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Abstract 
 
  Most endometrial cancers express the hormone receptor estrogen receptor alpha (ER) and are driven by 
excess estrogen signaling. However, evaluation of the estrogen response in endometrial cancer cells has been 
limited by the availability of hormonally responsive in vitro models, with one cell line, Ishikawa, being used in 
most studies. Here, we describe a novel, adherent endometrioid endometrial cancer (EEC) cell line model, HCI-
EC-23. We show that HCI-EC-23 retains ER expression and that ER functionally responds to estrogen induction 
over a range of passages. We also demonstrate that this cell line retains paradoxical activation of ER by 
tamoxifen, which is also observed in Ishikawa and is consistent with clinical data. The mutational landscape 
shows that HCI-EC-23 is mutated at many of the commonly altered genes in EEC, has relatively few copy-
number alterations, and is microsatellite instable high (MSI-high). In vitro proliferation of HCI-EC-23 is strongly 
reduced upon combination estrogen and progesterone treatment. HCI-EC-23 exhibits strong estrogen 
dependence for tumor growth in vivo and tumor size is reduced by combination estrogen and progesterone 
treatment. Molecular characterization of estrogen induction in HCI-EC-23 revealed hundreds of estrogen-
responsive genes that significantly overlapped with those regulated in Ishikawa. Analysis of ER genome binding 
identified similar patterns in HCI-EC-23 and Ishikawa, although ER exhibited more bound sites in Ishikawa. This 
study demonstrates that HCI-EC-23 is an estrogen- and progesterone-responsive cell line model that can be 
used to study the hormonal aspects of endometrial cancer. 
 
Introduction 
 
 Cancer of the uterine corpus is the most common gynecologic cancer, 4th most common overall cancer 
type, and 6th most common cause of cancer death for women in the US, with an expected 65,950 new cases 
and 12,550 deaths in 2022[1].  Uterine cancer remains one of the few cancers with increasing incidence and 
mortality, in part due to its strong association with the obesity epidemic[2, 3]. The vast majority (>90%) of cancers 
of the uterine corpus are cancers of the endometrium, the inner epithelial lining of the uterus. Endometrial 
cancers are broadly separated into two histopathological subtypes[4]. Type I tumors make up ~85% of 
endometrial tumors and have low-grade (grade I or II) endometrioid histology. Type I tumors express high levels 
of estrogen receptor alpha (ER) and are believed to be hormonally driven with excess estrogen signaling being 
a significant risk factor. In contrast, type II tumors are thought to be hormone-independent and include high-
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grade (grade III) endometrioid tumors along with tumors of other histologic subtypes, including serous, clear cell, 
carcinosarcoma, and mixed histology. The broad histopathological classification of endometrial cancer also 
associates with molecular classifications identified by The Cancer Genome Atlas, where type I tumors fall largely 
into the copy-number low, microsatellite instable (MSI), and POLE mutated etiologies, while type II tumors are 
enriched for the copy-number high etiology and are enriched for TP53 mutations[5-7].  
 There have been many cell lines established from type I tumors in order to model disease biology, such 
as Ishikawa[8, 9], AN3CA[10], HEC-1-A[11], RL95-2[12], MFE-280[13], MFE-296[13], JHUAS-1[14], and 
JHUEM-2[14]. However, the majority of these lines have limited ability to assess the estrogen driven aspects of 
type I endometrial cancer biology due to loss of ER expression and response to estrogens. This has left the 
Ishikawa cell line as the prevailing model for studying the hormonal aspects of endometrial cancer in vitro[15-
22]. Early studies made use of another hormone receptor positive cell line, ECC-1, which has been recently 
identified to be contaminated by the Ishikawa line at some point, rendering its utility limited[23, 24]. The lack of 
additional cell lines to study the >85% of endometrial cancers that are hormonally-driven has limited the 
generalizability of previous studies. This is especially true when considering the example of hormone receptor 
positive breast cancer cell lines, where there are variable responses to hormones, therapeutic responses, and 
resistance mechanisms to anti-hormone therapy[25-29]. Many of these differences can be attributed to the 
unique genetic background of each of the cell lines[29]. Therefore, we are limited to studying the estrogen-driven 
aspects of type I endometrial cancer through the lens of a single genetic background, that of the MSI-high 
Ishikawa cell line[24]. The increasing use of patient-derived xenograft (PDX) models in endometrial cancer has 
increased the availability of hormone-responsive model systems[30-33]. Although these PDX models are highly 
informative, cell lines remain the predominant model system where large numbers of cells are needed, such as 
drug and genetic screens, or for genetic manipulation to model clinically-relevant mutations. 
 We addressed the lack of hormonally-responsive endometrial cancer cell lines by isolating and 
characterizing endometrial cancer cell lines from PDX models, which led to the development of a cell line model, 
HCI-EC-23, that retains estrogen-responsiveness in vitro and in vivo. We demonstrate that this cell line is 
epithelial in nature and grows well as a monolayer in vitro. We also describe the genetic background of HCI-EC-
23 by showing that it is mutated at many of the top mutated genes in endometrioid endometrial carcinoma and 
that it is MSI-high. Critically, the HCI-EC-23 cell line retains ER expression and estrogen-responsiveness in vitro 
and in vivo as assayed by western blot, luciferase reporter assays, growth assays, and RNA-seq. We also show 
that the HCI-EC-23 is similar but distinct from Ishikawa in its response to 17b-estradiol (E2) on a transcriptional 
level and where ER binds to the genome. We show that ER in both HCI-EC-23 and Ishikawa is paradoxically 
activated by tamoxifen, while HCI-EC-23 shows an anti-proliferative response to progesterone (P4). This study 
details the characterization of a novel endometrial cancer cell line that retains hormone-responsiveness and will 
advance the field’s understanding of the hormonal underpinnings of endometrial cancer by providing an 
additional yet novel model system. 
 
Results 
 
Generation of PDX-derived cell lines 
                  Endometrioid endometrial carcinoma (EEC) is commonly believed to be driven by excess 
estrogen signaling. Despite the fact that most EEC cell models are derived from tumors expressing ER[8-14], 
most of these lines have lost ER expression at the protein level (Figure 1a). The only commercial line that has 
retained estrogen responsiveness, allowing for modeling of the hormonal action of endometrial cancer, is 
Ishikawa (Figure 1a)[15-22].  

In order to generate a new EEC cell line that retains ER expression and hormonal responsiveness, we 
leveraged a set of PDX models[22]. PDXs were dissociated and then grown on collagen-coated plates in a 
complex media (described in Methods). A major concern when initially growing these dissociated xenografts is 
the presence and overgrowth of murine stromal cells that out-compete the human tumor cells. To assess the 
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level of murine cell contamination in these initial outgrowths, we used species-specific PCR amplicon length 
(ssPAL)[34, 35], to determine the fraction of cells that are either human or mouse. ssPAL analysis revealed that 
two of our dissociated xenografts were almost exclusively murine stromal cells; EC-PDX-32 was >99% murine 
and EC-PDX-33 was 100% murine (no human DNA detected) (Figure S1a). These two xenografts had an 
overwhelmingly fibroblast-like appearance and eventually stopped growing in culture with no outgrowth of human 
clones. In contrast, the EC-PDX-23 dissociation led to an outgrowth that was predominantly human (>99%) as 
detected by ssPAL (Figure S1a). The resulting line, which we have named HCI-EC-23, was subsequently 
adapted to standard tissue culture-treated dishes and standard RPMI-1640 media supplemented with 10% FBS. 
Additional testing by IDEXX BioAnalytics (Columbia, MO, USA) detected no murine content and found the line 
to be mycoplasma negative (Figure S1a). Short tandem repeat (STR) cell line authentication was performed 
and yielded a novel signature indicating that HCI-EC-23 is not contaminated with cell lines known in either the 
IDEXX or DSMZ cell line databases (data not shown). 
  
