bioRxiv preprint doi: https://doi.org/10.1101/2022.06.26.497672; this version posted July 24, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Probabilistic embedding, clustering, and alignment for
integrating spatial transcriptomics data with PRECAST

Wei Liu'f, Xu Liao'", Ziye Luo®!, Yi Yang', Mai Chan Lau®, Yuling Jiao?,
Xingjie Shi®, Weiwei Zhai®, Hongkai Ji’, Joe Yeong®® and Jin Liu'*

ICentre for Quantitative Medicine, Health Services & Systems Research,
Duke-NUS Medical School

2School of Statistics, Renmin University, China,

SInstitute of Molecular and Cell Biology (IMCB), Agency of Science,
Technology and Research (A*STAR), Singapore,

4School of Mathematics and Statistics, Wuhan University, Wuhan, China,

Academy of Statistics and Interdisciplinary Sciences, East China Normal
University, Shanghai, China,

0Key Laboratory of Zoological Systematics and Evolution, Institute of
Zoology, Chinese Academy of Sciences, China

"Department of Biostatistics, Johns Hopkins Bloomberg School of Public
Health, USA

8Department of Anatomical Pathology, Singapore General Hospital,
Singapore,

Abstract

Spatially resolved transcriptomics (SRT) involves a set of emerging technologies that
enable the transcriptomic profiling of tissues with the physical location of expressions. Al-
though a variety of methods have been developed for data integration, most of them are
for single-cell RN A-seq datasets without any consideration of spatial information. Thus,
methods that are capable of integrating spatial transcriptomics data from multiple tis-
sue slides, possibly from multiple individuals, are sincerely needed. Here, we present
PRECAST, an efficient data integration method for multiple spatial transcriptomics
datasets with complex batch effects and/or biological effects between slides. PRECAST
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unifies spatial factor analysis simultaneously with spatial clustering and embedding align-
ment, while requiring only partially shared cell/domain clusters across datasets. Using
both simulated and four real spatial transcriptomics datasets from the 10x Visium, ST,
and Slide-seqV2 platforms, we showed improved cell/domain detection with outstand-
ing visualization, and the estimated aligned embeddings of cellular biological effects and
cell/domain labels facilitate many downstream analyses. Furthermore, the slide-specific
embeddings estimated by PRECAST can be utilized to study the spatial impact of
neighboring microenvironments. PRECAST is computationally scalable and applicable
to SRT datasets from different platforms.

Introduction

Spatially resolved transcriptomics (SRT) encompass a set of recently developed technologies
that characterize the gene expression profiles of tissues while retaining information on their
physical location. The methodologies used for resolving spatial gene expression are primarily
categorized into in situ hybridization (ISH) technologies (e.g., MERFISH [1-3], seqFISH [4, 5],
seqFISH+ [6]), and in situ capturing technologies (e.g., ST [[7], HDST [§], Slide-seq [9, 10] and
10x Genomics Visium [11]) [12]. The in situ capturing technologies are unbiased and involve
transcriptome-wide expression measurements, while ISH-based methods are targeted and re-
quire prior knowledge of the genes of interest. These technologies have provided extraordinary
new opportunities for researchers to characterize the transcriptomic landscape within a spatial
context; explore how cells influence and are influenced by the cells around them [[13]; identify
genes with spatial variations other than cell/domain differences, e.g., cell morphology [[14]; and
identify spatial trajectories or RNA velocity in tissues [15, [L6], among other applications [[17].
Similar to single-cell RNA-sequencing (scRNA-seq) studies, in SRT studies of a single slide,
identifying the cell/domain clusters for each spot with the collation of both spatial information
and expression measurements is an important step [18-20]. Recently, multiple studies have in-
volved the analysis of SRT datasets from multiple slides, requiring to further remove unwanted
variations from different batches. For example, SRT profiles were characterized in 12 human
cortex tissue slides from three adult donors using 10x Visium [21] and in multiple sections from
a mouse olfactory bulb (OB) that were equally distributed along the anterior-posterior axis of
the same mouse using Slide-seqV2 [22]. Moreover, when multiple SRT datasets from different
clinical /biological conditions are available, integrative analysis to estimate shared embeddings
of expressions representing variations between cell/domain types can provide the first step
towards detecting genes that are differentially expressed between conditions [23]. Thus, it is
important to develop rigorous methods that are capable of performing data integration across
multiple SRT datasets by aligning shared embeddings of biological effects between cell/domain
types while accounting for complex batch effects and/or biological effects between slides [24]
An ideal data integration method for SRT datasets should be capable of the following
three tasks: (1) estimating the shared embeddings of biological effects between cell/domain
types across SRT datasets and slide-specific embeddings that account for local microenviron-
ments (spatial dimension reduction); (2) aligning the shared embeddings that capture cellular
biological variation across datasets with heterogeneous batch effects and/or biological effects
between slides (data alignment); (3) clustering the aligned embeddings to obtain cell/domain
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clusters across datasets that promote spatial smoothness (spatial clustering). Most existing
data integration methods, including MNN [24], Scanorama [25], Seurat V3 [26], Harmony [23],
scVI [27], and scGen [2§8], have been developed for scRNA-seq datasets without any consid-
eration of spatial information. More recently, MEFISTO was proposed as a way to analyze
datasets with repeated spatio-temporal measurements [29], and PASTE was proposed as a
method to stack and/or integrate SRT data from multiple adjacent tissue slices into a single
slide, but it is not applicable to the integration of tissue sections from different individuals [30].
In addition, most existing methods perform data integration in low-dimensional space using
the principal components (PCs) of conventional dimension reduction, e.g., principal compo-
nent analysis (PCA), without considering the consistent loss functions of dimension reduction,
alignment across datasets, or spatial clustering.

To address the challenges presented by SRT data integration and facilitate the downstream
analyses of combinations of multiple tissue slides, we propose the use of a unified and princi-
pled probabilistic model, PRECAST, to simultaneously estimate low-dimensional embeddings
for biological effects between cell/domain types, perform spatial clustering, and most impor-
tantly, align embeddings for normalized gene expression matrices from multiple tissue slides.
As a result, PRECAST can resolve aligned representations, provide outstanding visualizations,
and achieve higher spatial clustering accuracy for combined tissue slides. The resolved aligned
representations and estimated labels from PRECAST can be used in multiple downstream
analyses, e.g., removing batch effects, identifying differentially expressed genes under different
conditions/stages, and recovering spatial trajectories/RNA velocity, etc. In addition, PRE-
CAST uniquely estimates slide-specific embeddings that capture the spatial dependence in
neighboring cells/spots, providing an opportunity to understand the spatial impact of var-
ious microenvironments. We illustrate the benefits of using PRECAST through extensive
simulations and analysis of a diverse range of example datasets collated with different spatial
transcriptomics technologies: 10x Visium datasets of 12 human dorsolateral prefrontal cortex
(DLPFC) samples and four hepatocellular carcinoma (HCC) samples, ST datasets from eight
mouse liver tissue sections and Slide-seqV2 datasets from 16 OB tissue slides.

Results

Spatial transcriptomics data integration using PRECAST

Unlike other integration methods that take as input the top (spatial) PCs and apply multiple
steps to remove batch effects and merge the data, PRECAST takes as input the normalized
gene expression matrices from multiple tissue slides, factorizes the input to each matrix into
a latent factor with a shared distribution in each cell/domain cluster while simultaneously
performing spatial dimension reduction and spatial clustering, and aligning and estimating
joint embeddings for biological effects between cell/domain types across multiple tissue slides
(Fig. [la). In the dimension-reduction step, we used an intrinsic conditional autoregressive
(CAR) component to capture the spatial dependence induced by neighboring microenviron-
ments while in the spatial-clustering step, we used a Potts model to promote spatial smoothness
within spot neighborhoods in the space of cluster labels. PRECAST applies a simple projection
strategy to non-cellular biological effects, e.g., batch effects and/or biological effects between
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slides, and implicitly accounts for shifts in the centroid of each cluster using the intrinsic CAR
component in the dimension-reduction step (see Methods). These considerations of PRECAST
mimic some of the recent explorations into self-supervised learning and domain adaptation in
deep learning but in a parametric manner. We show that PRECAST outperforms existing
data integration methods by more successfully aligning similar clusters across multiple tissue
slides while separating clusters with outstanding visualization. Uniquely, PRECAST estimates
slide-specific embeddings for spatial dependence among neighboring cells/spots, providing an
opportunity to explore the impact of neighboring microenvironments.

PRECAST can be applied to SRT datasets of various resolutions. By increasing the resolu-
tion for SRT datasets, PRECAST can reveal fine-scale cell-type distributions. In the following
analysis, datasets in Slide-seqV2 with near-single-cell resolution present spatial patterns with
much more “noise” than those of Visium due to the heterogeneity of the cell-type distributions.
When we merged nearby beads in the Slide-seqV2 datasets, the recovered spatial patterns re-
sembled those from Visium.

We use the estimated cell/domain labels and finely aligned embeddings to showcase some
downstream analyses, as depicted in Fig. mb. First, users can visualize the inferred embeddings
for biological effects between cell/domain types using two components from either tSNE [31]
or UMAP [32]. Second, because the aligned embeddings obtained from PRECAST only carry
information on the biological differences between cell/domain types, we provide a module to
recover the gene expression matrices with batch effects removed and further identify genes
differentially expressed either across different cell/domain clusters and/or under different con-
ditions. Third, using these embeddings, we can identify genes whose spatial variability is not
just due to biological differences between cell/domain types. Fourth, with the aligned embed-
dings estimated by PRECAST, we can perform trajectory inference/RNA velocity analysis to
determine either the pseudotime or the pattern of dynamics in spatial spots across multiple
tissue slides.

