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ABSTRACT

Phosphorylation is a key post-translational modification that is utilised in many biological
processes for the rapid and reversible regulation of protein localisation and activity. Polo-like
kinase 1 (PLK-1) is essential for both mitotic and meiotic cell divisions, with key functions
being conserved in eukaryotes. The roles and regulation of PLK-1 during mitosis have been
well characterised. However, the discrete roles and regulation of PLK-1 during meiosis have
remained obscure. Here, we used Caenorhabditis elegans (C. elegans) oocytes to show that
PLK-1 plays distinct roles in meiotic spindle assembly/stability, chromosome alignment and
segregation, and polar body extrusion during meiosis I. Furthermore, by a combination of live
imaging and biochemical analysis we identified the chromosomal recruitment mechanisms of
PLK-1 during C. elegans oocyte meiosis. The spindle assembly checkpoint kinase BUB-1
directly recruits PLK-1 to the kinetochore and midbivalent while the chromosome arm
population of PLK-1 depends on a direct interaction with the centromeric-associated protein
CENP-CHC?4 'We found that perturbing both BUB-1 and CENP-CH¢"4recruitment of PLK-1
leads to severe meiotic defects, resulting in highly aneuploid oocytes. Overall, our results
shed light on the roles played by PLK-1 during oocyte meiosis and provide a mechanistic

understanding of PLK-1 targeting to meiotic chromosomes.
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INTRODUCTION

Meiosis consists of two consecutive segregation events following DNA replication — in
meiosis I homologous chromosomes segregate, half of which are then removed in a polar
body, before the remaining sister chromatids segregate in meiosis II to produce haploid
gametes (Marston and Amon, 2004; Ohkura, 2015). Tight spatial and temporal control of
protein localisation and activity is required to ensure chromosome/chromatid alignment and
segregation occur efficiently and the correct number of chromosomes is present in each
gamete (Marston and Wassmann, 2017). Phosphorylation is a key post-translational
modification utilised to regulate protein localisation and activity, which is fundamentally
important for the success of both mitotic and meiotic cell divisions (Marston and Wassmann,
2017; Saurin, 2018). Therefore, the regulation of kinase or phosphatase localisation and
activity is vital for proper cell division, with the balance of their effects determining the
localisation/activity of substrate proteins that play important roles in the cell division process
(Gelens et al., 2018; Novak et al., 2010).

Polo-like kinases (PLKs) are a family of Ser/Thr protein kinases first discovered in
Drosophila (Llamazares et al., 1991; Sunkel and Glover, 1988) and yeast (Kitada et al., 1993;
Ohkura et al., 1995) and later findings showed that PLKSs are present in all eukaryotes
(Zitouni et al., 2014). PLK1 is essential for meiotic and mitotic cell divisions, with its
localisation and functions proving well conserved throughout eukaryotic evolution. PLK-1
localises to the centrosomes, kinetochore, central spindle, and midbody during mitosis and is
involved in numerous processes including mitotic entry, spindle assembly, chromosome
alignment, the spindle assembly checkpoint, and cytokinesis (Archambault and Glover, 2009;
Petronczki et al., 2008; Schmucker and Sumara, 2014; Zitouni et al., 2014). During
mammalian meiosis, PLK-1 localises to the chromosomes and spindle poles in prometaphase

and metaphase. In anaphase PLK-1 is localised primarily in the central spindle between the
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segregating chromosomes and then the midbody during polar body extrusion (Pahlavan et al.,
2000; Solc et al., 2015; Tong et al., 2002; Wianny et al., 1998). Inhibition of PLK-1 in
mammalian oocytes has indicated roles in many processes including germinal vesicle
breakdown, spindle assembly, chromosome alignment, and polar body extrusion (Solc et al.,
2015; Tong et al., 2002). To understand why PLK-1 is crucial for meiosis it is critical to
characterise precisely where PLK-1 is located and how it is recruited to specific regions,
which will allow further dissection of the discrete roles of PLK-1 during meiosis.

PLK-1 interacts with proteins via its C-terminal polo-binding domain (PBD) (Cheng, 2003;
Elia et al., 2003a). The PBD binds to phosphorylated motifs of the consensus Ser-
phSer/phThr-X, where ph indicates a phosphorylated residue and X indicates any amino acid
(Elia et al., 2003a, 2003b). When X is a proline, phosphorylation of the central Ser/Thr
residue is often mediated by a proline-directed kinase, notably Cdk1:Cyclin B during cell
division (Elowe et al., 2007; Qi et al., 2006) - this motif will henceforth be termed STP motif.
When a non-proline residue occupies position X, PLK-1 itself can phosphorylate the central
Ser/Thr, thereby enhancing its own recruitment (Kang et al., 2006; Neef et al., 2003), referred
to as self-priming. Furthermore, PLK-1 binding to STP motifs via the PBD induces a
conformational change that enhances its kinase activity (Mundt et al., 1997; Xu et al., 2013).
While the mechanism of PLK-1 recruitment to the chromosomes during oocyte meiosis has
not been characterised, recruitment of PLK-1 to the kinetochore during mammalian mitosis
has been investigated. In mammals, the constitutive centromere-associated network (CCAN)
complex of proteins binds to the histone variant CENP-A at centromeres (Foltz et al., 2006;
Izuta et al., 2006; Okada et al., 2006). Outer kinetochore proteins bind to the CCAN and
ultimately mediate chromosome alignment and segregation via interaction with microtubules
(Musacchio and Desai, 2017). Two proteins are primarily responsible for PLK-1 recruitment

to the kinetochore — CCAN component CENP-U (Kang et al., 2011, 2006; Singh et al., 2021)
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and the spindle assembly checkpoint kinase BUB-1 (Elowe et al., 2007; Qi et al., 2006; Singh
et al., 2021), both of which directly bind to PLK-1 via STP motifs in a Cdk1-dependent
manner.

In C. elegans, PLK-1 localisation in meiosis and mitosis is similar to other organisms (Chase
et al., 2000). In mitosis, roles of PLK-1 include nuclear envelope breakdown (NEBD)
(Martino et al., 2017), merge of parental genomes in the embryo through lamina disassembly
(Rahman et al., 2015; Velez-Aguilera et al., 2020), centrosome maturation (Cabral et al.,
2019; Decker et al., 2011; Ohta et al., 2021; Woodruff et al., 2015), and cytokinesis (Gomez-
Cavazos et al., 2020) — indicating that major mitotic roles of PLK-1 are conserved in C.
elegans. However, meiotic roles of PLK-1 in C. elegans oocytes have remained obscure, as
PLK-1 depletion results in severely defective NEBD and oocytes with a whole nucleus rather
than condensed chromosomes (Chase et al., 2000). In the PLK-1-depleted oocytes that
‘escaped’ the NEBD defect, chromosome congression, segregation, and polar body extrusion
were severely disrupted. However it is unclear whether these phenotypes are indirect effects
of the severe early meiotic defects or whether they result from specific functions of PLK-1
throughout meiosis (Chase et al., 2000). Furthermore, while PLK-1 was shown to localise
broadly to chromosomes and the spindle during meiosis (Chase et al., 2000), a more precise
dynamic characterisation of PLK-1 localisation during meiosis is lacking.