HCI-EC-23 is an endometrial cancer cell line that retains estrogen signaling 
         The primary tumor leading to HCI-EC-23 was obtained from a 66-year-old woman who was diagnosed 
with a grade 2 stage 1A endometrioid endometrial carcinoma (Table 1). Additionally, this primary tumor was 
microsatellite instability-high (MSI-high) and was positive for expression of ER (Table 1, Figure 1b). The PDX 
model from which HCI-EC-23 was cloned (EC-PDX-23), retained grade 2 histology, MSI-high, and ER positivity 
(Table 1, Figure 1b). MSI testing of the HCI-EC-23 cell line confirmed an MSI-high status (Table 1). The HCI-
EC-23 cell line grows as a monolayer exhibiting characteristic epithelial cobblestone-like morphology, similar to 
the Ishikawa cell line, although the HCI-EC-23 cell line appears to exhibit an increased degree of cytoplasmic 
projections and cell-cell contacts (Figure 1c). Epithelial cell adhesion molecule (EPCAM) positivity, as assessed 
by immunofluorescent staining, confirms that HCI-EC-23 is an epithelial cell line similar to Ishikawa (Figure 1d). 

Unlike many of the EEC cell lines described earlier, HCI-EC-23 retains ER expression as detected by 
western blot (Figure 1a) and qRT-PCR (Supplemental Figure S1c). ER is expressed in HCI-EC-23 at 
approximately half the amount detected in Ishikawa at both the RNA and protein levels (Supplemental Figure 
S1c and Figure 1a, respectively). ER is also upregulated at the RNA level in HCI-EC-23 upon E2 treatment, 
while it is repressed in Ishikawa in response to E2 (Supplemental Figure S1c).  

We next determined if HCI-EC-23 was responsive to estrogen, similar to the known hormonally 
responsive cell line Ishikawa. Using a luciferase reporter under the control of tandem estrogen response 
elements (ERE), ER’s preferred binding site, we found that HCI-EC-23 is indeed responsive to treatment with 
10 nM E2 in a manner and magnitude similar to Ishikawa (Figure 1e). HCI-EC-23 retains its E2 responsiveness 
at least through passage 35 (Figure 1f), suggesting it durably remains hormonally responsive in culture. 

It is known that the selective ER modulator tamoxifen, which is used to block ER activity for breast cancer 
treatment, is paradoxically an ER agonist in the normal endometrium and endometrial cancer cells, including the 
Ishikawa cell line[16, 17, 36, 37]. We found that treatment with 1 µM of the active metabolite of tamoxifen, 4-
hydroxy-tamoxifen (4OHT), induces ER activity in both HCI-EC-23 and Ishikawa, demonstrating that these cell 
lines retain the paradoxical activity of tamoxifen observed in the endometrium (Figure 1e). 
 
Table 1. Characteristics of HCI-EC-23 primary tumor and derived models. 

Sample Age Grade Stage MSI Status MSI Detail Estrogen Receptor Status 

Primary Tumor 66 2 1A dMMR Abnormal MLH1/PMS2 ERα Positive IHC 

EC-PDX-23 N/A 2 N/A MSI-H Unstable at BAT-26, NR-24, MONO-27/NR-27 ERα Positive IHC 

HCI-EC-23 Cell Line N/A N/A N/A MSI-H Unstable at BAT-26, BAT-25, NR-24, MONO-27/NR-27 ERα Positive western blot 

 

MSI = microsatellite instability, dMMR = defective mismatch repair, MSI-H = microsatellite instable high, IHC = immunohistochemistry, 
N/A = not applicable.  
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Figure 1. HCI-EC-23 is an epithelial endometrial cancer cell line expressing ER. (a) Western blot shows protein levels of ER and 
loading control β-actin. Cell lines shown are HCI-EC-23 along with commonly used, commercially available endometrial cancer cell lines. 
The only cell lines expressing ER are HCI-EC-23 and Ishikawa. Raw images of western blots are provided in Supplemental Information 
Source Data Figure 1a. (b) H&E (left) and ER immunohistochemistry (IHC, middle and right inset) are shown for the original patient tumor 
(top) and HCI-EC-23 PDX model (bottom) from which the HCI-EC-23 cell line was derived. H&E of the patient tumor demonstrates grade 
2 endometrioid endometrial carcinoma while the PDX retains differentiated features. IHC for ER demonstrates that both the patient tumor 
and PDX are positive for ER expression. Scale bars equal 100 µm, inset scale bars equal 50 µm. (c) Morphology of the HCI-EC-23 (left) 
and Ishikawa (right) cell lines under phase-contrast microscopy shows that HCI-EC-23 grows as an adherent monolayer like Ishikawa, 
but with additional cytoplasmic projections and cell-cell contacts. Scale bar equals 400 µm. (d) Immunofluorescence is shown for the 
epithelial cell marker EPCAM and nuclear stain DAPI for HCI-EC-23 (left) and Ishikawa (right). Individual channels of EPCAM (top left) 
and DAPI (bottom left) are shown in greyscale. Individual channels are merged and pseudocolored (EPCAM - magenta, DAPI - cyan, 
right). Scale bars equal 50 µm. (e) Bar plots of estrogen response element (ERE) assays after treatment with 10 nM E2 or 1uM of the 
active metabolite of tamoxifen, 4OHT, are shown. Points represent individual replicates. Error bars represent standard deviation. (f) Bar 
plots of ERE assays are shown for various passages of HCI-EC-23 treated with 10 nM E2. Significance is to respective DMSO treatment. 
Points represent individual replicates. Error bars represent standard deviation. * p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001.  
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Mutation spectra of HCI-EC-23 is consistent with MSI-high endometrioid endometrial carcinoma 
To define the mutational background of the HCI-EC-23 cell line, whole-exome sequencing was 