Validation using simulated data

We performed comprehensive simulations to evaluate the performance of PRECAST and com-
pare it with that of several other methods (Fig. Elc and Supplementary Fig. S1-S2). Specif-
ically, we considered the following eight integration methods: Harmony [23], Seurat V3 [26],
fastMNN [24], scGen [28], Scanorama [25], scVI [27], MEFISTO [29] and PASTE [30], all of
which can be used to estimate the aligned embeddings among samples, except PASTE, which
can only estimate the embeddings of the center slice. The simulation details are provided in
the Methods section. Briefly, we simulated either the normalized or count matrices of gene
expression to compare PRECAST with other methods in terms of performance in data integra-
tion, dimension reduction, and spatial clustering. To mimic real data, we also considered the
two ways to generate spatial coordinates and cell/domain labels, i.e., Potts models and real
data in three DLPFC Visium slices. Using real data in DLPFC, we considered slides either
from different or the same donor. In total, we considered five scenarios: (1) Potts + logCount;
(2) Potts + Count; (3) DLPFC (slides from different donors) + logCount; (4) DLPFC (slides
from different donors)+ Count; and (5) DLPFC (slides from the same donor) + Count. Sce-
nario 5 was designed to compare PRECAST with PASTE, as PASTE can only handle SRT
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data from multiple adjacent tissue slices (see Methods).

To quantify the performance of the data integration, we calculated the F1 scores of the aver-
age silhouette coefficients, which summarized two similar metrics of silhouette coefficients into
a single quantity, and two versions of the local inverse Simpson’s Index (LISI): integration LIST
(iLISI) and cell-type LISI (cLISI). iLISI was employed to assess integration mixing, while cLISI
was employed to assess the separation of each domain cluster. In Scenarios 1-4, PRECAST
achieved the best performance in data integration, with the highest F'1 scores for the average
silhouette coefficients, and in Scenario 5, PRECAST was comparable to PASTE (Fig. C, top
panel). Moreover, PRECAST was able to merge spots within common cell/domain clusters
across datasets, while separating spots from different cell/domain clusters (small cLISI, Supple-
mentary Fig. Sla, top panel) and, at the same time, maintaining a sufficient mix of different
samples (large iLISI, Supplementary Fig. Sla, bottom panel). In contrast, the existing inte-
gration methods were either sensitive to the data generation process or failed to recover the
spatial structure during integration (Fig. mc, top panel, and Supplementary Fig. Sla).

We then evaluated the performance of estimating the embeddings induced by neighboring
microenvironments in PRECAST. The estimated embeddings due to neighboring microenvi-
ronments were highly correlated with the underlying truth (Fig. mq middle panel), suggesting
PRECAST was able to well recover the spatial dependence of spots with microenvironments.
Next, we evaluated the performance of the models in obtaining embeddings for biological ef-
fects between cell/domain types. For the average canonical correlation between the estimated
aligned embeddings and the true latent features, PRECAST ranked the highest in most sce-
narios (Supplementary Fig. Slb, top panel), suggesting the aligned embeddings estimated
by PRECAST were more accurate. We also showed that Pearson’s correlation coefficients
between the observed expression and the estimated cell/domain labels conditioned with the
aligned embeddings from PRECAST were lower than those from other methods (Supplemen-
tary Fig. Slb, bottom panel), suggesting PRECAST captured more relevant information
regarding cell/domain clusters and, thus, facilitated downstream analysis.

Last, we compared the clustering performance of each method. As a unified method, PRE-
CAST simultaneously estimates embeddings for biological effects between cell/domain types
and cluster labels. For the other methods, we sequentially performed spatial clustering based
on each of the estimated embeddings using SC-MEB /Louvain, except for Seurat V3, which has
its own clustering pipeline based on Louvain. PRECAST achieved the highest adjusted Rand
index (ARI) and normalized mutual information (NMI) in all considered scenarios (Fig. mc,
bottom panel, and Supplementary Fig. S2a), while the other methods, such as Seurat V3
and Harmony, were sensitive to the data generation process. Moreover, we observed that all
methods correctly chose the number of clusters. Finally, we showed that PRECAST was com-
putationally efficient and scalable to large sample sizes, and it only took ~6 hours to analyze
a dataset with 2,000 genes and 600,000 spots for a fixed number of clusters (Supplementary
Fig. S2b).

Application to human dorsolateral prefrontal cortex Visium data

We applied PRECAST and the other methods to the analysis of four published datasets
obtained via either Visium, ST, or Slide-seqV2 technologies (see Methods). By obtaining the
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estimated aligned embeddings and cluster labels from PRECAST, we could perform many
downstream analyses using all tissue slides. Here, we showcase the differential expression
(DE) analyses across detected domains, spatial variation analysis (SVA) adjusting for aligned
embeddings as covariates, and trajectory inference/RNA velocity analysis. To examine the
clustering performance with low-resolution data, we performed deconvolution analysis to infer
the cell compositions of the domains detected by PRECAST.

To quantitatively show that PRECAST outperforms existing data integration methods,
we first analyzed LIBD human DLPFC data generated using 10x Visium [21] that contained
12 tissue slices from three adult donors, comprising four tissue slices from each donor. In
all 12 tissue slices, the median number of spots was 3,844, and the median number of genes
per spot was 1,716. The original study provided manual annotations for the tissue layers
based on the cytoarchitecture that allowed us to evaluate the performance of both the data
integration and accuracy of spatial domain detection by taking the manual annotations as
ground truth. For each method, we summarized the inferred embeddings for biological effects
between cell/domain types using three components from either tSNE or UMAP and visual-
ized the resulting tSNE/UMAP components with red/green/blue (RGB) colors in the RGB
plot (Fig. Ea, right-top panel, and Supplementary Fig. S3a & b to Sha & b). The resulting
RGB plots from PRECAST showed the laminar organization of the human cerebral cortex,
and PRECAST provided smoother transitions across neighboring spots and spatial domains
than those from other methods. For each of the other methods, we further performed cluster-
ing analysis to detect spatial domains using different methods with the inferred embeddings
(Fig. Ea, right-bottom panel, and Supplementary Fig. S3c-S5¢). We observed that the results
from PRECAST had stronger laminar patterns and the estimated aligned embeddings carried
more information about the domain labels (Supplementary Fig. S6a).

A unique feature of PRECAST is its ability to estimate slide-specific embeddings captur-
ing spatial dependence in the neighboring cells/spots due to various neighboring microenvi-
ronments in different regions. Supplementary Fig. S7 provides RGB plots of the inferred
embeddings for spatial dependence using three components from either tSNE or UMAP. We
observed that spots in the domain of white matter had similar microenvironments, while spots
in layers 1 to 6 had two distinct microenvironment patterns from left to right, suggesting
potentially distinct functions in the left and right regions of layers 1 to 6.

PRECAST can offer outstanding data visualization compared with other methods. We
visualized the inferred embeddings for biological effects between cell/domain types using two
components from tSNE for each method (Fig. Bb and Supplementary Fig. S6b). The tSNE
plots for PRECAST show that spots from different slices were well mixed (Fig. gb, top panel)
while the domain clusters were well segregated (Fig. b, bottom panel), and there were signifi-
cant improvements in visualization in comparison to the other methods, including the method
applied with no corrections. Supplementary Fig. S6¢ shows that PRECAST achieved the best
data integration in terms of F1 scores, iLISI, and cLISI. To evaluate the clustering accuracy,
we used both ARI and NMI. As shown in Fig. EC and Supplementary Fig. S6d, PRECAST
achieved the highest ARI and NMI for the separate evaluation and combined evaluation: the
median ARI was 0.434 for PRECAST, 0.382 for Scanorama, and 0.406 for scVI in the sepa-
rate evaluation; and the ARI was 0.374 for PRECAST, 0.216 for Scanorama, and 0.301 for
scVI in the combined evaluation. A heatmap of Pearson’s correlation coefficients among the
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detected domains shows the good separation of the estimated aligned embeddings across do-
mains (Fig. d) and the correlations between deeper layers were high, e.g., there were high
correlations between layers 5 and 6, while correlations among the separated layers were low.
A key benefit of PRECAST is its ability to estimate aligned embeddings for biological
effects between cell/domain types and joint labels for all slides. We performed DE analysis
for the combined 12 slices (see Methods). In total, we detected 1,331 DE genes with adjusted
p-values of less than 0.001 among the 10 spatial domains identified by PRECAST, with 314
genes being specific to Domain 5, which corresponded to white matter (Supplementary Table
S1). Many of these genes were reported to be enriched in different layers of DLPFC, i.e., Pcp4
(Domain 2, layer 5) [19], Hopz (Domain 1, layer 1/3), and Enc! (Domain 4, layer 2/3) [33]
(Fig. Ee and Supplementary Fig. S8-S10). Next, we performed trajectory inference using the
aligned embeddings and domain labels estimated by PRECAST (Supplementary Fig. S11).
In total, we identified 858 genes associated with the estimated pseudotime with adjusted p-
values of less than 0.001. Among them, 373 were identified as DE genes in at least one domain
(Fig. Ef and Supplementary Table S2). We further found that the pseudotime-associated genes
identified by PRECAST were significantly enriched for nervous system development (Fig. g).
To further show that the estimated embeddings for biological effects between cell/domain
types from PRECAST were well aligned across tissue slides, we performed SVA analysis with
the aligned embeddings from PRECAST as covariates for each slice to identify spatially vari-
able genes (SVGs) with nonlaminar patterns. A detailed list of the genes identified at a false
discovery rate (FDR) of 1% is available in Supplementary Table S3. Interestingly, many of the
identified genes were related to immune function. For example, Isg15 encodes a ubiquitin-like
molecule induced by type I interferon, and ISG15 deficiency increases antiviral responses in
humans [34, B5]. Many studies in the literature have highlighted the importance of immune—
brain interactions to the development of many disorders of the central nervous system [36, 37].
Further enrichment analysis showed the genes from each slice to be highly enriched in many

common pathways, suggesting the embeddings for biological effects between cell/domain types
were effectively aligned by PRECAST (Fig. h and Supplementary Fig. S12-S16).