Here, by temporally inhibiting an analogue-sensitive PLK-1 mutant we show that PLK-1 is
involved in spindle assembly/stability, chromosome alignment and segregation, and polar
body extrusion in C. elegans oocytes. Using live imaging and immunofluorescence, we find
that PLK-1 localises to the spindle poles, chromosome arms, kinetochores, and midbivalent
region between the homologous chromosomes during meiosis I in C. elegans oocytes. By a
combination of live imaging and in vitro biochemical analysis, we have characterised the full

chromosomal recruitment mechanisms of PLK-1 during meiosis — showing that CENP-CHCP-4
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107  directly recruits PLK-1 to the chromosome arms while PLK-1 recruitment to the midbivalent
108  and kinetochore is mediated by a direct interaction with BUB-1. Furthermore, BUB-1- and

109  CENP-C-mediated PLK-1 recruitment to chromosomes is essential for meiosis 1.
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110  RESULTS

111 PLK-1 plays roles in spindle stability, chromosome alignment, segregation, and polar
112 body extrusion in meiosis I

113 A previous study showed that PLK-1 localises to the meiotic spindle and chromosomes in C.
114 elegans oocytes and depletion of PLK-1 using RNAI led to several defects including defective
115  NEBD, chromosome segregation, and polar body extrusion (Chase et al., 2000). While this
116  suggested that PLK-1 plays several roles during meiosis, the use of RNAi presents a

117  limitation to addressing them independently. In particular, the strong NEBD defect

118  complicates delineation of the roles of PLK-1 at later stages of meiosis. Therefore, we sought
119  to understand the distinct localisation and roles of PLK-1 during meiosis I.

120 To assess PLK-1 localisation during meiosis with high spatial and temporal resolution, we
121  imaged endogenously tagged sfGFP::PLK-1 in dissected oocytes. PLK-1 localises to the

122 spindle poles (Figure 1A-C; blue arrows), chromosome arms (Figure 1A-C; yellow arrows),
123 and midbivalent region between the homologous chromosomes during Prometaphase I

124 (Figure 1A-C; magenta arrow). This localisation pattern was confirmed with immunostaining
125  of fixed oocytes using a specific anti-PLK-1 antibody (Figure 1D). As chromosomes begin to
126  segregate in early anaphase, PLK-1 is mostly observed on chromosomes and, to a lesser

127  extent, in between the segregating chromosome masses (Figure 1B, yellow and magenta

128  arrows, respectively; see also Figure S1). During late anaphase, PLK-1 is still detectable on
129  chromosomes, and is enriched in the central spindle (Figure 1B, green arrow; see also Figure
130  S1).

131  Since long-term depletion of PLK-1 leads to severe NEBD defects (Chase et al., 2000, Figure
132 1E), we used an analogue-sensitive plk-1 allele (Gémez-Cavazos et al., 2020; Woodruff et al.,
133 2015) that renders it sensitive to chemically modified derivatives of PP1, a Src family

134  inhibitor (Bishop et al., 2000). We reasoned that acute PLK-1% inhibition for a short period of
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time would allow us to study the post-NEBD effects (Figure 1E). We tested a variety of
analogues and all of them led to embryonic lethality of the p/k-1% strain without affecting a
wild type strain (Figure S2). We decided to continue our experiments with the 3-substituted
benzyl PP1 derivative 3IB-PP1, which showed the best specificity and potency (Figure S2). A
wild type strain in the presence of 3IB-PP1 and p/k-1% in the presence of vehicle control
(‘EtOH’) behaved normally during meiosis (Figure 1F,G & Figure S3). Addition of 10 uM
3IB-PP1 between 5 and 15 min before dissection and imaging of oocytes allowed us to bypass
the NEBD defect and 6 bivalents were easily identifiable within the newly fertilised oocyte
(Figure 1F, yellow arrows). Under these conditions PLK-1? inhibition led to drastic spindle
defects with no observable bipolar spindle formation and no consequent chromosome
segregation was observed, indicating that PLK-1 is involved in spindle assembly and/or
stability during oocyte meiosis (Figure 1F). We sought to minimise the spindle defects upon
PLK-1 inhibition by reducing the concentration of 3IB-PP1 to 0.1-1 uM and omitting the pre-
treatment step prior to dissection. Under these conditions, ~62% of oocytes had seemingly
bipolar spindles and chromosomes remained somewhat associated with the spindle, although
chromosome alignment was still affected in 56% of oocytes (=2 misaligned chromosomes,
Figure 1G,H). A more detailed analysis of chromosome dynamics after PLK-1 inhibition is
presented in Figure S3, where individual chromosomes are followed every 20 seconds and, as
opposed to wild type, chromosomes from PLK-1-inhibited oocytes show a highly dynamic
behaviour whereby they seem to briefly align and then become misaligned again (Figure
S3A,B and arrows therein). We then used the pole marker ASPM-1 to allow proper
characterisation of spindle bipolarity under these conditions and confirmed that even when
two ASPM-1 poles are clearly discerned (Figure 11, blue arrows), chromosome alignment

fails (Figure 11, yellow arrows). Hence, it appears that PLK-1 participates in chromosome
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159  alignment in a manner that is at least partially independent of its roles in overall spindle
160  assembly/stability.
161
162  BUB-1 recruits PLK-1 to the midbivalent during oocyte meiosis
163 To further understand the role of PLK-1 during meiosis, we sought to identify the PLK-1
164  recruitment mechanism(s). In mammalian mitosis, the kinase BUB-1 and its paralog BUBR1
165  directly recruit PLK-1 to the kinetochore via STP motifs that are phosphorylated by Cdk1
166  (Elowe etal., 2007; Qi et al., 2006). While the C. elegans BUBR1 ortholog MAD35AN-! does
167  not localise to the chromosomes or spindle during meiosis (Bel Borja et al., 2020), BUB-1
168  localises to the kinetochores and midbivalent region (Dumont et al., 2010; Monen et al., 2005;
169  Pelisch et al., 2019, 2017). We investigated whether BUB-1 was involved in PLK-1 targeting
170  during C. elegans meiosis. RNAi-mediated depletion of BUB-1 led to the loss of PLK-1 from
171  the midbivalent (Figure 2A,B; blue arrows). In contrast, PLK-1 signal at chromosome arms
172 remained unaffected and what appeared to be a pole signal was also detected (Figure 2A,B;
173 yellow and green arrows, respectively). Analysis of the BUB-1 protein sequence revealed a
174  putative polo-docking STP motif in amino-acids 526-528 that is conserved in nematode
175  species (Figure 2C). Therefore, we sought to identify whether C. elegans BUB-1 directly
176  interacts with PLK-1 to mediate its recruitment to the midbivalent region.
177
178  BUB-1 directly interacts with PLK-1 through a Cdkl-dependent STP motif
179  To test whether BUB-1 directly interacts with PLK-1 in vitro, we purified a recombinant
180  fragment of BUB-1 encompassing the intrinsically disordered region between the TPR and
181  kinase domains that contains the putative STP motif (‘BUB-1'"9-62%"). Since the interaction
182  between STP motifs and the PBD of PLK-1 requires phosphorylation of the central Ser/Thr

183  residue (Elia et al., 2003a, 2003b), we conducted kinase assays to assess the phosphorylation
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of BUB-1199-628, Cdk1 and PLK-1 can both phosphorylate BUB-1!9-¢2% (Figure S4A,B).
Interestingly, kinase assays conducted with Cdk1 and PLK-1 together produced a prominent
shifted band representing phosphorylated protein that was not present with the individual
kinases (Figure 2D). Since STP motifs are known to be targets of proline-directed kinases
such as Cdk1 (Elowe et al., 2007; Qi et al., 2006), we hypothesised that Cdk1 phosphorylates
the central threonine of the STP motif (T527), allowing PLK-1 to bind directly to BUB-1
resulting in the shifted band representing highly phosphorylated BUB-1. To test this
hypothesis, we mutated T527 in the STP motif to alanine (‘BUB-1'9%-%28(T527A)’) and
assessed the resulting phosphorylation using the phosphoprotein stain Pro-Q™ Diamond.
T527A mutation in BUB-1!928 Jargely prevented the shift observed in the combined Cdk1
and PLK-1 assay (Figure 2E), indicating that phosphorylation of this residue is essential for
the shifted band observed when Cdk1 and PLK-1 both phosphorylate BUB-1!0-628,

