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Abstract 30 

Animal African trypanosomosis, caused by blood protozoan parasites transmitted mainly by tsetse flies, 31 
represents a major constraint for millions of cattle in sub-Saharan Africa. Exposed cattle include 32 
trypanosusceptible indicine breeds, severely affected by the disease, and West African taurine breeds 33 
called trypanotolerant owing to their ability to control parasite development, survive and grow in enzootic 34 
areas. Until now the genetic basis of trypanotolerance remains unclear. Here, to improve knowledge of the 35 
biological processes involved in trypanotolerance versus trypanosusceptibility, we identified bovine genes 36 
differentially expressed in five West African cattle breeds during an experimental infection by Trypanosoma 37 
congolense and their biological functions. To this end, whole blood genome-wide transcriptome of three 38 
trypanotolerant taurine breeds (N’Dama, Lagune and Baoulé), one susceptible zebu (Zebu Fulani) and one 39 
African taurine x zebu admixed breed (Borgou) were profiled by RNA sequencing at four time points, one 40 
before and three during infection. As expected, infection had a major impact on cattle blood transcriptome 41 
regardless of the breed. The functional analysis of differentially expressed genes over time in each breed 42 
confirmed an early activation of the innate immune response, followed by an activation of the humoral 43 
response and an inhibition of T cell functions at the chronic stage of infection. More importantly, we 44 
highlighted overlooked features, such as a strong disturbance in host metabolism and cellular energy 45 
production that differentiates trypanotolerant and trypanosusceptible breeds. N’Dama breed showed the 46 
earliest regulation of immune response, associated with a strong activation of cellular energy production, 47 
also observed in Lagune, and to a lesser extent in Baoulé. Susceptible Zebu Fulani breed differed from other 48 
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breeds by the strongest modification in lipid metabolism regulation. Overall, this study provides a better 49 
understanding of the biological mechanisms at work during infection, especially concerning the interplay 50 
between immunity and metabolism that seems differentially regulated depending on the cattle breeds. 51 

Introduction 52 

Animal African Trypanosomosis (AAT) represents a serious impediment to livestock development in 53 
endemic areas of Africa (Alsan, 2015). This vector-borne disease is caused by blood extracellular protozoan 54 
parasites from the Trypanosoma genus (e.g., Trypanosoma congolense, T. vivax and, to a lesser extent, T. 55 
b. brucei) mainly transmitted by tsetse flies (genus Glossina). It affects about 50 million cattle in 38 56 
countries in humid and sub-humid zones of Africa by causing high morbidity and mortality (Uilenberg, 57 
1998), (Swallow, 2000). The Food and Agriculture Organization of the United Nations estimated its annual 58 
cost at $4.5 billion (Budd, 1999), (Mattioli et al., 2004). Up to now, no vaccine is available and the main 59 
prophylactic and curative measures are based on the reduction of transmission rates through vector 60 
control (Bouyer et al., 2013), and the use of trypanocides in livestock (Meyer et al., 2016).  61 

Interestingly, West African taurine (Bos taurus taurus) breeds (AFT), such as long-horn (i.e., N’Dama) 62 
and short-horn breeds (e.g., Somba, Baoulé and Lagune) that have lived in West Africa for about 4000 years 63 
(Payne & Hodges, 1997), (Hanotte et al., 2002), possess the ability to survive and remain productive in 64 
tsetse-infested areas by controlling parasitemia and limiting anemia and body weight loss caused by AAT 65 
(Murray et al., 1984), (CIPEA, 1979). AFT are thus called trypanotolerant. In contrast, both zebu (Bos taurus 66 
indicus) cattle, which arrived more recently in Africa (<2000 YBP) (Loftus et al., 1994), (Bradley et al., 1996), 67 
(Hanotte et al., 2002), and European taurine, which were recently introduced to increase African cattle 68 
productivity (Seck et al., 2010), are susceptible to AAT (Roberts & Gray, 1973), (Amene et al., 1991), (Doko 69 
et al., 1997). 70 

The trypanotolerant character is therefore a remarkable example of livestock adaptation to a selective 71 
pressure caused by a pathogenic agent. However, the molecular or biological mechanisms underlying this 72 
trait have puzzled researchers for dozens of years, although some immunological and genetic studies 73 
provided some clues. Indeed, the first immunological studies pointed out a better adaptive immune 74 
response and an earlier monocyte lineage activation in N’Dama compared to African Boran zebu (Authie 75 
et al., 1993), (Taylor et al., 1996), (Sileghem et al., 1993). Nevertheless, according to (Naessens et al., 2003), 76 
the hematopoietic system, which participates in anemia reduction, was not involved in the control of 77 
parasitemia. Moreover, several genetic studies on trypanotolerant and trypanosusceptible breeds revealed 78 
the polygenic architecture of trypanotolerance (Murray et al., 1990), (Trail et al., 1991), (Van der Waaij et 79 
al., 2003), (Hanotte et al., 2003). Further transcriptomic studies (O'Gorman et al., 2006), (O'Gorman et al., 80 
2009) showed that N’Dama and Boran Zebu exhibited a roughly similar response to infection by 81 
trypanosomes, but subtle differences in response intensity or timing were observed, such as a higher IL6 82 
and IL10 expression in Boran Zebu, or an enhanced B cell activation in N’Dama. By integrating genomic and 83 
transcriptomic data, (Noyes et al., 2011) proposed TICAM1 and ARHGAP15 as two candidate genes for 84 
trypanotolerance. However, these findings have not been confirmed by other studies analyzing gene 85 
coding sequences in several breeds (Alvarez et al., 2015), (Alvarez et al., 2016). More experiments were 86 
performed in mouse models, in which the possibility to knock out candidate genes allows to accurately 87 
assess their contribution to tolerance or pathology (Cnops et al., 2015), (Magez et al., 2006), (Magez et al., 88 
2007), (Onyilagha et al., 2015). Nevertheless, mice are not natural hosts of livestock trypanosomes, and 89 
important physiological features that differentiate them from cattle (Taylor & Mertens, 1999), (Morrison 90 
et al., 2016) prevent to directly transpose results between the two species. 91 

So far, studies, which investigated immunological, genetic and transcriptomic features of cattle 92 
trypanotolerance, have mainly focused on two breeds, the trypanotolerant N’Dama cattle (long-horn 93 
taurine originating from Fouta-Djallon in Republic of Guinea) and the trypanosusceptible Boran Zebu (an 94 
East-African Zebu). Nevertheless, other West-African taurine cattle are classified as trypanotolerant (CIPEA, 95 
1979), (Akol et al., 1986), (Rege, 1999) among which we recently confirmed, under experimental 96 
conditions, the trypanotolerant status of two West African short-horn breeds, i.e., Lagune and Baoulé 97 
breeds, compared to N’Dama and to the trypanosusceptible Zebu Fulani (Berthier et al., 2015). We also 98 
underlined the intermediate status of Borgou breed, an admixed breed between African short-horn taurine 99 
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and African zebu. Biological samples collected during this experiment that allowed a clear characterization 100 
of the trypanotolerant status of these overlooked breeds provide the opportunity to finely investigate 101 
breed-specific modulation of gene expression during infection. 102 

In order to increase knowledge on host-parasite interactions in trypanotolerant and trypanosusceptible 103 
cattle breeds during trypanosomosis, we performed a gene expression profiling of blood cells of five cattle 104 
breeds infected by T. congolense using RNA-seq technology, namely the well-characterized trypanotolerant 105 
N’Dama breed, two overlooked trypanotolerant breeds, Baoulé and Lagune, the Borgou crossbred breed, 106 
and one trypanosusceptible breed, the Zebu Fulani. In addition, we performed an in-depth functional 107 
analysis of the differentially expressed genes. More precisely, we looked for i) breed-specific transcriptomic 108 
signatures in blood before infection, ii) main genes and biological functions that responded to infection, 109 
whatever the breed, iii) breed-specific transcriptomic profiles during infection, and iv) basal and dynamic 110 
transcriptomic profiles that could be associated with trypanotolerance. 111 

Material and Methods 112 

Animals, experimental infection and sampling 113 

A total of 39 animals from five West African cattle breeds, i.e., three AFT comprising N’Dama (NDA, 8 114 
animals), Lagune (LAG, 7 animals), and Baoulé (BAO, 8 animals), Zebu Fulani (ZFU, 8 animals), and Borgou 115 
(BOR, 8 animals), were experimentally infected by intravenous inoculation of 105 trypanosomes of the T. 116 
congolense savannah IL1180 strain. This experimental infection, conducted at CIRDES (Burkina Faso) 117 
according to a protocol approved by the Burkinabe ethical committee (Project no. A002-2013 / CE-CM), 118 
was described in details in (Berthier et al., 2015).  119 

Cattle blood samples were collected at the jugular vein using Tempus™ Blood RNA Tubes (Applied 120 
Biosystems™, USA), which allowed the immediate blocking of mRNA transcription and degradation, at four 121 
time points: before infection (named DPI.0, DPI for days post-infection) and during the infection at 20 days 122 
post-infection (DPI.20), corresponding roughly to the increase in parasitemia, 30 DPI (DPI.30), around the 123 
peak of parasitemia, and 40 DPI (DPI.40), at the time of the entrance in the chronic phase of the disease. 124 
They were stored 24 hours at +4°C before treatment.  125 

RNA extraction and RNA-seq libraries preparation 126 

RNAs were extracted from blood samples using the Tempus™ Spin RNA Isolation Kit (Applied 127 
Biosystems™, USA) according to the manufacturer’s instructions. RNA was finally eluted using 80 µl RNase-128 
free buffer. Total RNA was quantified using a Nanodrop One (Thermo Fisher Scientific, USA) and its quality 129 
checked on a Bioanalyzer 2100 using RNA 6000 nano kit (Agilent Technologies, USA). Samples with RNA 130 
integrity number >=8.70 were selected.  131 

RNA-seq libraries were constructed from 120 RNA samples obtained from six cattle per breed at four 132 
time points at the MGX platform in Montpellier (France) using the TruSeq Stranded mRNA Library Prep Kit 133 
(Illumina) following the manufacturer’s instruction. Briefly, poly-A RNAs were purified using oligo-d(T) 134 
magnetic beads from 1 µg of total RNA. The poly-A+ RNAs were fragmented and reverse transcribed using 135 
random hexamers, Super Script II (Life Technologies) and Actinomycin D. During the second strand 136 
generation step, dUTP substituted dTTP in order to prevent the second strand to be used as a matrix during 137 
the final PCR amplification. Double stranded cDNAs were adenylated at their 3' ends before ligation that 138 
was performed using Illumina's indexed adapters. Ligated cDNAs were amplified following 15 PCR cycles 139 
and PCR products were purified using AMPure XP Beads (Beckman Coulter Genomics). Libraries were 140 
validated using a Bioanalyzer on a DNA1000 chip (Agilent) and quantified using the KAPA Library 141 
quantification kit (Roche). 142 