Application to mouse liver ST data

We further applied PRECAST and other methods to analyze eight sections of wild-type adult,
female mouse livers from the caudate and right liver lobes of three female mice using ST
technology [38]. In all eight sections, the median number of spots was 640, and the average
number of genes was 15,302. The original study provided manual annotations based on marker
genes that allows us to evaluate the performance of both the data integration and accuracy
of spatial domain detection by taking the manual annotations as ground truth. For each
method, we summarized the clustering performance of each section and combined sections
using both ARI and NMI (Fig. Ha, top panel, and Supplementary Fig. S17a). PRECAST
achieved the highest ARI and NMI in both cases: in each separate section, the median ARI
was 0.24 for PRECAST, 0.18 for Seurat V3, and 0.02 for scVI; and jointly, in the combined
sections, the value of ARI was 0.23 for PRECAST, 0.18 for Seurat V3, and 0.02 for scVI.
We visualized the cluster labels obtained by PRECAST and other methods as well as the
manual annotations (Supplementary Fig. S18) and found PRECAST performed best for each
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individual sample. On the other hand, PRECAST achieved better data integration than
most of the other methods in terms of F1 score, iLISI, and cLISI (Fig. Ba, bottom panel,
and Supplementary Fig. S17b) with comparable conditional correlations (Supplementary Fig.
S17c). The tSNE plots for PRECAST show that spots from different sections were well
mixed (Fig. Eb and Supplementary Fig. S17d, top panel), while the domain clusters were well
segregated (Fig. Bb, bottom panel), and there were significant improvements in visualization
over other methods, including the method applied with no corrections. We further visualized
spatial dependence due to variations in neighboring microenvironments using RGB plots of
the inferred slide-specific embeddings (Supplementary Fig. S17e & f) and observed various
patterns of microenvironments in the different sections.

As a key feature, PRECAST estimates aligned embeddings for biological effects between
cell/domain types and joint labels for the combined sections. We performed DE analysis of the
combined sections (see Methods). In total, we detected 367 DE genes with adjusted p-values
of less than 0.001 in all seven spatial domains detected by PRECAST (Supplementary Table
S4). A heatmap of the findings shows the good separation of the DE genes across different
spatial domains (Fig. EC) Many of these genes are markers that define particular cellular
regions in liver lobes, i.e., Cyp2el, Cyp2c37, Oat, and Slcla2 for central veins (Domains 1-
2) [BR, BI|; Cyp2f2, Hal, Sds, and Ctsc for portal veins (Domains 6-7) [38]; and Gsn, Vim, and
Col3al for the mesenchyme (Domain 5) [B§]. Further enrichment analysis shows that genes
specific to both central veins and portal veins were highly enriched for metabolic processes,
with central veins that were more enriched for fatty acid metabolism, while portal veins that
were more enriched for amino acid metabolism (Supplementary Fig. S19). By performing
enrichment analysis for DE genes unique to each of two subtypes in central /portal veins, we
found pathways unique to each subtype of central/portal veins (Supplementary Fig. S20).

To examine the cell compositions of each spatial domain detected by PRECAST, we per-
formed cell-type deconvolution analysis of all mouse liver datasets using scRNA-seq data in
the Mouse Cell Atlas (MCA) [40] as the reference panel. To assess the performance in spatial
clustering, we evaluated the associations between the cell type proportions obtained by cell-
type deconvolution and the cluster labels estimated by PRECAST and other methods. The
results displayed in Fig. Hd suggest that PRECAST retained the largest MacFadden’s adjusted
R? than the other methods. In addition, cell-type deconvolution enabled us to spatially map
17 cell types annotated in the MCA dataset for liver tissue sections (Fig. He and Supplemen-
tary Fig. S21-S22). We observed a high proportion of estimated values for periportal and
pericentral hepatocytes, which is consistent with the findings in the existing literature [3§].

Lastly, we performed trajectory inference using aligned embeddings and estimated domain
labels from PRECAST, to examine the cell lineages in the detected domains. Fig. Hf shows
the inferred pseudotime mapped to PRECAST-induced tSNE, which suggests the central veins
differentiated earlier than portal veins, in accordance with findings that showed Wnts and R-
spondin3d signals were released from the central veins and transited along the venular wall
towards the perivenous hepatocytes [39]. Based on the inferred pseudotime, we identified
differentially expressed genes along the cell pseudotime using TSCAN [41]. The heatmap of
the expression of the top 20 most significant genes (Fig. g) suggested the occurrence of some
interesting dynamic expression patterns over pseudotime.
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Application to mouse olfactory bulb Slide-seqV2 data

In Visium, barcoded beads 55 um in diameter and with a center-to-center distance of 100 pum
are used to capture mRNA with an average of 1-10 cells per spot [11]. The Slide-seq technique
was recently developed for high-resolution SRT using 10-pum barcoded beads with an average
of 1-3 cells per spot [9, 10], and Slide-seqV2 further improved the detection sensitivity. To
show the scalability of PRECAST, we analyzed a mouse OB dataset generated using Slide-
seqV2 technology [22]. In this dataset, spatial transcriptomic information was obtained from a
total of 20 OB sections distributed evenly along the anterior—posterior axis. We removed four
slides due to the quality of the sections from the end of the mouse OB region, and analyzed 16
containing 21,571 genes, on average, from over a total of 693,863 spots using PRECAST and
other methods. After quality control (QC), we obtained data of a lower resolution (~4,000
spots) by collapsing nearby spots in each slide (see Methods), and the resulting resolution was
similar to that of Visium (average of 10 cells per spot). To further examine the structure of the
mouse OB, we relied on the structural annotations in the Allen Brain Atlas [42] (Fig. @a). With
near-single-cell resolution, the identified aligned embeddings and cluster labels both showed
more fine-scale cell-type distribution patterns in the mouse OB [43]. In comparison, when we
lowered the resolution, PRECAST estimated the aligned embeddings and cluster labels with
smoother spatial patterns at the expense of less detailed local spatial information (Fig. @b and
Supplementary Fig. S23-S26). Moreover, the resulting RGB plots from PRECAST showed the
laminar organization of the mouse OB, and PRECAST provided smoother transitions across
neighboring spots and spatial domains than the other methods (Supplementary Fig. S23a
& b to S26a & b). We next visualized the inferred aligned embeddings for biological effects
between cell/domain types using two components from tSNE from each method (Fig. @c and
Supplementary Fig. S27) and showed that, using PRECAST, the spatial spots were mixed well
across the 16 slides, while the cell/domain clusters were well segregated, suggesting PRECAST
was more effective at spatial data integration. We further visualized the inferred slide-specific
embeddings for spatial dependence due to variations in the microenvironment using RGB plots
(Supplementary Fig. S28) and observed a few microenvironmental patterns in the inner layers
(e.g., the granule cell layer, GCL), middle layers (e.g., the glomerular layer, GL), and outer
layers (e.g., the olfactory nerve layer, ONL).

At reduced resolution, PRECAST detected 12 spatial domains with laminar organization,
including the rostral migratory stream (RMS, Domain 1), GCL (Domain 2), GCL/inner plex-
iform layer (GCL/IPL, Domain 3), mitral cell layer (MCL, Domain 4), outer plexiform layer
(OPL, Domain 5), GL (Domains 6 and 7), and ONL (Domains 8), with Domains 9-12 belonging
to low-quality regions or experiment artifacts. To characterize the transcriptomic properties
of the spatial domains identified by PRECAST, we performed DE analysis of the combined 16
tissue slides (see Methods). In total, we detected 4,131 DE genes with adjusted p-values of less
than 0.001 in all 12 spatial domains detected by PRECAST (Supplementary Table S5), includ-
ing representative genes that define particular cellular layers in the mouse OB, e.g., Soz20t and
Soz11 (RMS) [44, 45]. The heatmap of the findings shows the good separation of the DE genes
across different spatial domains (Supplementary Fig. S29), and we found that genes specific to
Domain 1 (RMS) were enriched for myelin sheath and structural constituents of myelin sheath
(Supplementary Fig. S30). Compared with the reduced-resolution data, when near-single-cell
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level resolution was used, PRECAST identified 24 cell clusters, including fine-scale cell-type
clusters. To better visualize each detected cell cluster, we plotted a heatmap of each cluster
assignment for all 16 slides (Supplementary Fig. S31-S32). A heatmap of DE genes across
different cell clusters showed Clusters 1-3 were subtypes of granule cells, and Clusters 4-6
belonged to cells in MCL and GL (Supplementary Fig. S33).

To examine the cell compositions in each spatial domain detected by PRECAST at the
reduced resolution, we performed cell-type deconvolution analysis of all 16 tissue slides using
scRNA-seq data from adult mouse OB as the reference panel [46]. As shown in Fig. @d and
Supplementary Fig. S34a, Domain 1 (RMS) was enriched for immature neurons. Immature
neurons reportedly migrate to the OB through RMS [47]. Unsurprisingly, we found that
Domains 2-3 (GCL) were dominated by two primary subtypes of granule cell, with a larger
proportion of immature neurons in Domain 2 (inner) and an enrichment of mitral and tufted
cells in Domain 4 (MCL). Domain 8 (ONL) was primarily enriched in olfactory sensory neurons
(OSNs); OSNs express odorant receptors in the olfactory epithelium [48]. We additionally
quantified the association between the inferred cell type proportions and the domain labels
estimated by PRECAST and the other methods using MacFadden’s adjusted R? (Fig. @e, top
panel), and PRECAST achieved the highest R?. Then, we manually annotated each spot
with the cell type present at the highest proportion [49] and quantitatively evaluated the
clustering performance of PRECAST and other methods. As shown in Fig. @e (bottom panel)
and Supplementary Fig. S34b & ¢, PRECAST achieved the highest ARI and NMI values
assessed separately for each slide or jointly for the combined slides. Further analyses showed
that PRECAST achieved better data integration, with the highest iLIST and the lowest cLISI
(Supplementary Fig. S34d), and maintained comparable conditional Pearson’s correlations
with the other methods (Supplementary Fig. S34e).