To determine whether BUB-1 directly binds to PLK-1, we purified a maltose-binding protein
(MBP)-tagged PLK1 PBD (MBP-PLK 178P) (Singh et al., 2021) and incubated it with
unphosphorylated or Cdk1-phosphorylated BUB-1'9-628 before assessing complex formation
by size-exclusion chromatography (SEC). Cdk1-phosphorylated BUB-1 formed a stable
complex with MBP-PLK1PBP (Figure 2F). While unphosphorylated BUB-1 showed some
interaction with MBP-PLK 1B, this complex eluted from the column at a higher volume and
bound to a lower proportion of the MBP-PLK 178D, suggestive of a weaker interaction and/or
different stoichiometry (Figure 2F). To directly test whether phosphorylation of T527 is
required for PLK-1 to bind to BUB-1, MBP-PLK1"BP was incubated with Cdk1-
phosphorylated BUB-1!9%-28 or BUB-1'99-62%(T527A) and SEC was used to assess complex
formation again. Interestingly, when Cdk1-phosphorylated BUB-1!9-62%(T527A) was
incubated with MBP-PLK 18P, the resulting elution was reminiscent of the unphosphorylated

wild type BUB-1'%9-628 (Figures 2G). Together, these data indicate that there is a Cdk1

10
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209  phosphorylation-dependent interaction between BUB-1 and PLK 1PBP that requires
210  phosphorylation of T527 within the STP motif of BUB-1. To further confirm that the STP
211  motif of BUB-I can interact with the PBD in a T527 phosphorylation-dependent manner,
212 fluorescence polarisation assays were conducted using FITC-labelled peptides containing the
213 BUB-1 STP motif (Figure 2H). The phosphorylated STP motif bound to MBP-PLK 1?BP with
214 high affinity (Kp below 100 nM) while the unphosphorylated peptide did not interact with
215  MBP-PLKI1PBP at the concentrations tested (Figure 2H).
216  Altogether, these data indicate that C. elegans BUB-1 can directly bind to PLK-1 in vitro in a
217  phospho-dependent manner via a newly characterised STP motif.
218
219  BUB-1 directly recruits PLK-1 to the midbivalent in vivo
220  We then sought to determine whether the STP motif in BUB-1 is responsible for PLK-1
221  recruitment in vivo. Using CRISPR-Cas9, we generated the T527A mutation in the
222 endogenous bub-1 locus (bub-17274), bub-17?"4 mutant worms showed significant embryonic
223 and larval lethality so we generated a balanced strain in which the bub-17974 allele was
224  maintained as a heterozygote. Homozygous bub-17"?74 worms from heterozygous parents
225  develop to adulthood and produce oocytes that go through meiosis, which allowed us to study
226  the role of the STP motif in BUB-1 during meiosis. PLK-1 was absent from the midbivalent
227  in bub-179%7 oocytes, reminiscent of the bub-1(RNAi) phenotype (Figure 3A, blue arrowheads
228  and 3B). Importantly, BUB-1 localisation to the midbivalent and kinetochore was maintained
229  in the bub-177?74 strain (Figure 3C), indicating that BUB-1 directly interacts with PLK-1 via
230  this STP motif in vivo to recruit PLK-1 to the midbivalent. To assess the impact of BUB-1
231  mediated PLK-1 recruitment during meiosis I, we crossed the bub-17"?74 allele with a strain
232 expressing GFP-tagged tubulin and mCherry-tagged histone and analysed chromosome

IT527A

233  alignment, segregation, and polar body extrusion defects (See Methods). bub- mutant

11
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234 oocytes displayed chromosome alignment defects in ~62% of the oocytes, with 32% of
235  oocytes showing severe alignment defects (Figure 3D,E). Additionally, ~1/4 of bub-172"4
236  oocytes showed mild anaphase defects (Figure 3E). Despite these defects, more than 90% of
237 bub-1772"1 oocytes show visible separation of two chromosome masses and polar body

238  extrusion occurred normally at the end of meiosis I (Figure 3E).

239 Overall, our results show that an STP motif in BUB-1 directly recruits PLK-1 to the

240  midbivalent during meiosis I and this interaction is primarily important for chromosome

241  alignment.

242

243 CENP-CHC? recruits PLK-1 to meiotic chromosome arms

244  PLK-I localisation to chromosome arms remained unchanged when BUB-1 was depleted

245  (Figure 2A,B) or the STP motif was mutated (Figure 3A,B), indicating that a different

246  pathway is required to recruit this population of PLK-1. We therefore sought to identify the
247  mechanism of PLK-1 recruitment to the chromosome arms. In mammalian mitosis, PLK-1
248  recruitment to the kinetochore is mediated by BUB-1 and CCAN component CENP-U (Elowe
249  etal, 2007; Kang et al., 2011, 2006; Qi et al., 2006; Singh et al., 2021). Interestingly, the

250  CCAN appears to be largely absent in C. elegans (Maddox et al., 2012), and kinetochore

251  assembly depends on the CENP-C orthologue, HCP-4 (hereafter CENP-CHP4) during mitosis
252 (Oegema et al., 2001) and on CENP-CHCP-# and the nucleoporin ELY SMEL-2® during meiosis
253 (Hattersley et al., 2022). CENP-CH4]ocalises to chromosomes throughout meiosis I (Figure
254  4A) (Hattersley et al., 2022; Monen et al., 2005). Like its mammalian counterpart, CENP-
255  CHCP4 g predicted to be mostly disordered and it contains a putative N-terminal STP motif
256  encompassing amino acids 162-164 that is conserved in nematode species (Figure 4B).

257  Although CENP-CHCP depletion does not have a major impact on meiosis I (Hattersley et al.,

258  2022; Monen et al., 2005), RNAi-mediated depletion of CENP-CHCP-# abolished PLK-1

12
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localisation on chromosome arms (Figure 4C,D). PLK-1 is still present in the midbivalent
(Figure 4C,D, blue arrows) which suggests that BUB-1 and CENP-CH 4 represent
independent pathways for PLK-1 targeting. Additionally, CENP-CHCP-* depletion revealed a
pool of PLK-1 which is kinetochore-associated (Figure 4C,D, yellow arrows). Since the
above data indicated that CENP-CH¢?#is involved in PLK-1 recruitment to chromosome
arms, we sought to determine whether this involved a direct interaction via the putative STP

motif identified in sequence alignments.