Sequencing process 143 

Clustering was performed on a cBot and sequencing on a HiSeq2000 (Illumina). After quantification, 144 
the libraries were equimolarly pooled by 12, leading to 10 multiplexes of 12 samples each. Assignment to 145 
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the multiplexes was done by random blocking on the time point and the breed, in order for each multiplex 146 
to contain the four time points (3 samples per time point) and the five breeds. Each pool was denatured, 147 
diluted and clustered on three lanes using the Cluster Generation kit v3 (Illumina). Sequencing was 148 
performed using SBS kit v3 (Illumina) in single read 50 nt mode. Raw sequencing data were saved as FASTQ 149 
files. The quality of the data was assessed using FastQC from the Babraham Institute. Potential 150 
contaminants were investigated with the FastQ Screen software (the Babraham Institute). 151 

Reads’ alignment to the bovine and trypanosome genomes 152 

Reads were jointly mapped to both reference genomes of bovine (EnsemblDB Bos taurus UMD 3.1 153 
release 79) and parasite (TritrypDB Trypanosoma congolense IL3000 release 9) using STAR aligner (STAR 154 
2.4.0j, (Dobin et al., 2013)). To this end, mapping was performed in four steps: i) the STAR index was 155 
generated from a unique multi-FASTA file obtained by concatenation of the bovine and trypanosome 156 
sequence files, ii) reads from all libraries were aligned against the indexed reference sequences in order to 157 
identify intron-exon junctions, iii) a new STAR index was generated from the unique multi-FASTA file 158 
obtained by concatenation of the bovine and trypanosome sequence files and information of intron-exon 159 
junctions, iv) a final step of read mapping was performed on the new STAR index. A maximum of three 160 
mismatches were allowed and multi-mapping to up to 20 different positions was permitted according to 161 
the following parameters: --alignIntronMin 50 --alignIntronMax 500000 --outFilterMultimapNmax 20 --162 
outFilterMismatchNmax 4 --outSAMunmapped Within. Information on reads location on both reference 163 
genomes was contained in final BAM format files.  164 

The percentages of reads that mapped uniquely to the bovine or to the trypanosome genome and reads 165 
that had multiple matches were checked using Picard tools 1.130 (Broad Institute ) and Samtools 1.2 (Li et 166 
al., 2009). A large majority of reads was uniquely aligned to the bovine genome (85 to 88% and from 73% 167 
to 82% for the samples sharing the index with the PhiX control, see S1 Table). The joint mapping approach 168 
was validated by the very low number of reads that mapped to both genomes (bovine and trypanosome), 169 
comprised between 17 and 124 (from 0.00004% to 0.0003% of input reads). The percentage of reads 170 
uniquely aligned to the trypanosome genome varied greatly between samples, from 3x10-6 to 2.31%, with 171 
a mean of 0.21% (S1 Table). Before the infection (DPI.0), few hundred reads were aligned on the parasite 172 
genome, corresponding to a maximum ratio of 3.8x10-5 reads (reads uniquely aligned to the trypanosome 173 
genome/number of uniquely aligned reads) (S1 Fig). The very low rate of sequences assigned to the 174 
parasite genome before infection was considered as negligible and as a background noise of sequencing 175 
technology and mapping algorithm (O'Rawe et al., 2015). During the infection (DPI.20, DPI.30, and DPI.40), 176 
the number of reads assigned to the trypanosome genome increased and was closely related to 177 
parasitemia (S1 Fig). Two animals (BO5 and Z4) did not show any increase in the ratio of reads uniquely 178 
aligned to the trypanosome genome. 179 

Transcript quantification and data normalization 180 

Quantification of gene expression was performed for each library using FeatureCounts (Subread 181 
package 1.4.6-p4 (Liao et al., 2014)). Bovine gene annotation was downloaded from Ensembl 79 (sequence 182 
UMD 3.1). Reads were assigned at the exon level and counts were summarized at the gene level, using 183 
default parameters (-t exon -g gene_id), corresponding to unambiguously assigning uniquely aligned single-184 
end reads and reversely stranded reads (-s 2).  185 

Following the advised workflow of the Bioconductor package EdgeR 3.18.3 (Robinson et al., 2010), (R 186 
Core Team, 2018), we first removed lowly expressed genes, and kept genes that had more than one count 187 
per million in at least two libraries. Out of the 24,616 bovine genes annotated in Ensembl 79, 13,107 genes 188 
went through the filter. Normalization of count data was performed using the Trimmed Mean of M-values 189 
normalization (Robinson et al., 2010) and dispersion was estimated using a Cox-Reid profile-adjusted 190 
likelihood (Chen et al., 2014), using the Bioconductor package EdgeR 3.18.3 under R 3.4.0 environment 191 
(Robinson et al., 2010), (R Core Team, 2018). 192 
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Exploration of the global structuration of bovine count data and sample selection 193 

A two-dimensional scatterplot was launched on the normalized count data to assess the global 194 
structuration of 120 samples (Ritchie et al., 2015). It was completed by a Principal Component Analysis 195 
(PCA) performed on the log of normalized count per million using mixOmics_6.3.0 (Le Cao et al., 2016) 196 
(with center=TRUE and scale=FALSE). The first factorial plan separated the samples according to sampling 197 
time point, except for BO5 and Z4 whose samples clustered together (S2 Fig). This observation and the very 198 
low ratio of sequences assigned to the trypanosome genome (S1 Fig) supported the hypothesis that the 199 
infection process did not occur in BO5 and Z4, in accordance with the phenotypic analysis that revealed 200 
transient parasitemia and no anemia in these animals (Berthier et al., 2015). BO5 and Z4 were thus 201 
discarded from subsequent analyses. In addition, a Baoulé (BA3) that was detected positive in parasitemia 202 
before the experimental infection, contrary to the others that were negative based on diagnostic tests 203 
(Berthier et al., 2015), was also excluded from further analyses. The final data set used for statistical and 204 
functional analyses contained 108 RNA-seq libraries, corresponding to 27 animals (6 NDA, 6 LAG, 5 ZFU, 5 205 
BOR, and 5 BAO) and four time points per animal. 206 

Differential expression analyses of bovine genes 207 

The differential expression analysis of bovine genes was carried out using the Bioconductor package 208 
EdgeR 3.18.3 under R 3.4.0 environment (Robinson et al., 2010), (R Core Team, 2018), which models gene 209 
count data according to a negative binomial distribution and moderates the degree of over-dispersion 210 
across genes. A generalized linear model (GLM) was fitted for each gene, and tests for determining 211 
differential expression were done using a likelihood ratio test (McCarthy et al., 2012). We considered 212 
nineteen contrasts to assess differential expressions between two conditions using GLM (Fig 1).  213 

 
Figure 1. Description of the contrasts used for the differential gene expression analysis. The numbers 

in the circles represent the days post-infection of cattle sampling, at DPI.0, DPI.20, DPI.30 and DPI.40. 
Orange arrows represent the contrasts between the breeds at DPI.0, before infection, named BOR.0-

ZFU.0, LAG.0-ZFU.0, NDA.0-ZFU.0, and BAO.0-ZFU.0. The blue arrows represent the within-breed 
contrasts: for each breed, three contrasts were built with DPI.0 as reference, DPI.20-0, DPI.30-0, and 
DPI.40-0. ZFU, LAG, and BAO pictures by S. Thévenon; BOR picture by G-K. Dayo; NDA picture by D. 

Berthier. 
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First, to study baseline differential expression between breeds before infection, we chose ZFU as breed 214 
reference, the unique indicine trypanosusceptible breed whose samples were placed at the extremity of 215 
the second axis in the PCA (S2 Fig). Four contrasts, comparing NDA, LAG, BAO and BOR breeds to ZFU breed 216 
at DPI.0 (Fig 1) were established (namely NDA.0-ZFU.0, LAG.0- ZFU.0, BAO.0-ZFU.0 and BOR.0-ZFU.0). 217 
Second, to assess how each breed reacted to infection, 15 within breed contrasts, corresponding to three 218 
contrasts that assessed differential expression between three post-infection time points and the pre-219 
infection time point (namely DPI.20-0, DPI.30-0 and DPI.40-0, Fig 1), were considered for each breed. 220 
Because animals were repeatedly sampled, the design matrix was constructed according to a nested 221 
factorial formula, with animals and time points nested within the breed. GLM likelihood ratio tests provided 222 
for each contrast and each gene a logFC (log2-fold change of gene expression between conditions) and a 223 
FDR (False Discovery Rate) corresponding to adjusted p-values for multiple testing using the Benjamini-224 
Hochberg procedure (Benjamini & Hochberg, 1995). In our analyses, since 19 contrasts were done, a FDR 225 
of 10-3 (0.05/19=0.0026 rounded to 0.001) was chosen to identify differentially expressed genes (DEGs).  226 

Functional analysis 227 

The web-based software application Ingenuity® Pathway Analysis (IPA®, Version 43605602, 2018-04-228 
04 ) was used to perform the functional analysis of the DEGs, based on the content of the Ingenuity® 229 
Knowledge Base (IKB).  230 

For all contrasts detailed above, among the 13,107 bovine Ensembl identifiers (with their associated 231 
logFC and FDR) that defined the background gene list used in IPA® analyses and that were uploaded into 232 
the software application, 11,316 identifiers were mapped to their corresponding object in IKB®. We then 233 
checked via Ensembl Biomart the existence of human orthologues for the 1,791 bovine identifiers that 234 
were not recognized in IKB® and found 577 human orthologues with a high confidence level and a one-to-235 
one match. Human Ensembl identifiers for these 577 genes were then used instead of bovine identifiers in 236 
files uploaded into IPA®. At last, 11,893 Ensembl identifiers were mapped to known genes in IKB®.  237 

The functional analysis performed with IPA® identified biological diseases and functions, canonical and 238 
signaling pathways and upstream regulatory molecules that were significantly enriched in our data sets. 239 
Upstream regulators are regulatory molecules that can affect the expression of target DEGs and that may 240 
not have been detected as DEG by RNA-seq (because, e.g., they may be expressed in another tissue than 241 
the sampled one, or at another time than the sampling date, or because they are endogenous biochemical 242 
compounds). Right-tailed Fisher’s exact test was used to calculate a p-value determining the probability 243 
that each biological function and/or disease and canonical pathways assigned to our data sets was due to 244 
chance alone. These p-values were adjusted using the Benjamini-Hochberg correction method (B-H) for 245 
diseases and functions and canonical pathways. Diseases and functions, canonical pathways, and upstream 246 
regulators were considered as significant if their corresponding p-values were below 10-3 (B-H correction),  247 
10-2 (B-H correction) and 10-4 respectively, according to the fact that the quantity of information provided 248 
by these functional categories, and thus the number of tests, differed. In addition, based on the logFC of 249 
the DEGs and IKB® information, IPA® inferred activation states (namely “activated” or “inhibited”) of 250 
biological functions, pathways and upstream regulators (indicating that the observed up or down-251 
regulations of the DEGs are mostly consistent with a particular activation state of a biological function or a 252 
regulator) by estimating Z-scores associated with the enriched functions or regulators (Kramer et al., 2014). 253 
A Z-score ≥ 2 corresponded to an inferred significant activation state of a function or a regulator, while a 254 
Z-score ≤-2 corresponded to an inferred inhibition state. IPA® outputs were visualized using ggplot2 R 255 
package (Wickham, 2016). 256 