We performed trajectory inference to examine the cell lineages among the detected domains
using aligned embeddings and estimated domain labels from PRECAST. In general, the esti-
mated trajectory showed an “inside-out” sequence, consistent with the general understanding
that OB neurons migrate from the subventricular zone along the RMS to the OB, before mi-
grating radially out of the RMS in an inside-out sequence [50] (Fig. @f and Supplementary Fig.
S35a). Further DE analysis identified genes along the pseudotime (Supplementary Fig. S35b).

Application to hepatocellular carcinoma Visium data

To study the dynamics of tumorigenesis in tumors and tumor-adjacent tissues, we further
analyzed four slides of in-house HCC data generated using the 10x Visium platform, with
two slides from tumors (HCC1 and HCC2) and two from tumor-adjacent tissues (HCC3 and
HCC4) from an HCC patient. The median number of spots was 2,748, and the median number
of genes per spot was 3,635. Fig. Ha shows a histology image (top panel) with manual anno-
tations for tumor/normal epithelium (TNE) and stroma provided by a pathologist (bottom
panel). Consistent with the DLPFC data, the RGB plots generated by PRECAST clearly seg-
regated the tissue slices into multiple spatial domains (Fig. fb, top panel), with neighboring
spots and spots in the same domain across multiple slides more closely sharing similar RGB
colors than those generated by other methods (Supplementary Fig. S36a & b). Similarly, the
PRECAST spatial heatmaps of clustering assignment for the four tissue slides resembled the
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corresponding RGB plots and presented more spatial patterns across the tissue slides than
those from the other methods (Fig. Bb, bottom panel; Supplementary Fig. S36¢). We further
visualized the inferred embeddings for biological effects between cell/domain types using two
components from tSNE for each method (Fig. Hc and Supplementary Fig. S37a), in which the
tSNE plots for PRECAST showed that spots from different slices were mixed well (Fig. Bc,
top panel) while the domain clusters were well segregated (Fig. Hc, bottom panel), with signifi-
cant improvements in visualization. A heatmap of Pearson’s correlation coefficients among the
detected domains shows the good separation of estimated embeddings across domains (Supple-
mentary Fig. S37b), in which correlations between regions in TNE were high, and correlations
between regions for TNE and stroma were low. We further visualized the spatial dependence
due to microenvironment variations using RGB plots of the inferred slide-specific embeddings
(Supplementary Fig. S38a) and observed variations in microenvironmental patterns between
Domains 1 and 3, and between Domains 4 and 5.

To characterize the transcriptomic properties of the spatial domains identified by PRE-
CAST, we performed DE analysis of the combined four tissue slides (see Methods). In total,
we detected 2,093 DE genes with adjusted p-values of less than 0.001 in all nine spatial domains
detected by PRECAST, with 539 genes being specific to Domains 1-5, which corresponded to
TNE regions (Supplementary Table S6). A heatmap and ridge plots of the findings showed the
good separation of the DE genes across different spatial domains (Supplementary Fig. S38b
& 539-540 ). In TNE regions (Domains 1-5), we further found that genes specific to Domains
1 and 5 were highly enriched in pathways of chemical carcinogenesis DNA adducts and chem-
ical carcinogenesis receptor activation. Genes specific to Domain 4 were enriched in signaling
pathways of RAF1 mutants and signaling by RAS mutants, and genes specific to Domains 2
and 3 were highly enriched in complement and coagulation cascade pathways (Supplementary
Fig. S41). Genes specific to Domains 6-9 were enriched in the angiogenesis pathway, and we
found 40 out of 427, 34 out of 606, 25 out of 281, and 18 out of 240 angiogenesis signature
genes, respectively, in Domains 6-9, from multiple studies [51-54]. Interestingly, Domains 1-3
were only present in the tumor tissues (HCC1 and HCC2), Domain 5 was only present in the
tumor-adjacent tissues (HCC3 and HCC4), while Domain 4 was shared across the tumor and
tumor-adjacent tissues.

To identify SVGs other than those that were merely relevant to domain differences, we
performed SVA analysis with the embeddings estimated by PRECAST as covariates for each
slice. A detailed list of genes identified at an FDR of 1% is available in Supplementary Table S7.
By performing functional enrichment analysis of these SVGs, we detected SVGs adjusted for
domain-relevant covariates to be highly enriched in many common pathways in the four HCC
slices, e.g., cytoplasmic translation, and cytosolic ribosome (Supplementary Fig. S42-S43).

Next, to examine the cell compositions of each spatial domain detected by PRECAST, we
performed cell-type deconvolution analysis of all four HCC slides using scRNA-seq data as the
reference panel (see Methods). The scRNA-seq reference panel consisted of malignant and tu-
mor microenvironment cells, including cancer-associated fibroblasts (CAFs), tumor-associated
macrophages (TAMs), tumor-associated endothelial cells (TECs), cells of an unknown entity
but expressing hepatic progenitor cell markers (HPC-like), and immune cells [55]. As shown
in Fig. bd & e and Supplementary Fig. S44a, the proportions of malignant cells were substan-
tially higher in Domains 1-5, while HPC-like cells were seen at higher proportions in Domain
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7. In Domain 6, we observed an increased proportion of TAMs and immune cells and genes
specific to this domain included Tgfb1 and Mmp2, which have been used for the classification
of TAMs [56, bT7].

The estimated aligned embeddings and cluster labels can also be used in RNA velocity
analysis to investigate the directed transcriptional dynamics of tumorigenesis when spliced and
unspliced mRNA are available (see Methods). Interestingly, two cell lineages were identified,
with one that originated in Domain 2 (TNE) and spread to Domains 4 and 5 (TNE), followed
by Domains 6, 7, and 9 (stroma), and the other that originated in Domains 1 and 3 (TNE)
and spread to Domain 8 (stroma). The TNE regions in Domain 2 residing in HCC1 may play
a key role in tumorigenesis with Domain 4 (TNE) shared among the four slides and Domain
5 (TNE) in the tumor-adjacent tissues (Fig. Hf and Supplementary Fig. S44b). To infer cell
states in the identified TNE, we further performed RNA velocity analysis using the spots
identified in Domains 1-5. An expression heatmap of the top genes associated with cell states
with induction close to 0 and repression close to 1 is shown in Fig. Bg (see Methods). The
TNEs in Domains 1 and 2 tended to be transcriptionally active, while TNEs in Domains 4
and 5 tended to be repressed and show no transcription. The top genes associated with cell
states included Spinki, Rpl30, and 1132, which highlights the importance of genes associated
with cell states in HCC [b&-60].

Discussion

PRECAST takes, as input, matrices of normalized expression levels and the physical location
of each spot across multiple tissue slides. The output of PRECAST comprises all aligned
embeddings for cellular biological effect, slide-specific embeddings that capture spatial depen-
dence in neighboring cells/spots, and estimated cluster labels. In contrast to other existing
methods of data integration, PRECAST is a unified and principled probabilistic model that
simultaneously estimates embeddings for cellular biological effects, performs spatial clustering,
and more importantly, aligns the estimated embeddings across multiple tissue sections. Thus,
we recommend applying PRECAST first before a comprehensive data analysis pipeline is de-
ployed. By applying PRECAST, the aligned embeddings and estimated cluster labels can be
used for many types of downstream analyses, such as visualization, trajectory analysis, and
SVA and DE analysis for combined tissue slices. In more detail, we developed a module to
further remove batch effects across multiple tissue slides based on housekeeping genes, making
expression data comparable for different cell/domain clusters. This module is also applica-
ble to the examination of expressional differences caused by multiple conditions when such
information on tissue slides is obtainable.

PRECAST simultaneously performs dimension reduction and spatial clustering while us-
ing simple projections to align embeddings, and uniquely estimating embeddings that capture
spatial dependence of neighboring cells/spots due to varied microenvironments. Recently, Liu
et al. [61] showed that, compared with methods that perform dimension reduction and spatial
clustering sequentially [1820], joint methods can estimate embeddings for cellular biological
effects more efficiently while accounting for the uncertainty in obtaining low-dimensional fea-
tures from sequential analysis. A similar strategy has been described in previous self-supervised
learning literature [62, 63]. PRECAST also takes advantage of CAR to account for the local
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microenvironments of neighboring spots, and an intrinsic CAR component has been used to
promote spatial smoothness in the observed expressions of SRT data [64]. We showed that, by
projecting non-cellular biological effects onto cellular biological space, different sample slides
exhibit a constant shift in the centroid of each cell/domain type. With the assistance of joint
modeling, we can use a subclass of CAR, intrinsic CAR, to simultaneously account for both
smoothness in neighboring embeddings and shift across batches due to non-cellular biological
effects such as complex batch effects.

With the advent of high-throughput technologies for SRT, data integration is particularly
relevant for analyzing SRT datasets from multiple tissue slides. Analysis of a single section with
current state-of-the-art techniques, e.g., 10x Visium and Slide-seqV2, only covers a tiny area
of the region of interest, and it takes a few or dozens of slides to cover the whole tissue/organ.
In this case, biological variations between cell/domain types are often confounded by factors
related to data generation processes. Methods in data integration, which serve as the first
step before downstream analyses, not only align the embeddings but also estimate the shared
cell/domain clusters across samples [23-26]. Most existing methods of data integration were
designed to analyze scRNA-seq data without considering additional spatial information in the
SRT data.

We examined the SRT data generated by three major platforms, 10x Visium, ST, and Slide-
seqV2, with different spatial resolutions. With 10x Visium, each spot captures the mRNA of
an average of 1-10 cells, whereas Slide-seqV2 achieves a higher resolution with an average
of 1-3 cells per spot. As common sense implies, with low-resolution datasets, PRECAST
recovers aligned embeddings for cellular biological effects and cluster labels with smoother
spatial patterns while losing the detailed local spatial information. Whereas, at near-single-cell
resolution, the identified aligned embeddings and cluster labels show more fine-scale cell-type
distribution patterns. Using four datasets, we demonstrated that PRECAST can successfully
perform data integration with aligned embeddings across tissue sections, such that spots across
different tissue sections are well mixed while cell/domain clusters are well segregated, improve
clutering performance, and detect varied microenvironments in tissues. When applied to an
HCC dataset, PRECAST identified five spatial domains belonging to TNE cells that were
consistent with both manual annotations and spatial deconvolution. We further performed
RNA velocity analysis to show the potential velocity of spots in different regions, shedding light
on the tumorigenesis in the context of the tissues. To demonstrate the scalability of PRECAST,
we analyzed a Slide-seqV2 dataset of 16 slides equally distributed along the anterior—posterior
axis of a mouse OB.