CENP-CHC?4 interacts directly with PLK-1 through a Cdk1-dependent STP motif

To investigate whether CENP-CHCP# directly interacts with PLK-1, we purified a recombinant
N-terminal fragment of CENP-CHCP-4 (‘CENP-CHCP-4(1-214) " A g the putative CENP-CHCP-4
STP motif also contains a proline-directed kinase consensus site, we assessed Cdk1
phosphorylation of the recombinant fragment. Cdk1 kinase assays showed that CENP-CHC?-
4(1-219 can be phosphorylated by Cdk1 and mutation of the putative STP motif threonine to
alanine (T163A) reduced the phosphorylation of the fragment (Figure 5A). To determine
whether this putative STP motif directly binds to PLK-1 in a Cdk1-dependent manner, we
used size exclusion chromatography. Cdk1-phosphorylated CENP-CHCP-4(1-214) formg a stable
complex with MBP-PLK 18P, while the unphosphorylated protein did not (Figure S5). We
then tested the requirement of T163 phosphorylation on CENP-CHCP-4(1-2149) ¢ interact with
MBP-PLK 17BP. Phosphorylated wild type CENP-CHCP-40-219) formg a stable complex with
MBP-PLK 17BP; on the contrary, phosphorylated CENP-CHCP-40-219 (T163A) did not form a
stable complex with MBP-PLK 17BP (Figure 5B). Together, these data indicate that CENP-
CHCP-4(1-2149) phosphorylated by Cdk1 can bind to the PBD and this interaction requires
phosphorylation of T163 within the STP motif. To further confirm this STP motif binds to

MBP-PLK-1?8P in a phospho-dependent manner, we conducted fluorescence polarisation
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284  assays with FITC-labelled CENP-CH?* STP motif peptides. The Thr 163 phosphorylated
285  peptide bound to MBP-PLK 1PBP with high affinity (Kp in the low hundreds nM), while the
286  unphosphorylated peptide did not display binding at the concentrations indicated (Figure 5C).
287  Collectively, these data indicate that the putative STP motif in CENP-CH "4 binds to the

288  PBDs of PLK1 in a Cdk1 phosphorylation-dependent manner, which led us to assess the

289  importance of this STP motif in vivo.

290

291  CENP-CHC? recruits PLK-1 to chromosome arms in vivo through an STP motif

292  The T163A mutation in CENP-CHCP* was generated in the endogenous Acp-4 locus (hcp-
293 411634) which, unlike bub-1774, did not affect viability. When GFP:PLK-1 was monitored in
294 dissected oocytes, hcp-4T1934 recapitulated the full CENP-CHP- depletion with PLK-1

295  localising only to the midbivalent and kinetochore but absent from chromosome arms (Figure
296  5D,E). This indicates that PLK-1 is targeted to chromosome arms directly through the

297  phospho-dependent STP motif in CENP-CHCP4, Importantly, CENP-CHCP4(T163A) displays
298  an indistinguishable localisation from wild type CENP-CH* (Figure 5F) and the other PLK-
299 1 receptor, BUB-1, also localises normally in the hcp-47164 strain (Figure 5G).

300  These data indicate that CENP-CHCP- directly recruits PLK-1 to the chromosome arms during
301  meiosis I via a newly characterised N-terminal STP motif.

302

303  Dual PLK-1 recruitment by BUB-1 and CENP-C is essential for meiosis I

304  Our results so far indicate that PLK-1 recruitment to the midbivalent during meiosis I is

305 mediated by direct interaction with BUB-1, while PLK-1 localisation to the chromosome

306  arms requires direct interaction with CENP-CHCP-4, Co-depletion of BUB-1 and CENP-CHCP-4
307 by RNAI led to complete absence of PLK-1 at the chromosome arms, midbivalent, and

308  kinetochore (Figure 6A). This confirmed that the BUB-1 and CENP-CHCP-4 pathways are the
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primary recruiters of PLK-1 to the chromosomes during oocyte meiosis. Additionally, the
kinetochore population of PLK-1 was lost when BUB-1 and HCP-4 were co-depleted,
indicating that BUB-1 is responsible for recruiting PLK-1 to the kinetochore as well as the
midbivalent (Figure 6A). RNAi of BUB-1 causes significant defects in spindle stability,
chromosome alignment, and chromosome segregation during meiosis (Dumont et al., 2010;
Pelisch et al., 2019). However, co-depletion of BUB-1 and CENP-CHCP# exacerbated the
chromosome alignment and segregation errors and resulted in a significantly higher
proportion of polar body extrusion failures (Figure 6B-C). Therefore, while CENP-CHCP-4
depletion does not have noticeable defects on its own, it enhances the BUB-1 depletion
phenotype. To focus more specifically on the effects of direct PLK-1 recruitment, we depleted
CENP-CHC* in pub-17°?74 mutant oocytes. This abolished PLK-1 localisation in the same
manner as co-depletion of BUB-1 and CENP-CH"4 (Figure 6D) as well as displaying defects
in chromosome alignment, segregation, and polar body extrusion of a greater severity than
hcp-4(RNAi) or bub-17274 alone (Figure 6E,F). Similar results were obtained when
performing the complementary experiment using hcp-47534/bub-1(RNAi) oocytes (Figure S6).
These data indicate that recruitment of PLK-1 to the midbivalent and kinetochore by BUB-1
appears to be primarily responsible for the chromosomal roles of PLK-1 during meiosis I, as

CHCP-4

disruption of this pathway leads to meiotic defects while perturbing CENP- recruitment

of PLK-1 on its own does not. However, the fact that disruption of both BUB-1 and CENP-
CHCP-4 recruitment pathways enhances the severity of the resulting meiotic defects indicates

that the CENP-CHPC4 pathway does still play an active part in the roles of PLK-1 during

meiosis [.
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DISCUSION

In the present manuscript we describe specific, post-NEBD roles played by PLK-1 during
oocyte meiosis. PLK-1 is important for spindle assembly/stability, chromosome alignment
and segregation, and polar body extrusion during meiosis I. We found that PLK-1 localises to
spindle poles and chromosomes during metaphase I before localising to the chromosomes and
central spindle in anaphase. Furthermore, we characterised the mechanisms of chromosomal
PLK-1 targeting during oocyte meiosis, which rely on the centromere-associated protein
CENP-CH¢?4 and the spindle assembly checkpoint kinase BUB-1. While CENP-CHCP-4
targets PLK-1 to chromosome arms, BUB-1 directs PLK-1 to the midbivalent and
kinetochores. In both cases, interaction with PLK-1 relies on phosphorylated STP motifs
within predicted disordered regions. While we have not confirmed that these sites are
phosphorylated by Cdk1 in vivo, several lines of evidence indicate this is likely the case: 1)
both motifs have Pro at position 3, indicative of potential proline-directed kinase substrates;
2) Cdkl is the most prominent proline-directed kinase in cell division and known to
phosphorylate STP motifs, including that of mammalian BUB-1 (Qi et al., 2006); 3) both sites
were phosphorylated by Cdk1, but not PLK-1, in vitro; and 4) fluorescence polarisation
experiments indicate that phosphorylation of the Thr residues within the STP motifs is
essential for the interaction with the PBD, clearly displaying why the alanine mutants have
such a drastic effect on PLK-1 localisation in vivo. We found that mutating the STP motif in
BUB-1 results primarily in chromosome alignment defects. While disrupting the CENP-CHCP-
“-mediated localisation of PLK-1 to the chromosome arms does not have a significant
phenotypic defect on its own, it does enhance the meiotic defects observed when the BUB-1-
dependent kinetochore and midbivalent populations are disrupted. This suggests that while

BUB-1 recruitment of PLK-1 may mediate the most important functions of PLK-1 during
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meiosis I, CENP-CHP4 recruitment of PLK-1 to the chromosome arms also plays an active

role in meiosis.

