  CSPiY|
and CP™ all share D = 2.29 for /R, < q < 2n/l (or | < r < R,) (Fig. 9), which corresponds
to the geometric characteristics of a branched polymer in © solvent. The clusters C3P™, C2P™
and C’Spmy are featured with D ~ 2.53, indicative of the configurations of branched polymer in
semi-dilute solution. Morphologically, these clusters exhibit relatively denser dendrites with higher

branchness than those clusters with D = 2.29 (Fig. 9). The clusters C;*™, CP'™  and 3™

11


https://doi.org/10.1101/2022.04.07.487455
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.07.487455; this version posted April 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

display the same fractal dimension, D = 2, at 7/R,, < q < 27/l, indicative of the conformation
of a self-avoiding branched polymer in dilute solution; yet differ from each other by their neuron
size (Rp(CP™) > R, (CP™ > R,(CP™)). The cluster 2™ displays 2.53 < D < 4, featuring
unusually dense arborization, similar to that of a branched polymer in a melt. For aspiny neurons
(Fig. 10), we find that the clusters C2™  C25™ and C2P™ are characterized with D = 4; C3*P™
C2PM and CFP™ with D = 2; C5P™ with D = 2.29; and C3™ with D = 2.53.

We notice that the spiny neurons are on average characterized with D™ a2 2.37, whereas the
aspiny neurons with D#PY = 2 55 Thus, the neuron mass density (p ~ n/r® ~ rP=3 ~ nl=3/P)
is higher in aspiny neurons (DP™ < DaPny) Tt is noteworthy that the absence (or presence) of
apical dendrites, whose size is comparable to the size of a neuron (R,,), does not provide a significant
contribution to the fractal dimension in the intermediate scale 7/R,, < q < 27/I.

Compared with the morphology types defined by Gouwens et al., F'(q)-based clustering prioritizes
the overall structural similarity dictated by D and R, (and more precisely by d;; of Eq. 11).
However, the two clustering outputs are highly associated, as the Pearson’s y?-test between the
two clustering outputs results in very small p-values for both the spiny and the aspiny neurons
(p = 9.368 x 10733 and p = 8.736 x 102! respectively). The F(q)-based clustering correctly
captures the morphological characteristics of the neurons and can be utilized as an alternative

criterion for clustering.

DISCUSSION

The F(q)-based clustering produces a comprehensible and systematic classification of neurons,
complemented by the size (R,) and the fractal dimension (D) that quantifies the extent of the
branching pattern of reconstructed neurons. We argue that different groups of neurons classified
based on their morphology has functional significance. In particular, the branchness of neurons,
quantified by D, is of great significance to the firing activities of neurons, which should be deter-
mined by the densities of ion channels on the membrane surface. For a neuron characterized with
D, it is expected that the conductance (G) per neuron is proportional to the total number of ion
channels (nq,) or the capacity of the neuron dictated by the total contour length (L ~ RP). If
one imagines that a neuron is locally a cylindrical object with a cross-sectional diameter d(z) at a

given position z along its contour [28] and that the density (o) of ion channels on the membrane
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surface is given, the conductance of ions across the membrane surface of a neuron is estimated as
L —
G~ ng ~ Uch’/T/ d(z)dz ~ o, RPd. (10)
0

where d = fOL d(x)dz/L is the average cross-sectional diameter of a neuron. A densely branched
neuron characterized with a greater fractal dimension, say D = 4, is expected to display a higher
conductance than a branchless neuron with D = 1. Functional differentiation of neurons, dic-
tated by various firing patterns, has indeed been associated with a morphologically heterogeneous
neuronal population [3].

The clustering based on topological characteristics (e.g. morphometrics) [11, 15, 17-19] is con-
ceptually akin to our F(¢q)-based clustering. Although the morphometrics-based classification could
be more comprehensive with a set of geometrical features selected, it requires a more extensive pre-
processing as well as careful selection of feature sets to avoid introducing a bias or redundancy.
Accompanied by electrophysiological measurement [10, 11] and stimuli response profiles [84], our
F(q)-based classification, which employs the entire 3D image (coordinates) of neurons with no
prior knowledge, holds good promise for a systematic study to elucidate the structure-function
relationship in neuron, namely, the relationship between the neuron morphologies and the neural

activities.

METHODS

Data preparation

e A total of 302 morphological reconstructions of neurons in the C. elegans nervous system
were collected from the OpenWorm dataset [31]. The neuron type information available from
the dataset was used to assign each neuron into one of the five functional categories (sensory,

motor, interneuron, polymodal neuron, and others).

e For the Drosophila olfactory projection neurons, we use the TEMCA2 dataset [13]. A total
of 162 Drosophila olfactory neurons are present in the dataset, which are extracted from
the right hemisphere of the female Drosophila. In the dataset, three neurons (ID=203840,
2738003, 2738059) that are identified to be not PNs and six neurons (ID=1549518, 2738042,
2738083, 2738261, 2970058, 2970073) that did not project to any of the neuropils are dropped.
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We removed artifacts in the data in which certain data points are dramatically offset from
the expected trajectories due to misalignments of images when constructing the original mor-
phological skeleton. These data points were identified by a geometrical criterion that the
distances between three consecutive points should be smaller than 10 ym. Next, we system-

atically segmented the neurons inside the three neuropils using the same process detailed in

72].

The Allen Cell Type Database [11] contains 509 full and partial morphological reconstructions
of neurons in the mouse primary visual cortex. Following Gouwens et al. [11], we classify the
whole neurons into 234 spiny and 275 aspiny neurons. When comparing the clustering results,
we noticed that Gouwens et al. used 461 morphological reconstructions which is smaller than
what is currently available in the database. Gouwens et al. provided the exact cell IDs for
461 morphological reconstructions, but a subset of cell IDs do not match with those currently
present in the database. Therefore, when performing y2?-independence tests, we only use
neurons present in both the current Allen Cell Type Database and the list of neurons shared

by Gouwens et al. A total of 430 neurons match this criteria (230 spiny and 200 aspiny).