Results 257 

In order to better understand host-parasite interactions in trypanotolerant and trypanosusceptible 258 
cattle breeds during infection, we carried out an overall assessment of the relationships between the 259 
samples, the identification of initially differentially expressed genes between breeds (i.e., before infection), 260 
and the identification of differentially expressed genes in each breed during infection, with a first focus on 261 
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common DEGs and the core associated biological processes, followed by an enlightenment on biological 262 
processes specific or prominent to each breed. 263 

Global overview of bovine gene expression data set 264 

We first carried out an overall assessment of the relationships between the samples, based on a PCA 265 
performed on the logarithm of normalized bovine gene counts that provided a global overview of the cattle 266 
transcriptomes according to the sampling time point and the breed (Fig 2).  267 

 268 
  269 

Figure 2. Principal components analysis of cattle RNA-seq libraries based on normalized genes counts. 
Each point represents a RNA-seq library that corresponds to an animal sampled at a given DPI and that is 

plotted on the first two principal components according to its coordinates. Libraries are identified 
according to the breed and the sampling date. Arrows link a library to the centroid of the corresponding 

breed and sampling date treatment. Each breed is represented by a different shape and by a color 
gradient, and each color is graded from light to dark shades corresponding to days post-infection 

respectively DPI.0, 20, 30 and 40. ZFU animals are in red and triangle down, BOR animals are in violet and 
diamond, LAG animals are in orange and triangle, BAO animals are in blue and circle, and NDA animals 
are in green and square. Percentages of variance explanation of the first two components are added. 

The first axis that accounted for 16% of the total variation was representative of the infection course, 270 
from DPI.0 to DPI.40. Shifts from DPI.0 to DPI.40 for each breed were roughly parallel. The second axis that 271 
accounted for 10% of the total variation was representative of the breed effect with ZFU count data, at the 272 
bottom, taurine count data (represented by NDA, BAO and LAG breeds) at the top and admixed BOR breed 273 
data, in the middle, suggesting that basal and lasting count differences existed between zebu, taurine and 274 
admixed breeds. 275 
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Before infection, a total of 310 genes were detected as differentially expressed (DE) between at least 276 
one breed and ZFU (FDR<10-3). During infection, a total of 5,270 differentially expressed genes (DEGs) were 277 
identified in at least one contrast, between 41 and 3,839 genes being DE depending on the contrast (Fig 3).  278 

 279 

Figure 3. Numbers of genes identified as differentially expressed in the 15 within-breed contrasts. The 
x-axis represents the 15 contrasts ordered by breed respectively BAO, BOR, LAG, NDA and ZFU, and for 

each breed, three contrasts according to days post-infection in comparison with before infection, 
respectively DPI.20-0, 30-0, 40-0. The y-axis represents the number of differentially expressed genes at 

the threshold of FDR<0.001. The red color corresponds to the part of genes that are differentially 
expressed and common to, at least, two breeds whatever the sampling time point; the blue color 

corresponds to the part of genes that are differentially expressed uniquely within a breed. 

As expected, the bovine transcriptome was massively modified by trypanosome infection, the total 280 
number of DEGs during infection being in descending order 4,344, 2,715, 2,141, 1,753 and 1,696 for NDA, 281 
LAG, ZFU, BOR and BAO, respectively. NDA displayed the earliest modulation of its transcriptome, with 282 
1,067 DEGs at DPI.20-0, followed by LAG (370 DEGs), BOR (351 DEGs), ZFU (77 DEGs), and BAO (41 DEGs) 283 
(Fig 3). At DPI.30-0, LAG displayed the highest number of DEGs (2,330). At DPI.40-0, NDA showed again the 284 
highest number of DEGs (3,839). Many DEGs were common between two or more breeds including the 285 
trypanosusceptible ZFU (Fig 3 and S3 Fig). A total of 3,283 genes (62.3% of total number of DEGs, so a 286 
majority) were shared between at least two breeds. For instance, 1,823 DEGs were shared between NDA 287 
and ZFU, 1,318 between LAG and ZFU, 1,074 between BOR and ZFU, and 1,069 between BAO and ZFU (S3 288 
Fig), whereas the number of DEGs detected exclusively within a breed was 1,272 in NDA, 331 in LAG, 211 289 
in ZFU, 96 in BOR and 77 in BAO. Interestingly, the direction of variation of DEGs, when detected DE in 290 
several contrasts, whatever the time point or the breed, was always identical in the aforementioned 291 
contrasts (i.e., upregulated with positive logFC or downregulated with negative logFC) except for one gene, 292 
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SPARC, which was upregulated in LAG.40-0 but downregulated in BAO.40-0 (S2 Table). The heatmap (Fig 293 
4), performed on the logFCs of 5,270 DEGs in at least one contrast, first clustered contrasts according to 294 
the time of infection, the early date (DPI.20-0) being separated from the others, except for the contrast 295 
BAO.30-0. At later time points, contrasts from a same breed tended to cluster together (LAG.30-0 with 296 
LAG.40-0, BOR.30-0 with BOR.40-0, ZFU.30-0 with ZFU.40-0), although NDA.40-0 and BAO.40-0 were not 297 
close to NDA.30-0 and BAO.30-0 respectively. Fig 4 did not highlight obvious different patterns of gene 298 
expression between breeds.  299 

. 300 

Figure 4. Heatmap on the logFC of 5,270 DEGs in the 15 within-breed contrasts. Columns represent 
the within-breed contrasts ordered according to clustering, and rows the genes identified as DE in at least 

one contrast. Up-regulated genes (i.e. with positive logFC) are colored in warm colors from light red to 
dark red (estimated maximum logFC=11.3), whereas down-regulated genes (i.e. with negative logFC) are 
colored in cold colors, from light blue to dark blue (estimated minimum logFC=-8.00). LogFC comprised 

between -0.20 and 0.20 are colored in grey.  

Transcriptome profiling before infection highlights basal differences between breeds.  301 

We then focused on the differences before infection of gene expression levels between each breed and 302 
ZFU taken as trypanosusceptible reference. For the contrasts LAG.0-ZFU.0, NDA.0-ZFU.0, BAO.0-ZFU.0 and 303 
BOR.0-ZFU.0 respectively, 127, 152, 156, and 63 genes were differentially expressed at the FDR threshold 304 
of 10-3 (Table S3), showing initial differences between gene counts in ZFU and in the other taurine or 305 
admixed breeds. As expected from PCA results, the number of DEGs between ZFU and BOR was smaller 306 
than those between ZFU and AFT (i.e., NDA, BAO, LAG) at DPI.0. The functional annotation of DEGs for the 307 
four contrasts before infection using IPA® indicated that basal differences were not associated with specific 308 
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biological function enrichment, since neither any disease and function nor any canonical pathway was 309 
significantly enriched in these gene sets. However, fifteen upstream regulators, precisely 1, 1, and 15 for 310 
the contrasts LAG.0-ZFU.0, BAO.0-ZFU.0 and BOR.0-ZFU.0 respectively, were identified at a p-value<10-4 311 
(S4 Table). Not any upstream regulator was significantly enriched in NDA.0-ZFU.0. Only BSG, encoding a 312 
plasma membrane protein involved in several molecular functions (i.e., cadherin binding, carbohydrate 313 
binding, mannose binding, monocarboxylic acid transmembrane transporter activity, and protein binding) 314 
was identified as upstream regulator in the three contrasts involving LAG, BAO and BOR. Several upstream 315 
regulators linked to immune response (e.g., IL4, TNF, IFNG, Immunoglobulin, CD3 complex, prostaglandin 316 
E2, IL10RA) and transcription regulators (e.g., HDAC3, FOXA2, STAT3, ATF3) were enriched in the BOR.0-317 
ZFU.0 gene set.  318 

Among the DEGs before infection, 35, 54, 83 and 18 genes were only DE in LAG.0-ZFU.0, NDA.0-ZFU.0, 319 
BAO.0-ZFU.0 and BOR.0-ZFU.0 contrasts, respectively (S4 Fig). Besides, twelve genes were found DE in the 320 
four contrasts, 36 were shared between the three AFT breeds versus ZFU.0, and 70 were shared between 321 
LAG.0-ZFU.0 and NDA.0-ZFU.0. Among these latter 70 DEGs, all genes except PELI3 were downregulated in 322 
LAG and NDA in comparison to ZFU, among which several genes are known to be linked to immune 323 
response, especially IL2RA, GBP2, PELI3, DCSTAMP, PTX3, and MARCO (S3 Table).  324 

Transcriptomic responses common to all breeds, involving immune response and metabolism, are 325 
detected during infection 326 

Genes differentially expressed during infection in all breeds.  327 

To understand the core response of bovine transcriptome to trypanosome infection, we studied the 328 
659 DEGs common to all breeds (namely DEGs in at least one contrast of each breed, S3 Fig). S2 Table gives 329 
detailed information on each gene by indicating whether it was DE, in which breed, and its average FDR 330 
and logFC. Six genes (NR4A1, CCL22, IFI30, CTSZ, KYNU, IL17REL), involved in immune response, were 331 
significantly upregulated in all contrasts, meaning that they were DE within each breed at each time point 332 
during infection (S2 Table). Among the top upregulated genes (i.e., harboring the highest average logFC), 333 
we found HBM, coding for a hemoglobin subunit (average logFC=6.96, average -log10(FDR)=5.7), ARG1 334 
(average logFC=6.90, average -log10(FDR)=6.0), and several genes involved in immune response like 335 
MAPK12, MMP14 and MAPK11. The top downregulated genes (i.e., DEGs displaying the smallest negative 336 
logFC) were UNC5A (average logFC =-2.84, average –log10(FDR)=4.7) followed by OVOS2, ELANE, DAB2, 337 
and BPI. A quick overview of potentially interesting DEGs associated with immune response allowed 338 
highlighting three cytokines (i.e., IL7 upregulated; IL16 and LIF downregulated) and cytokine receptors (e.g., 339 
IL1R, IL6R, IL7R, IL20RB, all down-regulated), transcription regulators (e.g., NFKB1 and NFKB2 upregulated), 340 
other receptors (e.g., TFRC upregulated), and numerous immune cell antigens, some up-regulated (e.g., 341 
CD109, CD180, CD19, CD1A, CD22, CD40, CD72, CD79B, and MME syn.CD10), and others down-regulated 342 
(e.g., CD7, CD2, CD226, CD247, CD27, CD3D, CD3E, CD3G, CD40LG, CD99, and ZAP70). Interestingly, several 343 
genes known to be involved in metabolism were up-regulated (e.g., HMGCS1, CYP51A1, FDFT1, IDI1, LSS, 344 
MVD, SQLE). 345 