Expanding on the meiotic roles of PLK-1

By temporally inhibiting an analogue-sensitive PLK-1 mutant during C. elegans oocyte
meiosis, we have shown that PLK-1 plays a major role in the regulation of the meiotic
spindle. At high concentrations of analogue this resulted in the complete lack of spindle
bipolarity, and even at low concentrations the majority of oocytes (62%) imaged lacked an
apparent bipolar spindle. While this clearly displays a key role of PLK-1 during meiosis is in
the regulation of the meiotic spindle, we cannot distinguish more specific mechanisms using
our experimental techniques. As a result, we have characterised the phenotype as a lack of
spindle stability throughout this manuscript, but it should be noted that we cannot distinguish
whether these effects are on the spindle assembly process itself or on the maintenance of an
assembled bipolar spindle. Potential mechanisms of meiotic spindle regulation by PLK-1
include the microtubule depolymerase KLP-7, the C. elegans ortholog of the MCAK/Kinesin
13 family. There is some evidence to indicate that PLK-1 may regulate the kinesin 13
microtubule depolymerases in other organisms (Jang et al., 2009; Ritter et al., 2014; Sanhaji
et al., 2014; Shao et al., 2015; Zhang et al., 2011) and KLP-7 localises to the chromosomes,
during meiosis I (Connolly et al., 2015; Danlasky et al., 2020; Gigant et al., 2017; Han et al.,
2015), which overlaps with PLK-1 localisation. Furthermore, disrupting KLP-7 function
prevents proper bipolar spindle assembly and results in microtubules protruding out of the
meiotic spindle towards the cytoplasm (Connolly et al., 2015; Gigant et al., 2017), two
phenotypes we also see with PLK-1 inhibition.

Aside from the large-scale spindle defects observed when PLK-1 is inhibited, chromosome

alignment is still disrupted when the structure of the spindle appears bipolar and largely
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382  normal. Since the mechanism of chromosome alignment by acentrosomal meiotic spindles is
383  not as well characterised as the centrosomal mitotic equivalent, speculating on the
384  underpinning mechanisms of this phenotype is challenging. However, it should be noted that
385  we cannot exclude the possibility that this phenotype is also a direct result of the dysregulated
386  spindle upon PLK-1 inhibition. Indeed, there is some evidence to suggest that a chromosome-
387  dependent pathway of microtubule formation may be an important aspect of chromosome
388  alignment and segregation (Conway et al., 2022; Heald et al., 1996; Kiewisz et al., 2022).
389  Despite these specific hypotheses mentioned above, it is clear that there will be many
390 different proteins and pathways impacted by PLK-1 phosphorylation throughout meiosis I
391  that will ultimately contribute to the severe defects we observe upon PLK-1 inhibition. While
392  afocussed investigation into specific hypotheses would no doubt yield important results, an
393  unbiased approach to identify the relevant PLK-1 substrates during meiosis would be
394  particularly useful for investigation of the key effects of PLK-1 during meiosis. There are
395  obvious technical challenges to overcome before this can be achieved, not least of which
396  would be isolating a large enough sample of meiotic oocytes to perform robust quantitative
397  proteomics. The work in this manuscript undertaken to identify the mechanisms of PLK-1
398  targeting during oocyte meiosis I will be instrumental for a later characterisation of the
399  localisation and meiotic stage-specific analysis of PLK-1 substrates.
400
401  Comparison with dual recruitment in mammals (CENP-U vs CENP-C)
402  During mammalian mitosis, PLK1 is recruited to kinetochores through BUB1 and CENP-U,
403  relying on self-priming in addition to Cdk1-mediated priming (Kang et al., 2011, 2006; Qi et
404  al., 2006; Singh et al., 2021). Our results suggest that Cdk1-mediated priming is the primary
405  mechanism for PLK-1 recruitment in both BUB-1- and CENP-C-dependent branches.

406  Additionally, we noted the presence of a putative B56 short linear motif (LxxIxE) 38 aa
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downstream of the STP motif in C. elegans CENP-C (203-IPTILE-208). This is relevant
because it has been shown that PLK1 and B56 motifs tend to co-exist in close proximity
(Cordeiro et al., 2020; Singh et al., 2021). This makes a putative cross-talk between PLK-1
and PP2A/B56 a worthy avenue to follow-up on our current findings.

Apparent lack of a CCAN network along with retention of crucial roles for PLK1 in species
like C. elegans and Drosophila melanogaster (D. melanogaster) suggest that the CENP-U
pathway could have been replaced by other proteins. CENP-C is a good candidate, as the only
CCAN component in these species. While we confirm that this is the case in C. elegans, it is
interesting to note that putative STPs exist in sequences 176-178 and 266-268 in D.
melanogaster CENP-C (Uniprot #Q9VHP9). Interestingly, D. melanogaster Polo and CENP-
C co-localise and this co-localisation increases by ectopic centromere generation through

CENP-A (CID) over-expression (Heun et al., 2006).

Overall, our results advance our understanding on the roles played by PLK-1 during oocyte
meiosis and provide a mechanistic understanding of PLK-1 targeting to meiotic
chromosomes. The next step will be to identify and characterise PLK-1 meiotic substrates, to

understand exactly how PLK-1 participates in each of its meiotic roles.
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451 FIGURE LEGENDS
452

453  Figure 1. Analysis of PLK-1 localisation and inhibition during meiosis I.

454

455 A) Schematic of a C. elegans bivalent, highlighting the midbivalent and kinetochore.
456 B) In situ GFP-tagged PLK-1 (Martino et al., 2017) was followed through meiosis I in
457 live, dissected oocytes. Scale bar, 2 pm. More detailed sequence of events are

458 displayed in Figure S1. Yellow arrows point to chromosomes, blue arrows indicate
459 spindle poles, magenta arrows point towards the midbivalent, and green arrow

460 indicates the central spindle.

461 C) Line profile analysis of PLK-1::GFP during early Metaphase I, as indicated by the
462 yellow line in B). Background signal was subtracted and maximum signal for each
463 channel was set to 1.

464 D) Immunostaining of (untagged) PLK-1 in fixed oocytes. The insets represent a

465 magnified image of single bivalents for each channel.

466 E) Schematic of the last two maturing oocytes and the fertilised egg, highlighting the
467 difference between PLK-1 depletion and acute PLK-1 inhibition.

468 F) plk-1 worms expressing GFP-tagged tubulin and mCherry-tagged histone were
469 dissected in medium containing ethanol (‘EtOH’, control) or the PP1 analogue 31B-
470 PP1 (10 uM). Yellow arrows point to the each of the six bivalents. Scale bar, 2 um.
471 G) plk-1* worms expressing GFP-tagged tubulin and mCherry-tagged histone, were
472 dissected in medium containing ethanol (‘EtOH’, control) or 0.1 pM PP1 analogue
473 3IB-PP1. Scale bar, 2 um. The panels on the right show specific Z slices to highlight
474 individual chromosomes. Yellow arrows point to misaligned chromosomes contained
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within the spindle, whereas blue arrows indicate chromosomes outside the spindle.
See also Figure S3.

H) Chromosme alignmend defects scored for 0.1-1 uM 3IB-PP1-treated oocytes are
presented in the graph.

I) Worms expressing GFP-tagged ASPM-1 (pole marker) and mCherry-tagged histone
along with analogue-sensitive plk-1, were dissected in medium containing ethanol
(‘EtOH’, control) or the PP1 analogue 3IB-PP1 at I pM or 10 uM. Scale bar, 2 um.

Early metaphase I spindles are shown for each condition.

Figure 2. BUB-1 regulates PLK-1 localisation in vivo and directly binds to PLK-1 in

vitro.

A) Control (‘wild type’) and BUB-1 depleted [‘bub-1(RNAi)’] oocytes expressing sfGFP-
tagged PLK-1 (and mCherry-tagged histone) were dissected and recorded throughout
meiosis I. Prometaphase/Metphase I is shown (before spindle rotation/shortening).
The yellow arrows indicate the bivalent chosen for magnification in each condition.
The blue arrows point to the midbivalent and the green arrow points to the spindle
pole. Left scale bar, 2 um. Right scale bar, 1 pm.