performed. We employed a stringent filtering strategy in order to call variants in this cell line as we had no normal 
sample to remove germline variation; similar strategies have been utilized by the catalog of somatic mutations 
in cancer (COSMIC) to assess mutations in cell lines[38]. This filtering strategy reduced the number of variants 
from 29,958 to 3,445, which are presumed to be somatic (Supplemental File S1). The filtered, non-silent 
mutations were largely missense mutations (n = 1,651) followed by frameshift mutations (n = 435) 
(Supplemental Figure S2a). The mutational profile was largely C >T and most closely matched the mutation 
signature SBS6, which is associated with defective DNA mismatch repair (cosine-similarity 0.873, Supplemental 
Figure S2b). Next, we compared the mutated genes in HCI-EC-23 to the top twenty most frequently mutated 
genes in the TCGA EEC UCEC cohort. We found that HCI-EC-23 contained mutations in 11 of the 20 most 
frequently mutated genes (Figure 2a). Importantly, HCI-EC-23 is mutated at PTEN, PIK3CA, ARID1A, CTCF, 
and ATM, but remains wild-type for PIK3R1, CTNNB1, KRAS, and TP53. Consistent with our goal of establishing 
a hormonally responsive EEC cell line, the genes that encode progesterone receptor (PR, PGR) and ER (ESR1) 
are also wild-type in HCI-EC-23. Copy number alteration (CNA) inference using whole-exome sequencing depth 
and variant allele fraction (VAF) showed that HCI-EC-23 is relatively copy number neutral aside from the 
relatively common[5] amplification of chromosome 1q and a few focal alterations (Figure 2b). The mutational 
landscape, CNA profile, absence of POLE exonuclease domain mutation, and MSI-high status demonstrate that 
HCI-EC-23 is an MSI hypermutated cell line according to the molecular classification identified in the TCGA 
analysis[5] of endometrial cancer. 
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Figure 2. Whole-exome sequencing of HCI-EC-23. (a) Displayed is a comparison of the 20 most frequently mutated genes in the TCGA 
EEC UCEC cohort along with the hormone receptors PGR and ESR1 (left) and mutations identified in HCI-EC-23 (right). Shown are the 
protein alterations for each gene in HCI-EC-23. (b) Plot of log2 copy ratio (top) and variant allele frequency (VAF) along the genome for 
HCI-EC-23 is shown as computed using CNVKit. The median log2 copy ratio for each computed segment is shown in red. 
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HCI-EC-23 exhibits hormone-responsive growth characteristics 
 Knowing that HCI-EC-23 expresses ER, we next examined the in vitro growth characteristics of HCI-EC-
23 in the presence of E2 alone and in combination with the growth-suppressive hormone P4. Neither HCI-EC-
23 or Ishikawa showed increased growth rates upon treatment with 10 nM E2 (Figure 3a). The absence of a 
statistically significant E2-driven effect on in vitro growth rate for Ishikawa has been previously reported and may 
be related to differing effects between in vitro and in vivo conditions[21, 22]. Upon concurrent E2 and P4 
treatment (10 nM and 100 nM, respectively), we observed growth reduction in HCI-EC-23, but not in Ishikawa 
cells (Figure 3b). The P4-mediated growth reduction for HCI-EC-23 is consistent with the growth-suppressive 
effect of progesterone in the endometrium. The lack of inhibitory effect in Ishikawa may be related to five-fold 
lower levels of PGR expression compared to HCI-EC-23 (Figure 4e).  
 We next assessed the growth of HCI-EC-23 in vivo. HCI-EC-23 cells were implanted subcutaneously in 
immunocompromised mice that were ovariectomized to prevent endogenous estrogen production. Mice were 
also implanted with pellets containing E2, E2 + P4, or vehicle. Individual tumors grew similarly within treatment 
groups, suggesting that HCI-EC-23 can robustly grow as a xenografted cell line (Supplemental Figure S3). 
HCI-EC-23 tumors in mice treated with E2 grew substantially faster than tumors in vehicle treated mice; tumors 
in vehicle treated mice exhibited a very slow growth rate that was 10-fold lower than tumors in E2 treated mice 
(Figure 3c). These results demonstrate a strong estrogen-dependence for growth in vivo, similar growth 
characteristics have been observed for Ishikawa[22] which far outpaces the effects observed in vitro. Tumors in 
mice treated with E2 + P4 grew similarly to tumors in E2 treated mice at first, but tumor volume began to diverge 
towards the end of the experiment, where E2 treated tumors were significantly larger than E2 + P4 treated tumors 
(Figure 3c). This suggests that progesterone impedes in vivo growth at later time points, similar to its impact on 
in vitro growth. Combined, the in vitro and in vivo growth characteristics of HCI-EC-23 demonstrate increased 
growth upon E2 treatment, especially in vivo, while P4 reduced E2 driven growth, consistent with the action of 
these hormones in the endometrium. 
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Figure 3. Growth characteristics of HCI-EC-23 in vitro and in vivo. (a) In vitro log2 growth curves of HCI-EC-23 (top) and Ishikawa 
(middle) treated with DMSO or 10 nM E2 demonstrate no change in growth rate upon E2 stimulation in both cell lines. Bar plots of doubling 
times were calculated from these curves and shown for HCI-EC-23 (bottom left) and Ishikawa (bottom right). Data are shown as the mean 
of six replicates of each cell line. Line graph error bars represent standard error of the mean and barplot error bars represent standard 
deviation. (b) In vitro log2 growth curves are shown for HCI-EC-23 (top) and Ishikawa (middle) treated with DMSO or 10 nM E2 + 100 nM 
P4. The addition of P4 results in significant arrest of proliferation in HCI-EC-23. Bar plots of doubling times were calculated from these 
curves and shown for HCI-EC-23 (bottom left) and Ishikawa (bottom right). Line graph error bars represent standard error of the mean 
and barplot error bars represent standard deviation. (c) Line graph of in vivo tumor growth is shown for HCI-EC-23 xenografts in 
ovariectomized, immunocompromised mice. 1x10^6 cells were injected into the flank of mice treated with E2 (n=4), E2+P4 (n=5), or 
control (n=5) pellets. Day 1 represents the first day of measurement and was 10 days post-injection. Error bars represent standard error 
of the mean. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, n.s. not significant. 
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HCI-EC-23 exhibits a global estrogen response similar to Ishikawa 
To assess the transcriptional response to estrogen in HCI-EC-23, we performed RNA-seq following E2 

induction. We identified 591 differentially expressed genes following E2 treatment, 389 upregulated and 202 
downregulated (Figure 4a). Gene set enrichment analysis (GSEA) demonstrated that both early (NES = 1.58, 
FDR q-value = 0.011) and late (NES = 1.45, FDR q-value = 0.031) hallmark estrogen responses are upregulated 
in HCI-EC-23 cells treated with E2, further supporting the estrogen-responsive nature of the cell line (Figure 4b). 
GSEA also revealed upregulation of MYC targets, E2F targets, G2M checkpoint, unfolded protein response, 
MTORC1 signaling, and oxidative phosphorylation gene sets (Figure 4b, Supplemental Figure S4a). 

We compared the E2 response in HCI-EC-23 and Ishikawa cells. Analysis of RNA-seq data identified 
four distinct classes of differentially expressed genes in the two cell lines upon E2 induction: 1) shared E2-
responsive genes (n = 176), 2) genes regulated in opposite directions (n = 21), 3) genes that are specific to HCI-
EC-23 (n = 394), and 4) genes that are specific to Ishikawa (n = 1570) (Figure 4c, Supplemental Table S1). 
Although the Ishikawa cell line had far more E2-regulated genes than the HCI-EC-23 cell line, we observed 
statistically significant overlaps between genes upregulated (n = 114, hypergeometric p-value = 1.10E-110) and 
downregulated (n = 62, hypergeometric p-value = 5.72E-65) in both cell lines, suggesting that they share a core 
estrogen response (Figure 4d). PGR, a known ER target gene, was significantly upregulated in both cell lines 
(Figure 4e). The two cell lines exhibited a majority of genes whose differential expression was cell line specific. 
For example, SOX17, a transcription factor essential for endometrial gland formation[39-41], was upregulated 
upon E2 induction in HCI-EC-23, while Ishikawa exhibited lower SOX17 expression that was not affected by E2 
treatment (Figure 4e). Conversely, MMP17, a matrix metallopeptidase implicated in extracellular matrix 
degradation, was upregulated in the Ishikawa cell line, consistent with previous work[21, 42], but was very lowly 
expressed in HCI-EC-23 (Figure 4e). Together, these data suggest that HCI-EC-23 and Ishikawa share a core 
estrogen response along with a larger set of cell line specific estrogen-regulated genes. 