Enrichment of diseases and functions in the common DEGs.  346 

The functional annotation of DEGs common to the breeds using IPA® identified 164 functions and 347 
diseases significantly enriched with B-H corrected p-values <10-3 (S5 Table), and they could be grouped into 348 
24 large categories displayed in Table 1. The major categories were cell-to-cell signaling and interaction, 349 
cellular movement, cellular development, cell death and survival, hematological system development and 350 
function, cellular function and maintenance, and lipid metabolism. We could also highlight cell-mediated 351 
immune response, immunological disease, inflammatory response, and lymphoid tissue structure and 352 
development. More precisely, the top ten diseases and functions in terms of B-H corrected p-values (<10-353 
8) were: proliferation of lymphocytes, proliferation of lymphatic system cells, proliferation of blood cells, 354 
proliferation of immune cells, lymphopoiesis, synthesis of sterol, synthesis of cholesterol, quantity of 355 
leukocytes, quantity of lymphocytes, and cell movement of lymphatic system cell (S5 Table). IPA® analyses 356 
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allowed us to assess the activation or inhibition of the enriched diseases and functions based on the Z-357 
score, considered significant if its absolute value was larger or equal to 2. Twenty-four diseases and 358 
functions presented significant Z-scores, and surprisingly most had negative Z-scores that could be related 359 
to an inhibition state, for instance: lymphocyte homeostasis, adhesion of lymphocytes, migration of 360 
lymphatic system cell, and T cell development. Only two diseases and functions had positive Z-score, 361 
namely quantity of B-2 lymphocytes and liver lesion.  362 

 363 

Table 1. Diseases and functions categories enriched in the common DEGs in the within-breed 
contrasts. The name of diseases and functions categories was indicated, with for each category, the 
number of significant functions, their average B-H corrected p-value, the range of the B-H corrected 

p-values, the average Z-score, and its range. Na: not available. 

  364 
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Diseases and functions category 
Number of 
functions 

Average B-H 
p-value 

Range of B-H 
p-values 

Average 
Z-score 

Range of 
Z-scores 

Cell-To-Cell Signaling and Inter-
action 28 5.7E-05 7x10-4 ; 10-8 -1.78 

 -2.71 ; 
1.13 

Cellular Movement 19 1.5E-04 
9x10-4 ;  
5x10-9 -1.45 

 -2.66 ; 
0.54 

Cellular Development 18 1.0E-04 
7x10-4 ;  
3x10-12 -0.34 

 -2.08 ; 
1.02 

Cell Death and Survival 16 1.5E-04 
9x10-4 ;  
6x10-7 -1.09 

 -2.36 ; 
0.03 

Hematological System Develop-
ment and Function 15 2.5E-04 

9x10-4 ;  
4x10-9 -0.54 

 -2.07 ; 
2.25 

Cellular Function and Mainte-
nance 9 2.4E-04 

9x10-4 ;  
2x10-7 -0.87 

 -2.82 ; 
0.14 

Lipid Metabolism 8 1.1E-05 
6x10-5 ;  
6x10-10 1.10 

 0.70 ; 
1.63 

Cancer 6 2.1E-04 
6x10-4 ;  
5x10-6 -0.05 

 -0.43 ; 
0.33 

Cell Morphology 6 1.9E-04 
97x10-4 ; 

3x10-5 -0.73 
 -1.00 ;  
-0.47 

Cell-mediated Immune Res-
ponse 6 1.7E-04 

5x10-4 ;  
6x10-8 -2.11 

 -2.65 ;  
-1.77 

Cell Signaling 5 3.5E-04 
9x10-4 ;  
5x10-6 -0.38 

 -1.04 ;  
-0.05 

Immunological Disease 5 2.0E-04 
7x10-4 ;  
3x10-6 -1.52 

 -2.35 ;  
-0.67 

Inflammatory Response 5 1.5E-04 
7x10-4 ;  
5x10-8 -0.72 

 -2.39 ; 
1.21 

Lymphoid Tissue Structure and 
Development 4 2.3E-04 

9x10-4 ;  
5x10-8 -0.43 

 -1.15 ; 
0.11 

Connective Tissue Disorders 2 2.2E-05 
3x10-5 ;  
9x10-6 0.05 

 -0.13 ; 
0.23 

Embryonic Development 2 5.4E-04 
9x10-4 ;  
2x10-4 -0.58 

 -1.14 ;  
-0.02 

Inflammatory Disease 2 7.0E-05 
8x10-5 ;  
5x10-5 -0.76 

 -2.43 ; 
0.90 

Organismal Development 2 1.1E-04 
2x10-4 ;  
2x10-5 Na Na 

Cellular Growth and Prolife-
ration 1 3.3E-12   -0.21   
Tissue Morphology 1 2.6E-06   -0.16   
Molecular Transport 1 3.2E-04   -0.76   
Gastrointestinal Disease 1 5.3E-04   2.06   
Cardiovascular Disease 1 9.6E-04   Na   

Connective Tissue Development 
and Function 1 9.6E-04   0.60   
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Enrichment of canonical Pathways in the common DEGs.  365 

Twenty-three canonical pathways were significantly enriched in common DEGs with a B-H corrected p-366 
value <10-2 (Table 2). This list highlighted several enriched and activated metabolic pathways (Z-score≥2), 367 
e.g., the superpathway of cholesterol biosynthesis, the mevalonate pathway, the TCA (TriCarboxylic acid) 368 
cycle II, and the superpathway of geranylgeranyldiphosphate biosynthesis I. Mitochondrial dysfunction was 369 
also enriched but without inference on the direction of activation. The second class of enriched pathways 370 
concerned the immune response including, for instance, role of NFAT in regulation of the immune 371 
response, primary immunodeficiency signaling, and regulation of IL-2 expression in activated and anergic 372 
T lymphocytes. Two immune response pathways, PI3K signaling in B lymphocytes and B cell receptor 373 
signaling, were estimated as significantly activated. 374 

Table 2. Canonical and signaling pathways enriched in the common DEGs in the within-breed 
contrasts. The name of the canonical and signaling pathways is indicated with its B-H corrected p-value, 

its Z-score, and the ratio between the number of DEGs and the number of genes in the pathway. 
Highlighted cells correspond to Z-scores with an inferred activation state. 

Canonical and signalling pathways B-H p-value Z-score Ratio 

Superpathway of Cholesterol Biosynthesis 5.2E-08 3.61 0.52 
Mevalonate Pathway I 6.9E-04 2.45 0.60 
TCA Cycle II (Eukaryotic) 6.9E-04 2.83 0.40 

Superpathway of Geranylgeranyldiphosphate Biosynthesis I (via 
Mevalonate) 6.9E-04 2.65 0.50 
Mitochondrial Dysfunction 1.7E-03 Na 0.15 
Role of NFAT in Regulation of the Immune Response 1.7E-03 0.22 0.15 
Primary Immunodeficiency Signaling 1.7E-03 Na 0.32 
PI3K Signaling in B Lymphocytes 1.7E-03 2.32 0.16 
Cholesterol Biosynthesis I 1.7E-03 2.45 0.46 
Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol) 1.7E-03 2.45 0.46 
Cholesterol Biosynthesis III (via Desmosterol) 1.7E-03 2.45 0.46 

Regulation of IL-2 Expression in Activated and Anergic T Lympho-
cytes 2.4E-03 Na 0.18 
Leukocyte Extravasation Signaling 4.5E-03 0.73 0.14 
Hematopoiesis from Pluripotent Stem Cells 4.8E-03 Na 0.38 
T Cell Receptor Signaling 5.1E-03 Na 0.16 
Sirtuin Signaling Pathway 5.2E-03 -0.78 0.12 
IL-7 Signaling Pathway 5.5E-03 0.30 0.19 
iCOS-iCOSL Signaling in T Helper Cells 5.6E-03 0.33 0.17 
CD28 Signaling in T Helper Cells 7.1E-03 -0.30 0.15 
B Cell Development 7.1E-03 Na 0.33 
Systemic Lupus Erythematosus In B Cell Signaling Pathway 7.1E-03 -0.21 0.12 
B Cell Receptor Signaling 7.1E-03 2.68 0.13 

Phospholipase C Signaling 8.9E-03 0.24 0.12 
 375 
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Enrichment of upstream Regulators in the common DEGs.  376 

Seventy-three upstream regulators that can affect the expression of target DEGs were considered as 377 
significantly enriched (P-value<10-4, S6 Table), and the direction of activation was inferred for some of 378 
them. The list of upstream regulators referred to chemicals, simple protein or protein complexes. Four 379 
endogenous chemicals were identified: cholesterol, which was inferred as inhibited, beta-estradiol, 380 
prostaglandin E2 and D-glucose. Nine cytokines were significantly enriched: TNF, IL15, IL4, IL3, IFNG, IL10, 381 
CSF1, the latter being estimated as activated, and IL2 and IL7, both estimated as inhibited. Detected protein 382 
complexes were also related to immune response (i.e., immunoglobulin, C4BP, TCR, Ige, and NFkB). 383 
Twenty-seven transcription regulators were identified, some involved in metabolism (e.g., the activated 384 
SREBF2, SREBF1, and PPARGC1B), cell cycle (e.g., TP53 inhibited, SP1) or in pleiotropic functions (e.g., SIRT2 385 
activated). Several transcription factors were linked to immune response (e.g., STAT6 and STAT3, TCF3 386 
inhibited, and BCL6 activated). 387 

Specific transcriptomic response of each breed during infection 388 

In order to look for potential breed-specific responses during infection, we performed separate 389 
enrichment analyses of the lists of DEGs of the 15 within-breed contrasts.  390 

Enrichment of diseases and functions in each breed during infection.  391 

The analysis identified 642 diseases and functions significantly enriched in at least one of the 15 392 
contrasts (B-H corrected p-values <10-3) (S7 Table). The most enriched contrast was ZFU.40-0 with 365 393 
significant diseases and functions, while no disease and function were enriched in LAG.20-0. As for the 394 
enrichment of the common DEGs, large categories were cellular development and cell cycle, hematological 395 
system development and function, immune response, cell signaling, and lipid metabolism. Among these 396 
642 diseases and functions, 135 displayed significant Z-scores for the corresponding contrasts, 17 being 397 
considered as activated (Z-score≥2), while a majority (118) was inhibited (Z-score≤-2). We confirmed the 398 
results obtained with the analysis of common DEGs, namely a shared inhibition of numerous cellular 399 
functions, especially associated with cell-mediated immune response from 30 DPI (e.g., T cell homeostasis). 400 
Fig 5 represents both the significance level and the inhibition state of 41 diseases and functions harboring 401 
Z-scores smaller than -3 for the 15 contrasts. Few inhibited functions were set up exclusively by one or few 402 
breeds such as the differentiation of mononuclear leukocytes, significantly inhibited in NDA.40-0 only. 403 
Chemotaxis of myeloid cells was inhibited in BAO.40-0, LAG.40-0, and ZFU.40-0 contrasts but was 404 
considered significantly enriched in ZFU only.  405 
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 406 

Figure 5. Plot of 41 significantly enriched diseases and functions inferred as inhibited in function of 
the within-breed contrasts. The 15 within-breeds contrasts are shown on the abscissa and the 
significantly enriched diseases and functions on the ordinate. The size of the circles is inversely 

proportional to the B-H corrected p-value calculated for diseases and functions in the aforementioned 
contrast. The color gradient of the circle corresponds to the Z-score range, i.e. warm color gradient for 

positive Z-score>1, cold color gradient for negative Z-score<-1, and gray color gradient for Z-scores 
ranging between -1 and 1. 