B) Line profile analysis of PLK-1::GFP during early Metaphase I in wild type and bub-
1(RNAi) oocytes, as indicated by the yellow lines. Background signal was subtracted
and maximum signal for each channel was set to 1. Blue arrow points to the position
of the midbivalent.

C) Schematic representation of the C. elegans BUB-1 protein (top), sequence alignment

of the putative STP motif in nematode species (bottom).
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Kinase assay of recombinant BUB-1!0-628 with Cdk1:Cyclin B, PLK-1, and both
kinases combined as indicated. Phosphorylation was assessed using SDS-PAGE
followed by coomassie (total protein) or ProQ diamond (phosphoprotein) staining.
Kinase assay of recombinant BUB-1!90-628 and BUB-1!0-628(T527A) with Cdk1:Cyclin
B and PLK-1 combined. Proteins were incubated with the kinases for the indicated
time points before phosphorylation was assessed by SDS-PAGE and staining with
either coomassie (total protein) or ProQ diamond (phosphoprotein).

Elution profile and coomassie-stained SDS-PAGE gels of representative fractions
from the Superdex 200 10/300 SEC column. BUB-1'%%28 was incubated with MBP-
PLK1PBP at equimolar concentrations before separation by SEC. Binding was
conducted with unphosphorylated or Cdk1:Cyclin B phosphorylated BUB-1190-628 a5
indicated.

Elution profile and coomassie-stained SDS-PAGE gels of representative fractions
from the Superdex 200 10/300 SEC column. Wild type or T527A mutant BUB-1190-628
was phosphorylated by Cdk1:Cyclin B before incubation with an equimolar
concentration of MBP-PLK1"BP, binding was assessed by SEC.

FITC-labelled peptides containing the BUB-1 STP motif were incubated with

increasing concentrations of MBP:PLK 17BP

and binding analysed by fluoresence
polarisation. Unphosphorylated versus T527-phosphorylated peptides were compared.

‘TP denotes phosphorylated Threonine.

Figure 3. The polo-docking site in BUB-1 is required for PLK-1 targeting and

chromosome alignment.
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A) Fixed oocytes were stained with a PLK-1 specific antibody (green) and bub-17274
heterozygote and homozygote oocytes were compared. DNA is shown in magenta.
The yellow arrow points to the midbivalent magnified on the right in each case and the
blue arrowhead points to the midbivalent.

B) Line profile analysis of PLK-1 localisation in fixed oocytes during early Metaphase |
in bub-177?74 heterozygote (‘bub-17?74/+>) and homozygote (‘bub-177?74") oocytes, as
indicated by the yellow lines. Background signal was subtracted and maximum signal
for each channel was set to 1.

C) Fixed oocytes were stained with a BUB-1 specific antibody (green) and bub-17274
heterozygote and homozygote oocytes were compared. DNA is shown in magenta.

D) bub-17%74 heterozygote (‘bub-17?74/+>) and homozygote (‘bub-177274") oocytes
expressing GFP-tagged tubulin and mCherry-tagged histone were filmed during
meiosis I. Two homozygote (‘bub-17274") oocytes are shown to depict the difference
in severity of the alignment defect. Scale bar, 2 um.

E) Meiotic defects (as described in the Methods section) were assessed in wild type, bub-
175274 heterozygote (‘bub-179274/+") and homozygote oocytes. Representative images

of the different phenotypes analysed are presented on the right.

Figure 4. CENP-CHC? s required for chromosomal PLK-1 targeting.

A) In situ GFP-tagged CENP-CHCP* was followed through meiosis I in live, dissected

oocytes. Scale bar, 2 um.

B) Schematic representation of the C. elegans CENP-CHCP# (top), sequence alignment of

the putative STP motif in nematode species (bottom).
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Control (‘wild type’) and CENP-CHP4_depleted [‘hcp-4(RNAi) '] oocytes expressing
sfGFP-tagged PLK-1 (and mCherry-tagged histone) were dissected and recorded
throughout meiosis I. Prometaphase/Metphase I is shown (before spindle
rotation/shortening). On the right, the blue arrows point to the midbivalent and the
yellow arrow points to the kinetochore. Left scale bar, 2 um. Right scale bar, 1 um.
Line profile analysis of PLK-1::GFP during early Metaphase I in wild type and hcp-
4(RNAi) oocytes, as indicated by the yellow lines. Background signal was subtracted
and maximum signal for each channel was set to 1. The blue arrows point to the

midbivalent and the yellow arrow points to the kinetochore

Figure 5. CENP-CH 4jnteracts with PLK-1 in vitro and targets PLK-1 to chromosome

arms in C. elegans oocytes through a polo-docking site.

A)

B)

0)

Kinase assay of recombinant CENP-CHCP-4(1-214) wild type and T163A proteins with
Cdk1:Cyclin B. Reactions were analysed by SDS-PAGE followed by ProQ diamond
(phosphoprotein) or coomassie (total protein) staining.

Elution profile and coomassie-stained SDS-PAGE gels of representative fractions
from the Superdex 200 10/300 SEC column. Wild type or T163A mutant CENP-CHCP-
4(1-219) was phosphorylated by Cdk1:Cyclin B before incubation with an equimolar
concentration of MBP-PLK178P, Binding was then assessed by SEC.

FITC-labelled peptides containing the HCP-4 STP motif were incubated with

increasing concentrations of MBP:PLK 17BP

and binding analysed by fluoresence
polarisation. Unphosphorylated versus T163-phosphorylated (TP") peptides were

compared.
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Control (‘wild type’) and CENP-CHCP# STP mutant [‘hcp-47934"] oocytes expressing
sfGFP-tagged PLK-1 (and mCherry-tagged histone) were dissected and recorded
throughout meiosis I. Metphase I is shown. Left scale bar, 2 um. Right scale bar, 1
pm.

Line profile analysis of PLK-1::GFP during early Metaphase I in wild type and hcp-
471634 gocytes, as indicated by the yellow lines. Background signal was subtracted and
maximum signal for each channel was set to 1.

Fixed oocytes were stained with an HCP-4 specific antibody (green in the merged
image). hcp-471934 mutant oocytes were compared to wild type. DNA is shown in
magenta in the merged panel.

Same as in F) but using a BUB-1 specific antibody to compare BUB-1 localisation in

wild type and hcp-471%34 mutant oocytes.

Figure 6. Combined disruption of BUB-1- and CENP-CH¢?-4_dependent PLK-1

recruitment leads to severe meiotic defects.

A)

B)

Control (‘wild type’), BUB-1-depleted [‘bub-1(RNAi) "], and CENP-CHCP-4-depleted
[‘hcp-4(RNAQ) ] oocytes expressing sfGFP-tagged PLK-1 (and mCherry-tagged
histone) were dissected and recorded throughout meiosis I. Prometaphase/Metphase I
is shown (before spindle rotation/shortening). Left scale bar, 2 um. Right scale bar, 1
pm.

Control (‘wild type’), BUB-1-depleted [‘bub-1(RNAi) "], and CENP-CHCP-4_depleted
[‘hcp-4(RNAQ) | oocytes expressing GFP-tagged tubulin (and mCherry-tagged histone)

were dissected and recorded throughout meiosis I. Scale bar, 2 um.
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595 C) Meiotic defects (as described in the Methods section) were assessed in wild type, bub-
596 1(RNAi), and hcp-4(RNAi) oocytes.

597 D) Fixed wild type, hcp-4(RNAi), bub-17274, and bub-17?"4+hcp-4(RNAi) oocytes were
598 stained with a PLK-1 specific antibody.