PRECAST provides opportunities for new exciting research routes. Firstly, when SRT
datasets of single-cell resolution are available, its use can be extended to the integration of
multimodal single-cell data. For example, integrating single-cell ATAC-seq will allow users to
examine cell-type-specific regulatory mechanisms in the spatial context of tissues. Secondly,
it would be interesting to integrate single-cell-resolution SRT datasets with CITE-seq data,
thus integrating spatial transcriptomics with immunophenotyping, in which surface proteins
are detected by antibody-derived tags. This would enable the exploration of surface proteins
not measured in SRT datasets.
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Materials and Methods

Methods

PRECAST overview

Here, we present a basic overview of PRECAST, and further details are available in the Sup-
plementary Notes. PRECAST is a data integration method for SRT data from multiple tissue
slides. The proposed method involves simultaneous dimension reduction and spatial cluster-
ing built on a hierarchical model with two layers, as shown in Fig. ma. The first layer, the
dimension-reduction step, relates gene expression to the shared latent embeddings, while the
second layer, the spatial-clustering step, relates the shared latent embeddings and spatial coor-
dinates to the cluster labels. In the dimension-reduction step, an intrinsic CAR model captures
the spatial dependence induced by neighboring microenvironments in the low-dimensional em-
bedding space, while in the spatial-clustering step, a Potts model promotes spatial smoothness
in the cluster label space. Using simple projections of the batch effects and/or biological ef-
fects of slides onto the space of biological effects between cell/domain types, PRECAST aligns
cell/domain clusters across multiple tissue slides with the shared distributions of embeddings
of each cell/domain and detects their cell/domain labels. With M SRT datasets, we ob-

. . . T T T T
serve an n, X p normalized expression matrix X, = (x,,, - ,X.;,- - ,X,, ) for each sample r
T . . . . .
(=1,---, M), where x,; = (i1, -+ ,Trip) 1s a p-dimensional normalized expression vector for

each spot s,; € R? of sample r on square or hexagonal lattices, among others; while the cluster
label of spot s,;, y; € {1,---, K}, and ¢g-dimensional shared embeddings, z,;’s, are unavailable.
Without loss of generality, we assume that, for each sample r, x,; is centered, and PRECAST
models the centered normalized expression vector x,; with its latent low-dimensional feature,
z.;, and class label, y,;, as

Xri = W(Zri + Vri) + Eriy Epg ™ N<Oa A’I‘)7 (1)
Zm“ym’ = k ~ N(:uk7 Zk); (2>
where A, = diag(A1,- -, Ap) is a diagonal matrix for residual variance, W € RP*? is a loading

matrix that transforms the p-dimensional expression vector into g-dimensional embeddings
shared across M datasets, j € R?! and ¥, € R?%%? are the mean vector and covariance
matrix for the kth cluster, respectively, and v,; is a ¢g-dimensional slide-specific latent vector
that captures the spatial dependence among neighboring spots and aligns embeddings across
datasets. Eqn. @) is related to the high-dimensional expression vector (x,;) in p genes with a
low-dimensional feature (z,;) via a probabilistic PCA model [65] with consideration of spatial
dependence while Eqn. (E) is a Gaussian mixture model (GMM) [66] for this latent feature
among all spots across M datasets. To promote spatial smoothness in the space of cluster
labels, we assume each latent class label, y,;, is interconnected with the class labels of its
neighborhoods via a discrete hidden Markov random field (HMRF). In detail, we use the
following Potts model for the latent labels,

P(y,) =GB ep{=5 30 D7 61— 8l wr)), g

7 i/ENM‘
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where C..(f3,) is a normalization constant that does not have a closed form, NV,; is the neighbor-
hood of spot s,; in sample r, and 3, is the sample-specific smoothing parameter that captures
the label similarity among the neighboring spots. However, we assume a continuous multivari-
ate HMRF for the vector, v,;, which captures spatial dependence in the embedding space. In
detail, we assume an intrinsic CAR model [67] for v,;

Vri‘v[nr]\i ~ N(:uvm'? mr_ilqu)> (4>

where subscript (,,]\; denotes all spots but s,; in sample r, m,; is the number of neighbors of spot
¢ in sample r, p,, , = m;il ven,, Vrir 18 the conditional mean relevant to the neighbors of that
spot s.;, and W, is a ¢ X ¢ conditional covariance matrix for the elements of v,;. Conventionally,
the joint distribution of the intrinsic CAR model is non-identifiable, as the mean of the joint
distribution of intrinsic CAR is not zero. As shown in the next section, non-cellular biological
effects, e.g., batch effects, from each slide can be projected onto the cellular biological space,
which can be corrected by the non-zero-mean property of intrinsic CAR.

Projections of non-cellular biological effects

For each tissue slide, we assume the normalized expressions in each sample r can be decomposed
into additional parts with respect to non-cellular biological effects as follows:

Xy = W(Zri + Vri) + WTCM' + Eri, (5)

where v,; is a g-dimensional vector that captures the spatial dependence among neighboring
spots; W, € RP*? is a loading matrix for a factor related to non-cellular biological effects;
and ¢
biological space (W) and non-cellular biological space (W,.) are non-orthogonal, we can project
W,s onto the column spaces of W, i.e., Wr = W(WTW)’1WTWT, and then rewrite the
normalized expressions as the following

.i» independent of (z,;,v,;), is the corresponding ¢-dimensional vector. Assuming cell

Xy W(Zri + V,; + WTWTCM) + Eri,

where W = W(WTW)=t. We denote v,; = v,; + WTWTCM-, ty,. = EWVri|Vn,:), m U =
var(v,|V,)/i), then the conditional mean and variance in the intrinsic CAR component can
be written as

E(Vri|v[nr]/i) = :ufum' + WTWTE<CM) = Moy
var(vyi|[Vi,1i) = m;il\ll’r + WTerar(Cri)W:W = mr_illllr,

where we assume var(¢,;) = m._,;'U”. Then, the projected approximated model can be written
as
Xpi =2 W<Zri + Vri) + &, r =1,2, (6)

where 2,y = k ~ N(u, Xi), and vy Vi, /i ~ N(pho,,, m0,).
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Recovery of comparable gene expression matrices

Once the estimated cluster labels are obtained by PRECAST, we can remove unwanted vari-
ations using a set of housekeeping genes as negative control genes that are not affected by
other biological effects [68]. In this study, we used a set of mouse/human housekeeping
genes from the Housekeeping and Reference Transcript Atlas [69]. First, we obtained vec-
tors, X,; = (Xp1,°** , Xprr), Of the expression of L housekeeping genes by matching the set of
housekeeping genes and genes passing QC for each dataset. By performing PCA, we obtained
the top 10 PCs, m,;, as covariates to adjust for unwanted variation. One of the outputs of
PRECAST, the posterior probability of y,; (T,; € R¥), can be used as the design matrix to
explain biological variation between cell/domain types. Finally, we used a linear model for
the normalized gene expression vector

T T
Xpj = I + m,;~y + Eri, (7>

where « is a K-dimensional vector for biological effects between cell/domain types and ~ is
a 10-dimensional vector of regression coefficients associated with the unwanted factors. After
obtaining the parameter estimates in Eqn. (H), users can remove batch effects from the original
normalized gene expression using

~ T ~

Xri = Xy — 1IN7Y.

This strategy can also be applied to samples from multiple biological conditions when such
information is available. This can be achieved by adding additional covariates for biological
conditions in Eqn. (H)

Differential expression analysis and enrichment analysis

After removing unwanted variation of gene expression matrices for multiple slides, we per-
formed DE analyses and enrichment analysis on all four datasets. In detail, we used the
FindAllMarkers function in the R package Seurat with default settings to detect the differen-
tially expressed genes for each domain detected by PRECAST. The DE analysis was considered
to identify domain-specific DE genes with adjusted p-values of less than 0.001 and a log-fold
change of greater than 0.25. After obtaining a set of genes specific to each domain, we per-
formed gene set enrichment analysis (GSEA) on a set of detected DE genes using g:Profiler
with the g:SCS multiple testing correction method and applying a significance threshold of
0.05 [[70].

Conditional SVG analysis

After obtaining aligned embeddings and domain labels for DLPFC and HCC Visium data
using PRECAST, we detected the SVGs by adjusting the estimated aligned embeddings as
covariates to investigate the role of SVGs beyond differences between cell/domain types. In
detail, we used the function spark.vc in the R package SPARK to identify SVGs adjusted
for cell/domain-relevant covariates for each sample. Finally, an FDR of 1% was adopted to
identify the significant SVGs.
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Trajectory inference/RINA velocity analysis

To further investigate the development and differentiation of these identified spatial domains/cells
by PRECAST, we used the aligned embeddings and domain clusters estimated by PRECAST
to perform trajectory inference, or RNA velocity analysis if splicing and unsplicing information
was available. For the DLPFC Visium data, mouse liver ST data and mouse OB Slide-seqV2
data, we conducted trajectory inference for the combined spots in all multiple tissue sections
using Slingshot [71]. We inputted the aligned embeddings and domain clusters estimated by
PRECAST into the function slingshot in the R package slingshot for implementation. Be-
cause the splicing and unsplicing information was available for the HCC Visium dataset, we
ran RNA velocity analysis using the scvelo.tl.velocity function in the Python module
scvelo based on the splicing and unsplicing matrices, then the aligned embeddings and domain
clusters estimated by PRECAST were used to visualize the inferred RNA velocity and latent
time.