We also broadly compared the gene expression profile of the E2 treated HCI-EC-23 and Ishikawa cell 
lines to that of patient samples from TCGA Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) cohort[5]. By 
principal component analysis (PCA), we found that the TCGA-UCEC cohort can be broadly clustered by histology 
with endometrioid and serous tumors clustering separately (Supplemental Figure S4b). The HCI-EC-23 cell 
line clusters with the endometrioid tumors, while the Ishikawa line clusters near the boundary between 
endometrioid and serous tumors, suggesting that HCI-EC-23 may retain a more differentiated phenotype than 
Ishikawa (Supplemental Figure S4b). These data are consistent with higher expression of PGR and SOX17 
being associated with more well-differentiated tumors[43-47]. 
 Knowing that HCI-EC-23 has a transcriptional response to estrogen similar to that observed in Ishikawa, 
we next asked if genomic binding of ER is similar upon E2 induction in the two lines. To assess the genomic 
binding of ER in these lines, we performed ChIP-seq after E2 induction. We found that ER was bound at 1,542 
sites in the HCI-EC-23 cell line and 12,361 sites in the Ishikawa cell line (Figure 5a). We hypothesize that the 
larger number of E2 regulated genes in Ishikawa compared to HCI-EC-23 (Figure 4c) is due to this increased 
genomic binding of ER in Ishikawa compared to HCI-EC-23. The majority (n = 896, 58.1%) of HCI-EC-23 ER 
ChIP-seq peaks were shared with Ishikawa (Figure 5a-b). Similar overlap frequencies were found when HCI-
EC-23 ER peaks were compared to previously published Ishikawa ER peak sets GSE32465[48] (57.8%) and 
GSE129805[22] (46.0%). ER binding within the 3’ UTR of PGR was unchanged between HCI-EC-23 and 
Ishikawa, consistent with PGR being a shared E2-regulated gene (Figure 5c). In contrast, SOX17 (E2-regulated 
in HCI-EC-23) and MMP17 (E2-regulated in Ishikawa) had unique ER binding at their respective loci that are 
consistent with their cell line specific expression patterns (Figure 5c). The region of the MMP17 locus that was 
uniquely bound by ER in Ishikawa cells has been previously shown to be directly involved in the E2-regulation 
of MMP17 expression[42, 49]. To assess the importance of these ER bound sites on E2-regulated gene 
expression, we analyzed the proximity of E2-regulated genes to ER bound sites in both cell lines and found that 
E2-regulated genes are significantly closer (Wilcoxon signed rank test, p < 2.2E-16) than genes not regulated 
by E2 to ER bound sites in either HCI-EC-23 or Ishikawa (Supplemental Figure S5a). The close proximity of 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.08.25.505203doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505203
http://creativecommons.org/licenses/by/4.0/


 10 

E2-regulated genes to ER bound sites compared to genes not regulated by E2 suggests functional importance 
for many ER bound sites in regulating E2-responsive genes.  

As expected, motif analysis identified ESR1 (ER) as the dominant motif in shared, HCI-EC-23-specific, 
and Ishikawa-specific ChIP-seq peaks (Supplemental Figure S5b). Among shared ER ChIP-seq sites, PITX2 
and ZN770/MAF/ZSC22/SMAD3 motifs are also significantly enriched (Supplemental Figure S5b).  HCI-EC-23 
specific ER ChIP-seq sites were enriched for ATF3 and ZN770/ZSC22/ZFX/CRX motifs, while Ishikawa specific 
ER ChIP-seq sites were enriched for AP-1 family members and PITX2/ZN264 motifs (Supplemental Figure 
S5b). These differences in motif enrichment suggest that different transcription factors could contribute to 
differential ER genomic binding or subsequent effects on transcription.  
Looking more closely at ERE sequences within the ER ChIP-seq sites, we found that 61.7% of shared sites 
contained an ERE sequence as compared to 43.0% of HCI-EC-23 specific sites or 25.6% of Ishikawa specific 
sites (Supplemental Figure S5c). The frequency of EREs in these binding sites suggests that ER binding in 
HCI-EC-23 is strongest at sites with frequent EREs as compared to Ishikawa, where more sites are bound that 
do not harbor EREs. In addition to differences in ERE frequency, differences in chromatin states between HCI-
EC-23 and Ishikawa may explain cell line specific ER binding. To interrogate chromatin states at ER bound sites, 
we assessed H3K27ac ChIP-seq signal in DMSO treated HCI-EC-23 and Ishikawa cells as a baseline marker of 
active regulatory regions. We found that H3K27ac signal was relatively high in both cell lines at shared ER bound 
sites (Figure 5d, Supplemental Figure S5d). Conversely, cell line specific ER bound sites are associated with 
reduced H3K27ac signal in the other line, suggesting that baseline chromatin state is important for cell line 
specific ER binding (Figure 5d, Supplemental Figure S5d). We also observed differences in the distribution of 
ER bound sites relative to transcription start sites between HCI-EC-23 and Ishikawa cell lines (Supplemental 
Figure S5e). ER is bound more at distal intergenic regions in HCI-EC-23 while in Ishikawa ER binding is 
expanded at promoters and 5’UTRs. Overall, these gene regulation studies indicate that HCI-EC-23 cells exhibit 
a robust transcriptional response to estrogen that is similar to Ishikawa. 
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Figure 4. HCI-EC-23 has a transcriptomic response to estrogens that is similar but distinct to Ishikawa. (a) A heatmap showing 
relative expression of genes up- and down- regulated in response to E2 treatment is shown for HCI-EC-23. Each row represents a gene 
and is annotated by the gene clusters to the left. Samples and treatments are shown by column as indicated in the legend above the 
heatmap. (b) Gene set enrichment analysis (GSEA) plots are shown for the early (left) and late (right) hallmark estrogen response genes. 
A table of all other significantly enriched hallmark GSEA sets is shown below. NES is the normalized enrichment score. FDR q-value is 
the false discovery rate. (c) A heatmap shows the relative expression of genes up- and down- regulated in response to E2 treatment in 
HCI-EC-23 compared to Ishikawa cells. Each row represents a gene and is annotated by the gene clusters to the left. Gene clusters 
identified are shared genes, genes regulated in opposite directions between the two lines, HCI-EC-23 specific, and Ishikawa specific. 
Samples and treatments are shown by column as indicated in the legend above the heatmap. (d) A Venn diagram showing the overlap 
between E2 up- (top) and down- (bottom) regulated genes in HCI-EC-23 and Ishikawa cell lines. Shown is the hypergeometric p-value 
for significance of overlap.  (e) Bar plots are shown for example E2 regulated genes in HCI-EC-23 and Ishikawa. Points represent 
individual replicates. Error bars represent standard deviation.  
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Figure 5. ER genomic binding in HCI-EC-23 is similar but distinct to Ishikawa. (a) A heatmap is shown for ER genomic binding 
signal. Each row represents a ChIP-seq peak and is annotated by estrogen receptor bound site (ERBS) category – either shared ERBS, 
HCI-EC-23 specific ERBS, or Ishikawa specific ERBS according to the legend above the heatmap. Each column is a sample (two 
replicates per cell line). (b) A Venn diagram shows the overlap between ER ChIP-seq peaks in HCI-EC-23 and Ishikawa cell lines. (c) 
Genome browser tracks plotting ER ChIP-seq peaks are shown for HCI-EC-23 (top) and Ishikawa (bottom). Regions shown are the 3’ 
UTR of PGR, the region upstream of SOX17, and the region downstream of MMP17. Shared peaks between the two cell lines are 
highlighted in gray, while unique peaks are highlighted in red. Peak height is scaled within each locus. (d) A heatmap shows the H3K27ac 
signal without E2 treatment at ER bound sites. Each row represents H3K27ac signal centered around an identified ERBS (and is ordered 
as in panel a). The different categories of ERBS are annotated (as in panel a) according to the legend above the heatmap. Each column 
is a sample (two replicates per cell line). 
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Discussion 
 

Although most endometrial cancers are hormonally driven and estrogen-responsive, only one currently 
available endometrial cancer cell line has retained this estrogen-responsiveness, the Ishikawa cell line. The lack 
of additional cell line models to examine the estrogen response in endometrial cancer has limited our 
understanding of the mechanisms of pathogenesis and the study of therapeutic interventions. In this study, we 
described a novel estrogen-responsive cell line, HCI-EC-23, that will benefit the field by providing an additional 
cell line model to study the hormonally driven aspects of endometrial cancer. Importantly, this model has 
characteristics that are distinct from the Ishikawa cell line, including sensitivity to progesterone treatment. The 
sensitivity of HCI-EC-23 to progesterone will be particularly important for translational studies, since synthetic 
progesterone (progestins) are the only approved pharmaceutical treatment for primary endometrial cancer. We 
provided our strategy to develop cell lines from PDX tumors along with methods to rapidly determine murine 
contamination levels by using ssPAL. This strategy led to the isolation of HCI-EC-23, from a PDX model derived 
from a grade 2, MSI-high, and ER-positive endometrioid endometrial tumor. Critically, HCI-EC-23 retained ER 
expression as shown by western blot and qRT-PCR and ER was functional as assayed by ERE-driven luciferase. 
HCI-EC-23 also displays paradoxical activation of ER by tamoxifen, an effect known in the endometrium and 
Ishikawa cell line[16, 17, 36, 37]. HCI-EC-23 showed a strong P4-induced proliferation arrest in vitro. HCI-EC-
23 xenografts showed strong E2-dependence in vivo with a reduction in tumor volume with co-administration of 
P4. These results demonstrate that HCI-EC-23 is a translationally relevant estrogen-responsive endometrial 
cancer cell line. 