Fewer diseases and functions were activated, but they presented more discriminating patterns than 407 
inhibited functions. Fig 6 shows that lipid metabolic functions (synthesis of lipid, synthesis of cholesterol, 408 
steroid metabolism, metabolism of cholesterol, and synthesis of terpenoid) were strongly enriched and 409 
activated in ZFU.20-0 contrast, to a lesser extent in BAO.30-0, and slightly in NDA.20-0, but were not 410 
detected in LAG. Glucose metabolism disorder was enriched in ZFU and BAO, but activated in BAO.30-0 411 
contrast only. Cytopenia was significantly activated in ZFU.40-0 contrast.  412 

The cancer category (i.e., 63 significant functions) and cell cycle functions (i.e., 19 significant functions 413 
like cell cycle progression, mitosis) were especially and precociously enriched in NDA.20-0 (S7 Table). G2/M 414 
phase transition, metabolism of DNA, segregation of chromosomes, and M phase were strongly activated 415 
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in NDA.20-0 contrast. This latter was also found activated in BOR.20-0. Interphase was activated in LAG.30-416 
0. BOR.40-0 presented an activation of RNA transcription. 417 

 418 

 419 

Figure 6. Plot of 17 significantly enriched diseases and functions inferred as activated in function of 
the within-breed contrasts. The 15 within-breeds contrasts are shown on the abscissa and the 

significantly enriched diseases and functions on the ordinate.  The size of the circles is inversely 
proportional to the B-H corrected p-value of the diseases and functions in the aforementioned contrast. 
The color gradient of the circle corresponds to the Z-score range, i.e. warm color gradient for positive Z-

score>1, cold color gradient for negative Z-score<-1, and gray color gradient for Z-scores ranging between 
-1 and 1. 

Enrichment of canonical pathways in each breed during infection.  420 

A total of 92 canonical pathways were significantly enriched in at least one contrast during infection, 421 
with a B-H corrected p-value<10-2 (S8 Table). The contrast ZFU.40-0 displayed the highest number of 422 
significant canonical pathways (48), followed by BAO.30-0 (39), while no significant pathways were 423 
detected in LAG.20-0, LAG.40-0, and BAO.20-0. Among the 92 significant canonical pathways, 26 presented 424 
also significant Z-scores, measuring their activation state: 7 being considered inhibited and 19 activated 425 
(Fig 7).  426 
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 427 

Figure 7. Plot of 26 significantly enriched canonical pathways inferred as activated or inhibited in 
function of the within-breed contrasts. The 15 within-breeds contrasts are shown on the abscissa and the 

significantly enriched diseases and functions on the ordinate. The size of the circles is inversely 
proportional to the B-H corrected p-value of the canonical pathways in the aforementioned contrast. The 

color gradient of the circle corresponds to the Z-score range, i.e. warm color gradient for positive Z-
score>1, cold color gradient for negative Z-score<-1, and gray color gradient for Z-scores ranging between 

-1 and 1. 

The superpathway of cholesterol biosynthesis was found significantly activated in all breeds, at one 428 
(LAG and NDA), two (BAO and BOR) or three time points (ZFU), but the set of pathways related to 429 
cholesterol and lipid metabolisms was particularly and durably enriched in ZFU, and to a lesser extent in 430 
BAO. Likewise, LXR/RXR was activated in ZFU.40-0 and almost in BAO.40-0. 431 

Conversely, oxidative phosphorylation, TCA cycle, mitochondrial dysfunction, sirtuin signaling pathway 432 
and cell cycle associated pathways were highly significant in NDA contrasts. Pathways associated with cell 433 
energy production, oxidative phosphorylation and TCA cycle, were strongly activated in NDA, and to a 434 
lesser extent in LAG (oxidative phosphorylation and TCA cycle) and BAO (TCA cycle). Glycolysis and 435 
gluconeogenesis were considered enriched and activated in NDA.20-0, and gluconeogenesis was also 436 
significantly activated in BOR.20-0. Cell cycle associated pathways (Estrogen-mediated S-phase Entry, 437 
Cyclins and Cell Cycle Regulation, Cell Cycle Regulation by BTG Family Proteins, and mitotic Roles of Polo-438 
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Like Kinase) were activated in NDA.20-0 exclusively. The sirtuin signaling pathway was highly inhibited in 439 
NDA during the infection, and the G1/S checkpoint regulation was inhibited in NDA.20-0. 440 

Some pathways, linked to immune response, were transiently enriched in some breeds, but not in NDA, 441 
and their direction of activation was not able to be inferred (i.e., leukocyte extravasation signaling 442 
significant in ZFU.40-0, LAG.30-0, and BAO.30-0 and BAO.40-0; hematopoiesis from pluripotent stem cells 443 
significant in LAG.30-0, BAO.30-0 and BAO.40-0, and BOR.40-0; natural killer signaling significant in ZFU, 444 
BAO and BOR at 40-0). Two B-cell associated pathways (B Cell Receptor signaling, and PI3K Signaling in B 445 
Lymphocytes) were activated in BAO.40-0. Interestingly, five pathways were significantly inhibited in 446 
ZFU.30-0 and/or ZFU.40-0 (i.e., IL-6 Signaling, NF-kB Signaling, p38 MAPK Signaling, Th2 pathway and the 447 
inflammasome pathway). 448 

Upstream Regulators enriched in each breed during infection.  449 

316 upstream regulators that can affect the expression of target DEGs were considered as significantly 450 
enriched in at least one contrast (P-value<10-4, S9 Table). Among them, 95 upstream regulators belonged 451 
to the transcription regulator category, 29 were endogenous chemicals and 26 were cytokines according 452 
to IPA® classification. Upstream regulators found significant in almost all contrasts at the chosen threshold 453 
were TGFB1 (14/15 contrasts), TNF (13/15 contrasts), CSF2, Vegf (12/15 contrasts), TCF3, IL4, PTEN (11/15 454 
contrasts). The contrast ZFU.20-0 presented 115 significant upstream regulators, while only eight and 13 455 
were significantly enriched in BAO.20-0 and LAG.20-0 respectively; NDA.20-0 and BOR.20-0 displayed 86 456 
and 87 significant upstream regulators respectively.  457 

In order to visualize the main activated or inhibited regulators predicted by IPA according to the up- or 458 
downregulation of the target DEGs, Fig 8 presents the estimated Z-scores of 61 upstream regulators with 459 
significant p-values (<10-6) and Z-scores (|Z-score|≥2) in at least one significant contrast. Among them, 29 460 
upstream regulators, presenting positive Z-scores, were assessed as activated in some contrasts during 461 
infection (top of Fig 8), 25 were roughly inhibited (middle of Fig 8), and 7 showed a dynamic pattern with 462 
rather positive Z-scores at DIP.20 followed by negative Z-scores (bottom of Fig 8).  463 
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 464 
 465 

Figure 8. Plot of 61 significantly enriched upstream regulators inferred as activated or inhibited in 
function of the within-breed contrasts. The 15 within-breeds contrasts are shown on the abscissa and the 

significantly enriched diseases and functions on the ordinate. The size of the circles is inversely 
proportional to the P-value of the upstream regulator in the aforementioned contrast. The color gradient 
of the circle corresponds to the Z-score range, i.e. warm color gradient for positive Z-score>1, cold color 

gradient for negative Z-score<-1, and gray color gradient for Z-scores ranging between -1 and 1. 

ZFU was characterized by very high Z-scores and levels of significance during infection for SREBF2, SCAP, 466 
and SREBF1. These upstream regulators were also significantly activated in the other breeds but not 467 
constantly during infection. Interestingly, the SREBF2 gene itself was significantly and exclusively up-468 
regulated in ZFU contrasts. ATP7B was durably activated in ZFU, and temporarily in BAO and BOR. ZFU 469 
displayed constantly inhibited upstream regulators: cholesterol, CYP51A1, ACACB, INSIG1, INSIG2, and 470 
POR.  471 

NDA was distinguished on Fig 8 by strong activation of CSF2, INSR, MYC, HGF, Vegf, and PTGER2. These 472 
upstream regulators were also activated in the other breeds but with smaller intensities and durations. The 473 
high inhibition of RICTOR was a unique feature of NDA, as well as that of KDM5A. The last three breeds, 474 
BAO, BOR, and LAG, did not present striking features. The contrast BAO.30-0 shared similarities with 475 
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ZFU.20-0, naming high activation of SREBF1, SREBF2, and SCAP, and inhibition of INSIG1 and POR. BAO and 476 
BOR presented an activation of NFkB (complex). BOR and LAG displayed similar features to NDA (e.g., 477 
strong activation of CSF2 or FOXO1). LAG only showed a significant activation of TBX21 and an inhibition of 478 
GATA3 at DPI.40-0. 479 

As upstream regulators, several cytokines (IL2, IL5, IL7, and TNF) and the growth factor TGFB1 showed 480 
a dynamic pattern: they presented rather positive Z-scores at DPI.20 and were then assessed as 481 
significantly inhibited at 30 or 40 DPI (bottom of Fig 8). TNF was significantly activated in BOR.20-0 and 482 
significantly inhibited in NDA.40-0 and ZFU.40-0. Likewise, TGFB1 was activated in BAO.20-0 and inhibited 483 
in NDA, ZFU and LAG at DPI.40. IL10 was significantly inhibited in ZFU.30-0. 484 

Some differentially expressed genes between NDA and ZFU before infection are differentially expressed 485 
during infection 486 

Because NDA was the breed with the highest total number of DEGs during infection, and ZFU and NDA 487 
presented some distinct enriched biological pathways, we decided to compare DEGs detected in the 488 
contrast NDA.0-ZFU.0 to those identified during infection in the corresponding within-breed contrasts. 489 
Among DEGs identified in the NDA.0-ZFU.0 contrast, 82 (53%) were also found DE during infection either 490 
within NDA or within ZFU. A heatmap performed on the logFC of these 82 genes in the within-breed 491 
contrasts shows that the first level of clustering was due to the separation between ZFU and the other 492 
breeds, and the second level separated the early infection time point (DPI.20-0) from the others (S5 Fig). 493 
The most upregulated genes during infection were MARCO (macrophage receptor with collagenous 494 
structure, significantly upregulated in all breeds except ZFU during infection), and ENSBTAG00000022715 495 
(unannotated gene in Ensembl). Conversely, IGF2 (Insulin-like Growth Factor 2) was downregulated in all 496 
breeds, but especially in NDA, whereas ANKEF1 was significantly downregulated in NDA only. 497 

