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Abstract

We describe a new molecular subgroup of glioblastoma, the most prevalent malignant adult brain
tumour, harbouring a bias towards hypomethylation at defined differentially methylated regions. This
epigenetic signature correlates with an enrichment for an astrocytic gene signature, which together with
the identification of enriched predicted binding sites of transcription factors known to cause
demethylation and to be involved in astrocytic/glial lineage specification, point to a shared ontogeny
between this glioblastoma subgroup and astroglial progenitors. At functional level, increased
invasiveness, at least in part mediated by SRPX2, and macrophage infiltration characterise this
glioblastoma subgroup.
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Introduction

Glioblastoma IDH-wildtype (now renamed glioblastoma), is a highly aggressive brain tumour?, with an
extremely poor prognosis of 15 months median survival from diagnosis?. GBM is also the most prevalent
primary adult brain tumour with an annual occurrence of approximately five cases per 100,000 people’?

and a mean diagnosis age of 644,

Part of the difficulty in researching and treating glioblastoma is the heterogeneity of the tumour, both at
inter- and intra- tumoral levels. Inter-tumoral heterogeneity reflects differences at the genetic level, with
the most striking distinction being between IDH-mutant glioblastoma (now renamed astrocytoma, WHO
grade 4) and IDH-wildtype glioblastoma. Inter-tumoral heterogeneity is also illustrated by the
classification of glioblastomas into different subgroups, such as the transcription-based subgrouping
proposed by the Verhaak group®, and the DNA methylation-based subgrouping proposed by Sturm et
al.> However, seminal studies by multiple groups have established that there is also considerable intra-
tumoral heterogeneity in glioblastoma’™®. Established transcriptional glioblastoma subgroups profiles
(Proneural, Neural, Classical and Mesenchymal) are variably expressed in single cells from the same
tumours” and tumour cells are characterised by distinct gene expression signatures and cluster
separately from one another®. Single cells have also been shown to score highly for multiple gene
expression signatures creating hybrid states, which further increases the heterogeneity of the tumour
cell populations®. Couturier et al.® found that tumour cells fell into a spectrum of states, whereby cells
at one end of the spectrum highly expressed neuronal genes, whilst cells at the other end of the
spectrum up-regulated astrocytic genes. Alternatively, glioblastomas can be stratified into more distinct
subgroups (IDH, RTKI, RTKIIl, Mesenchymal, K27 and G34) considering not only mutations and gene
expression profiling but also DNA methylation data, tumour location, age distribution and protein
markers®. These 6 subgroups can be identified based on DNA methylation subtyping alone'® and show
less heterogeneity®, although some degree of heterogeneity has been reported in a small number of
cases!. The tumour microenvironment also contributes to glioblastoma heterogeneity and the crosstalk
between malignant cells and for example the inflammosome is well characterised'? with macrophages

known to drive the transition of cancer cells towards a mesenchymal-like state's.

Whether glioblastoma heterogeneity and its underlying epigenetic makeup is determined by the cell of
origin or is acquired during transformation, is a matter of debate. The putative cell of origin is thought
to be a stem/progenitor cell that acquires the first genetic and/or epigenetic alterations that promote the
formation of the tumour?. The debate over the cell of origin in glioblastoma centres around neural stem
cells (NSCs) and lineage committed progenitor cells, such as oligodendrocyte, astrocytic and neuronal
precursor cells. NSCs are logically the prime candidate for the cell of origin of glioblastoma, because of
their self-renewal potential, differentiation plasticity and similarity in their gene expression with
glioblastoma stem cells (here called glioblastoma initiating cells - GICs)!*. A seminal study by Zheng et
al.*® showed that deletion of both Trp53 and Pten by Cre recombinase under the control of the GFAP
promoter increased the proliferative rate and self-renewal capability of NSCs, whilst also inhibiting their

ability to differentiate into specific neural lineages, leading to transformation into high grade malignant


https://doi.org/10.1101/2022.02.15.480525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.15.480525; this version posted February 20, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

gliomas. Importantly, glioblastoma driver mutations have been identified in NSCs of the human
subventricular zone (SVZ) in tissue samples obtained from patients, providing for the first-time evidence
that these cells can act as cells of origin of glioblastoma in human?®. Further studies!” have shown that
inducing null alleles of Nf1, Trp53 and Pten using Cre recombinase under the control of NSC specific
Nestin, but also oligodendrocyte progenitor cell specific NG2 or bipotential progenitor cell - specific
Ascll led to high grade glioma, whilst no tumours formed when the same null alleles were induced in
mature neurons (Camk2a Cre), immature neurons (Neurodl1 Cre) and adult neuronal progenitors (Dtx1
Cre)®8. These studies together with others which have shown that also OPC'2° and astrocytes?! can
behave as cell of origin of IDH-wildtype glioblastoma raise the possibility that different subgroups may

originate from glial progenitor cells at different developmental stages.

Here, we leveraged pairs of patient-derived GICs and patient-matched expanded potential stem cells
(EPSC) - derived neural stem and progenitor cells to investigate the DNA methylation landscape of
GICs as compared to their putative cell of origin in a patient-specific manner to further characterise

glioblastoma heterogeneity and its ontogeny.
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Materials and Methods

Tissue Culture

We have previously described a novel experimental pipeline, SYNGN, to derive GICs and EPSCs as
well as induced NSC (iNSCs) from patients who underwent surgical resection of glioblastoma??. The
use of human tissue samples was licensed by the National Research Ethics Service (NRES), University
College London Hospitals NRES license for using human tissue samples: Project ref 08/0077 (S.
Brandner); Amendment 1 17/10/2014. In brief, at the time of operation, tumour tissue and a thin strip of
the dura mater were obtained. Fibroblasts were isolated from the dura mater, propagated, and
reprogrammed to generate EPSCs, which were further differentiated into iINSCs, induced Astrocyte
Progenitors (IAPCs) and induced Oligodendrocyte Progenitors (iOPCs). All media recipes can be found
in Supplementary Tables 1-5.

GICs were cultured on laminin (Sigma Cat. #L2020) coated tissue culture plates at 37°C, 5% CO.. Cells
were maintained in Neurocult media (Stem Cell Technologies Cat. #05751) supplemented with 1%
penicillin/streptomycin solution (Sigma Cat. #P4458), Heparin (Stem Cell Technologies Cat. #07980),
EGF (Peprotech Cat. #AF-315-09-1MG) and FGF (Peprotech Cat. #AF-100-18B-50UG) and passaged
once they reached 80-90% confluence. GICs from the HGCC cohort were cultured on Poly-L-Ornithine
(Sigma Cat. #P3655) and laminin coated plates and maintained in media termed HGCC Media
(Supplementary Table 1), supplemented with EGF and FGF, and passaged in the same manner as
GICs from our own cohort. Separate passages of the same GIC line were considered to be biological

replicates.

Dura-derived fibroblasts were reprogrammed into EPSCs as previously published?3?4, EPSCs were
then further differentiated into iNSCs with a Gibco commercially available kit?? (Gibco Cat. #A1647801).
iINSCs were cultured on GelTrex (Gibco Cat. #A1413302) coated tissue culture plates and maintained
in Neural Expansion media (Supplementary Table 2) at 37°C, 5% CO2. iINSCs were passaged once

they reached 80-90% confluence.

HEK293T cells were cultured in adherent conditions and maintained in IMDM media (Gibco Cat.
#12440061) supplemented with 10% Foetal Bovine Serum (FBS) (Gibco Cat. #10500064) and 1%
penicillin/streptomycin solution (Sigma Cat. #P4458) at 37°C, 5% CO:z. They were detached using 1X

Accutase (Millipore Cat. SCR005) for five minutes and passaged at ratios from 1:5 to 1:50.

iIAPC and iOPC Generation

Differentiation of iNSCs into iAPCs was adapted from published protocols?. Differentiation was initiated
on Day -1, by seeding dissociated iINSCs at 1.5x10* cells/cm? density on GelTrex-coated plates in
Neural Expansion media. On Day 0 Neural Expansion media was changed to Astrocyte media
(ScienCell: Cat. #1801) supplemented with 2% FBS, Astrocyte Growth Supplement (AGS) and
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penicillin/streptomycin solution, provided with the media. From Day 2 onwards, media was changed
every 48 hours for 20 — 30 days. At 80-90% confluence, the cells were passaged back to the starting
seeding density (1.5x10* cells/cm?), or at an approximate ratio of 1:6. Cells were detached using
Accutase, and always cultured in the same Astrocyte media on GelTrex. Cell pellets were collected at
three different time points throughout the differentiation process, when cells were confluent and
passaged; approximately at days 10, 20 and 30. Differentiated astrocytes could be cryopreserved using
Astrocyte media supplemented with 10% DMSO, or commercially available SynthFreeze (Gibco, Cat.
#A1254201).

iINSCs were differentiated into iOPCs using a published protocol?®, commencing from iPSCs and
achieving fully mature oligodendrocytes at 95-days. Here, the protocol was started from iNSCs,
equivalent to Day 8 of the Douvaras-Fossati protocol, which were induced into OPCs up to Day 75,
when the original authors reported emergence of immature O4* oligodendrocytes. On Day O of our
protocol (Day 8 of the Douvaras-Fossati protocol) Neural Expansion media was removed, and iNSCs
cultured in N2 media (Supplementary Table 3) with 100 nM RA and 1 uM Smoothened Agonist (SAG)
added freshly each day. Media was then changed daily with fresh RA and SAG until Day 4, at which
point cells became over-confluent and were detached and placed in N2B27 Media (Supplementary
Table 4) with freshly added RA and SAG. A series of scratches were made with a cell scraper vertically,
horizontally, and diagonally across each well, and the contents of a single well transferred into eight
wells of an ultra-low attachment 24-well plate (Corning Cat. #3473), with extra N2B27 media.
Aggregates were then cultured in suspension for a further eight days, with media changed every 48
hours. On Day 12 of the protocol N2B27 media was replaced with PDGF media (Supplementary Table
5), and aggregates were cultured for a further 10 days, with media replaced every 48 hours. On Day 22
of the protocol aggregates were plated onto Poly-L-Ornithine and laminin coated plates and were

cultured adherently until Day 67 of the protocol, with PDGF media changes every 48 hours.

Two independent differentiations of iIAPCs and iOPCs from iNSCs were considered to be biological
replicates. For iINSCs two independent differentiations from iPSCs were considered to be biological

replicates.