Whole-exome sequencing and MSI typing provided evidence that HCI-EC-23 harbors mutations to many 
of the genes frequently mutated in endometrioid endometrial cancer. We also showed that HCI-EC-23 has 
relatively few copy-number alterations and is MSI-high, placing it into the MSI-high molecular subgroup identified 
by TCGA. Ishikawa is also MSI-high but harbors mutations distinct from HCI-EC-23. Among the top 20 mutated 
genes in endometrioid endometrial carcinoma, Ishikawa is mutant for PIK3R1, FAT4, KMT2C, PCLO, TP53, and 
LRP1B[50]. In contrast, HCI-EC-23 is mutant for PIK3CA, KMT2B, TAF1, and NSD1. Both lines are mutant for 
PTEN, ARID1A, KMT2D, CTCF, ZFHX3, FAT1, and ATM, although the specific alterations to these genes are 
different between the two lines[50]. This demonstrates that HCI-EC-23 and Ishikawa have similar but distinct 
genetic backgrounds. For instance, both cell lines harbor two common alterations to the PI3K pathway, sharing 
altered PTEN but differ in having either mutant PIK3CA or PIK3R1. Used together, the similar but distinct genetic 
backgrounds between the two lines are more reflective of the mutational heterogeneity of patient tumors when 
studying the hormonal aspects of endometrial cancer than either line alone. 

Molecular characterization of the estrogen response using RNA-seq and ER ChIP-seq in HCI-EC-23 
showed many parallels to Ishikawa. A large core set of genes were up- or down-regulated upon E2 induction in 
both HCI-EC-23 and Ishikawa. This coordinated regulation in both cell lines may be attributable to the significant 
overlap of ER binding sites in the two lines. However, there remain estrogen-regulated genes that are unique to 
each cell line. This difference may be due to the different genetic backgrounds and chromatin states of the two 
lines. Alternatively, the relatively larger number of ER binding sites in Ishikawa may confer regulation of a 
proportionally larger set of genes, which is likely related to the higher expression of ER in Ishikawa compared to 
HCI-EC-23. Differences in the degree of cellular differentiation in the two lines could also alter the set of estrogen-
regulated genes, as suggested by RNA-seq clustering that indicates HCI-EC-23 is more similar to endometrioid 
TCGA tumors while Ishikawa clusters among a subset of endometrioid tumors closer to serous tumors. HCI-EC-
23 expresses higher levels of both progesterone receptor and SOX17 than Ishikawa, both of which are 
transcription factors essential for endometrial gland development and function[39-41, 51, 52]. In the context of 
endometrial cancer, both progesterone receptor and SOX17 are tumor suppressors and exhibit reduced 
expression that is associated with less differentiated, high-grade tumors[43-47]. Progesterone receptor and 
SOX17 have also been shown to cooperatively regulate target genes as part of a transcriptional network[53-55]. 
Together, these data suggest that HCI-EC-23 cells may have a more differentiated state than Ishikawa.  
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As HCI-EC-23 is an adherent cell line, it is more easily amenable to screening efforts and genetic 
manipulation than PDX models due to the large numbers of cells and conditions required. Although the power of 
PDX models to recapitulate tumor heterogeneity is clear, the hormonal aspects of these models are often less 
clear and are largely only assessed by hormone-receptor positivity[30-33]. We believe that HCI-EC-23 is 
uniquely situated to vastly improve the quality of research regarding the molecular aspects of hormonally driven 
endometrial cancer by providing another well-characterized cell line model for investigators to utilize. 

 
Methods 
 
Endometrial cancer patient-derived xenograft (PDX) models 
 PDX models were generated from human tissue acquired with patient informed consent and experiments 
performed in accordance with University of Utah Institutional Review Board approved guidelines and 
regulations[22]. All animal procedures were conducted following approved University of Utah Institutional Animal 
Care and Use Committee guidelines and regulations. Animals were housed in the Comparative Medicine Center 
at the University of Utah under standard conditions. Tumor specimens from patients with endometrial cancer 
were collected in the operating room by the Biorepository and Molecular Pathology Shared Resource. Tumor 
specimens were transported in ice-cold RPMI-1640 base medium to the lab. Each tumor specimen was 
mechanically divided into multiple pieces using sterile disposable scalpels. A minimum of three female 6- to 8-
week old nude mice (nu/nu, Jackson Laboratory) were used for tumor implantation. Orthotopic implantation of 
~4 mm3 tumor fragments into the lumen of the mouse uterus was performed as described previously[22]. Nude 
mice were not given supplemental estrogen. Tumor size was measured twice per week. Mice were sacrificed 
and necropsies performed once tumor size reached 2 cm in diameter.  
 
Immunohistochemical staining of tumor specimens 
 Immunohistochemical staining of FFPE slides was performed by ARUP Laboratories using an automated 
immunostainer. Briefly, 5 μm tissue sections were obtained using a standard microtome and de-paraffinized with 
the EZ Prep solution. The slides were then treated with Cell Conditioning 1 (CC1), pH 8.5 for 68 min at 95°C. 
The primary antibody (#ab80922, Abcam) was applied for 1 hr at a dilution of 1:100 at 35°C. Following removal 
of the primary antibody, the secondary antibody (#B8895, Sigma-Aldrich) was applied for 1 hr at a dilution of 
1:100 at 37°C. Slides were then exposed to the IView DAB Map detection kit (Ventana) and counterstained with 
hematoxylin for 8 min. After dehydration in graded alcohol, coverslips were put on and slides were read by board-
certified pathologists. Hematoxylin and eosin (H&E) staining was performed on 5 μm tissue sections. 
 