599 E) Control (‘wild type’), BUB-1T327A [*bub-17274"], and CENP-CHCP_depleted [*hcp-
600 4(RNAi)’] oocytes expressing GFP-tagged tubulin (and mCherry-tagged histone) were
601 dissected and recorded throughout meiosis I. Scale bar, 2 um.

602 F) Meiotic defects (as described in the Methods section) were assessed in wild type, bub-
603 175274 hep-4(RNAi), and bub-17274+hep-4(RNAI) oocytes.

604

605  Figure S1. PLK-1 localisation during oocyte meiosis

606 In situ GFP-tagged PLK-1 (Martino et al., 2017) was followed through meiosis I in
607 live, dissected oocytes. Scale bar, 2 pm. This panel shows a more detailed sequence of
608 events of the same movie presented in Figure 1B.

609

610  Figure S2. Embryonic viability assays after PLK-1* inhibition

611 Three different PP1 analogues were tested: 31B-PP1, 3MB-PP1, and INA-PPI.
612 Inhibitors were included in the plates at 10, 20, and 50 uM and worms were then
613 allowed to lay eggs. Viable progeny was assessed 24 and 48 hs later.

614

615  Figure S3. Chromosome alignment defects upon acute PLK-1* inhibition

616
617 A) Wild type or plk-1* worms expressing GFP-tagged tubulin and mCherry-tagged
618 histone, were dissected in medium containing ethanol, 1 uM 3IB-PP1 (‘low’), or 10
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619 uM (‘high’). Maximum intensity projections are shown and the arrows have different
620 colours to identify those chromosomes in panel B). Scale bar, 2 um.

621 B) Detailed analysis of individual chromosome behaviour using selected Z slices of

622 +3IB-PP1 ‘low’ from panel A). Highly unstable behaviour of specific chromosomes
623 (switching back and forth between aligned and misaligned) can be followed by the
624 different coloured arrows. Panles outside of the green rectangle are timepoints not
625 shown in A). Scale bar, 2 pm.

626

627  Figure S4.

628

629 A) Kinase assay of recominant BUB-1"9-62 and BUB-1'%%-2(T527A) with Cdk1:Cyclin
630 B. Proteins were incubated with Cdk1:Cyclin B for the indicated time points before
631 phosphorylation was assessed by SDS-PAGE and staining with either coomassie (total
632 protein) or ProQ diamond (phosphoprotein).

633 B) Kinase assay of recominant BUB-1!9-628 and BUB-1!9-62%(T527A) with PLK-1.

634 Proteins were incubated with PLK-1 for the indicated time points before

635 phosphorylation was assessed by SDS-PAGE and staining with either coomassie (total
636 protein) or ProQ diamond (phosphoprotein).

637

638  Figure S5.

639

640 Elution profile and coomassie-stained SDS-PAGE gels of representative fractions
641 from the Superdex 200 10/300 SEC column. CENCP-CHCP-40-219) wag incubated with
642 MBP-PLK-1?8P at equimolar concentrations before being analysed by SEC. Binding
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was conducted with unphosphorylated or Cdk1:Cyclin B phosphorylated CENP-CHC?-

4(1-214) a5 indicated.

Figure S6.

A) Control (‘wild type’), BUB-1-depleted [*bub-1(RNAi) '], CENP-CHCP4(T163A) [*hep-

B)

0

47163471 "and bub-1(RNAi)+hcp-4T1%34 oocytes expressing sfGFP-tagged PLK-1 (and
mCherry-tagged histone) were dissected and recorded throughout meiosis I.
Prometaphase/Metphase I is shown (before spindle rotation/shortening). Panels on the
left show the full spindle, while the right-most two columns display single bivalents.
Left scale bar, 2 pum. Right scale bar, 1 pm.

Control (‘wild type’), BUB-1-depleted [‘bub-1(RNAi) ], CENP-CHP4(T163A) [*hep-
47163471 "and bub-1(RNAi)+hcp-471%34 oocytes expressing GFP-tagged tubulin (and
mCherry-tagged histone) were dissected and recorded throughout meiosis I. Scale bar,
2 pm.

Meiotic defects (as described in the Methods section) were assessed in wild type, bub-

1(RNAi), hep-4T1%34, and bub-1(RNAi)+hcp-4T1534 oocytes.
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916 METHODS

917  C. elegans strains & RNAi

918  Strains used in this study were maintained at 20 degrees unless indicated otherwise. For a

919  complete list of strains, please refer to Table S1.

920  For RNAi-mediated depletions, the targeting sequence for bub-1 was 2353-2935 and for hcp-
921  4,967-2128, both from the first ATG codon. For double depletion, both sequences were

922  cloned in the same vector. All sequences were inserted into L4440 using the NEBuilder HiFi
923  DNA Assembly Master Mix (New England Biolabs) and transformed into DH5a bacteria. The
924  purified plasmids were then transformed into HT115(DE3) bacteria (Timmons et al., 2001).
925  RNAI clones were picked and grown overnight at 37°C in LB with 100 pg/ml ampicillin.

926  Saturated cultures were diluted 1:100 and allowed to grow until reaching an OD600 of 0.8—1.
927  Isopropyl-B-d-thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM, and
928  cultures were incubated for 1 h at 37°C. Bacteria were then seeded onto NGM plates made
929  with agarose and 1 mM IPTG and allowed to dry. L4 worms were then plated on RNAi plates
930  and maintained at 20°C.

931

932  CRISPR/Cas9

933  We used direct injection of in vitro—assembled Cas9-CRISPR RNA (crRNA) trans-activating
934  crRNA (tracrRNA) ribonucleoprotein complexes (Paix et al., 2017, 2015).

935  For mutation of Threonine 527 to Alanine in bub-1, we used the following crRNA (+ strand):
936 CCCCGCACAAGGAGTTCATT and repair template (- strand):

937  acttacTAATTTACTGAAAGTACTGCTGGTTGGAGCAACAAATACTGGAGCTTCCTGT
938 TCGTGAGTGCTTTCCTCCTCTTTATTTCCGAAATATTCATCAATGTTGACtAAATGA
939  ACTCCTTGTGCGGGgGecactaGTGACGAAATTACCACGAGACGGTTTGAAAAAGCCA

940 AACTCGATTTCATCGTCATAAActaaaa
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For mutation of Threonine 163 to Alanine in 4cp-4, we used the following crRNA (- strand):
TGAAATATCAAGCGATCTCA and repair template (+ strand):
taataaatctataatttcagAGTGGAAAAGCTGGATTAAGcTGeagtgCaCCCAAGAGCTCGAGTG
ATACGTCGATGAGGTCITTGAGATCGCTTGATATTTCACATGTCGTCAATACCGAT
C

Each of the mixes was mixed with dpy-10 crRNA/repair template for screening (Arribere et

al., 2014).