Among these genes, 55 were involved in canonical pathways or biological functions that were enriched 498 
during infection (S10 Table) and, among them, 25 were present in at least ten functions. Top represented 499 
DEGs were IL2RA, which was involved in 276 functions, IGF2 in 142, GATA1 in 95, GPB2 in 52, and MARCO 500 
in 58 functions. Thirty-three canonical pathways were concerned, among which oxidative phosphorylation, 501 
mitochondrial dysfunction, sirtuin pathway, and Th1 and Th2 pathways. 351 diseases and functions 502 
contained DEGs in NDA.0-ZFU.0, top functions in term of number of genes were in particular associated 503 
with cancer, cell death and survival, cell movement, cell-to-cell signaling and interaction, hematological 504 
disease and inflammatory response. At last, 105 upstream regulators could influence the expression of 505 
genes among which some were DE between ZFU and NDA before infection. Top enriched upstream 506 
regulators included cytokines (i.e., INFG, IL2, TNF, CSF2, IL4), growth factors (TGFB1, HGF), TP53, Vegf and 507 
MYC.  508 

Discussion 509 

Though bovine trypanotolerance has been described for more than a century (Pierre, 1906), the 510 
biological bases of this phenotype remain poorly understood, due to the complexity of the trait that is 511 
multigenic and multifactorial (dependent on environmental factors), and to the difficulty to perform 512 
experimental infections on cattle, in comparison with model species (Morrison et al., 2016). In order to 513 
increase knowledge on the physio-pathology of T. congolense infection in cattle, our study provides the 514 
first whole blood transcriptome profiling using RNA-seq of five bovine breeds, including African taurine 515 
shorthorn and longhorn, during an experimental trypanosome infection. The deep functional analysis of 516 
the differentially expressed genes before and during infection identified new clues about trypanotolerance. 517 
More precisely, our results confirmed and clarified some previous observations about the genes and the 518 
main biological functions modulated during trypanosome infection in cattle (O'Gorman et al., 2006), 519 
(O'Gorman et al., 2009). We observed a massive modification of the bovine transcriptome during T. 520 
congolense infection in five West-African breeds, in accordance with the results of these previous 521 
experiments that compared N’Dama and Boran breeds, notwithstanding that the experiments were done 522 
on different cells (whole blood in the present study instead of Peripheral Blood Mononuclear Cells in 523 
previous studies) using different techniques (RNA-seq in this study versus microarrays and/or qRT-PCR in 524 
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previous studies). In addition, the six genes (i.e., IL6, CCL2, IL10, IL1RN, IL8, NFKB1) DE in (O'Gorman et al., 525 
2006) and our study varied in the same direction, e.g., IL6 and NFKB1 were clearly upregulated, while IL1RN 526 
was strongly downregulated in all breeds (except BOR). Among 23 DE genes representing various biological 527 
processes and selected by (O'Gorman et al., 2009) for qRT-PCR validation, sixteen were also DE in the same 528 
direction in our data set (eight upregulated and eight downregulated in both experiments, the remaining 529 
seven being not significantly expressed in our data set or not annotated in Ensembl).  530 

A core transcriptomic response in blood cells of all five West-African breeds infected by T. congolense 531 

Our global analysis of gene expression of blood cells and of their associated biological functions 532 
completed previous works by showing that blood cell transcriptomes responded globally similarly to 533 
trypanosome infection whatever the breed. Indeed, all breeds exhibited a parallel shift in their gene 534 
expression profiling. A majority of DEGs (62.3%) were shared among at least two breeds, and fold-changes 535 
of all DEGs common to two or more breeds varied in the same direction, except one gene (i.e., SPARC). 536 
This core cattle transcriptomic response to trypanosome infection is a reminder that cattle, whatever the 537 
breed, experience parasitemia waves and show symptoms (e.g., anemia), albeit at varying intensities and 538 
durations depending on the breed, as observed in experiments (Berthier et al., 2015), (Authie et al., 1993), 539 
(Naessens et al., 2003), (Van der Waaij et al., 2003), or in the field (Trail et al., 1994). The functional 540 
annotation of the DEGs shared between breeds during infection also allowed us to provide a global picture 541 
of the impact of infection on whole blood gene transcription, by identifying hematopoiesis and immune 542 
response, and metabolism as the main gene functions targeted by T. congolense infection. 543 

Modulation of hematopoiesis and immune response during infection 544 

We detected in particular the modulation of gene transcription involved in hematopoiesis during 545 
infection such as HBM, a highly upregulated DEG in all breeds. This increase of HBM expression suggests 546 
that cattle responded quickly to cope with anemia induced by trypanosomes through an important supply 547 
of reticulocytes from the bone marrow into the blood, while very low expression level of hemoglobin 548 
subunits is normally found in the blood of healthy cattle (Correia et al., 2018). Expression of TFRC, an 549 
important gene for erythropoiesis and also for T and B cell development and proliferation (Ned et al., 2003) 550 
was also upregulated.  551 

In addition, many top DEGs detected in all breeds are involved in immune response. Among them, five 552 
(i.e., NR4A1, CCL22, IFI30, CTSZ and KYNU) out of the six genes significantly upregulated in all within-breeds 553 
contrasts during infection are especially expressed in the monocyte lineage and/or dendritic cells (DC), 554 
which initiate the immune response, presenting antigens to T lymphocytes (Wang et al., 2018), (Nowyhed 555 
et al., 2015), (Vulcano et al., 2001), (Arunachalam et al., 2000), (Kos et al., 2005), (Harden et al., 2016), 556 
(Obermajer et al., 2008). These cell types are known to be activated during trypanosomosis in cattle (Anosa 557 
et al., 1999) and mice (Magez et al., 2007), and to play a decisive role in protection or pathology 558 
(Bosschaerts et al., 2009). More specifically, NR4A1, a nuclear receptor with an inhibitory role in Th1 and 559 
Th17 cell differentiation and in CD8 T cell expansion (Wang et al., 2018), (Nowyhed et al., 2015) could have 560 
a protective role during trypanosomosis by modulating inflammation (Morias et al., 2015). As for IL17REL, 561 
it was associated with inflammation and inflammatory diseases in human (Franke et al., 2010).  562 

Additional common upregulated genes and enriched biological functions and upstream regulators 563 
underlined the activation of innate immune response and macrophages, reported in cattle (Sileghem et al., 564 
1993), (Anosa et al., 1999), (Taiwo & Anosa, 2000), (Naessens, 2006) and mouse (Bosschaerts et al., 2009), 565 
(Kuriakose et al., 2019). Indeed, important genes known to respond to pathogen stimuli and to trigger 566 
immune response were found upregulated in all breeds during infection, such as MAPK11 and MAPK12 567 
(Risco et al., 2012), NFKB1, up-regulated in bovine PBMC during trypanosomosis (O'Gorman et al., 2006), 568 
and NFKB2. Activation of NF-kB complex was shown in endothelial cells and macrophages during in vitro 569 
interactions with trypanosomes where it promoted a pro-inflammatory response (Ammar et al., 2013), 570 
(Leppert et al., 2007), but NF-kBp50 encoded by NFKB1 was also able to stimulate the production of the 571 
anti-inflammatory cytokine IL-10 (Bosschaerts et al., 2011). Interestingly, a strongly up-regulated common 572 
DEG was ARG1, which codes for arginase-1, a key enzyme of arginine metabolism mainly expressed in 573 
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macrophages and associated with ornithine production and inhibition of NO production (Mills et al., 2000). 574 
ARG1 activity is induced in macrophages of mice infected by T. brucei (Gobert et al., 2000) or T. congolense 575 
(Noel et al., 2002) and its expression level depends on the genetic background of trypanotolerant and 576 
susceptible mice (Duleu et al., 2004), (Kierstein et al., 2006). In mice infected by T. congolense, ARG1 is 577 
involved in immune suppression induced by myeloid-derived suppressor cells that impair proliferation and 578 
INF-g production of CD4 T cells (Onyilagha et al., 2018). Moreover, arginase activity has a direct positive 579 
impact on trypanosome growth through ornithine production (Fairlamb & Cerami, 1992), (De Muylder et 580 
al., 2013). In our data set, ARG1 was found to be highly expressed during infection, similarly to what is 581 
found in mice, but with no straightforward differences between breeds. Activation of DC and macrophages 582 
may also be highlighted by down-regulated genes, like DAB2 (a Clathrin Adaptor Protein) that acts as an 583 
intrinsic negative regulator of immune function and inflammation in those cells (Ahmed et al., 2015), (Hung 584 
et al., 2016). 585 

Macrophage activation was also highlighted by the enrichment of upstream regulators like CSF1 (highly 586 
enriched and activated in the common DEGs) and CSF2 (highly enriched and activated in within-breed 587 
contrasts), which are essential cytokines enhancing macrophage and DC survival and activation (Becher et 588 
al., 2016), IFNG, shown to be essential in the early-stage control of trypanosomosis in the mouse (Magez 589 
et al., 2020), and TNF, which changed from a rather activated state at DPI.20-0 to an inhibition state at 590 
DPI.40-0 recalling the switch from pro-inflammatory macrophages to anti-inflammatory macrophages 591 
highlighted in tolerant mouse models (De Baetselier et al., 2001). Looking globally at the results, common 592 
DEGs were rather associated with an anti-inflammatory balance (e.g., ARG1), as exemplified by the function 593 
inflammation of central nervous system which was inferred as inhibited. Nevertheless, it is speculative to 594 
infer pro-inflammatory or anti-inflammatory macrophages from our data set, as macrophage populations 595 
are particularly plastic in space and time, and genes associated with both types were regulated (e.g., CCL22, 596 
ARG1, IL1R1, PDC1LG2 regulation fitted with anti-inflammatory macrophages, while IL16, NR1D2, DAB2, 597 
IRF5, NFKB fitted with pro-inflammatory macrophages according to (Arango Duque & Descoteaux, 2014), 598 
(Jablonski et al., 2015), (Murray, 2017)).  599 

The functional annotation of DEGs common to the breeds also highlighted the enrichment of the 600 
activation of B cells (with several upregulated common DEGs highly expressed in B cells, like CD19, CD22, 601 
CD40, CD72, CD79B, and CD180), which was previously reported in cattle infected by T. congolense (Pinder 602 
et al., 1988), (Naessens & Williams, 1992), (Taylor et al., 1996), (O'Gorman et al., 2009), in human (Boda et 603 
al., 2009), (Lejon et al., 2014) and mouse (Onyilagha et al., 2015). In addition, we noticed an activation of 604 
B Cell Receptor Signaling, PI3K Signaling in B Lymphocytes and Quantity of B-2 cells in which common DEGs 605 
were involved, and an enrichment of Quantity of B Lymphocytes in all breeds from DPI.30.  606 