Proliferation assay

For the comparison of iNSCs and iAPCs cells were seeded at 2x10* cells per well of a 24-well plate
(CytoOne Cat. #CC7682-7524), whilst for the comparison of GIC lines cells were seeded at 1x10* cells
per well of a 24-well plate. Then, at selected time-points (every 24 hours) starting from Day 1 or Day 2,
cells from each well were individually detached using Accutase, then centrifuged individually (1200 rpm)
at 4°C for five minutes. At least three wells were detached and counted at each timepoint to generate
technical triplicates. After detachment and centrifugation, cell pellets were resuspended in 100 uL DPBS
and 10 pL was mixed with 10 pL of Trypan Blue (Sigma Cat. T8154-100ML) and live cells counted using

a haemocytometer.
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Invasion assay

Transwell inserts with 8.0 um pores (Sarstedt Cat. #89.3932.800) were placed into wells of a 24-well
plate and coated with 100 uL of GelTrex. A total of 100,000 cells were then seeded into the transwell
insert in 200 pL and 700 L of normal growth media was added to the bottom of the well. Cells were
then incubated in normal growth conditions for 24 hours, at which point cells on the inside of the
transwell were removed using a cotton bud dampened with DPBS. Once cells inside the transwell were
removed, cells on the bottom of the transwell were fixed using methanol, pre-chilled to -20°C, for five
minutes at room temperature. After fixation, the bottom of the transwell was washed twice for five
minutes using DPBS. The membrane of the transwell was then cut out and mounted onto a microscopy
slide with mounting media including DAPI (Vectorlabs Cat. #H-2000). Transwell membranes were then
analysed using a microscope and five representative images of nuclei on each membrane captured.
For each biological group and replicate (different passages of cell lines), three technical replicate
membranes were imaged. Finally, the number of whole nuclei in each image field were counted, using

ImageJ software (Version 1.51m9), to ascertain how many cells migrated across the membrane.

Neurosphere extreme limiting dilution assay

On Day 0 of the assay, cells were seeded at a maximum cell density of 25 cells per well of a round
bottom ultra-low attachment 96-well plate (Corning Cat. #7007). Cells at this density were then serially
diluted 1:2 a total of 4 times to give 5 cell densities in total — 25, 12.5, 6.25, 3.125 and 1.5625 cells per
well. For each biological replicate (different passages of cell lines), 12 technical replicates of each cell
density were performed (12 separate wells). Cells were then incubated for 14-days with media changes
every 48 hours, after which time the presence of neurospheres was assessed and counted for each
well. To be considered a neurosphere, cells had to form 3D spherical clusters with smooth and defined
edges and had to be greater than two cells in size. Results were analysed using the extreme limiting
dilution analysis tool 27, where the log proportion of negative cultures is plotted against the number of
cells seeded, with a trend line indicating the estimated active stem cell frequency. The statistical
significance of the differences between the estimated active stem cell frequencies of different cell lines

was also tested using a Chi Square test as part of the analysis tool %’

Animal procedures

All procedures were performed in accordance with licenses held under the UK Animals (Home Office
Guidelines: animals Scientific Procedures Act 1986, PPL 70/6452 and P78B6C064Scientific
Procedures) Act 1986 and later modifications and conforming to all relevant guidelines and regulations.
Orthotopic xenografts were performed on eight-to twelve-week-old NOD SCID CB17-Prkdcscid/J mice
(purchased from The Jackson laboratory) under anaesthesia with isoflurane gas and 5 x 10° primary

human GIC in 10 uL PBS were slowly injected with a 26-gauge Hamilton syringe needle into the right
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cerebral hemisphere with the following coordinates from the bregma suture: 2 mm posterior, 2 mm
lateral, 4 mm deep, 10° angle. After the injection, scalps were cleaned with ethanol swab to remove any
remaining cells and sutured with 4-0 Coated Vicryl Suture (Ethicon). After the surgery, mice recovered
on a heat-map until they were fully awake. For the five days following surgery, mice were checked twice
a day, then once a day and body weight was monitored once a week. Mice were kept on tumour watch
until they developed brain tumour clinical symptoms and were then euthanized by neck dislocation and

brains were harvested for histology analysis.

DNA and RNA extraction

Cells used for gPCR analysis were pelleted and frozen at -80°C before RNA extraction. RNA was
extracted by following the standard protocols of either Qiagen RNeasy Mini or Micro kits (Cat.
#74104/74004). Some cell pellets were processed using Norgen Biotek RNA/DNA/Protein Purification
Plus Kit (Cat. #47700), which allows genomic DNA, total RNA, and protein to be isolated from a single
sample. RNA to be sent for RNAseq, and DNA to be sent for DNA-Methylation array, were prepared

using the Norgen Biotek kit, according to manufacturer’s instructions.

Reverse Transcription and gPCR

Reverse transcription reactions were carried out by first mixing 1 pL random primers (Invitrogen Cat.
#48190011), 500 ng RNA and ddH20 up to 10 pL, primers were then annealed by heating to 65°C for
five minutes, then 4°C for five minutes. Then 4 pL 5X FS Buffer, 1 uL 0.1 M DTT, 0.5 uL SuperScript llI
Reverse Transcriptase (Invitrogen Cat. #18080044), 1 uL 10 mM dNTP mix (Invitrogen Cat. #18427-
013) and 3.5 pL ddH20 were added to this reaction mixture.

gPCR reactions were carried out using Applied Biosystems Syber Green qPCR Master Mix (Cat.
#4309155). Each reaction contained 2 uL of 2.5 ng/puL cDNA (5 ng total), 0.48 pL of 10 uM forward and
reverse primer mix, 3.52 pL ddH20 and 6 pL of Syber Green Master Mix (12 pL total reaction volume).
All gPCR reactions were run on an Applied Biosystems 7500 Real-Time PCR System or
StepOnePlus™ Real-Time PCR System. A full list of primers and their sequences used throughout this

project can be found in the Supplementary Table 6.

Flow cytometry and Fluorescent Activated Cell Sorting (FACS)

Primary and secondary antibodies used for flow cytometry and FACS staining are listed in
Supplementary Table 7. Samples stained with unconjugated primary antibodies were incubated with
species reactive secondary antibodies with various fluorophores conjugated. Samples for flow
cytometry analysis were analysed using a BD LSRII Analyser, samples for FACS were processed using
a BD FACS Aria Sorter.
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For FACS of live iOPCs, cells were dissociated by removing culture media, adding FACS buffer (1:200
BSA Sigma Cat. #A3912, 1:250 EDTA 0.5mM Ambion Cat. #AM9262, in DPBS) and homogenising the
cells into a single cell suspension. As the culture contained large aggregates, the cell suspension was
passed through a 100 pum size filter. Cells were then counted and centrifuged at 1500 rpm for five
minutes at 4°C followed by dispensing 100 pL of a 5x10° cells/mL suspension per tube for staining.
Prior to staining cells were incubated in anti-CD16/32 FcR block (diluted 1:200 in FACS buffer) for 15
minutes at 4°C, washed and then incubated with conjugated or unconjugated primary antibodies for 30
minutes at 4°C. Staining was carried out with either single antibodies or combinations of antibodies.

Finally, cells were pelleted and re-suspended in DPBS before FACS.

For flow cytometry analysis of cell samples, cells were harvested, resuspended in FACS buffer, and
blocked with FcR blocker in the same manner as for FACS analysis. Extracellular antibodies were first
incubated with samples for 30 minutes at 4°C, followed by washing and resuspension in a fixable
viability dye diluted 1:200 in DPBS and incubated for 20 minutes at 4°C. After further washing, cells
were then fixed for 20 minutes at 4°C in 4% PFA diluted in a 1:1 ratio with FACS buffer. For the staining
of intracellular targets, after fixation the cells were permeabilised using methanol for five minutes at
room temperature and incubated with antibodies diluted in methanol for 20 minutes at room

temperature. Finally, samples were washed in FACS buffer and resuspended for analysis.

Immunocytochemistry (ICC)

All cells analysed via immunocytochemistry (ICC) were washed in DPBS and fixed by treatment with
4% paraformaldehyde for 15 minutes, then washed in DPBS for five minutes, three times. Fixed cells
were stored at 4°C in DPBS until staining. Cells were then permeabilised and blocked followed by
staining with primary antibodies. Primary antibodies and the dilutions used in this study can be found
in the Supplementary Table 7. After primary antibody incubation, overnight at 4°C or three hours at
room temperature, samples were washed in DPBS, and stained with species reactive secondary
antibodies conjugated to various fluorophores for one hour at room temperature. After washing once
again in DPBS, sample slides were then mounted using Fluoroshield mounting media with DAPI and

sealed using nail varnish.

Immunoblotting

Cell samples used for protein extraction were first pelleted by centrifugation, at full speed, for five
minutes, then snap frozen using dry ice and stored at -20°C until extraction. Protein was extracted from
cell pellets by resuspending pellets in RIPA lysis buffer (25 mM Tris-HCI pH 7.6, 150 mM NaCl, 1% NP-
40, 1% sodium deoxycholate, 0.1% SDS) supplemented with protease inhibitors (Santa Cruz Cat. SC-
24948A), samples were then left to incubate on ice for 30 minutes. After incubation samples were

centrifuged, at full speed, for 15 minutes, at 4°C, and the supernatant collected.
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Protein concentration was determined using BCA assay (Thermo Cat. #23227) performed as per the
manufacturer’s instructions. Concentration of protein samples was then determined by interpolating the

absorbance values of the unknown samples with a standard curve of known protein concentrations.

An equal amount of protein was then loaded into a 4-12% acrylamide gel (Invitrogen Cat.
#NP0322BOX). Proteins were separated in SDS-PAGE (ThermoFisher Cat. #NP-0001) and blotted
onto a nitrocellulose membrane (GE Healthcare Cat. #10600002). Membranes were then blocked with
5% non-fat milk (Santa Cruz Cat. #SC-2325) in Phosphate Buffered Saline-Tween (PBS-T) (0.1%
Tween20 (Sigma Cat. #P9416-100ML) in PBS) for one hour at room temperature and then incubated
with primary antibodies at 4°C overnight. The Supplementary Table 7 summarises primary antibodies
and their dilutions used in this study. After incubation of primary antibody membranes were washed
three times for five minutes in PBS-T and then incubated, at room temperature, with the species
appropriate peroxidase-conjugated secondary antibody at a dilution of 1:5000 for one hour. Membranes
were further washed three times for five minutes in PBS-T before being visualised using ECL kit (GE
Healthcare Cat. #RPN2232) and ChemiDoc Imaging System (BioRad). Quantification of the protein

expression was measured by densitometric analysis performed with ImageJ software (Version 1.51m9).