In all datasets, the morphological information of each neuron is stored as a set of 3D coordinates

with the connectivity specified in the parent samples. Complete reconstruction of neuron mor-

phology is made by connecting data points based on their parent-child relationship. Reconstructed

neuronal morphology is analyzed to identify branching points, where more than one child points

identify as a parent. Tips of the neuron were defined if no other child points were present. In this

study, a branch is defined as a set of points between two branching points or between a branching

point and a tip.

F(q)-based clustering of neurons

After calculating the F(q) for each neuron, we cluster the set of neurons using a hierarchical

clustering algorithm. We define the ‘distance’ between the F'(q)s of i-th and j-th neurons by using

the Euclidian distance (L2 norm),

N
diy = \| S IFia0) — Fylan)2
n=1
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Since our interest largely lies in the intermediate ¢ regime where the features of branched polymers
are observed, d;;’s are calculated over the range of m/R,, < q < 2r/l. Calculation of d;;s over all i
and j pairs gives rise to a square distance matrix, to which the hierarchical clustering algorithm
is applied. For the Allen Cell type dataset, we follow the same procedure as Gouwens et al., who
separated spiny and aspiny/sparsely spiny neurons before clustering [11]. Hierarchical clustering
was carried out separately on spiny and aspiny neurons, and the clusters were collected based on
the dynamic hybrid cut tree method [85]. The minimal cluster size of 4 was imposed for the mouse
V1 in Gouwens et al. [11] and smaller clusters are automatically merged to a neighboring cluster.
For the neurons in C. elegans and Drosophila olfactory system, we applied the same criterion of
clustering as that of the mouse V1 neurons for consistency but did not impose the minimal cluster

size restriction so that if necessary we can sample small clusters as well.
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FIG. 1: (A) Two different range of length scales associated with typical neuronal architecture mapped on
a structure of branched polymer: (i) b < r < [ and (ii) [ < » < R,. The black filled circles depict the
branching points. I; is the contour length of a branch, which is the segment between two branching points
or between a branching point and a tip. b is the average size of segment defined between two consecutive
data points along the neuron branch, /(= N, fl val l;) is the average length of branches, and R, is the size
of neuron. (B) The distribution of the branch length (/;) of neurons in the cluster C;piny from the mouse

V1.
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FIG. 2: Diagrams of three systems where F'(g)-based analysis was made: (A) the C. elegans nervous

system, (B) Drosophila olfactory projection neurons, and (C) Mouse primary visual cortex.
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FIG. 3: Tllustrations depicting the morphological reconstructions of neurons in C. elegans. Depicted at the
top is the entire C. elegans nervous system. The nervous systems are redrawn for the neurons of different

functional types.
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FIG. 4: (A) F(q) plots of neurons in the C. elegans nervous system grouped by the F(g)-based clustering

result. The dotted lines denote g(= 27/d¢) corresponding to the inverse scale of the average diameter

(do) of adult C. elegans. The dashed lines denote g(= 2 /l) correspond to the average branch size [ of

neurons in the cluster. Reference fractal dimensions (Ds) are highlighted in the F'(g)-plots with the slopes.

The clusters from CCF to CEF are indexed based on the average size (R,,) of neurons in each cluster in

a decreasing order. (B) Illustrations depicting the morphological reconstructions of neurons in C. elegans

grouped by the F(q)-based clustering. The same colors are used as in (A) for each cluster.
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FIG. 5: (A) Pie charts depicting the functional composition of F'(g)-based clusters in the C. elegans nervous
system. The subclusters of CEE and C’5CE when the same clustering algorithm is applied repeatedly are
shown inside the boxes. The size of the pie charts reflects the total contour length of neurons in each
cluster. Illustrations depicting the morphological reconstructions of neurons in (B) the cluster C’EE and
(C) the cluster C’5CE with functional labeling. The enlarged 3D reconstruction of neurons in the head

region, marked by gray boxes, is depicted below for each functional type.
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FIG. 6: F(q) plots of the PN projections to AL in the Drosophila olfactory system grouped by the

F(g)-based clustering result. The dotted lines denote ¢ corresponding to the inverse scale of neuron size
(¢ = ©/R,) of the cluster, and the dashed lines correspond to the average branch size [ of neurons in the
cluster (¢ = 2n/l). Reference fractal dimensions (Ds) are highlighted in the F(q)-plots with the slopes.

The clusters from C*¥ to CAL are indexed based on the average size (R,,) of neurons in each cluster in a

decreasing order.
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FIG. 7: F(q) plots of the PN projections to MB in the Drosophila olfactory system grouped by the F(q)-
based clustering result. The locations of plateau in C}B and C}B at ¢ ~ 0.4 pm~! are indicated by the

arrows. Other details are the same as Fig. 6.
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FIG. 8: F(q) plots of the PN projections to LH in the Drosophila olfactory system grouped by the F'(q)-
based clustering result. The locations of plateau in C{JH and C’%H at ¢ ~ 0.5 —0.6 um~"! are indicated by

the arrows. Other details are the same as Fig. 6.
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FIG. 9: F(q) plots of spiny neurons in the mouse primary visual cortex grouped by the F(q)-based

clustering result. Other details are the same as Fig. 6.
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FIG. 10: F(q) plots of aspiny neurons in the mouse primary visual cortex grouped by the F(q)-based

clustering result. Other details are the same as Fig. 6.
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