Tumor dissociation 

Patient-derived xenograft (PDX) samples were cut into approximately 2 – 4mm chunks with forceps and 
a scalpel and transferred to a gentleMACS C tube (Miltenyi Biotec, 130-093-237) containing 4.7 ml RPMI 1640 
base media, 200 ml of Enzyme H, 100 ml of Enzyme R and 25 ml of Enzyme A (Miltenyi Biotec, Tumor 
Dissociation Kit 130-095-929). Tumor samples were dissociated using the gentleMACS h_tumor_01 program for 
1 hour at room temperature. The sample was resuspended and filtered through a 70 mm MACS SmartStrainer 
(Miltenyi Biotec, 130-098-462) and rinsed with 20 mL of RPMI 1640 media (Gibco, 11875135). The single-cell 
suspension was centrifuged at 300g for 7 minutes. The supernatant was aspirated and cells were resuspended, 
counted, plated in patient-derived xenograft organoid (PDXO) media, and grown at 37°C in 5% CO2. PDXO 
media consists of Advanced DMEM/F12 (Gibco, 12634010) supplemented with 5% heat-inactivated FBS 
(Thermo Fisher), 10% Pen-Strep (Gibco, 15140148), 1x HEPES (Gibco, 15630080), GlutaMAX Supplement 
(Gibco, 35050061), hEGF (Sigma Aldrich, E9644), 10 mM Y-27632 (Selleckchem, S1049), 10 ng/ml FGF-b/FGF-
2 (Invitrogen, 68-8785-82), and 1 mM N-Acetyl-L-cysteine (Sigma Aldrich, A7250).  
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Cell culture 
 The established endometrial carcinoma cell lines were obtained from ATCC (AN3CA[10], HEC-1-A[11], 
and RL95-2[12]), Sigma-Aldrich (Ishikawa[8, 9], MFE-280[13], MFE-296[13]), or Riken (JHUAS-1[14] and 
JHUEM-2[14]). Ishikawa was cultured in RPMI 1640 (Gibco, 11875119) supplemented with 10% fetal bovine 
serum (Gibco, 26140079) and 1% penicillin-streptomycin (Gibco, 15140163). AN3CA, RL95-2, HEC-1-A, 
JHUEM-2, and JHUAS-1 were cultured in DMEM/F12 (Gibco, 11320033) supplemented with 10 % fetal bovine 
serum (Gibco, 26140079) and 1% penicillin-streptomycin (Gibco, 15140163). MFE-296 was cultured in MEM 
(Gibco, 11095072) supplemented with 10% fetal bovine serum (Gibco, 26140079) and 1% penicillin-
streptomycin (Gibco, 15140163). MFE-280 was cultured in MEM (Gibco, 11095072) supplemented with 10% 
fetal bovine serum (Gibco, 26140079), 1% insulin-transferrin-selenium (Gibco, 41400045), and 1% penicillin-
streptomycin (Gibco, 15140163). The HCI-EC-23 cell line was initially grown in PDXO media (described in tumor 
dissociation section) and were adapted to RPMI 1640 (Gibco, 11875119) supplemented with 10% fetal bovine 
serum (Gibco, 26140079) and 1% penicillin-streptomycin (Gibco, 15140163). All cells were cultured at 37°C in 
5% CO2.  
 For experiments with hormone treatments, cells were cultured in hormone deprived media instead of the 
regular media (described above). Hormone deprived media consisted of phenol red-free RPMI1640 (Gibco, 
11835055) supplemented with 10% charcoal-stripped fetal bovine serum (Sigma Aldrich, F6765) and 1% 
penicillin-streptomycin (Gibco, 15140163). Hormones used were 17β-estradiol (E2, Sigma Aldrich, E2758), (Z)-
4-Hydroxytamoxifen (4OHT, Sigma Aldrich, H7904), and progesterone (P4, Sigma Aldrich, P3972). Hormones 
were dissolved in dimethyl sulfoxide (DMSO, Fisher Scientific, BP231-100).   

 
ssPAL (species-specific PCR amplicon length) 
         ssPAL was performed as described previously[34, 35]. Primer sets used were reported in Schneeberger 
et al. 2016[35]. Primer set 5 (Forward:  TCATTGGCTTAAAATGTGT, Reverse: FAM-
TTTATTTTAAGGGGTTGTAATG) amplifies a region of Ribonuclease P, yielding a 272 nt amplicon in humans 
and a 278 nt amplicon in mice. Primer set 43 (Forward: CTATTCCTATAGCACAAAGG, Reverse: FAM-
GATGGTGTACACCCATCATG) amplifies a region downstream of RC3H2, yielding a 211 nt amplicon in humans 
and a 206 nt amplicon in mice. PCR was performed using 2X Phusion HF Mastermix (NEB M0531L) in 10 µL 
reactions with 20 ng of template DNA. Cycling conditions were 98°C 5 minutes; 30 cycles of 98°C 30 seconds, 
52°C 30 seconds, 72°C 30 seconds; 72°C 10 minutes. Samples were diluted 1:20 and then mixed 1:1 by DNA 
source allowing for analysis of multiple assays for one specimen at a time. Samples were then sent to GeneWiz 
(South Plainfield, NJ, USA) for fragment analysis by capillary electrophoresis. Fragment traces were then 
analyzed using the Peak Scanner module on ThermoFisher Cloud. Peaks were called human in the following 
ranges (primer set 5 271-273 nt; primer set 43 210-212 nt) and mouse (primer set 5 278-279 nt; primer set 43 
205-207 nt). Percent human or mouse DNA was calculated by dividing the area of the human or mouse peak by 
the sum of both peaks. 
 
 MSI testing 
 Microsatellite Instability (MSI) testing was assessed at the quasimonomorphic mononucleotide runs[56] 
BAT-26, BAT-25, NR-21, NR-24, and NR-27/MONO-27 by the University of Utah Health Sciences Center 
Genomics Core. Fragment analysis of fluorescently labeled PCR products was performed on the Applied 
Biosystems 3730 platform. Primers utilized were BAT-26 (Forward: 6FAM-CTGCGGTAATCAAGTTTTTAG, 
Reverse: gtttctAACCATTCAACATTTTTAACCC), BAT-25 (Forward: VIC-TACCAGGTGGCAAAGGGCA, 
Reverse: gtttctTCTGCATTTTAACTATGGCTC), NR-21 (Forward: NED-GAGTCGCTGGCACAGTTCTA, 
Reverse: gtttctCTGGTCACTCGCGTTTACAA), NR-24 (Forward: PET-GCTGAATTTTACCTCCTGAC, Reverse: 
gtttctATTGTGCCATTGCATTCCAA), NR-27/MONO-27 (Forward: 6FAM-AACCATGCTTGCAAACCACT, 
Reverse: gtttctCGATAATACTAGCAATGACC). Sites were considered contracted or unstable if they varied by 
>5 nt from a reference normal sample. 
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ERE (estrogen response element) luciferase reporter assay  
 HCI-EC-23 and Ishikawa cells were grown in hormone-deprived media for 3 days prior to plating at 15,000 
cells per well in a 96-well plate in hormone-deprived media. One day after plating, cells were transfected, 
according to manufacturer’s protocol, the following day with dual ERE-driven firefly luciferase and constitutive 
renilla luciferase constructs (Qiagen, CCS-005L) using FuGENE HD transfection reagent (Promega, E2312). 
One day post-transfection, media was changed and cells were treated with either DMSO, 10 nM E2, or indicated 
concentrations of 4OHT in hormone-deprived media. Twenty-four hours post-treatment, luciferase activity was 
measured using the Dual-Luciferase Reporter assay system (Promega, E1960) on a Promega Glo-Max 
luminometer (Promega, 9301-010). All experiments were performed in technical triplicate with three biological 
replicates. Firefly luciferase was normalized to renilla luciferase and then fold change determined to respective 
DMSO control. Statistical significance was determined by Student’s T-test for comparison of treatments to control 
DMSO.   
 