Enzyme linked immunosorbent assay (ELISA)

Quantification of secreted proteins and chemokines such as Interleukin-6 (IL-6) was performed using
an ELISA. Cells were cultured, prepared, and treated as already described, and after treatment growth
media supernatant was collected for analysis by ELISA. Upon collection, supernatant was filtered using
0.22 um syringe filter (Santa Cruz Cat. #SC-358812) and snhap frozen using dry ice, followed by storage
at -80°C until analysis. The ELISA was then performed as per the manufacturer’'s instructions (BD
Bioscience IL-6 ELISA Cat. #555220), and concentrations determined by interpolating absorbance

values of samples using a standard curve.

shRNA lentivirus production and transduction of cell lines

Lentivirus particles were produced using HEK293T cells. To produce short hairpin RNA (shRNA)
lentivirus’, a Lipofectamine3000 (Invitrogen Cat. #L3000-015) transfection protocol was used.
Transfection was carried out as per the manufacturer's standard protocol, by forming DNA-lipid
complexes which were then incubated on cells for six hours followed by addition of packaging media
for lentivirus harvesting. Packaging media consisted of Optimem reduced serum media supplemented
with Glutamax (Gibco Cat. #51985-034), with 1 mM sodium pyruvate (Gibco Cat. #11360-039) and 5%
FBS. 24 hours post transfection, media was harvested from HEK293T cells and stored at 4°C, 10 mL
of fresh packaging media was added. 52 hours post transfection media was harvested once again and
mixed with media previously harvested. Harvested supernatant was then centrifuged at 2000 rpm for
five minutes to remove cell debris, then filtered through a 0.44 pm filter (VWR Cat. #514-0329). To
precipitate and concentrate lentiviral particles, 5X Polyethylene glycol (PEG) (Sigma #89510-1KG-F)
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was prepared by mixing 200g PEG, 12g NaCl (Fisher Cat. #S/3166/60) and 1 mL of 1M Tris (pH 7.5)
(PanReac AppliChem Cat #A4263,0500) then ddH20 added to a total volume of 500 mL. pH of PEG
was further adjusted to 7.2, and then autoclaved before use. 5X PEG was then added to harvested
supernatant to give a final concentration of 1X and then incubated at 4°C overnight. The following day
harvested supernatant mixed with PEG was centrifuged at 1500g for 30 minutes at 4°C, supernatant
was removed and spun again to remove excess supernatant. The lentiviral pellet was then resuspended

in an appropriate amount of DPBS, aliquoted and stored at -80°C until use.

Harvested virus was titrated to determine the transforming units per mL (TU/mL) for each volume of
virus used during titration. Cell lines were infected overnight with the stated multiplicity of infection (MOI)
of lentiviral particles. The TU/mL that achieved 5% to 30% of fluorescent tag positive cells during
lentivirus titration was selected for the calculation of the MOI. The following day after infection with
lentivirus, media was changed, and the cells were left to recover. Once confluent the cells expressing
the desired construct were then purified by Puromycin selection or FACS, if transduced with constructs

with a Puromycin resistance gene or fluorescent tag.

Glycerol stocks of competent bacteria containing shRNA plasmids, for lentivirus production, were
purchased from Horizon Discovery Dharmacon™. To obtain plasmid for lentiviral production, a small of
amount of glycerol stock was extracted and added to LB broth (Sigma Cat. #L.3522) supplemented with
the relevant antibiotic, and grown up in large liquid culture, overnight at 37°C. Following this, plasmid
DNA was isolated and purified using the Qiagen Maxi Prep kit (Qiagen Cat. #12963). Details of each

shRNA plasmid constructs can be found in the Supplementary Table 8.

DNA methylation data processing

DNA used for methylation arrays was extracted and prepared as described above. Two biological
replicates of each patient-matched GICs, iINSCs, iAPCs, and iOPCs were sent for DNA methylation
array. DNA was assayed on the lllumina Infinium Methylation EPIC array (over 850,000 probes). Raw
data was imported into an R workspace (R Version 3.5.0) and all analysis therein performed using the
RStudio environment (Version 1.1.453). Raw data from the array was first processed using the
ChAMP?8:2% (Version 2.12.4) R package to remove any failed detections and flawed probes. Along with
data, metadata was also imported and used to help perform analysis. After this initial processing, data
were then further processed and normalised using the Subset-quantile within array normalization
(SWAN) algorithm3°. All methylation data used for further analysis such as differential methylation, PCA

or heatmap and dendrograms were SWAN normalised data.

After initial processing of DNA methylation array data, as described above, differentially methylated
regions (DMRs) and genes were identified. To do so, output data from the SWAN normalisation
algorithm in the form of beta values were imported into an R workspace and different datasets merged
into a single dataset with the only probes that were common to all samples. After initial data processing,
the R package DMRcate3! (Version 1.18.0) was then used to first identify DMRs and then the
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corresponding genes. The minimum number of contiguous (or consecutive) differentially methylated
probes per region to be called a differentially methylated region (DMR) was set to 6, the beta cut off
was set to 0.3, and as the lambda parameter (bandwidth) was set to 1000, the scaling factor (C) was
set to 2 as per the authors recommendations. Unless otherwise stated here, all other parameters were

set to their respective default settings.

RNAseq data processing

RNA used for RNAseq was extracted and prepared as previously detailed. RNA samples from two
biological replicates of patient-matched iAPCs, INSCs and GICs was of sufficient quality and quantity
(minimum 1000 ng total mass at concentration of 50 ng/pL with 260:280 and 260:230 ratios equal to
~2) as to perform Poly-A library preparation followed by sequencing using the Illumina HiSeq4000
platform at 75 PE. For sequencing of miRNAs, total RNA extracted as already outlined was prepared
using the NEBNext smallRNA kit for Illumina (E7330L). In some cases where insufficient quantities of
RNA were isolated from single passages of cells, RNA from 2 passages were combined. iOPC samples
yielded very low quality and quantity of RNA after extraction and therefore samples were not suitable
to be prepared using the Poly-A library preparation method. Instead, two biological replicate iOPC
samples, for each patient, were prepared using the SmartSeq2 library preparation method and

sequenced using the lllumina HiSeq4000 platform at 75 PE.

The raw RNAseq data generated was processed in multiple ways depending on the output of the
analysis. FastQC (v. 0.11.5) (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to
perform quality control of the raw data, to check the Phred score, the GC content distribution, and the
duplication levels, then the TrimGalore tool (v. 0.4.5-1) (DOI 10.5281/zenodo.5127898) was used to
remove low quality reads (Phred score < 20) and residual adapters. For the use of differential
expression analysis raw data was processed using the STAR gapped alignment software®? (Version
2.7.0), which generated gene counts. The reference genome used for alignment was Ensembl GRCh38
(release 90). Following alignment, prior to differential gene expression analysis, further processing of
the STAR output data was performed. Genes with a counts per million (CPM) value < 1, in a minimum
of half of the samples per group (i.e., GIC or INSC) plus one, were removed. DEGs were identified using
the R package: EdgeR33* (Version 3.24.3) with the thresholds that the minimum absolute log fold
change (logFC) in gene expression was 2 and the false discovery rate (FDR) was less than 0.01. EdgeR
analysis was performed using two statistical tests provided by the package — the likelihood ratio test
(glmFit) and the quasi-likelihood ratio test (gImQLFit), however all gene lists used in further downstream

analysis were generated from the more conservative gImQLFit test, unless otherwise stated.

For the differential gene expression analysis of GICs from the HGCC cohort, microarray data that had
been pre-processed (normalised and Combat batch adjusted) was used. Differential gene expression
analysis was then performed in an R workspace using the RStudio environment and limma package®®
(Version 3.40.6). Linear modelling was implemented by the ImFit function and the empirical Bayes

statistics implemented by the eBayes function and DEGs with a p-value < 0.05, and log fold change >
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0.5, were selected by the topTable function. Volcano plots depicting the LFC and statistical significance
of DEGs, from analysis of both microarray data and RNAseq data, were generated using the R package

EnhancedVolcano (version 1.5.10).

To generate heatmaps, dendrograms and perform PCA (all detailed below), a different approach was
used to process raw RNAseq data. Alignment was instead performed using pseudoalignment package
Salmon?® (Version 0.13.1), with the output being transcript expression level, which were then pooled to
give gene level expression estimates expressed as transcripts per million (TPM)3738. This unit is
normalised for library size and transcript length. The reference genome used for Salmon alignment was
Ensembl GRCh38 (release 90).

Principal component analysis (PCA), heatmaps and dendrograms

PCA was performed on both methylation array data and RNAseq data to validate the sequencing data.
Output data from the pseudoalignment package Salmon (TPM counts) were used for PCA of RNAseq
data, and beta values from SWAN normalised data we used for PCA of methylation array data. Prior to
PCA, data were filtered to include only the most variable methylation probes or genes, the exact number
used for each figure is stated in the relevant figure legend. The R package NOIseq3®4° (Version 2.26.1)
was used to perform PCA and then the results plotted, using R packages ggplot24! (Version 3.1.1) (for
two-dimensional plotting of two principal components) or plotly (Version 4.9.0) (for three-dimensional

plotting of three principal components).

Heatmaps and dendrograms were generated using both DNA methylation and RNAseq data. The
RNAseq data used was the output from the pseudoalignment package Salmon (gene expression data
in units of TPM). DNA methylation data used was beta values from SWAN normalisation. RNAseq data
was filtered prior to analysis by removing genes with a TPM value < 1 and the number of samples in
each group (i.e., GIC or iINSC) that must express each gene to half the group size plus one. After this
initial filtering, only the most variable genes were used in the analysis, with the exact number stated for
each figure. In general, the Euclidean clustering method and Complete distance methods were used
as part of the standard heatmap.2 function in R.

Gene signature analysis

Gene signature analysis was performed using Single Sample Gene Set Enrichment Analysis (SSGSEA)
method. In order to calculate ssGSEA enrichment scores for our samples, the R package GSVA%2
(Version 1.30.0) was used. The gene level expression estimates output, expressed as TPM, from
alignment using the Salmon (detailed earlier) were used as the input for this analysis. As well as gene
expression data, gene lists or signatures were also required, and all gene lists/signatures were

formatted as Ensembl gene IDs.
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The oligodendrocyte gene signatures used here were taken from a published study by McKenzie et
al.*® The astrocyte composite signature (ACS) was manually generated by compiling multiple astrocytic
gene signatures into one coherent gene signature. Astrocytic gene signatures were first found in the
xCell bioinformatics tool**: xCell is a tool used to de-convolute a sample composed of a mixture of cell
types into its respective cell types, based on gene signatures curated and validated by the authors.
Multiple data sources were used to generate gene signatures for as many cell types as possible, and
the authors generated a gene signature for a given cell type from each data source, meaning more than
one gene signature was generated for each cell type. For example: three data sources contained
astrocyte expression data, and thus two astrocyte signatures were generated from each data source,
meaning there were six signatures for the tool to use to de-convolute mixed samples. In this present
study, we have taken these six astrocyte signatures used by the xCell tool and merged them into one
coherent signature. The ACS and the oligodendrocyte signatures used in this study can be found in

Supplementary Table 9.