Cell-type deconvolution analysis

We performed deconvolution analysis using Robust Cell Type Decomposition (RCTD)[49],
a supervised learning method used to decompose each spatial transcriptomics pixel into a
mixture of individual cell types while accounting for platform effects. We leveraged the results
of deconvolution analysis for better biological interpretation of the real data analysis.

For mouse liver ST data, we used scRNA-seq data on liver tissue sections from an adult
mouse from the MCA [40]. By removing cell types with cell numbers of less than 18, the
reference data retained 4,640 cells belonging to 17 cell types: B cells with high Jchain expres-
sion (n = 43), erythroid cells with high Hbb-bs expression (n = 555), periportal hepatocytes
(n = 26), hepatocytes with high Fabp1 expression (n = 149), Kupffer cells (n = 1,046), ery-
throid cells with high Hbb-bt expression (n = 62), endothelial cells (n = 1,196), granulocytes
(n =194), NK cells (n = 114), macrophages (n = 191), dendritic cells (n = 422), B cells with
high Femr expression (n = 97), T cells (n = 219), plasmacytoid dendritic cells (n = 90), hep-
atocytes with high Spp1 expression (n = 99), pericentral hepatocytes (n = 119), and hepatic
stellate cells (n = 18).

For the mouse OB Slide-seqV2 data, we used 10X Genomics Chromium scRNA-seq data
collected from the wild-type OB [46]. The reference data included 17,453 cells belonging to 40
cell types: three astrocyte types (Astrol: n = 1087; Astro2: n = 129; and Astro3: n = 599),
two endothelial types (EC1l: n = 897 and EC2: n = 445), two mesenchymal types (Mesl:
n = 200 and Mes2: n = 65), three microglials (MicroGl: n = 255; MicroG2: n = 766;
and MicroG3: n = 294), monocytes (n = 238), two murals (Murall: n = 43 and Mural2:
n = 272), myelinating-oligodendrocyte cells (n = 294), macrophages (n = 197), five olfactory
ensheathing cell types (OEC1: n = 812; OEC2: n = 664; OEC3:n = 1073; OEC4: n = 1083;
and OEC5: n = 281), oligodendrocyte progenitor cells (OPC: n = 137), red blood cells (RBCs:
n = 103), and 18 neural subtypes (OSNs: n = 467; PGC-1: n = 437; PGC-2: n = 146; PGC-3
n = 106; GC-1: n = 540; GC-2: n = 1245; GC-3: n = 96; GC-4: n = 80; GC-5: n = 516; GC-
6: n = 89; GC-7: 293; Immature: n = 1150; Transition: n = 733; Astrocyte-Like: n = 1078;
M/TC-1: n = 24; M/TC-2: n = 44; M/TC-3: n = 411; and EPL-IN: n = 64). For more
details of the cell types, please refer to Tepe et al. [46].
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For the HCC Visium data, we leveraged a droplet-based scRNA dataset collected from HCC
and intra-hepatic cholangiocarcinoma patients to serve as the reference data for deconvolution
[b5]. After filtering out 92 cells of unclassified cell type, the reference data contained 5,023 cells
belonging to seven cell types: B cells (n = 598), CAFs (n = 724), HPC-like cells (n = 254),
malignant cells (702), T cells (n = 1,429), TAMs (n = 437), and TECs (n = 879). After
acquiring the deconvolution results from the above-mentioned reference, we combined the
proportions of B cells, T cells and TECs into a single set and referred to this as the immune
cell proportion.

Comparisons of methods

We conducted comprehensive simulation and real data analyses to compare PRECAST with
existing methods of data integration and clustering.

We applied the following single-cell integration methods to benchmark the data integration
performance of PRECAST: (1) Seurat V3 [26]; (2) Harmony [23] implemented in the R package
harmony; (3) fastMNN [24] implemented in the R package batchelor; (4) Scanorama [25]
implemented in the Python module scanorama. (5) scGen [28]; (6) scVI [27] implemented in
the Python module scvi; (7) MEFISTO [29] implemented in the Python module mofaz; and
(8) PASTE [B0] implemented in the Python module paste.

The first six methods were designed for scRNA-seq integration, while MEFISTO can be
used for scRNA-seq and SRT data integration, and PASTE is designed for integrating SRT data
from multiple adjacent tissue slices into a single slice. In detail, the Seurat V3 method is based
on finding the mutual nearest neighbors. First, anchor pairs between different batches were
obtained using the function FindIntegrationAnchors in the Seurat R package. Then, the
IntegrateData function in Seurat was used to integrate the datasets based on the anchor pairs
and their confidence scores. Finally, we obtained the aligned 15-dimensional embeddings using
the function RunPCA in Seurat. Compared with the original MNN method, fastMNN is a faster
version based on PCA and is used to find the mutual nearest neighbors, greatly increasing the
computational efficiency. We used fastMNN in the R package batchelor with the top 15 PCs and
other default parameters and obtained all aligned 15-dimensional embeddings. Another PCA-
based method, Harmony corrects batch-contaminated PCs by iteratively performing maximum
diversity clustering and linear mixture model correction. For the analysis, we first obtained
the 15-dimensional PCs by performing PCA on the combined normalized expression matrix,
then took the obtained PCs and batch information as input for the function HarmonyMatrix
in the R package harmony, and lastly, obtained the aligned 15-dimensional embeddings as
output. Scanorama is a generalization of mutual nearest-neighbor matching used to find similar
elements among many datasets. Instead of searching for similar elements in high-dimensional
gene space, Scanorama applies randomized singular value decomposition to extract the aligned
embeddings from the combined cell-by-gene expression matrix. We conducted the analysis
following the author’s pipeline https://scanpy-tutorials.readthedocs.io/en/lates
t/spatial/integration-scanorama.html and set the parameter dimred=15 in function
correct_scanpy to extract aligned 15-dimensional embeddings. The pipelines for scGen and
scVI, which are two deep-learning-based methods, were followed using the two respective links,
https://scgen.readthedocs.io/en/latest/tutorials/scgen batch_removal.html and
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https://docs.scvi-tools.org/en/stable/tutorials/notebooks/tabula muris.html,
and we set the number of latent embeddings to 15 for both methods in the analysis. MEFISTO
is a factor-model-based integration method that integrates multiple datasets by simultaneously
identifying and aligning the underlying patterns of variation. To implement this, we followed
the author’s pipeline provided at https://github.com/bioFAM/MEFISTO tutorials/blo
b/master/MEFISTO microbiome.ipynb and https://github.com/bioFAM/MEFISTO_tut
orials/blob/master/MEFISTO_ST.ipynb, and set the number of factors to 15. PASTE
is a pairwise alignment method that integrates adjacent slices based on transcriptional and
spatial similarity using optimal transport and nonnegative matrix factorization; we followed
the author’s pipeline https://github.com/raphael-group/paste/blob/main/docs/
source/notebooks/getting-started. ipynb for implementation and set the number of
low-dimensional representation of center slice to 15.

To evaluate clustering performance, we considered the following two clustering methods
that use extracted aligned embeddings as input. (1) SC-MEB implemented in the R package
SC.MEB [20] and (2) Louvain implemented in the R package igraph [72]. SC-MEB was recently
developed to perform spatial clustering based on a discrete Markov random field [20], while
Louvain is a conventional non-spatial clustering algorithm based on community detection in
large networks [72]. In the implementation, we set the default values for SC-MEB and Louvain
clustering in the respective packages, except that the aligned embeddings and spatial coordi-
nates were used as input for SC-MEB while only the aligned embeddings were the input for
Louvain. Similar to PRECAST, SC-MEB uses MBIC [[73] to determine the number of clusters

in a data-driven manner, while Louvain uses a community-modularity maximizing rule [[72].

Evaluation metrics

We evaluated the methods’ performances in data integration, obtaining embeddings for cellular
biological effects, and spatial clustering using the following metrics.
Local inverse Simpson’s index. To assess performance in batch-effect removal, we used the

cell-type/integration LISI, cLIST and iLISI [23] to quantify the performance in merging the
shared cell populations among tissue slides and mixing spots from M tissue slides. cLISI
assigns a diversity score to each spot that represents the effective number of cell types in the
neighborhoods of that spot. For M datasets with a total of K cell types, accurate integration
should maintain a cLISI value close to 1, reflecting the purity of the unique cell types in
the neighborhood of each spot, as defined by the aligned embeddings. Erroneous embedding
includes neighborhoods with a cLISI of more than 1, while the worst cases have cLISI close
to K, suggesting that neighbors have K different types of cells. iLISI has a similar form and
implication as cLISI but is based on a sample index set rather than clusters of cell types. Thus,
a larger iLISI value means the different samples have more sufficient mixing.

Silhouette coefficient.  To simultaneously evaluate the separation of each cell/domain cluster

and mixing of multiple datasets, we calculated the average silhouette coefficient of the SRT
datasets using two different groupings: (1) grouping using known cell types as the cell/domain-
type silhouette coefficient (silhyysier) and (2) grouping using different datasets as the batch
silhouette coefficient (silhpyer). In the data integration, a larger value of silhgyge, indicates
better preservation of the biological signals between cell/domain types, while a smaller value
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of silhpusen suggests better mixing of datasets. These two metrics can be summarized using the

F1 score as follows [74]:

2(1 — silhy;q,)81h e € [0,1],

F1 score silh =

— e
Sﬂhcluster + (1 - Sﬂhbatch)
where silh! — Itsilhbaren 541 silh! — Usilhausier A Jarger F1 score suggests better data
batch — 2 cluster — 2 . g gg

integration that preserves the biological variations between cell/domain types while removing
other non-cellular biological variations across multiple tissues.
Canonical correlation coefficients and/or conditional correlation. For dimension reduction, we

applied two measurements to assess the performance of true latent feature recovery in the sim-
ulation studies. The first was the mean canonical correlation between the estimated features
and the true one, defined as

1 q
CCor = 5 Z C:l(Zi, 21),
=1

where (; is the [-th canonical correlation coefficient. The second measure was the mean condi-
tional correlation between gene expression x; and cell type label y; given the estimated latent
features z;, defined as

P
ConCor = ! Z corr(y;, resid;;),
P

where resid; is the residual of x;; regressing on z;, and corr(y;, resid;;) is the Pearson correla-
tion coefficient between y; and resid,;.
Adjusted Rand index and/or normalized mutual information. To evaluate performance in spa-
tial clustering, we used ARI [75] and NMI [76]. ARI is the corrected version of the Rand index
(RI) [77] and is used avoid some of the drawbacks of RI [75]. ARI measures the similarity be-
tween two different partitions and ranges from —1 to 1. A larger value of ARI means a higher

degree of similarity between two partitions. ARI takes a value of 1 when the two partitions
are equal up to a permutation. Whereas NMI is a variant of the mutual information (MI) that
normalizes the value of MI to within the range of 0 and 1. When the two partitions are equal
up to a permutation, NMI takes a value of 1.