Cell proliferation assays 
 Ishikawa and HCI-EC-023 cells were initially cultured in regular media and transferred to hormone-
deprived media 48 hours prior to plating for proliferation experiments. For proliferation assays, 96-well plates 
were seeded with 10,000 cells per well and incubated overnight at 37°C. The following day, control DMSO, 10 
nM estrogen, or the combination of 10 nM E2 and 100 nM P4 were added to wells, after which the plates were 
loaded onto the IncuCyte ZOOM live cell imaging system (Sartorius, 4459). Cell proliferation was monitored via 
time-lapse image acquisition (2 images per well) every 4 hours for up to 96 hours using the IncuCyte(R) ZOOM 
software (Sartorius, vers. 2016B, 2018A). The initial acquisition was used as 0-hour timepoint. Doubling times 
were calculated by first normalizing confluency measurements to cell density at 0-hour timepoint. The log2 values 
of each normalized confluency measurement were then calculated, and the first 48 hours of each growth curve 
were fitted to a linear regression model. Doubling times were determined using 1/slope of each best fit line, and 
statistical significance was assessed by Student’s T-test using GraphPad Prism. Cell proliferation assays were 
performed as two biologic replicates assayed in technical triplicate. 
 
qRT-PCR (quantitative reverse-transcription polymerase chain reaction) 
 HCI-EC-23 and Ishikawa cells were grown in hormone-deprived media for five days. Total RNA was 
harvested following an 8 hour DMSO or 10 nM E2 induction with buffer RLT plus (Qiagen, 1053393) 
supplemented with 1% beta-mercaptoethanol (Sigma Aldrich, M3148-100ML). Total RNA was purified using a 
Quick-RNA Miniprep kit (Zymo Research, R1055). Twenty-five nanograms of RNA was used as starting material 
per sample for qRT-PCR using the Power SYBR Green RNA-to-Ct 1-Step kit (Thermo Scientific, 4389986) on a 
Bio-Rad CFX96 thermocycler. Expression measurements were calculated using the ΔΔCt method using CTCF 
as a control. Primers used were for ESR1 (Forward: GGGAAGTATGGCTATGGAATCTG, Reverse: 
TGGCTGGACACATATAGTCGTT) and CTCF (Forward: ACCTGTTCCTGTGACTGTACC, Reverse: 
ATGGGTTCACTTTCCGCAAGG). Experiments were performed in biologic triplicate and statistical significance 
was determined by Student’s T-test to respective DMSO control. 
 
Western blotting 
 HCI-EC-23, Ishikawa, AN3CA, HEC-1-A, JHUEM-2, MFE-280, MFE-296, JHUAS-1, and RL95-2 cells 
were grown in regular media (described in cell culture methods) to approximately 80% confluence in 10-cm 
dishes. Cells were washed with PBS, trypsinized, quenched with media, and centrifuged at 200xg for 5 minutes 
to pellet cells. Cell pellets were washed with ice-cold PBS, centrifuged at 200xg for 5 minutes, PBS aspirated, 
and kept on ice. Cell pellets were lysed with 3-5x packed cell volume of RIPA buffer (1x PBS, 1% NP-40, 0.5% 
sodium deoxycholate, 0.1% SDS) supplemented with protease and phosphatase inhibitors (Thermo Scientific, 
A32959). Cells were lysed on ice for 30 minutes with periodic vortexing every 10 minutes. Lysates were cleared 
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by centrifugation at 12,000xg for 15 minutes at 4°C. The cleared supernatant was kept on ice and protein was 
quantified using the Qubit Protein Assay kit (Thermo Scientific, Q33212) and measured on the Qubit 2.0 
Fluormeter (Thermo Scientific, Q32866). Li-COR chameleon duo pre-stained protein ladder (Li-COR, 928-
60000) along with 100 µg of protein combined with loading buffer (Thermo Scientific, NP0007) were loaded onto 
a 4%-12% Bis-Tris gel (Thermo Scientific, NP0336BOX) and run at 150 V in 1x MOPS SDS running buffer 
(Thermo Scientific, NP0001). Protein was then transferred from the gel onto a polyvinylidene difluoride (PVDF) 
membrane (Thermo Scientific, IB24002) using the iBlot 2 dry blotting system (Thermo Scientific, IB21001). The 
PVDF membrane was blocked in Intercept TBS blocking buffer (Li-COR, 927-60001) for 1 hour at room 
temperature. Blots were then probed simultaneously with primary antibodies to rabbit anti-ERα (Santa Cruz 
Biotechnology, sc-543) and mouse anti-β-Actin (Santa Cruz Biotechnology, sc-47778) at 1:1,000 dilution in 
Intercept TBS blocking buffer with 0.1% Tween-20 overnight at 4°C. Blots were washed 3x for 10 minutes with 
1x TBS-T (1x TBS, 0.1% Tween-20) and then probed simultaneously with secondary antibodies IRDye 800CW 
donkey anti-rabbit (Li-COR, 926-32213) and IRDye 680RD donkey anti-mouse (Li-COR, 926-68072) at 1:10,000 
dilution in Intercept TBS blocking buffer with 0.1% Tween-20 for 1 hour at room temperature. Fluorescence signal 
from the antibodies were then detected using the Azure 600 imaging system (Azure Biosystems, AZI600-01) 
with the 800CW and 680RD channels. Western blot images were analyzed using Image Studio Lite software (Li-
COR). Raw western blot images are provided in Supplemental Figures Source Data Figure 1a. 
 
Whole-exome sequencing 
         Whole-exome sequencing was performed on the HCI-EC-23 cell line using the Agilent SureSelect XT 
Human All Exon v7 capture kit. The library was then sequenced on an Illumina NovaSeq 6000 yielding 150 bp 
paired-end reads. The Whole Exome Sequencing – BWA + GATK 4.0 pipeline 
(https://cgc.sbgenomics.com/public/apps/admin/sbg-public-data/whole-exome-sequencing-bwa-gatk-4-0/41)  
was then utilized on SevenBridges Genomics to align reads to hg38 and generate a variant call file (VCF). The 
SevenBridges pipeline yielded 162,787,374 mapped reads leading to an overall 96.01% of targeted bases having 
at least 30X coverage as determined by Picard (https://broadinstitute.github.io/picard/) CollectHsMetrics. 
VCF2MAF (https://github.com/mskcc/vcf2maf) was used to convert the VCF file to a mutation annotation file 
(MAF) while also annotating variant effects using the Ensembl Variant Effect Predictor[57] (VEP) v102. This MAF 
file contained 29,958 variants and was filtered to remove presumed germline mutations using the following 
strategy. All variants tagged as a “common variant” (defined as an allele frequency in at least one gnomAD[58] 
subpopulation >0.04%) were removed. The remaining variants were filtered to include those without existing 
variant identifiers, present in COSMIC[38], while removing those with identifiers in dbSNP[59] with any reported 
allele frequency. This resulted in a filtered MAF file containing only 3,445 mutations which are presumed to be 
somatic. The MAFTools[60] R package was used to generate mutational frequency, mutation-type, and 
mutational signature plots. Mutational signature plots were made using the mutational profiles outlined in 
Alexandrov et. al. 2020[61]. MAFTools also contained a MAF file of the TCGA uterine corpus endometrial cancer 
(UCEC) cohort[5, 62] that was filtered for endometrioid histology and used to generate the barplot comparing 
mutational frequency in TCGA to HCI-EC-23 mutations. CNVkit[63] was used to assess copy number alterations 
(CNA) from the whole-exome sequencing. Because of the lack of paired-normal DNA, CNA analysis with CNVkit 
was performed against a flat reference of the hg38 genome. The scatter function in CNVkit was used to generate 
a plot of computed CNA in the HCI-EC-23 cell line along with a plot of VAF using the VCF from the SevenBridges 
pipeline (described above). 
 
RNA-seq 
 HCI-EC-23 or Ishikawa cell lines were cultured in hormone-deprived media for five days and then induced 
with 10 nM E2 or DMSO (vehicle) for eight hours. RNA was harvested by washing cells with PBS and lysing cells 
with buffer RLT plus (Qiagen, 1053393) supplemented with 1% beta-mercaptoethanol (Sigma-Aldrich, M3148). 
RNA was then purified using the Zymo Quick-RNA Miniprep kit (Zymo Research, R1055). RNA-seq libraries 
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were generated using the KAPA Stranded mRNA HyperPrep kit (Roche, KK8580/08098115702) using 500 ng 
of RNA. RNA-seq libraries were pooled and sequenced on either the Illumina HiSeq 2500 or NovaSeq 6000. 
Two replicates of each cell line were sequenced on each sequencing platform. Sequencing reads were aligned 
to the hg38 build of the human genome using HISAT2[64]. SAMtools[65] was used to convert SAM files to BAM 
files. Genes were defined by the University of California Santa Cruz (UCSC) Known Genes and reads mapped 
to known genes were assigned with featureCounts[66]. Within each cell line, read counts were normalized and 
analyzed for differential expression via the DESeq2[67] package in R[68] while controlling for the sequencing 
platform by using the design formula (= ~Sequencer + Treatment), where sequencer reflects the sequencing 
platform and treatment is 10 nM E2 or DMSO. Heatmaps of gene expression z-score by gene were made using 
the pheatmap R package. 
 