Motif Analysis using Homer

Identification of enriched binding motifs in genomic regions was performed using Homer*
(Hypergeometric Optimization of Motif EnRichment, (v4.11, 10-24-2019). The tool findMotifsGenome.pl
was used to perform de novo search as well as to check the enrichment of known matifs, in the context
of the latest human genome annotation (hg38). Homer searched significantly enriched motifs (p-value
< 0.05) with a length spanning a wide range of standard values (6,8,10,12,15,20,25,30,35,40,45,50 bp)
in a region of default size (200 bp) at the centre of each sequence. Following the Homer guidelines
(http://homer.ucsd.edu/homer/index.html), the option -mask was used, to minimize the bias towards
long repeats in the genome, and the maximum number of mismatches allowed in the global optimization
phase has been set to 3, to improve the sensitivity of the algorithm. Other settings have been left as
default, such as the distribution used to score motifs (binomial). Finally, a scoring algorithm assigned a
ranked list of best matches (known motifs or genes) to each de novo motif, to inform the biological

interpretation of the results.

Image analysis

Whole-slide images (WSI) of immunostained sections of xenografts derived from GICs lines were
analysed using QuPath*6. Machine learning-based pixel classifiers were manually trained on a subset
of WSI to detect tissue sections and vimentin immunostaining and create corresponding annotations.
The trained pixel classifiers were then applied to the whole set of WSI. Prior to detecting vimentin
immunostaining using the pixel classifier. Tissue annotations were eroded/shrunk by 35 uym to exclude

tumours at the edge of the tissue sections.

Tumour core annotations were created by eroding/shrinking vimentin annotations by 10 ym to exclude

any small and isolated staining as well as thin processes projecting from the tumour core. The
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annotation was then dilated/expanded to return the tumour core annotation to its original border size.
Any annotations that were smaller than 10,000 um? were discarded to exclude small islands.

Gross tumour annotations were created by dilating/expanding vimentin annotations by 75 ym to fill in
gaps between vimentin staining close together to be considered as part of the gross tumour. These
were then eroded/shrunk by 100 ym and then dilated/expanded by 25 ym to smoothen and return to
the original border size. Any gross tumour annotations that did not contain a tumour core annotation
were discarded.

The tumour’s invasiveness index (I1)*7, independent of tumour size, was calculated as:

. ) Gross tumour area
Invasiveness index =

Tumour core area

Single cell RNA sequencing data analysis

Two public single cell RNA sequencing (scRNAseq) datasets have been analysed: tumour samples
from seven newly diagnosed GBM patients (Antunes et al.*® patients ND1-ND7) and from eight GBM
patients (Neftel et al.? patients MGH102, MGH105, MGH114, MGH115, MGH118, MGH124, MGH125,
MGH126, MGH143), both generated by the 10x Genomics platform. The gene expression matrices

were downloaded from www.brainimmuneatlas.org, and GEO (accession number GSE131928),

respectively. The gene expression matrices were merged, data was normalized, highly variable genes
were detected, and their expression was scaled, followed by PCA, using the Seurat R package (Version
3.2.3). To account for the batch effect between samples, the cellular PCA embedding values were
corrected with the harmony R package (Version 1.0), using a diversity clustering penalty parameter
(theta) of one. Theta controls the level of alignment between batches, with higher values resulting in
stronger correction. Next, the first 20 harmony corrected PCA embeddings were included in Louvain
clustering (resolution = 0.25) and UMAP dimensionality reduction, using Seurat. The identified clusters
were annotated as myeloid cells, lymphocytes, endothelial cells, and oligodendrocytes, based on

expression of cell type markers. The remaining group of clusters were annotated as cancer cells.

The lymphocyte cluster was disaggregated and re-clustered, using 10 harmony corrected PCA
embeddings and resolution=1. By using specific gene markers, the clusters were classified into B cells,
Regulatory T cells, Proliferating CD8 T cells, NKT cells, Naive T cells, Interferon-response T cells, 2

clusters of CD4 T cells, 2 clusters of CD8 T cells and 2 clusters of NK cells.

The myeloid cells were also disaggregated and re-clustered based on 30 harmony corrected PCA
embeddings, and resolution = 1. We identified Monocyte cluster, DC cluster, three clusters of microglia-
derived TAMs (mg-TAMs), SEPP1-hi monocyte-derived TAMs (moTAMSs), hypoxic moTAMs, IFN-
response moTAMSs, proliferating moTAMs, TAMs upregulating heat shock protein genes (HSP TAM:
HSPA1A, HSPA1B, HSP90AA1, HSPH1, HSPB1), one cluster specific for patient MGH105, as well as
myeloid-cancer cell doublets.
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The cancer cells were disaggregated and re-clustered using 20 harmony corrected PCA embeddings,
and resolution = 1. One of the clusters, which was expressing macrophage markers, was removed from
further analysis as a cluster of macrophage-cancer cell doublets. Additive module scores for the
astrocytic (ACS) and OPC gene signatures defined in this study were calculated for each cancer cell,
using the AddModuleScore function of Seurat. This function yields the average expression level of each
gene signature, subtracted by the average expression of a control gene set. Then, each cell has been
assigned the signature with the highest score (ACS, OPC Enrich-300 or OPC Spec-300). Alternatively,
additive module scores were calculated for the six gene signatures described by Neftel et al. (‘MES1”,
“MES2", “AC”, “OPC”, “NPC1” and “NPC2"). The six gene signatures were defined using the genes in
Supplementary TableS2 of Neftel et al.. Each cell was also assigned the signature with the highest
from the six scores. For the gene set enrichment pseudo-bulk analysis of the cancer cells, the raw UMI
counts were summed for all cancer cells per gene for each patient using the aggregateAcrossCells
function from the scuttle R package (Version 1.0.4). The pseudo-bulk counts were normalized using
the CPM method and log2-transformation by edgeR (Version 3.32.1). Gene set ssGSEA enrichment
scores for the ACS and OPC signatures, as well as for the six gene signatures of Neftel et al.® were
calculated using the GSVAR package (Version 1.38.2).

Spearman’s correlation coefficients have been calculated between ACS pseudo-bulk enrichment score
divided by the mean between the two OPC scores per patient, and the percentages of the different cell
populations per patient. Furthermore, Spearman’s correlation analysis was performed between the
percentages of cells assigned to the distinct gene signatures per patient and the percentages of the
different cell subsets present per patient. The data from patients ND7 and MGH143 was not used in

these analyses, as they only contain CD45+, and CD45- sorted cells, respectively.

Statistical analysis and graphs

All statistical analysis and generation of graphs was performed using GraphPad Prism 9 or R with
appropriate R packages already mentioned. Parametric data are presented as mean * standard
deviation. P<0.05 was considered statistically significant, with p values <0.0332, <0.0021, <0.0002,
<0.0001 represented with *, ** *** *** ragpectively. Further information of the statistical analysis of

specific datasets is indicated in the figure legends.

All scatter plots, time-series plots, bar graphs and survival curves, and accompanying statistical tests
were generated with GraphPad Prism 9 or R. Venn diagrams were produced using the R package
VennDiagram*®, for the comparison and visualisation of gene lists. Fisher's exact tests, used to test the
significance of the overlap between Venn diagram categories, were calculated using an online statistics

tool (https://www.socscistatistics.com/tests/fisher/default2.aspx) (no reference available). Upset plots

showing the number of DEGSs, found in various patient comparisons and the overlaps between patient
comparisons  were generated using the online  tool Intervene Shiny  App

(https://asntech.shinyapps.io/intervene/) (no reference available).
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Data availability

Previously generated GIC and iNSC transcriptomic and methylation data are available from the NCBI
Gene Expression Omnibus (GEO) database: GSE154958 and GSE155985. Newly generated
transcriptomic and methylation data for iAPC, iOPC, iINSC and GIC are available as a private GEO
submissions (GSE196418) (GSE196339) - please see the Transparent Reporting Form for this
submission for instructions on how reviewers can access these data. The publicly available single cell
dataset used in this study is available from the NCBI GEO database: GSE163120 and the European
Genome-Phenome Archive: EGAS00001004871. GIC transcriptomic data from the HGCC are available
from the NCBI GEO database: GSE152160, DNA methylation data from the HGCC are available from:
http://portal.hgcc.se/data/HGCC_ DNA_methylation.txt.
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Results
A DNA hypo-methylation bias in a subset of GBM.

To investigate the DNA methylome of GICs as compared to syngeneic iINSCs, we took advantage of a
cohort of 10 previously described GIC/INSC pairs?2. DNA methylation was assessed using the lllumina
Infinium Methylation EPIC array and processed as described in the Methods. Across the 10 intra-patient
comparisons we visualised the distribution of the median probe delta M values and the proportion of
these probes that were either hypo- or hyper-methylated, as well as the total number of differentially
methylated regions (DMRs) and the proportion of hypo- and hyper-methylated DMRs (Figure 1 A, left
panel). When comparing the proportion of hypo-methylated and hyper-methylated probes and DMRs
for each comparison, four GICs stood out (19, 30, 31 and 17 — highlighted) identified as “bias” which
had a statistically significant larger proportion of hypo-methylated probes and DMRs as compared to
the other six GICs in the cohort, identified as “non-bias” (Figure 1 A, left panel and Figure 1 B). This
subgrouping did not reflect the known DNA methylation-based classification®; three of the four GICs
with a bias towards hypo-methylated DMRs belonged to the RTK-1 (Proneural) subgroup and one to
the RTK-Il (Classical) subgroup. The GICs without a hypo-methylation bias were spread across the
RTK-I, RTK-Il and Mesenchymal subgroups. Noticeably, the proportion of hypo-methylated and hyper-
methylated DMRs was exaggerated with a further increase in the proportion of hypo-methylated and
hyper-methylated DMRs and probes respectively, when patient-specific probes and DMRs were

considered (Figure 1 A, right panel).