Simulations

Scenario 1. Normalized gene expression data: domain labels and spatial coor-
dinates from the Potts model. For this scenario, we generated the normalized gene
expression data for three samples as well as the spatial coordinates based on Potts models
with four neighborhoods. All quantities, such as the labels y,;s and latent features v,;s, of
spots were randomly simulated from the generative model (é) In detail, we generated the
class label y,; for each r = 1,2,3 and ¢ = 1,--- ,n, with n, € {65 x 65,60 x 60,60 x 60}
corresponding to rectangular lattices from a K-state (K'=7) Potts model with the smoothing
parameter [, = 0.8 + 0.2(r — 1) using the function sampler.mrf in R package GiRaF. Then,
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we generated latent features v,;s from the CAR model with the same N,; as defined in the
Potts model and covariance matrix ¥/ = (o,;;) with o,;; = r(0.2r)"= using the function
rmatrixnorm in R package LaplacesDemon. We set different values for the smoothing param-
eter 3, and covariance matrices W/ across r to mimic the heterogeneity of three samples. The
domain labels y,;s and latent features v,;s were fixed once they were obtained.

Then, we generated domain-relevant latent features z,; in the model (B) from the condi-
tional Gaussian, such that z,;|y,; = k ~ (ug, 2x), where z,; € R? with ¢ = 10 and structures for
i, and X are shown in Supplementary Table S8. Next, we generated W= (wij, i <p,j <q)
with each w;; N (0,1), performed QR decomposition on W such that W = @é, and as-
signed W = @, which is a column orthogonal matrix. Then, we generated a batch-loading
matrix W, by generating W, = W + E, with W = (@;;,4 < p = 2,000,j < ¢,),¢, = 2 and
wi; "% N(0,1) and E, = (6,4;,i < p,j < ¢,) and &,5; ~ N(0,52) with 61 = 0.5,5, = 0.8, 53 =
1. Similar to the generation of W, we performed orthogonalization of W, to generate W,.
Next, we generated ¢,,; in the model (B) by i = (Grity -+, Crig) . Such G s N(0,02) with
o1 = 1,09 = 2 and o3 = 0.5. Finally, we generated a high-dimensional normalized expression
matrix using x,; = W(z;+vi)+ W, €, +€ris €4 ~ N(0,A,), where A, = diag(A;),7=1,...,p,
Ay o= 2(1 4 15|zy]) with zy; & N(0,3); Ay = 2(1 + 295) with z; <" U[0,1]; and
Asj = 2(1 + 223;) with zs; <" U0, 1].

Scenario 2. Raw gene expression count data: domain labels and spatial coordinates
from Potts model. In Scenario 2, we generated the raw gene expression data. The class
label y,;, loading matrices W, W,., latent features v,; and z,;, and error term €,; were generated
in the same way as in Scenario 1, except that u; had a different value (Supplementary Table
S8). The other difference was that we generated normalized gene expressions x,; using x,; =
T, + W 2y + Vi) + Wi, + €, 75 ~ N(0,4) and raw gene expressions X,; = (Zyi1, - - - ,im-p)T
using Z,;; ~ Poisson(exp(z,i;)), where 7,; is the j-th element of 7,. The term e,; makes the
distribution of x,;; over-dispersed, which can better imitate the properties of count expression.
In this scenario, for each sample r, we only observed the raw expression ,;; of gene j and spot
1 and spatial coordinates s,; for spot i.

Scenario 3. Normalized gene expression data: domain labels and spatial coordi-
nates from DLPFC data. To validate the generality of PRECAST, we also generated
data based on three DLFPC datasets (ID: 151507, 151669 and 151673) from each of three
donors (Visium platform). The domain labels y,;s for spots were obtained from the expert
annotations from Maynard et al. [21] together with the spatial coordinates. To generate the
latent features v,;s, PRECAST was used to fit the three datasets, then we used the estimated
features ,;s as input. The cluster labels y,;s and latent features v,;s were fixed once they
were obtained. The other quantities were generated in the same way as in Scenario 1 but with
a different u; (Supplementary Table S8).

Scenario 4. Raw gene expression data: domain labels and spatial coordinates
from DLPFC data. In this scenario, we also generated the raw gene expression data.
The class label y,;, loading matrices W, W, latent features v,; and z,; were generated as
in Scenario 3. The only difference was that we generated normalized gene expression x,;
using x,; = 7. + W(zp; + vyi) + WoC,; + €44, 75 ~ N(0,4) and €,; ~ N(0,A,), where A, =

diag(Ar;),7 = 1,...,p, Ay = 2(1 + 0.5]z5]) with z1; "% N(0,3); Ay = 2(1 + 0.22y;) with
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2o g Ul0,1]; and A3; = 2(1 + z3;) with zs; RS Ul0,1]. Then the raw expressions X,; were

simulated using Z,;; ~ Poisson(exp(z,i;)), where 7,; is the j-th element of 7. The term g,
makes the distribution of X,;; over-dispersed, which can better imitate the properties of count
expression.

Scenario 5. Raw gene expression data: count matrix, domain labels and spatial
coordinates from DLPFC data. To make PASTE comparable to the other methods, we
obtained the raw gene expressions, domain labels and spatial coordinates from all three tissue
slides (ID: 151673, 151674 and 151675) from the last donor, where the domain labels were from
the expert annotations in Maynard et al. [21]. In this case, the true shared embeddings were
unknown, so we did not evaluate the canonical correlations. To generate the count matrix,
we randomly added a pseudocount for each raw count from a binomial distribution with size
three and probability parameter 0.3, similar to Zeira et al. [30]. Finally, we obtained the count
matrix and spatial coordinates as input for the compared methods.

Data resources

Human dorsolateral prefrontal cortex Visium data

We downloaded spatial transcriptomic data for human DLPFC obtained on the 10x Visium
platform from https://github.com/LieberInstitute/spatialLIBD. These data were col-
lected from 12 human postmortem DLPFC tissue sections from three independent neurotypical
adult donors, and the raw expression count matrix contained 33,538 genes for each sample,
with a total of 47,681 spatial locations. Before conducting the analysis, we first performed QC
on each sample to filter out genes with non-zero expression levels for fewer than 20 spots and
the spots with nonzero expression levels for less than 20 genes. The filtering step led to sets of
14,535 genes on average in a total of 47,680 spatial locations. For each sample, we performed
log-normalization, followed by centering, and selected the top 2,000 SVGs using SPARK [7§].
Next, we prioritized genes based on the number of times they were selected as SVGs in all
12 samples and chose the top 2,000 genes as input for the analysis. The annotated spatial
domains in all 12 samples based on the cytoarchitecture in the original study [21] were layer
1 (n=5,321), layer 2 (n=2,858), layer 3 (n= 17,587), layer 4 (n=3,547), layer 5 (n=7,300),
layer 6 (n=6,201), white matter (n=4,514), and undetermined spots (n=352). In the analysis,
we treated these manual annotations as the ground truth to evaluate the clustering and data
integration performance of the different methods.

Mouse liver ST data

We downloaded eight sets of mouse liver ST data from https://zenodo.org/record/4399655.
The eight datasets contained 15,302 genes, on average, measured over 4,865 spatial spots in
total. In the QC steps, we first filtered out genes with non-zero expression levels in fewer than
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20 spots and spots with non-zero expression levels for fewer than 20 genes. The filtering step
led to a set of 9,221 genes, on average, from a total of 4,865 locations. For each tissue slide,
we performed log-normalization, followed by centering, and selected the top 2,000 SVGs using
SPARK. Next, we prioritized genes based on the number of times they were selected as SVGs
in all eight datasets, and chose the top 2,000 genes as input for the analysis. The annotated
spatial domains in all eight samples, based on marker genes in the original study [38] were portal
veins (n = 1,223), central veins (n = 720), haemoglobin (n = 464), immune-related domain
(n = 163), mesenchymal-related domain (n = 110), and undetermined spots (n = 2,183),
which were used to evaluate the clustering and data integration performances of the different
methods in the analyses.

Mouse olfactory bulb Slide-seqV2 data

We obtained the data for 20 mouse OB Slide-seqV2 sections in Replicate 2 from CNBI accession
number GSE169021 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE169021.
We used the first 16 slides because of the low quality of the last four slides. The data contained
21,571 genes, on average, over all 693,863 spatial locations across 16 sections, which were
equally distributed along the anterior-posterior axis of the same mouse. In the QC steps, we
first filtered out genes with non-zero expression levels in fewer than 20 spots and spots with
non-zero expression levels for fewer than 20 genes. The filtering step led to a set of 14,307
genes, on average, for a total of 594,890 locations. For each tissue slide, we performed log-
normalization followed by centering, and selected the top 2,000 SVGs using SPARK-X [79]
for computational efficiency. Next, we prioritized genes based on the number of times they
were selected as SVGs in all 16 tissue slides, and we chose the top 2,000 genes as input for the
analysis. To evaluate the impact of spatial resolution, we further collapsed nearby spots in
each tissue slide using square grids of size 70x70. Then, the same QC steps were performed
to obtain normalized expression for the analysis. To examine the structure of the mouse OB,
we relied on the structural annotation in the Allen Brain Atlas [42] and used the results of
downstream analyses to determine the specific regions of OB.