The Cancer Genome Atlas UCEC RNA-sequencing analysis 
 The Cancer Genome Atlas (TCGA) RNA-seq dataset for Uterine Corpus Endometrial Carcinoma (TCGA, 
PanCancer Atlas) was downloaded from Xena browser (https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-UCEC.htseq_counts.tsv.gz). Histological data for the TCGA samples was 
obtained from cBioPortal[69] (https://www.cbioportal.org/study/summary?id=ucec_tcga_pan_can_atlas_2018). 
Counts were converted from log(2+1) to raw counts. Counts for E2 treated Ishikawa and HCI-EC-23 samples 
were determined as described in the RNA-seq section.  These raw counts were then combined with the TCGA 
samples and analyzed using DESeq2[67]. Counts were corrected for their source using the design formula 
(=~Group). Group=Gertz vs TCGA. Batch effects of the different groups were removed from the variance 
stabilized counts using the limma[70] package function removeBatchEffect(). Normalized counts were then used 
to create a PCA plot. 
 
ChIP-seq 
 HCI-EC-23 and Ishikawa cells were grown in hormone-deprived media for 5 days prior to collection. For 
ER ChIPs, cells were induced with 10 nM E2 for 1 hour. For H3K27ac ChIPs, cells were induced with DMSO for 
8 hours. Cells were then fixed using 1% formaldehyde (Sigma Aldrich, 252549) for 10 minutes at room 
temperature to cross-link DNA and proteins. Cross-linking was stopped by addition of glycine (Fisher Scientific, 
BP381) to a final concentration of 125 mM. Cells were then washed with cold PBS and harvested via scraping 
in Farnham lysis buffer supplemented with protease and phosphatase inhibitors (Thermo Scientific, A32959). 
Farnham lysis buffer consisted of 5 mM PIPES pH 8.02, 85 mM KCl, and 0.5% NP-40. Chromatin 
immunoprecipitation was performed as previously described[71] with 5 µg of an Anti-ERα (Millipore Sigma, 06-
935) or Anti-H3K27ac (Active Motif, 39133) antibody. ChIP-seq libraries were sequenced on an Illumina 
NovaSeq 6000. Sequencing reads were aligned to the hg38 build of the human genome using Bowtie[72] using 
parameters: -m 1 -t –best -q -S -I 32 -e 80 -n 2. MACS2[73] was used to call peaks with a P-value cutoff of 1x10-

10 and mfold parameter between 15 and 100. Input control libraries from either cell line were used as controls for 
each ChIP-seq experiment. All ChIP-seq experiments were performed in biologic duplicates. Overlaps between 
peaks were determined using a 1-bp minimum overlap using BEDTools[74]. Heatmaps and profile plots of ChIP 
signal were made using deepTools[75]. Motif discovery was performed on 500-bp regions surrounding the 
summit of identified peaks. Motifs between 6 and 30 bp in size were identified by MEME-ChIP, part of the MEME 
suite[76], with a motif distribution of zero to one occurrence per sequence. Percentage of peaks containing EREs 
was identified using AME, part of the MEME suite[76], with the ESR1_HUMAN.H11MO.0.A position weight 
matrix from HOCOMOCOv11[77]. Genomic annotation of binding sites was performed using CEAS[78]. 
 Previously published Ishikawa ER ChIP-seq peak calls (narrowPeak or broadPeak files) were 
downloaded from GEO datasets GSE32465[48] (sample GSM803422) and GSE129805[22] (samples 
GSM3722307 and GSM3722311). Overlaps between individual replicates were determined as described above 
and peaks were remapped from hg19 to hg38 using UCSC Genome Browser’s LiftOver tool. These data were 
then used to identify overlapping Ishikawa ER peaks with HCI-EC-23 ER peaks with BEDTools. 
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Immunofluorescence 
 HCI-EC-23 and Ishikawa cells were grown in regular media in 8-well chamber slides (Thermo Scientific, 
177402PK). Cells were washed with 1x PBS and then fixed using 4% formaldehyde (Sigma Aldrich, 252549) in 
1x PBS for 10 minutes at room temperature. After fixation, cells were washed 3x with ice-cold 1x PBS-T (1x 
PBS, 0.1% Tween-20). Cells were then permeabilized with Triton X-100 (Sigma Aldrich, T8787) diluted in 1x 
PBS (1x PBS, 0.1% Triton X-100) for 10 minutes at room temperature. Cells were then washed 3x for 5 minutes 
with 1x PBS-T. Cells were then blocked using a BSA blocking buffer (1x PBS-T, 1% BSA, 22.5mg/mL glycine) 
for 30 minutes at room temperature. Blocking buffer was then removed and cells were incubated with an APC-
conjugated anti-human EpCAM (BioLegend, 369809) antibody diluted 1:20 in dilution buffer (1x PBS-T, 1% BSA) 
for 1 hour at room temperature in the dark. Cells were then washed 3x 5 minutes in 1x PBS-T in the dark. Cells 
were then counterstained with DAPI using 1 µg/mL DAPI (Thermo Scientific, D1306) for 1 minute at room 
temperature. Cells were then washed 3x with 1x PBS-T. Coverslips were then mounted to the slides using 
ProLong Gold antifade mounting media (Thermo Scientific, P10144) and sealed with clear nail polish. Images 
were taken with a 60x objective on a Nikon Ti-E microscope with Andor Zyla CMOS camera using the APC and 
DAPI channels.  
 
Phase-contrast microscopy 
 HCI-EC-23 and Ishikawa cells were grown in regular media until roughly 80% confluent. 
Photomicrographs of cells were taken using a 20x objective on a Life Technologies EVOS FL microscope. 
 
In vivo xenograft model 

All animal experiments were conducted following approved University of Utah Institutional Animal Care 
and Use Committee guidelines and regulations and are reported in accordance with ARRIVE guidelines. A total 
of 14 mice (6-9 weeks old; 17-27 g) were used in the in vivo xenograft growth study. Mice were housed in a 
temperature and humidity-controlled room with 12 hour light-dark cycles. Mice had ad libitum access to standard 
rodent food and water for the course of the study. Ovariectomized NRG (NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl ISzJ, 
Jackson Laboratory) mice were implanted with beeswax pellets containing 0.57 mg E2 or combination of 0.57 
mg E2 and 10 mg P4 under the skin on the back, between the shoulder blades. Beeswax hormone pellets were 
made as described previously[79]. Beeswax pellets have been shown to release hormones with a linear increase 
for the first 7 days post-implantation followed by sustained release with increased serum levels detected for at 
least 10 weeks[80]. Mice either received E2 pellets (n = 5), E2 + P4 pellets (n = 5), or no pellets (control, n = 5). 
Mice were then injected with 1x106 HCI-EC-23 cells into the flank. 32 days after cell injection, mice were 
sacrificed and tumors excised and weighed. Tumors were measured using calipers starting 10 days after 
injection and tumor volume was calculated using the following equation: Volume = (Length x Width2)/2. 
 
Data access 
 Raw and processed sequencing data for RNA-seq and ChIP-seq experiments generated in this study are 
available under the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) accession 
numbers: GSE210123 (RNA-seq) and GSE210122 (ChIP-seq). In consultation with the NCI Office of Data 
Sharing, only the germline-filtered MAF file describing presumed somatic mutations is available as 
Supplemental File S1. The STR cell line authentication profile for HCI-EC-23 can be provided at the time of cell 
line distribution or upon request. 
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