Principal Component Analysis (PCA) of the 5000 most variable DNA methylation probes across all GICs
in our cohort showed that Principal Component 1 (PC1) largely separated GICs by hypo-methylation
bias, with three out of four GICs (19, 30 and 31) with a bias towards hypo-methylated DMRs clustering
together on the left of the plot and all remaining patients to the right (Figure 1 C). A heatmap dendrogram
of the beta values of the top 100 probes driving PC1 showed that these probes had much lower beta
values in GICs 19, 30 and 31 relative to all other GICs, reflecting the separate cluster observed in the
PCA (Figure 1 D). This observation suggested that the bias was GIC-driven, and not caused by the
iINSC comparator, a conclusion which was confirmed when we performed non-syngeneic comparisons
between each GIC and each of the INSCs in our cohort (Figure 1 E), GIC17 was found to be an
exception as the proportion of hypo-methylated DMRs was not as high as the other three GICs (19, 30
and 31), and indeed this GIC did not cluster with GICs 19, 30 and 31 in the PCA plot (Figure 1 C).
However, the average percentage of hypo-methylated DMRs for this GIC, was still greater than 60%
regardless of the comparator used. Interestingly, the average percentage of hypo-methylated DMRs for
GIC26 was also greater than 60%, despite the cell line not meeting this threshold in the syngeneic
comparison, possibly due to significant variability of the two biological replicates (Figure S1 J). The
proportion of hypo-methylated DMRs for the remaining GICs varied from 20-70%, however the mean

percentage of hypo-methylated DMRs was below threshold.

To validate this observation in an independent GIC cohort, DNA methylation data from the publicly

available HGCC resource®® was used. The HGCC dataset contains 71 GIC samples, which were
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compared with iNSCs from our cohort, given that non-syngeneic comparisons do not prevent the
identification of the hypo-methylation bias (Figure 1 E). Differential methylation analysis was performed
between each HGCC patient-derived GIC line with one of our INSC lines, and then repeated for five
different INSC lines to determine whether the results were consistent across comparisons. For each
HGCC GIC, the mean percentage of hypo-methylated DMRs when compared against all INSCs was
then determined, to assess the extent of hypo-methylation bias for that GIC. HGCC GICs were stratified
as either having no hypo-methylation bias (<50% hypo-methylated DMRSs), a very low bias (>50%), low
bias (>60%), medium bias (>70%), high bias (>80%) or very high bias (>90%). PCA of the 5000 most
variable methylation probes across the HGCC GICs showed that PC1 separated patients on the extent
of their hypo-methylation bias with very high bias GICs clustering to the right, and those with no bias
clustering to the left (Figure 1 F). The reported percentage of hypo-methylated DMRs was found to be
consistent regardless of the INSC comparator used (Figure 1 G), in keeping with the results of the non-
syngeneic comparisons performed in our own cohort (Figure 1 E). In total, 46.5% of HGCC GICs were
found to have a hypo-methylation bias, comparable with the proportion in our smaller cohort (4/11,
36.4%). TCGA subgroup classification confirmed no enrichment for a specific subgroup (of the 33 GICs
deemed to have a hypo-methylation bias, 15 were Mesenchymal, 4 Proneural, 6 Classical and 8
Neural), in keeping with the interpretation that the hypo-methylation bias observed is spread across the

known GBM subgroups.

Finally, formalin fixed paraffin embedded (FFPE) tumour tissue, which was available for all 10 GIC/INSC
pairs of our cohort, was used as the neoplastic comparator to exclude that the observed hypo-
methylation bias was induced in GIC by in-vitro culture. Once again, tumours 19, 30, 31 and 17 showed
a greater proportion of hypo-methylated DMRs than the remaining six comparisons (Figure 1 H, left
panel), and the proportion of hypo-methylated DMRs increased when only considering patient-specific
DMRs (Figure 1 H, right panel).

In conclusion, we have identified a subset of glioblastoma that harbour a DNA hypo-methylation bias
when either the bulk tumour or GIC derived thereof are compared to iPSC-derived NSC, herein referred

to as hypo-bias GICs.

The hypo-methylation bias does not globally impact on transcription.

We used matched transcriptomic data from our GICs to assess any impact on transcription of the hypo-
methylation bias. Unsupervised hierarchical clustering based on the 5000 most variably expressed
genes was performed and did not recapitulate the grouping of GICs into the hypo-methylation bias
group and non-bias group (Figure S1 A). Three out of four of the hypo-bias GICs (17, 19 and 30)
grouped together along with one biological replicate from GIC26 — a line found to potentially harbour a
hypo-methylation bias when non-syngeneic comparisons were performed, but not when syngeneic
comparisons were performed. This grouping of GICs 17, 19, 26 and 30 did not correspond to their
transcriptional GBM subgroup as they are RTKIIl, RTKI, MES and RTKI respectively. The remaining
non-bias GICs largely clustered together along with one of the hypo-bias GICs — GIC31. Notably GIC44


https://doi.org/10.1101/2022.02.15.480525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.15.480525; this version posted February 20, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

20

clustered separately from all other patients. Furthermore, differential gene expression analysis between
GICs and iNSCs did not reveal a bias in the directionality of differentially expressed genes (DEGSs) when
looking at all DEGs (Figure S1 B) or bias/non-bias group specific genes that are both differential
expressed and differentially methylated (DE-DM) (Figure S1 C, D, E & F). Known genes associated
with epigenetic remodelling or DNA methylation such as DNMTs or TETs were not identified within the

DEGs (Supplementary File 1).

Next, we queried whether the hypo-methylation bias impacted miRNA expression and carried out small
RNAseq. Clustering of the 500 most variably expressed miRNAs did not recapitulate the grouping of
samples into hypo-bias and non-bias GICs (Figure S1 G). Similarly, comparisons between GICs and
iINSCs did not reveal a bias in directionality of expression of differentially expressed miRNAs (Figure
S1 H). Interestingly though, we identified five differentially expressed miRNAs common to hypo-bias
GICs, that are differentially expressed in the same direction in all hypo-bias GICs (Figure S1 I). Some
of these five differentially expressed miRNAs have previously been linked either directly or indirectly to
neural development and/or glial lineage specification. Silencing of miR-1275 induces GFAP (an
astrocyte marker) expression in glioblastoma cells®, and its down-regulation was associated with
oligodendroglial differentiation of tumour cells®? — similarly in our dataset this miRNA is down-regulated.
The JAK/STAT pathway, which is known to be a key regulator of astrocyte differentiation and
activation®3%8, is thought to be up-regulated by miR-4443, which is down-regulated in our GICs. Finally,
miR-196, which is up-regulated in hypo-bias GICs, plays an essential role in neural development as it
helps regulate Homeobox (HOX) genes®’, some of which have been shown to play a role in astrocyte

biology®8.

In summary, the hypo-methylation bias identified here did not directly impact transcription or miRNA
expression at global level, although differential expression of miRNAs involved in glial lineage

specification was noted.

Binding of transcription factors linked to DNA methylation and glial lineage specification are

enriched at hypo-methylated loci in hypo-bias GICs.

We used Homer#® — a tool to identify transcription factor binding sites that are enriched in a set of
genomic loci-, to assess whether hypo-methylated DMRs from hypo-bias GICs (17, 19, 30 and 31) were
enriched for specific transcription factor (TF) binding motifs, potentially linked to DNA methylation or
glial lineage specification. Firstly, the hypo-methylated DMRs from our hypo-bias GICs, identified when
comparing to syngeneic iINSCs, were compared against all other DMRs from all GIC — INSC
comparisons in our cohort. This showed that the top five enriched motifs from this comparison were
matches for an array of Zinc-Finger proteins, HOX genes and families of factors such as Hepatocyte
Nuclear Factor 4 (HNF4), Kruppel-Like Factors (KLF), Nuclear Factor | (NFI) and Distal-Less
Homeobox (DLX) (Figure 2 A). We noticed that some of these TFs, namely NFI, ETV4, DLX and KLF

have been linked to astrocyte/glial differentiation5%-61,
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To address the link to DNA methylation, Homer was used to identify the most enriched motifs in the
hypo-methylated DMRs from the hypo-bias GICs, identified when comparing to syngeneic iNSCs, as
compared to the hypo-methylated DMRs from the non-bias GIC comparisons. We reasoned that the
hypo-methylated DMRs present in non-bias GICs are a background of hypo-methylated DMRSs.
Therefore, comparing against this background should identify transcription factors that have potentially
contributed to the hypo-methylation of DMRs specifically in the hypo-bias GICs. When this comparison
was performed, the top five enriched motifs were found to be matches for some of the same
transcription factors identified in the first analysis such as PLAGL1, NFI family members and ETS
Variant Transcription Factor 4 (ETV4) (Figure 2 B). Interestingly, the fifth ranked enriched motif from
this analysis was a strong match for members of the SOX family, known to be involved in cellular

differentiation and neural development®2.

Next, Homer was used to identify the most enriched motifs in hyper-methylated DMRs from bias GICs,
identified when contrasted to syngeneic iINSCs, as compared to all other DMRs from all other GIC —
iINSC pairs. Here it was reasoned that hyper-methylated DMRs from bias GICs should not be enriched
for any factors that may have caused the hypo-bias. Therefore, any motifs found to be enriched in this
comparison were disregarded from further investigation. This comparison identified enriched motifs that
were matches for various zinc finger proteins, members of the STAT family and SOX family. However,
PLAGL1, NFI or ETV4 were not identified in this analysis (Figure 2 C).

Therefore, we hypothesised that transcription factors such as the NFI family could be responsible for
the hypo-methylation bias, as they have been shown to demethylate specific loci®®, including lineage

defining genes.

To test this hypothesis, we leveraged the availability of patient-specific INSCs to generate induced
astrocyte progenitors (IAPCs) from five different iINSC lines (patients 19, 31, 44, 50 and 52). DNA
methylome and transcriptome were analysed at a differentiation stage, where cells co-expressed the
astrocytic lineage marker CD44%% and the neural progenitor marker NESTIN®, in keeping with a
progenitor rather than mature astrocytic state (Figure S2 A & B). Acquisition of a pro-inflammatory
response upon IL6 treatment?®, not observed in INSC, and brisk proliferative activity (Figure S2 C & D),
confirmed the astrocytic commitment of the cells. Induced oligodendrocyte progenitors (iOPC) were
also generated for comparative analysis (Figure S2 E & F). Inspection of the DNA methylation and
RNAseq datasets obtained from these cells, confirmed that iAPCs and iOPCs were epigenetically and
transcriptionally distinct from one another and from the cells from which they were derived (Figure 2 D
& E). Furthermore, both cell types were found to be enriched for an astrocytic and oligodendrocyte

signature respectively (Figure 2 F, G & H).