Common DEGs and their functions were also related to T-cell-mediated immunity. We noticed a 607 
downregulation of genes mainly expressed in T cells, or NK cells, like CD2, CD3D, CD3E, CD3G, CD7, CD27, 608 
CD40L, CD225, CD247, and ZAP70, of IL16, a chemoattractant for CD4 T cells (Wilson et al., 2004), and of 609 
LIF (Leukemia Inhibitory Factor), a pleiotropic cytokine expressed by T cells, especially CD4 T cells in human 610 
and regulatory T cells in mouse (Metcalfe, 2011). T cell functions were inferred as strongly inhibited (e.g., 611 
T cell development, activation of T lymphocytes, T cell migration), especially from DPI.30. Moreover, IL2, 612 
an upstream regulator of the common DEGs, was significantly inhibited from DPI.30 in NDA, ZFU and LAG, 613 
and from DPI.40 in BAO and BOR, as previously observed in PBMC from infected NDA and Boran Zebu 614 
(O'Gorman et al., 2006). This global result is in line with an impairment of T cell functions as previously 615 
observed in infected cattle ((Flynn & Sileghem, 1991), (Sileghem & Flynn, 1992b)), suggested in HAT (Boda 616 
et al., 2009), and reported in mouse (Uzonna et al., 1998).  617 

If we underlined an inhibition of T cell functions during the chronic phase of the disease, our results 618 
also suggest an activation in the earlier phase, as illustrated by the detection of an early activation of the T 619 
cell co-receptor CD3 as an upstream regulator. Interestingly, CD3 gene expression may be negatively 620 
regulated during T cell activation (Paillard et al., 1990), (Badran et al., 2005), (Krishnan et al., 2001) likely 621 
by a negative feed-back system necessary to control this process. In addition, another surprising result was 622 
the inferred inhibited state of IL7 as an upstream regulator of the common DEGs during infection, though, 623 
at the mRNA level, IL7 expression was significantly and sustainably upregulated and IL7RA was significantly 624 
downregulated, which is expected under T cell activation (Alves et al., 2008). Two hypotheses may be 625 
proposed. First, since trypanosomes are capable of long-term survival in the vertebrate host thanks to 626 
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antigenic variation (Jackson et al., 2012), (Matthews et al., 2015), a reduced expression of IL7RA and a 627 
resulting hyporesponsiveness to IL7 could constitute a protective way to avoid T cell over-activation. 628 
Second, IL7 upregulation could be a consequence of T cell lymphopenia (Fry et al., 2001) due to 629 
trypanosome factors (Cnops et al., 2015). Whether this dynamic is due to an immunosuppression induced 630 
by trypanosomes, or a component of the host-parasite equilibrium (Taylor, 1998) to avoid a deleterious 631 
sustained inflammatory response cannot be answered. 632 

Modulation of gene expression involved in metabolism during infection 633 

Among the main functions and biological processes identified as significantly enriched in DEGs detected 634 
in all breeds during infection, functions related to metabolism are clearly highlighted. First, regulation of 635 
lipid metabolism was highly impacted during infection, and could suggest a direct effect of trypanosomes 636 
or a modulation of the host immune response (Kay et al., 2006), (Fessler, 2015). Indeed, several up-637 
regulated genes in all breeds were involved in cholesterol synthesis (e.g., MVD, IDI1, FDFT1, SQLE, LSS, 638 
CYP51A1), and accordingly, lipid metabolism functions (e.g., synthesis of cholesterol and sterol), 639 
cholesterol biosynthesis and mevalonate pathways, and key upstream regulators of cholesterol synthesis 640 
(SREBF1 and SREBF2, INSR) were strongly enriched and activated in the common DEGs data set, while 641 
cholesterol, as an upstream regulator, was considered inhibited, thus promoting its own synthesis. If 642 
previous studies suggested the involvement of lipid metabolism regulation in the physiopathology of AAT 643 
in mice (Kierstein et al., 2006), in cattle and goat infected by T. congolense (Traore-Leroux et al., 1987), 644 
(Meade et al., 2009), (Rajavel et al., 2020), (Ndoutamia et al., 2002), this is the first time that this 645 
involvement has been detected to such an extent. Modification in lipid metabolism could be due to a direct 646 
effect of trypanosomes that are able to internalize lipoproteins (Green et al., 2003), but it could also likely 647 
reflect an activation of the inflammatory response as suggested by (Bouvier-Muller et al., 2017).  648 

Second, the change observed in our study in the energy production of the cells probably reflects the 649 
modification of immune cell energetic metabolism required to support cell growth, proliferation and 650 
effector functions (Donnelly & Finlay, 2015) during infection by T. congolense. The tricarboxylic acid (TCA) 651 
cycle, which is a hub for generating energy and building blocks for macromolecule synthesis as well as 652 
releasing intra-cellular signaling molecules (Martinez-Reyes & Chandel, 2020), was indeed highly enriched 653 
and activated in the common DEGs that we detected in our study and in some within-breeds contrasts. 654 
Besides, gluconeogenesis and glycolysis were also assessed as activated during infection. These two 655 
opposite pathways shared many genes whose corresponding proteins may catalyze reactions in two 656 
directions. Nevertheless, since PKLR, involved in a key step for glycolysis, was upregulated in all the breeds 657 
during infection, and that FBP1, responsible for final steps for gluconeogenesis (Lebigot et al., 2015), was 658 
downregulated, we can suppose that glycolysis was actually the activated pathway during infection. These 659 
results are concordant with the absence of gluconeogenesis in blood cells and with the interdependency 660 
of glycolysis and TCA cycle, glycolysis supplying TCA cycle with pyruvate and providing molecules for 661 
synthetizing nucleotides, glycerol and amino acids (Donnelly & Finlay, 2015). 662 

Breed-specific whole blood transcriptomic responses 663 

A focus on how each breed reacted to infection allowed observing some variations in their 664 
transcriptome, in regard to the enrichment and intensity of activation or inhibition of some biological 665 
functions. As previously reported by (O'Gorman et al., 2009), the blood transcriptome of NDA cattle, the 666 
trypanotolerant breed of reference (Murray et al., 1984), (Hanotte et al., 2003), seemed to respond earlier 667 
and more intensely to infection, with a higher number of detected DEGs in this breed during our 668 
experiment in comparison with the other breeds, except at DPI.30-0 when LAG had a little more DEGs. In 669 
addition, NDA harbored a more intense and earlier activation of several upstream regulators, notably 670 
involved in immune response, in comparison with the other breeds, as exemplified by CSF2, the top 671 
activated upstream regulator in NDA at DPI.20-0, that is a key cytokine produced by various cells during an 672 
infection or an inflammation and involved in monocyte, macrophage, granulocyte and DC functions (Van 673 
de Laar et al., 2012), (Hamilton & Achuthan, 2013). The highly estimated activation state of CSF2 in NDA in 674 
our study could reflect an earlier and greater activation of macrophages in this breed, consistent with the 675 
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earlier release of co-stimulatory cytokines by NDA monocytes in comparison with Boran Zebu monocytes 676 
(Sileghem et al., 1993) and the hypothesis of an earlier pro-inflammatory response in PBMC from NDA 677 
(O'Gorman et al., 2006). PTGER2, the receptor of prostaglandin E2, an inflammation mediator (Kawahara 678 
et al., 2015) associated with a pro-inflammation profile in a mouse model of Chagas disease caused by T. 679 
cruzi (Guerrero et al., 2015), was also considered as highly and precociously activated. In NDA.30-0 and 680 
NDA.40-0 contrasts, MYC, activated in M2 macrophages (Pello et al., 2012), (Jablonski et al., 2015), and 681 
critical in T cell proliferation and growth following activation (Wang et al., 2011), was the most activated 682 
upstream regulator. We could thus hypothesize that trypanotolerance in NDA could be linked to the 683 
precocity and the chronology of activation state of cells, which would allow an efficient immune response 684 
while avoiding immune disorders (Vincendeau & Bouteille, 2006).  685 

In addition, biological processes related to cell cycle and DNA metabolism (e.g., diseases and functions 686 
like segregation of chromosomes, metabolism of DNA; canonical pathways like cyclins and cell cycle 687 
regulation; upstream regulators like E2F1, FOXM1), were strongly enriched and activated in blood cells of 688 
NDA breed at DPI.20-0 and DPI.30-0, and explained the enrichment of functions linked to cancer. These 689 
results suggest an early activation of division and proliferation of some blood cell types in NDA (e.g., 690 
lymphocytes, (Naessens & Williams, 1992), (Naessens et al., 2003)). Curiously, like in all breeds, the 691 
lymphopoiesis function was assessed as strongly inhibited from DPI.30-0. These results could seem 692 
paradoxical but the sets of genes associated with lymphopoiesis on the one hand, and with cell cycle on 693 
the other hand, are different, the former function comprising DEGs encoding T cells surface antigens, 694 
cytokines receptors and signal transducers, and the latter comprising DEGs involved in mitosis and 695 
centromere formation.  696 

Lastly, NDA displayed a particularly important shift in energetic metabolism of blood cells, whose fine 697 
tuning is associated with cell type and fate (O'Neill et al., 2016). Indeed, a key feature of NDA canonical 698 
pathways was the strong enrichment of oxidative phosphorylation and mitochondrial dysfunction, the 699 
former being highly activated such as TCA cycle and glycolysis. The fact that these three pathways were 700 
inferred as activated corroborates the presence of diverse immune cell populations and/or B cell activation. 701 
Indeed, glycolysis is rather associated with pro-inflammatory macrophages (Mills et al., 2016), activated 702 
DCs or effector T cells (McGettrick & O'Neill, 2013), while oxidative phosphorylation is rather associated 703 
with anti-inflammatory macrophages, Tregs or memory T cells (McGettrick & O'Neill, 2013), (Mills et al., 704 
2016), and both seem increased in activated B cells (Caro-Maldonado et al., 2014). However, the strongest 705 
activation of oxidative phosphorylation observed in NDA could also be associated with a predominance of 706 
an anti-inflammatory component (Pearce & Pearce, 2013) during the chronic phase of infection at 30 and 707 
40 DPI. Regulation of metabolic processes was also highlighted by the enrichment of the sirtuin signaling 708 
pathway, which was particularly significantly inhibited in NDA. This pathway comprises several proteins 709 
involved in ubiquitous processes and especially in a coupling between metabolic and stress factors and 710 
inflammatory response (Loftus & Finlay, 2016). In the same way, the most inhibited upstream regulator in 711 
NDA was the RICTOR protein that belongs to mTORC2 complex. The latter regulates cell metabolism and is 712 
involved in numerous functions, including development (Guertin et al., 2006), insulin signaling by 713 
promoting lipogenesis and glycogen synthesis (Yoon, 2017), and immune cell functions.  714 