Human hepatocellular carcinoma Visium data

These data were from two tissue sections each from tumor and tumor-adjacent regions of an
HCC patient, and contained 36,601 genes from over 9,813 spatial locations. In the QC steps,
we first filtered out genes with non-zero expression levels in fewer than 20 spots and spots with
non-zero expression levels for fewer than 20 genes. The filtering step led to a set of 14,851
genes on average from a total of 9,813 locations. For each tissue section, we performed log-
normalization, followed by centering, and selected the top 2,000 SVGs using SPARK. Next, we
prioritized genes based on the number of times they were selected as SVGs in all four samples,
and we chose the top 2,000 genes as input for the analysis. In this data, manual annotations
for the TNE and stroma regions were provided by a pathologist using the Visium companion
H&E images. We further performed spatial deconvolution to examine the spatial distribution

23


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE169021
https://doi.org/10.1101/2022.06.26.497672
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.26.497672; this version posted July 24, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of malignant cells using RCTD [49].

Data availability

All datasets used in this study are publicly available. These include the 12 human dorsolateral
prefrontal cortex Visium datasets (https://github.com/LieberInstitute/spatialLIBD),
eight mouse liver ST datasets (https://zenodo.org/record/4399655), 16 mouse OB Slide-
seqV2 datasets (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE169021)
and four human hepatocellular carcinoma Visium datasets (access available upon reviewer’s
request).

Code availability

The PRECAST methods were implemented in an open-source, publicly available R package
that is available at https://cran.r-project.org/package=PRECAST and https://gi
thub.com/feiyoung/PRECAST. Code for reproducing the analysis can be found at https:
//github.com/feiyoung/PRECAST Analysis.
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Figure 1: Schematic overview of PRECAST and simulation results. (a) PRECAST is a uni-
fied probabilistic factor model that simultaneously estimates aligned embeddings and cluster
labels with consideration of spatial smoothness in both the cluster label and low-dimensional
embedding spaces. It takes, as input, the normalized gene expression matrices from multiple
tissue slides. (b) Examples of PRECAST downstream analyses. (c) In the simulations, we
considered two ways to generate gene expression, continuous or count matrix, followed by log-
normalization. We also considered two ways to generate spatial coordinates and cell/domain
labels: Potts model and three cortex tissues from the DLPFC data. Lastly, we considered a
scenario favorable for PASTE. We evaluated the performance of the data integration, estima-
tion of aligned embeddings, slide-specific embeddings due to neighboring microenvironments,
and spatial clustering using F1 scores of average silhouette coefficients, canonical correlation
coefficients (CCor), and the adjusted Rand index (ARI) and ARIs displayed for the other meth-
ods were evaluated based on the results of the spatial clustering method SC-MEB. PRECAST
outperformed all other data integration methods, according to the assessments in Scenarios
1-4 and was comparable with PASTE in Scenario 5. In simulations, scVI and PASTE are
only applicable to Scenarios 2, 4 and 5 with count matrix and only PRECAST estimates the
slide-specific embeddings. We evaluate the CCor with underlying truth in Scenario 1-4.
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Figure 2: Analysis of data for 12 human DLPFC sections. (a) Left panel: H&E image and
manual annotation of sample ID151674. Top panel: UMAP RGB plots of sample 1D151674
for PRECAST, Seurat V3, Harmony, and fastMNN. Bottom panel: Clustering assignment
heatmaps for these four methods. Color scheme used in clustering assignment heatmap for
PRECAST is the same with (b) and (d). (b) tSNE plots for these four data integration methods
with right-most column showing the analysis without correction; domains are labeled as in (d).
(¢) Box/violin plot of ARI values for PRECAST and other methods; SC-MEB was used in the
other methods for clustering based on their aligned embeddings. (d) Heatmap of Pearson’s
correlation coefficients among detected domains. L1-L6, Layer 1 - Layer 6; WM, white matter;
NA, undetermined. (e) Spatial expression patterns of DE genes for Domain 1 (Hopz), Domain
2 (Pcp4), Domain 4 (Encl1), Domain 5 (Cnp), Domain 5 (Mbp), and Domain 8 (Nefl) for
sample ID151674. (f) Spatial expression patterns of genes associated with pseudotime: Mobp,
Gfap, Mag, Tf, Mbp, and Coxl, where the arrow represents the direction of the increased
pseudotime. (g) Bubble plot of -log10(p-values) for GO enrichment analysis of genes associated
with pseudotime. (h) Bubble plot of -log10(p-values) for KEGG enrichment analysis of SVGs
while adjusting domain-relevant aligned embeddings by PRECAST for sample ID151674.
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Figure 3: Analysis of data for eight mouse liver sections. (a) Top panel: Box/violin plot of
ARI values of each sample for PRECAST and the other methods (left); bar plot of ARI value
of combined samples for PRECAST and other methods (right). Bottom panel: Box/violin
plots of cLISI and iLISI values for PRECAST and other methods. Color scheme of each
method is the same as in (d). (b) tSNE plots for four data integration methods, with the right-
most column showing analysis without correction. Color scheme of each domain is the same
as in (c¢) and (g). (c) Heatmap of differentially expressed genes for each domain identified
by PRECAST. CV-1, central veins 1; CV-2, central veins 2; Endo, endothelial cells; Hep,
hepcidin-related cells; Mes, mesenchymal-related cells; PV-1, portal veins 1; PV-2, portal
veins 2. (d) Bar plot of McFadden’s adjusted R? values for PRECAST and other methods.
McFadden’s adjusted R? measures the association between the cluster label obtained by each
method and the cell proportion obtained by RCTD cell-type deconvolution, and the a larger
value indicates a stronger association. (e) Visualization of the cell type proportions mapped to
spatial coordinates for six cell types of the first three samples. (f) Visualization of the combined
trajectory inferred by PRECAST in tSNE plot of all samples. Domains 1-2 and Domains 6-7
representing central veins and portal veins, respectively, are circled. (g) Heatmap for genes
with expression change in the Slingshot pseudotime inferred by PRECAST.

37


https://doi.org/10.1101/2022.06.26.497672
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.26.497672; this version posted July 24, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.GCL

3. GCL/IPL
4.MCL

5.0OPL

6.GL1

7.GL2

8. ONL

9. Low qualityl
10. Low quality2
11. Low quality3
12. Low quality4

3
Uncorrected Sample
o1
.2
3
° 4
°5
5
o 7
L]
.9
° 10
° 11
° 12
° 13
.
.
~ ° 16
=
Z
2] .
Domain
° 1
® 2
® 3
° 4
5
® 6
7
8
e 9
10
® 11
12
[] Astrot Mes2
Astro2 MicroG1
Astro3 [ MicroG2
AstrocyteLike |_| MicroG3
EC1 Mono
EC2 Muralt Method
EPL-IN Mural2
GC-1 MyOligo N
Gc2 OEC1 & M PRECAST
GeC-3 OEC2 Kl B Seurat V3
GC-4 OEC3 % Harmony
GC-5 OEC4 L] B fastMNN
GC-6 OEC5 "g Scanorama
GC-7 OoPC = M scGen
Immature OSNs [3) scVi
M/TC-1 PGC-1
MTC-2 PGC-2 = 1 MEFISTO
MTC-3 PGC-3 W PASTE
Macrophage RBCs
Mes1 Transition
Domain
0.4
) Method
Pseudotime 0.3
B PRECAST
1.00 _ M SeuratV3
0.75 [h4 B Ed Harmony
0.50 < 0.2 .f")) B3 fastMNN
- Q E Scanorama
N 0.25 scGen
. )
B E3 scVl
000 (L‘) £ MEFISTO
0.1 Ed PASTE

38


https://doi.org/10.1101/2022.06.26.497672
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.26.497672; this version posted July 24, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 4: Analysis of data for 16 mouse olfactory bulb sections. (a) Structure of the mouse
olfactory bulb annotated using the Allen Brain Atlas. (b) Clustering assignment heatmaps for
16 tissue slides by PRECAST, where the first row shows samples 1-6, the second row samples
7-12, and the last row samples 13-16 (RMS, rostral migratory stream; GCL, granule cell layer;
IPL, inner plexiform layer; MCL, mitral cell layer; OPL, outer plexiform layer; GL, glomerular
layer; ONL, olfactory nerve layer). Color scheme for domains detected in PRECAST is as in
(c) and (d), and the order of domain labels in (b) is the same as in (c), (d), and (e). (c) tSNE
plots for four data integration methods with the right-most column showing analysis without
correction. (d) Percentage of different cell types in each domain detected by PRECAST with
scaling. (e) MacFadden’s adjusted R? between the inferred cell type proportions and the
estimated domain labels by PRECAST and other methods (top panel); bar plot of ARI values
of combined samples for PRECAST and other methods, where each spot is annotated using
the cell type, with the highest proportion from the spatial deconvolution (bottom panel). (f)
Visualization of the trajectory inferred by PRECAST in spatial heatmap for samples 1-8 (left
panel) and tSNE plot of all samples(right panel).
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Figure 5: Analysis of data for four human HCC sections. (a) Top panel: H&E images from
four tissue slides. Bottom panel: Manual annotation by a pathologist of four tissue slides. (b)
Top panel: UMAP RGB plots of PRECAST for four tissue slides. Bottom panel: Clustering
assignment heatmaps for four tissue sections by PRECAST. Color scheme for clustering assign-
ment heatmap in PRECAST is the same as in (c), (f), and (g). (c) tSNE plots for four data
integration methods with the right-most column showing analysis without correction; domains
are labeled as in (e) and (f). TNE, tumor/normal epithelium. (d) Spatial heatmap of deconvo-
luted cell proportions in malignant cells, immune cells, and HPC-like cells. (e) Percentage of
different cell types in each domain detected by PRECAST, with (left panel) or without (right
panel) scaling to the summation of all cell types across all domains equal to 100%. (f) PC plot
of estimated RNA velocity. (g) Heatmap of genes with expression change in latent time.
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