Differential methylation analysis was then carried out in a syngeneic fashion, between each of the five
IAPCs and their matched iINSC samples. Hypo-methylated DMRs in all iAPC lines were identified and
Homer analysis performed comparing these sequences against the sequences of all other DMRs. When
considering the so-called “de novo” Homer results, the top five enriched motifs were matches for binding

sites previously found to be enriched in the comparison of hypo-methylated DMRs from hypo-bias GICs
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against all other DMRs, and the comparison of hypo-methylated DMRs from hypo-bias GICs against
hypo-methylated DMRs from non-bias GICs (Figure 2 A & B). In particular, the top enriched motif was
a strong match for ETV4, which was previously shown to be enriched in hypo-methylated DMRs from
hypo-bias GICs thus confirming the link between this factor and hypo-methylated astrocyte associated
loci (Figure 2 1). The NFI binding motif was the fifth-ranked enriched motif among the “known matches”
from Homer (Figure 2 J). ETV4 and NFI binding sites were not identified as enriched in either the “de
novo” or “known matches” when Homer analysis was performed to compare hypo-methylated DMRs
from iOPCs, identified when comparing to iINSCs against all other DMRs from this comparison (Figure
S2 G & H). Instead, hypo-methylated DMRs in iOPCs as compared to iINSCs were enriched for the
binding sites of ZIC genes, HOX genes, SOX genes and an array of zinc finger proteins (Figure S2 G
& H).

In conclusion, hypo-methylated DMRs from hypo-bias GICs are enriched for transcription factor binding
sites that have been linked to glial differentiation. iIAPC hypo-methylated loci are similarly enriched for
ETV4 and NFI transcription factor binding sites, as are hypo-methylated DMRs from hypo-bias GICs, a
phenomenon, which is specific to the astrocytic lineage. These results raise the possibility that GICs

with a hypo-methylation bias have undergone glial priming prior to, or during, neoplastic transformation.

A positive correlation between DNA hypo-methylation and astrocyte signature enrichment

Next, we set out to assess whether GICs with a hypo-methylation bias were enriched for specific
signatures of the glial lineage. We performed single sample Gene Set Enrichment Analysis (SSGSEA)
on our cohort of GICs for an early radial glia (early-RG) signature®, a bespoke astrocytic signature,
termed Astrocyte Composite Signhature (ACS) and two oligodendrocyte signatures (termed OPC
Enriched-300 and OPC Specific-300), see Materials and Methods for further details on these
signatures. All GICs in the cohort scored highly for the early-RG signature with little variability between
lines (Figure S3 A), likely reflecting the high degree of transcriptional similarity between GICs and NSCs.
However, four out of four hypo-bias GICs (17, 19, 30 & 31), as well as GIC44, were found to have a
statistically significant higher enrichment score for the ACS than the two OPC signatures (Figure 3 A).
GICs 50 and 26 also showed significant difference between the enrichment scores for the ACS and
OPC signatures, however with a greater margin of error, possibly indicating more variability between
the two biological replicates for these samples. All other GICs in the cohort showed no statistically

significant differences in enrichment scores for all three gene signatures (Figure 3 A).

To validate these results, ssGSEA was performed also on the GICs of the HGCC cohort™. A subset of
GICs that are highly enriched for the ACS were identified also in this cohort (Figure S3 B). As there was
only one GIC sample per patient present in the HGCC cohort, we determined a threshold for the
enrichment scores that separated the samples into highly-enriched and lowly-enriched for the ACS
signature. Firstly, an enriched cell line was defined as having a higher-than-average enrichment score
for the ACS (samples had to score greater than 0.8429 for the ACS). Secondly, samples had to display

an increased enrichment score as compared to the OPC signatures (ACS enrichment scores had to be


https://doi.org/10.1101/2022.02.15.480525
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.15.480525; this version posted February 20, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

23

at least 10% greater than any of the OPC signature scores). Given these two criteria, 55% of the
samples were deemed to be enriched for the ACS in the HGCC dataset, hence confirming an ACS

enrichment in an independent GIC cohort, compared to approximately 64% in our cohort.

Next, single-cell RNA sequencing (scRNAseq) data of glioblastomas from 2 different sources®*® were
interrogated to validate and further dissect, in glioblastoma tissue, the signature enrichment observed
in a proportion of GIC. The analysis of the integrated scRNAseq dataset of 15 glioblastomas, showed
presence of cancer cells, immune cells, oligodendrocytes, and a small cluster of endothelial cells. To
identify patients enriched for the ACS signature in this dataset, we employed two strategies. First, by
treating all the single cancer cells’ expression as pseudo-bulk tumour tissue data, we were able to
identify a subset of tumours, which scored higher for the ACS than the two OPC signatures (MGH105,
MGH114, MGH143, ND2 and ND4) (Figure 3 B). Alternatively, we determined enrichment scores for
single cancer cells from each tumour and then assigned a signature identity to each cell to quantify the
percentage of ACS, OPC-Enriched-300, or OPC-Specific-300 cells per tumour. Encouragingly the same
tumours found to have a higher ACS enrichment score based on the pseudo-bulk analysis, had
increased proportion of ACS cells: 75.07% +19.40% compared to 26.26% +11.69% in the remaining
tumours (Figure 3 C). Finally, we applied these two approaches using the six cancer gene signatures
from Neftel et al.® (astrocytic: “AC”; mesenchymal: “MES1” and “MES2"; oligodendrocyte progenitor-
specific: “OPC”; and neural progenitor-specific: “NPC1” and “NPC2"). The same five patients had higher
enrichment scores and proportions of cancer cells, assigned to the astrocytic signature (“AC”)
compared to the OPC signature, and the same held true for MGH115, MGH118, MGH124, MGH125,
ND1 and ND6. For patients MGH143, ND2 and ND4, as well as for MGH115, MGH118 and ND5, the
“AC” signature showed highest enrichment and percent assigned cells within the six studied gene
modules (Figure S3 C & D). Interestingly, we noted that the ACS from our study enveloped the “MES1”,
“MES2” and “AC” signatures from Neftel et al.® (Figure S3 E & F) but scoring hypo-bias GICs from our
cohort for the Neftel et al.® signatures did not allow to further dissect the enrichment type as three out
of four hypo-bias GICs (17, 19 and 30) scored most highly for the “MES1” and “"MES2” signatures as

well as the “AC” signature, GIC31 scored very similar for all Neftel et al. signatures® (Figure S3 G).

A significant positive correlation (significantly non-zero) was found between the GIC ACS signature
enrichment scores and the percentage of hypo-methylated DMRs in both our (Figure 3 D & S3 K) and
in the HGCC cohorts (Figure 3 E & S3 L), raising the possibility that the two findings could be causally
related.

To further explore the link between hypo-methylation bias and ACS enrichment, a differential
expression analysis comparing hypo-bias GICs enriched for the ACS (termed bias/enriched), and GICs
not harbouring a hypo-methylation bias and not enriched for the ACS (termed non-bias/non-enriched)
was performed. For this analysis, GICs 17, 19, 30 and 31 were deemed to be bias/enriched, whilst GICs
18, 26, 50, 52, 54 and 61 were deemed to be non-bias/non-enriched. We reasoned that DEGs from this
comparison could highlight key biological differences between bias/enriched and non-bias/non-
enriched GICs. Interestingly, of the 465 DEGs (Figure 3 F), 47 were part of the ACS (Figure S3 H), —
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an overlap that was found to be statistically significant as tested by a Fisher's exact test (p-value
<0.00001). The same differential expression comparison in the HGCC cohort identified a total of 902
DEGs (Figure 3 G), of which a significant number (52) were also present in the ACS (Figure S3 1) (p-
value <0.00001). When considering the top DEGs between the two groups in the HGCC cohort, RUNX2
was up-regulated whilst OLIG2 was down-regulated in bias/enriched GICs as compared to the non-
bias/non-enriched GICs. This is an interesting finding, as RUNX2 has been shown to drive astrocytic
differentiation, whilst OLIG2 is a master regulator of oligodendroglia differentiation®®. An overlap of 105
genes from the 465 DEGs identified in our cohort and the 902 DEGs identified in the HGCC cohort was
found, which was statistically significant as determined by Fisher's exact test (Figure S3 J) (p-value
<0.00001). Finally, pathway analysis on the two lists of DEGs, generated from our cohort and the HGCC
cohort, revealed a shared enrichment for pathways associated with the extracellular matrix,
morphogenesis, cell adhesion, angiogenesis, locomotion, wound healing, and cytokine signalling
(Figure 3 H), suggesting a deregulation of these pathways in hypo-bias GICs, as compared to non-bias
GICs.

In conclusion, we show in two independent GIC cohorts a positive correlation between the hypo-bias
and the ACS enrichment score, in keeping with hypo-bias GICs being enriched for an astrocytic gene
signature. An enrichment for an astrocytic signature is confirmed also in a proportion of glioblastoma at
single cell level. Furthermore, when comparing bias/enriched GICs to non-bias/non-enriched GICs, a
significant number of DEGs that are present in the ACS is found and a predicted impact on cell
movement/invasion is identified.

Increased invasion in xenografts derived from bias/enriched GICs and role of SRPX2 in

regulating invasion in vitro.

Next, we set out to assess whether bias/enriched GICs would give rise to tumours with distinct invasive
properties as compared to those generated from non-bias/non-enriched GICs. Xenografts derived from
our 10 GIC lines?? were stained for human vimentin on three levels. QuPath*, a machine learning-
based pixel classifier was used for tissue detection from glass, vimentin staining detection and tumour
core detection. We then calculated the invasiveness index (1) for each xenograft, defined as the ratio
of area covered by infiltrating tumour cells to the area of the tumour core (gross tumour area/tumour
core area) independent of tumour size*. Interestingly, xenografts derived from bias/enriched GICs
showed increased invasiveness (Figure 4 A, B & C), despite having a smaller tumour core (Figure S4
A,B&C).

To identify genes that may contribute to the phenotypic characteristics of the bias/enriched GICs, and
the tumours derived thereof, the following differential expression analyses were performed on a patient-
by-patient basis: IAPC versus GIC, iIAPC versus iINSC and iNSC versus GIC, with the aim to identify
genes that play a role in the differentiation of iIAPCs and are deregulated in GICs. Lists of DEGs for
each patient comparison were then overlaid to find DEGs that were either unique or present in more

than one comparison. DEGs present in both the INSC versus GIC, and INSC versus iAPC comparisons,
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were selected for further analysis as these DEGs could play a role in the differentiation of NSCs to
astrocytes and because of the consequent similar expression level between GICs and iAPCs could

indicate that GICs are ontogenetically linked to these progenitors.