ZFU, which had the most pronounced anemia, the most durable parasitemia, and the lowest 715 
leukocytosis among the five breeds studied (Berthier et al., 2015), was characterized by a high enrichment 716 
and a strong activation/inhibition of biological functions, pathways and upstream regulators linked to lipid 717 
metabolism from the beginning of infection (i.e., synthesis of cholesterol, superpathway of cholesterol 718 
biosynthesis), which could interact with immune response. This was exemplified by SREBF2, a major 719 
transcription factor involved in cholesterol metabolism (Bommer & MacDougald, 2011), strongly activated 720 
as an upstream regulator, and also continuously upregulated in ZFU exclusively. In addition, the LXR/RXR 721 
activation pathway was found significantly enriched in ZFU but not in NDA nor LAG. Interestingly, (Morrison 722 
et al., 2010) identified this pathway as differentially enriched between mice infected by two T. brucei strains 723 
provoking distinct phenotypes. This pathway, notably expressed in hepatocytes and macrophages, is 724 
involved in lipid metabolism and innate immunity in macrophages (Joseph et al., 2004), (Ahsan et al., 2018), 725 
with rather an anti-inflammatory balance (Schulman, 2017). In the same direction, the significant inhibition 726 
of the inflammasome pathway at DPI.40 in ZFU only tended to show an inhibition of the inflammatory 727 
response at the chronic stage of infection in this breed (Zamboni & Lima-Junior, 2015). 728 
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LAG, whose trypanotolerance has been demonstrated (Berthier et al., 2015) (i.e., mild anemia and quick 729 
recovery), showed a similar whole-blood transcriptome profile to NDA during the experiment (Fig 2). If LAG 730 
had less DEGs than NDA, it responded relatively intensely to infection, especially at DPI.30-0, and most 731 
information about functional analyses was found at this date. In LAG, like in NDA, top activated canonical 732 
pathways were linked to cell energy production, i.e., oxidative phosphorylation and TCA Cycle, 733 
mitochondrial dysfunction was enriched, and diseases and functions linked to cell cycle functions (G2/M 734 
phase transition, Interphase, Segregation of chromosomes) were activated. Superpathway of cholesterol 735 
biosynthesis was also activated, but, unlike the other breeds, not any disease and function linked to 736 
cholesterol or lipid metabolism was significant. Top upstream regulators were also shared with NDA, as 737 
CSF2, the most enriched and activated upstream regulator at DPI.20-0, and HGF, Vegf, MYC, INSR and TCF3. 738 
More specific to LAG response, GATA3 and TBX21, reportedly expressed in an opposite way and 739 
respectively associated with Th2 and Th1 cells (Chakir et al., 2003), were significantly detected as upstream 740 
regulators in LAG.40-0. GATA3, down regulated in all breeds at the mRNA level, was assessed as inhibited 741 
in LAG, and TBX21, upregulated in LAG only, as activated. TBX21 was also associated with NK cell 742 
development and effector functions (Deng et al., 2015). In LAG, a pro-inflammatory activation of the Th1 743 
cell subset or NK could be considered, but results from the diseases and functions analysis showed rather 744 
an inhibition of T cells. Nevertheless, TBX21 being also expressed in B-cells precursors, contrary to GATA3 745 
(Harashima et al., 2005) and being required in B cells for IFNG dependent switching in IgG2a production 746 
(Mohr et al., 2010), other biological mechanisms could be involved. 747 

The BAO breed had an unexpected global transcriptomic response in comparison with its 748 
trypanotolerant status, given that this breed did not present a significantly different level of anemia from 749 
those of NDA and LAG during infection (Berthier et al., 2015). Indeed, the differential expression between 750 
the different times after infection and DPI.0 were smaller in BAO than in other breeds, as shown by the 751 
PCA visualization (Fig 2) and the small numbers of DEGs detected in BAO during the infection process. This 752 
discrepancy between its transcriptomic response and its trypanotolerant status was reflected at the 753 
functional analysis. Indeed, the transcriptomic response in BAO showed similar features to that of ZFU 754 
regarding DEGs involved in cholesterol and lipid metabolism, while it resembled NDA and LAG regarding 755 
TCA cycle activation, control of Ig quantities and B Cell Receptor Signaling. 756 

At last, BOR, an admixed breed between AFZ and AFT (Flori et al., 2014), displayed an expected global 757 
transcriptomic response according to its intermediate phenotype between tolerant and susceptible breeds 758 
concerning anemia, parasitemia and leucocyte counts (Berthier et al., 2015). The functional analyses of 759 
DEGs did not reveal specific responses in BOR, except the activation in BOR.40-0 of RNA transcription. 760 
Significant functions were indeed shared with other breeds, such as the M phase and the segregation of 761 
chromosomes at 20 DPI, strongly enriched in NDA, or the canonical pathways linked to cholesterol 762 
metabolism at DPI.30-0 more enriched in ZFU.  763 

Baseline transcriptomic differences between trypanotolerant and susceptible breeds point to genes that 764 
could influence the outcome of infection 765 

The cross-referencing of the DEG between breeds before infection and within breeds during infection 766 
could provide additional information on gene expression and functions associated with trypanotolerance. 767 
Though the PCA supports the hypothesis that a majority of the differences in gene expression before 768 
infection results from demographic history (see Fig 2), some differences could be adaptive (Whitehead & 769 
Crawford, 2006). Indeed, eighty-two genes were DE between NDA and ZFU before infection and also 770 
responded to infection in NDA and/or ZFU. Many of these genes are reported to be involved in functions 771 
highlighted previously, e.g., immune response and metabolism. One hypothesis is that differences in basal 772 
expression of these genes could underline different proportions of cell types or different states of cell 773 
activation between breeds, which could play a role in subsequent pathogenic processes caused by 774 
trypanosomes. 775 

As illustration, several genes are known to be associated with macrophage functions. Among them, 776 
MARCO, whose expression level was higher in ZFU than in NDA and LAG before infection, but was 777 
subsequently significantly upregulated in all breeds except in ZFU, is a pattern recognition receptor on 778 
macrophages surface involved in phagocytosis of various pathogens and the subsequent enhancement of 779 
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immune response and chemokines expression (Arredouani et al., 2004), (Bowdish et al., 2009), (Xu et al., 780 
2017). MMD (Monocyte to macrophage differentiation-associated) is a gene expressed during monocyte 781 
differentiation and macrophage activation (Liu et al., 2012), and it was similarly upregulated in ZFU.0 in 782 
comparison to NDA.0, and upregulated during the infection in NDA, LAG and BOR. SLC11A1 (syn. Nramp1) 783 
is also a macrophage gene, and was upregulated in ZFU.0 versus NDA.0, but it was then downregulated in 784 
ZFU during infection. The corresponding protein regulates iron homeostasis in macrophages and gene 785 
variants are associated with disease susceptibility or resistance (Archer et al., 2015). In addition, IL2RA, 786 
which is strongly expressed by Tregs, effector T cells (Banham et al., 2006), NK cells (Esin et al., 2013), 787 
(Hamilton et al., 2017), and granulocytes in cattle (Zoldan et al., 2014) was more expressed in ZFU.0 in 788 
comparison with the other breeds, and downregulated during infection and particularly in ZFU. IL2RA (syn. 789 
CD25) has been the target of research in bovine trypanosomosis, where its impairment was noticed in 790 
lymph nodes (Sileghem & Flynn, 1992a). In mice, injection of anti-CD25 antibodies before experimental 791 
infections with T. congolense led to discordant results related to protection or pathogeny (Okwor et al., 792 
2012), (Guilliams et al., 2007). Other genes harboring basal differences in their expression level were 793 
associated with metabolism regulation. For instance, IGF2, which was upregulated in NDA.0 versus ZFU.0 794 
and was downregulated during the infection, codes for a peptide hormone that is involved in metabolism, 795 
tissue development and maintenance and is downregulated during under-nutrition or hypoglycemia 796 
(Livingstone & Borai, 2014).  797 

 798 
In summary, our study provides the first transcriptome profiling of whole blood cells of five West-799 

African bovine breeds during a trypanosome infection using RNA-seq. In order to identify potential 800 
similarities among African taurine cattle, overlooked trypanotolerant breeds (i.e., Lagune and Baoule) were 801 
considered in addition to N’Dama, which accounts for the majority of the studies about cattle 802 
trypanotolerance. We observed that trypanosome infection due to T. congolense has a major impact on 803 
cattle blood transcriptome, whatever the breed and we provided a global transcriptomic picture of 804 
infection. In accordance with previous results, a strong regulation of the immune system functions with an 805 
early activation of innate immune response, followed by an activation of humoral response and an 806 
inhibition of T cell functions at the chronic stage of infection were detected in all breeds. 807 

Most importantly, we highlighted overlooked features, as a strong modification in lipid metabolism. 808 
We mainly noticed an early regulation of the immune response in NDA, associated with a strong activation 809 
of energy production by the cell, a strong enrichment and activation of oxidative phosphorylation in NDA 810 
and LAG, and an activation of the TCA cycle in AFT breeds, which was not highlighted in ZFU. These 811 
differences in cellular energy could be linked in AFT to better functions of some cell types, like M2 812 
macrophages, memory T cells or activated B cells, and could represent a key to decipher trypanotolerance. 813 
If some DEGs, functions and biological pathways were shared between AFT breeds during infection, our 814 
results highlight also differences in gene expression dynamics in these three trypanotolerant breeds (as 815 
exemplified by the singular transcriptomic profile of Baoule). This suggests that AFT breeds, although 816 
subjected to the same selective pressure caused by trypanosomes, may have developed different 817 
adaptation mechanisms. In addition, the trypanosusceptible breed ZFU presented several canonical 818 
pathways linked to inflammation inhibited from DPI.30, which was not observed in the other breeds, and 819 
the strongest modification in lipid metabolism regulation. It would be worth exploring other African zebu 820 
breeds to confirm if this observation is a global feature of indicine breeds. Some genes, known to be 821 
involved in immune response or metabolism, were differently expressed between breeds before infection 822 
and within breeds during infection and raise the hypothesis that basal differences between breeds could 823 
impact the outcome in infection. 824 

Finally, our study provided new and valuable data to contribute to a better knowledge of African 825 
livestock genomics (Kemp, 2019), (Kim et al., 2020), and to decipher the pathogenic process in bovine 826 
trypanosomosis due to T. congolense. A comparable experiment using T vivax or T. brucei brucei would be 827 
worthwhile to verify whether host responses are similar regardless of the infecting species or not. Overall, 828 
interactions between immune response and metabolism deserve to be deeply explored in cattle in order 829 
to improve preventive and curative measures of AAT and also other infectious diseases. 830 
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