We aimed at identifying genes that were differentially expressed in the two comparisons of interest and
were at the same time part of the ACS (Figure 4 D). We focussed on DEGs that were specific to GICs
19, 31 and 44 and shared between all three. Three DEGs were shared between all three patient
comparisons; these were GLI Pathogenesis Related 1 (GLIPR1), Sushi Repeat Containing Protein X-
Linked 2 (SRPX2) and Leukaemia Inhibitory Factor (LIF) (Figure 4 D). Upon literature review GLIPR1
was found to be very well studied in cancer®” and has been found to regulate migration and invasion of
glioma cells®®®°. Similarly, LIF is also well studied in glioma and has been shown to contribute to the
maintenance of glioma-initiating cell self-renewal’® .. Moreover, it has been shown to help mediate
astrocyte differentiation’?. The pathogenic role and impact of SRPX2 in GBM? is less well
characterised, despite been well studied in cancer’#"7. Analysis of the pattern of expression of SRPX2
in our data set found that it was up-regulated in the comparisons between iINSC and iAPC across all
patients, and its expression was specifically higher in the GICs of patients 19, 31 and 44 (Figure 4 E),
as expected. Further investigation found that SRPX2 was more highly expressed in tumour tissue as
compared to non-tumour brain tissue according to TCGA data (Figure 4 F) and in bias/enriched GICs
from the HGCC cohort (Figure 4 G). To elucidate the role of SRPX2, the bias/enriched HGCC GIC line
— U3118, and GIC19 were transduced with lentiviral vectors, carrying shRNA constructs targeting
SRPX2 (termed SRPX2_90 and SRPX2_91) and a scramble control. The mRNA levels of SRPX2 were
decreased upon silencing (Figure 4 H) and western blotting confirmed effective knockdown of the gene
at the protein level (Figure 41 & J & S4 D).

Because the comparison between bias/enriched and non-bias/non-enriched GICs identified cell
movement/invasion among the differentially enriched pathways, a process which is also impacted in
astrocytic progenitors, which are more motile as compared to NSC” and because GIC of the
bias/enriched subgroup gave rise to more invasive tumours upon intracerebral injection in mice, the
impact of the SRPX2 knockdown on the invasive phenotype of the cells was assessed using a transwell
invasion assay. The nuclei of cells that moved across the transwell membrane were fixed 24 hours after
seeding, and then stained and counted as described in the Methods. On average, a statistically
significant lower number of nuclei per image field were found in both GIC19 and U3118 SRPX2

knockdown lines (Figure 4 K) (p-value <0.0001).

Proliferation was not affected in GICs upon SRPX2 knockdown as compared to the scramble control
lines (Figure S4 E) and variable results were obtained when self-renewal capacity was assessed by
means of neurosphere extreme limiting dilution assay with less neurospheres forming in the U3118
SshRNA SRPX2 knockdown line at lower cell counts (6.25, 3.125 and 1.5625 cells per well) (Figure 4 L
& M), but not in the GIC19 shRNA SRPX2 knockdown lines (Figure S4 F & G).

In conclusion, we found that bias/enriched GICs gave rise to more invasive tumours in a xenograft

model and that genes involved in migration/invasion are deregulated in these cells. Among these,
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SRPX2 plays a role in essential properties of bias/enriched GIC, most notably in invasion, raising the
possibility that SRPX2 could be a therapeutic target for glioblastoma with a hypo-methylation bias and
ACS enrichment.

Glioblastoma enriched for an astrocytic signature display an altered immune landscape

Pathway enrichment analysis performed on the lists of DEGs, generated from the comparisons of
bias/enriched GICs versus non-bias/non-enriched GICs identified immune-related pathways — TGF-
beta signalling and interferon-gamma signalling — together with extracellular matrix organisation,
locomotion, wound healing, morphogenesis, angiogenesis, and cell adhesion (Figure 3 H), raising the
possibility of differences in the tumour microenvironment of these glioblastomas. Among the 47 DEGs
shared with the ACS (Figure S3 I), Retinoic Acid Receptor Responder 2 (RARRES2 aka. Chemerin) —
a chemoattractant, which binds to Chemerin chemokine-like receptor 1 (CMKLR1) - was noted.
RARRES?2 was found to be significantly up-regulated in bias/enriched GICs compared to non-bias/non-
enriched GICs, in both our own cohort and the HGCC cohort, and in non-G-CIMP tumour tissue relative
to non-tumour brain tissue (Figure 5 A, B & Figure S5 A). Moreover, high expression of RARRES?2 is
correlated with a worse prognosis (Figure S5 B). Significantly, RARRES?2 is well known to play a role
in inflammation” and promoting the migration of plasmacytoid dendritic cells, macrophages and NK-
cells® and its receptor CMKLR1, is expressed in tumour-associated macrophages (TAMs) from newly
diagnosed GBMs (Figure 5 C & D), particularly in non-hypoxic TAMs (such as SEPP1-hi TAMs) as

compared to hypoxic TAMs in recurrent glioblastomas (Figure 5 E & F).

With this in mind, we leveraged the scRNAseq data from Antunes et al.*® and Neftel et al.? to analyse
the immune composition of tumours with an enrichment for an astrocytic signature or increased
proportion of astrocyte-like cells (Figure 3 B & C). Both the myeloid and the lymphocyte clusters of the
integrated scRNAseq data were selected and re-clustered, yielding various subpopulations of TAMs,
dendritic cells (DC), mast cells, B, T, NKT and NK cells (Supplementary File 2 & 3). The ACS / OPC
pseudo-bulk score ratio had a significant positive correlation with the proportions of TAMs (in particular
of SEPP1-hi moTAMs and cDC2) and of proliferating CD8 T cells per patient (Figure 5 G & H).
Conversely, a significantly negative correlation was found between the proportion of cancer cells and
the ACS / OPC pseudo-bulk score ratio per patient (Figure 5 I). Similar trends were observed when,
utilizing the single cell resolution of the scRNAseq data, we correlated the proportion of TAMs,
proliferating CD8 T cells or cancer cells against the proportion of ACS-like tumour cells per patient (cells
with higher ACS signature, compared to the two OPC signatures) (Figure 5 J — L). The comparison of
the proportion of ACS-like cancer cells against the fractions of monocytes and IFN-response CD8 T
cells per patient also yielded a significant positive correlation. Furthermore, we show that these results
were reproduced, when the signatures from Neftel et al.® were used to determine the proportions of
astrocyte-like cancer cells per patient and the latter were correlated to the proportions of immune and
cancer cells in each tumour (Figure 5 M — O). Finally, the opposite trends were observed when we

correlated the proportion of TAMSs, proliferating CD8 T cells or cancer cells against the proportion of
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OPC and NPC-like cancer cells (as determined by Neftel et al.® signatures), however not all of the

findings were statistically significant (Figure S5 C — H).

In conclusion, a significant up-regulation of RARRES?2 is identified in GICs with a hypo-methylation bias
and ACS enrichment, and an increased proportion of TAMs and CD8 proliferative T-cells is found in
tumours with a larger fraction of astrocyte-like tumour cells, indicating that the composition of the TME
is different in tumours with an astrocytic signature enrichment.
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Discussion

We have identified a novel DNA hypo-methylation bias in a proportion of glioblastoma, which is
ontogenetically linked to astrocyte progenitors. Hypo-methylated loci are enriched for binding motifs of
transcription factors known to be involved in astrocyte differentiation, and differentially expressed genes
and miRNAs known to play a role in astrocyte lineage commitment and differentiation were detected in
hypo-bias GICs. At a functional level, bias/enriched GICs are characterised by increased invasion in
vivo, enhanced SRPX2-regulated invasive properties in vitro, and an altered immune

microenvironment.

Alterations of the DNA methylome have been previously described in genetically defined glioblastoma
subtypes. In particular, the G-CIMP hyper-methylator phenotype characterises IDH-mutant gliomas®?,
where mutated IDH gains the ability to convert a-KG to 2-HG, which functions as an oncometabolite
whilst also being a competitive inhibitor of a-KG dependent dioxygenases such as TET enzymes®!.
Consequently, IDH-mutant glioblastoma cells accumulate DNA methylation as TET enzymes are
inhibited from removing methylation marks. A hypo-methylation bias has been previously found also in
the paediatric H3 G34 mutant glioblastoma subgroup®, where mutations in the histone H3 variant H3.3
(H3F3A) block SETD2 binding, leading to loss of H3K36 methylation, which in turn is linked to DNA
methylation®. Alternatively, mutation and loss of ATRX, which is consistently found in G34 mutant
glioblastoma could contribute to hypo-methylation at highly repeated sequences such as rDNA. The
DNA hypo-methylation bias described here is found in a proportion of IDH-wildtype glioblastomas,
which are enriched for an astrocytic signature. The pan-cancer analysis of DNA methylomes, published
in 201884, reported that a proportion of IDH-wildtype gliomas exhibited high percentages of hypo-
methylated loci, which correlated with a stemness signature®, based on hypo-methylation of specific
loci enriched for the SOX2-OCT4 binding motif. We did not find enrichment for the SOX2-OCT4 motif
in the hypo-methylated DMRs from hypo-bias GICs, but rather an enrichment for transcription factor
binding sites known to play a role in glial/astrocyte differentiation, which is consistent with the
enrichment for an astrocytic signature. Importantly, we have shown that the hypo-methylation bias is
not induced in GIC by in-vitro culture as it was confirmed in the respective tumour tissue. Likewise, we
have taken advantage of publicly available single cell transcriptome datasets to confirm that enrichment
for our bespoke astrocytic signature as well as published astroglia signatures? is found in a proportion
of GBM.

Of particular interest was the finding of an enrichment for members of the NFI family in the hypo-
methylated DMRs from hypo-bias GICs as previous studies have shown that astrocyte differentiation
requires Nfia-induced demethylation of key astrocyte lineage specifying genes®®®. In fact, Sanosaka
et al.>® showed that the methylome underpins the differentiation potential of NSCs rather than gene
expression itself. They found that E11.5 embryonic mouse NSCs were lineage-restricted and only giving
rise to neurons, whilst E18.5 NSCs had an increased proportion of hypo-methylated loci and were
multipotent — being able to give rise to glial and neuronal lineages. Furthermore, this study also showed
that DMRs with reduced methylation (hypo-methylated) in E18.5 NSCs as compared to E11.5 NSCs
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are enriched for NFI binding sites, and that this gene family was responsible for the loss of DNA
methylation and gain of multipotency for the glial lineage. It is intriguing that these previous studies may
provide an interpretative framework as to why we find a positive correlation between the hypo-
methylation bias and ACS enrichment. It is conceivable that GICs with a hypo-methylation bias may
arise from a neural progenitor population that has undergone priming for glial differentiation, for example
by the NFI transcription factor family. Other transcription factor-binding sites we found enriched in hypo-
methylated loci are also known to be involved in glial/astrocyte differentiation, such as ETV487,56 and
PLAGL1, the latter by transactivating Socs3, a potent inhibitor of pro-differentiative Jak/Stat3 signalling,
thereby preventing precocious astroglia differentiation®. We found a significant enrichment for genes
of the ACS in the DE genes between hypo-bias and non-hypo bias GICs in both our and the HGCC
datasets. Likewise, the 5 DE miRNAs identified in this comparison — miR-4443, miR-1275, miR-196,
miR-5100 and miR-1268, which have been previously linked to cancer or glioblastoma
pathogenesis®®-92 have also been linked either directly or indirectly to glial differentiation. These
include miR-196 known for its regulatory role of Homeobox (HOX) genes® in both a healthy and
malignant developmental context and miR-1275 previously shown to be involved in glial lineage
specification®-52, Taken together, the results of the binding motif analysis and of the differential
expression analysis raise the possibility that bias/enriched GICs arise from a neural progenitor, which
has undergone glial/astrocyte priming. Overexpression of NFI family members in non-bias/non-
enriched GICs will be required to assess whether changes in DNA methylation and gene signature
enrichment can be elicited, or whether this enrichment is a consequence of the hypo-methylation bias.
Alternatively, disruption of the NFI binding motifs across the genome, for example by means of CRISPR-
Cas9 system® could be carried out to assess the effect on DNA hypo-methylation and gene signature

enrichment.

Importantly, when comparing genes differentially expressed between bias/enriched GICs to non-
bias/non-enriched GICs, a predicted impact on cell movement/invasion was identified. In keeping with
this prediction, xenografts generated from bias/enriched GICs were found to grow more invasively as
compared to those generated by non-bias/non-enriched GICs. This is of particular interest in
glioblastoma, given the diffusely infiltrative growth of these tumours, which plays a significant role in
limiting the effectiveness of the current therapies. Among the genes deregulated, SRPX2 stood out as
it has been previously shown to be associated with poor prognosis, and to promote tumour progression
and metastasis in primary GICs™3. Indeed, we show that silencing of this gene leads to impaired invasion

in two bias/enriched GIC lines in in vitro assays.

The immune microenvironment plays a crucial role in tumour pathogenesis, including glioblastoma®*®:94,
We have identified a significant deregulation of genes involved in immunomodulatory pathways in
bias/enriched GICs and analysis of sScRNASeq datasets of glioblastoma has confirmed an altered
immune landscape in glioblastoma with an ACS signature enrichment. The significant correlation
between the ACS signature enrichment and the number of TAMs is of particular interest given the
upregulation of RARRES2 in bias/enriched GICs and the role of TAMs in glioblastoma invasion®.

Interestingly, a SEPP1-hi phenotype was observed in these TAMs corresponding to an anti-
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inflammatory phenotype*®, which raises the possibility that they could play a pro-tumourigenic role in

this glioblastoma subgroup.

A recent methylome analysis of various tumour types has found that global methylation loss correlates
with increased resistance to immunotherapy and immune evasion signatures®, hence the identification
of this subgroup of GBM could have important implications in patient stratification for

immunomodulatory treatments.
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Figure 1: A DNA hypo-methylation bias in a subset of GBM.

(A) The distribution of median probe delta M values (first row), the proportion of hypo- (red) and hyper-
(blue) probes (second row), total number of DMRs (third row), and the proportion of hypo- and hyper-
DMRs (fourth row) for each GIC - INSC comparison (left panel) and using patient-specific probes and
DMRs (right panel). (B) Percentage of hypo-methylated DMRs in bias GICs and non-bias GICs,
statistical significance tested using Welch's T-Test. (C) PCA of all patient-derived GIC samples from
our cohort, based on the top 5000 most variable methylation probes. (D) Heatmap-dendrogram of the
beta value z-scores of the top 100 methylation probes driving the variation of PC1 across all GICs and
replicates in our cohort. (E) Percentage of hypo-methylated DMRs from all possible comparisons of
GICs and iNSCs in our cohort, the mean percentage hypo-methylated DMRs for each GIC is
represented by a horizontal black line. (F) PCA of all patient-derived GIC samples from the HGCC
cohort, based on the top 5000 most variable methylation probes. (G) Heatmap summary of the
percentage of hypo-methylated DMRs from all possible comparisons of HGCC GICs and 5 iINSCs from
our cohort. (H) Number (bottom panel) and proportion (top panel) of hypo- and hyper- DMRs for each
patient comparison between FFPE bulk tumour and iINSC, repeated in the right panel for patient-specific

DMRs from the same comparisons.
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Figure 2: Hypo-methylated DMRs from hypo-bias GICs are enriched for transcription factor

binding sites linked to glial differentiation

(A) Top five motifs enriched in all hypo-methylated DMRs from GICs 17, 19, 30 and 31 as compared to
all other DMRs from all GICs. (B) Top five motifs enriched in all hypo-methylated DMRs from GICs 17,
19, 30 and 31 as compared to all the hypo-methylated DMRs from all other GICs. (C) Top five motifs
enriched in all hyper-methylated DMRs from bias GICs as compared to all other DMRs from all GICs.
(D) 3D PCA of methylation data from patient-derived fibroblasts, iPSCs, INSCs, iAPCs, iOPCs, and
publicly available reference datasets of NSCs, astrocytes and oligodendrocyte precursor cells. (E)
Unsupervised hierarchical clustering based on the top 5000 variable methylation probes of iAPCs,
iINSCs, iOPCs and publicly available reference datasets. (F) ssSGSEA enrichment scores for the
Astrocyte Composite Signature (ACS) of iAPCs, iINSCs, iOPCs and publicly available reference
datasets, statistical differences tested with one-way ANOVA. ssGSEA enrichment scores of iOPCs and
iINSCs for the Oligodendrocyte Specific-300 (G) and Oligodendrocyte Enriched-300 (H) gene
signatures, statistical significance tested using Mann Whitney T-Test. Top five de-novo (I) and known

(J) motifs enriched in all hypo-methylated DMRs in iIAPCs, from each iAPC versus iNSC comparison.
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Figure 3: A positive correlation between DNA hypo-methylation and astrocyte signature
enrichment

(A) ssGSEA enrichment scores of GICs (N = 2) from 11 GICs for three different gene signatures; ACS
(red), OPC Enriched-300 Signature (blue) and OPC Specific-300 Signature (teal), statistical
significance tested using two-way ANOVA. (B) ssGSEA enrichment scores based on pseudo-bulk
(aggregated within a patient) data of the cancer cell subset from the scRNAseq glioblastoma tumour
data from Antunes et al.*® and Neftel et al.® for three different gene signatures, ACS (red), OPC
Enriched-300 Signature (blue) and OPC Specific-300 Signature (teal). (C) Percentage of single cells
for each tumour, which scored the highest for one of the three different signatures: ACS (red), OPC
Enriched-300 Signature (blue) and OPC Specific-300 Signature (teal). (D) Scatter plot of the ACS
enrichment score and the percentage of hypo-methylated DMRs for each of the GICs from our cohort,
when comparing to each of the iINSCs from our cohort. (E) Scatter plot of the ACS enrichment score
and the percentage of hypo-methylated DMRs for each of the HGCC GICs, when comparing to iNSCs
from our cohort. (F) Volcano plot of DEGs identified from the comparison of bias/enriched GICs versus
non-bias/non-enriched GICs (gim model used for DE analysis). (G) Volcano plot of DEGs identified
from the comparison of bias/enriched GICs versus non-bias/non-enriched GICs from the HGCC cohort
(glm model used for DE analysis). (H) Summary of pathway analysis performed using gProfiler, using
the DEGs identified in (F) and (G).
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Figure 4: Increased invasion in xenografts derived from bias/enriched GICs and role of SRPX2

in regulating invasion in vitro.

(A & B) Representative images of human vimentin-stained xenograft tumours with overlayed image
analysis. Red outline is the detected tumour core, blue outline is the detected gross tumour edge. (C)
Invasive index scores of xenografts from bias/enriched GICs and non-bias/non-enriched GICs,
statistical significance tested using un-paired T-Test. (D) Overview of the strategy and upset plot of the
number of DEGs identified in single or multiple patient comparisons. (E) Expression (TPM) of SRPX2
in the three cell types analysed: iIAPC (orange), iINSC (red) and GIC (turquoise). (F) Expression of target
genes in glioblastoma tissue as compared to non-tumour tissue, data acquired from Gliovis, statistical
significance tested using Mann Whitney T-Test. (G) Expression of target genes in bias/enriched GICs
vs non-bias/non-enriched GICs from the HGCC cohort, statistical significance tested using Mann
Whitney T-Test. (H) Relative fold change in mRNA expression of SRPX2 as determined by gPCR for
GIC shRNA knockdown lines, statistical significance tested using T-Test. (I) Representative western
blot of SRPX2 in U3118 shRNA knockdown lines. (J) Relative fold change in SRPX2 protein expression
as determined by western blot for GIC shRNA knockdown lines, statistical significance tested using T-
Test. (K) Invasion assay results: average number of nuclei per image field of GIC SRPX2 knockdown
lines, statistical significance tested using two-way ANOVA. (L) Neurosphere assay results: log fraction
of the number of non-responding cultures at specified cell counts for U3118 SRPX2 knockdown lines.
(M) Table of estimated stem cell frequencies and confidence intervals as determined by the

neurosphere assay results and extreme limiting dilution assay analysis.
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Figure 5: GBM enriched for an astrocytic signature display an altered immune landscape

(A) Expression of RARRES? in bias/enriched GICs (N = 8) and non-bias/non-enriched GICs (N = 12)
in our cohort, determined by RNAseq. (B) Expression of RARRES2 in bias/enriched GICs (N = 13) and
non-bias/non-enriched GICs (N = 6) in the HGCC cohort. (C) UMAP of monocyte and TAM cell clusters
from the Antunes et al.*® newly diagnosed glioblastoma tumour data; the cells are coloured by cell type.
(D) Expression of CMKLR1 across different immune cell type clusters from panel (C). (E) UMAP of
monocyte and TAM clusters from the Antunes et al.*°, recurrent glioblastoma tumour data; the cells are
coloured by TAM subtype. (F) Expression of CMKLR1 across different TAM subtype clusters from panel
(E). Scatter plot, comparing the ratio of the ACS and the mean OPC pseudobulk enrichment scores,
and the proportion of TAM cells (G), CD8 proliferative T-cells (H) and cancer cells (I) from the same
tumour. Scatter plot, comparing the proportion of ACS-enriched cancer cells and the proportion of TAM
cells (J), CD8 proliferative T-cells (K) and cancer cells (L) from the same tumour, corresponding to the
dataset from (G - I). Scatter plot, comparing the proportion of AC-enriched and the proportion of TAM
cells (M), CD8 proliferative T-cells (N) and cancer cells (O) from the same tumour, corresponding to
the dataset from (G - 1). Spearman's rank correlation coefficient and the corresponding p-value are
noted on each scatter plot. The blue lines represent smoothed conditional means using general linear
model, while the grey areas on the plots denote the confidence interval around the smooth (using the

geom_smooth function of ggplot2).
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