Live imaging of oocytes

A detailed protocol for live imaging of C. elegans oocytes was used with minor modifications
(Laband et al., 2018). Fertilized oocytes were dissected and mounted in 5 pl of L-15
blastomere culture medium (0.5 mg/mL Inulin; 25 mM HEPES, pH 7.5 in 60% Leibowitz L-
15 medium and 20% heat-Inactivated FBS) on 24x40 mm #1.5 coverslips. Once dissection
was performed and early oocytes identified using a stereomicroscope, a circle of Vaseline was
laid around the sample, and a custom-made 24x40 mm plastic holder (with a centred window)
was placed on top. The sample was imaged immediately using 488 nm and 561 nm laser
lines. Live imaging was done using a CFI Plan Apochromat Lambda 60X/NA 1.4 oil
objective mounted on a microscope (Nikon Eclipse Ti) equiped with a Prime 95B 22mm
camera (Photometrics), a spinning-disk head (CSU-X1; Yokogawa Electric Corporation).
Acquisition parameters were controlled with NIS software (Nikon). For Figures 1B and 2A,
the microscope used was an [X81 (Olympus) equiped with an EMCCD Cascade II camera
(Photometrics) and a CSU-X1 spinning disk head (Yokogawa). For all live imaging
experiments, partial projections are presented. All files were stored, classified, and managed

using OMERO (Allan et al., 2012). Figures were prepared using OMERO.figure and
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966  assembled using Adobe Illustrator. Representative movies shown in Supplementary material
967  were assembled using Fiji/Image]J (Schindelin et al., 2012) custom-made macros.
968
969 Immunofluorescence
970  Worms were placed on 4 pl of M9 worm buffer in a poly-D-lysine (Sigma, P1024)-coated
971  slide and a 24x24-cm coverslip was gently laid on top. Once the worms extruded the
972  embryos, slides were placed on a metal block on dry ice for >10 min. The coverslip was then
973  flicked off with a scalpel blade, and the samples were fixed in methanol at 20°C for 30 min
974  (except for GFP, where the methanol treatment lasted 5 min). Secondary antibodies were
975  donkey anti—sheep, goat anti-mouse, or goat anti-rabbit conjugated to Alexa Fluor™ 488,
976  Alexa Fluor™ 594, and Alexa Fluor™ 647 (1:1,000, Thermo Scientific). Donkey anti-mouse
977  and donkey anti-rabbit conjugated secondary antibodies were obtained from Jackson
978  ImmunoReserach. Embryos were mounted in ProLong Diamond antifade mountant (Thermo
979  Scientific) with DAPI. Primary antibodies were: a-PLK-1 (Budirahardja and Gonczy, 2008),
980  a-HCP-4 (Oegema et al., 2001), a-BUB-1, purified in house after immunisation of rabbits
981  using the sequence in (Desai et al., 2003),
982
983  Sequence alignments
984  Sequences shown in Figures 2C and 4B were aligned with Clustal Omega (Sievers et al.,
985  2011) and visualised with Jalview (Waterhouse et al., 2009).
986
987  Protein Purification
988  GST-BUB-1'%-628 and GST-HCP-4!-2!* proteins were expressed in Escherichia coli BL21
989  DE3 bacteria by diluting a saturated culture 1/100 in LB media supplemented with 35 pg/ml

990  ampicillin and incubating at 37°C/200 rpm until ODsgoo 0.6-0.8 was reached. IPTG was then
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added to a final concentration of 100 pM and cultures were incubated at 20°C/200 rpm for 16-
18 h. The bacterial cultures were then centrifuged (20 min/6,250 g/4°C) and pellets
resuspended in lysis buffer (50 mM Tris-HCIL, pH 7.5; 150 mM NacCl; 0.5 mM TCEP, 1X
Roche cOmplete protease inhibitors, EDTA free; 30-35 ml/L of culture). The cell suspension
was then sonicated (2 min 40 sec, 20 sec on/40 sec off) before centrifugation (45 min, 27,250
g, 4°C) to remove insoluble material. GSH sepharose beads were washed with 10 column
volumes (CV) of MilliQ water and equilibrated with 10 CV of binding buffer (50 mM Tris-
HCI, pH 7.5, 150 mM NacCl, 0.5 mM TCEP) before filtered (0.22 um PES filter) lysate was
added and batch bound at 4°C for 1.5-2 h. The beads were then collected in a column and
washed with at least 10 CV of binding buffer before being transferred to a falcon tube and
incubated overnight with GST-tagged 3C protease. After cleavage, the beads were collected
in a column and the flowthrough containing cleaved protein was concentrated in a Vivaspin
centrifugal concentrator. The protein was then further purified by size exclusion
chromatography in a Superdex 200 10/300 column (run in SEC buffer, see below) and
concentrated before being flash frozen in liquid nitrogen and stored at —80.
MBP-PLK1"BP (6xHIS-MBP tagged human PLK 13469 as per (Singh et al., 2021)) was
expressed and purified in the same manner as the GST tagged proteins with the following
exceptions: filtered lysate was passed through a cobalt-NTA column and washed with at least
10 CV of binding buffer (see buffers below) before elution in 0.5 CV fractions. Fractions
containing the protein were concentrated using Vivapsin centrifugal filters and further
purified by size exclusion chromatography (Superdex 200 10/300) in SEC buffer. Lysis buffer
(50 mM Tris-HCI, pH 7.5; 500 mM NaCl; 10 mM imidazole; 0.5 mM TCEP; 1X Roche
cOmplete protease inhibitors, EDTA free; 50 ml/L of culture); binding buffer (50 mM Tris-

HCI, pH 7.5; 500 mM NaCl; 10 mM imidazole; 0.5 mM TCEP); elution buffer (50 mM Tris-
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HCI, pH 7.5; 150 mM NaCl; 200 mM imidazole; 0.5 mM TCEP); SEC buffer (50 mM Tris-

HCIL, pH 7.5, 150 mM NacCl, 0.5 mM TCEP).

Kinase assays

Unless otherwise stated, kinase assays were conducted with 55 nM Cdk1:Cyclin B (Thermo
Scientific) and/or 75 nM PLK-1, produced as described in (Tavernier et al., 2015), at 30°C in
kinase buffer: 50 mM Tris-HCI, pH 7.5; 1 mM ATP; 10 mM MgCl,; 0.5 mM TCEP; 0.1 mM
EDTA. For the assays in Figure 2E and Figure S4; 0.4 pg/ul (8.2 uM) of BUB-1190-628
substrate was used and incubated under the above conditions for up to 2 h. The assay in
Figure 5A was conducted in the above conditions for up to 1 h with a substrate concentration
of 0.2 pg/ul (8.2 uM). The assay in Figure 2D was conducted with 165 nM Cdk1:Cyclin B
and 170 nM PLK-1 and incubated for 30 min at 37°C with the following buffer: 40 mM Tris-
HCIL, pH 7.5; 100 uM ATP, 10 mM MgCl,. BUB-1!90-928 concentration was 0.2 pg/ul (4.1
uM).

In all assays, aliquots of protein at the indicated timepoints were immediately added to an
equal volume of 2X LDS buffer (Thermo) and incubated at 70 degrees for 15 min. Assays
were assessed by SDS-PAGE combined with ProQ diamond phosphoprotein and coomassie

staining.

In vitro Binding Assays

BUB-1190-628 or CENP-CHCP-4(1-219) recombinant proteins were incubated for 50-60 min at
30°C in the presence or absence of ~100 nM Cdk1:Cyclin B in kinase buffer (see ‘kinase
assay’ section of methods). The respective proteins were then incubated for 50 min on ice
with MBP-PLK1PBP at a concentration of 20 uM in SEC buffer (50 mM Tris-HCI, pH 7.5;

150 mM NacCl; 0.5 mM TCEP). Assays were then centrifuged (13.3k rpm, 10 min, 4°C)
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1040  before being loaded onto a Superdex 200 10/300 SEC column. In all assays, 0.2 ml fractions
1041  were collected and selected fractions were assessed by SDS-PAGE with coomassie staining.
1042 More specifically; for the binding assays with BUB-1!90-%28 in Figure 2F-G, 200 pl of binding
1043  assay was loaded into a 0.5 ml loop and loaded onto the column with 2 ml of SEC buffer. For
1044  the CENP-CHCP-4(1-21%) a55ays in Figure 5B and Figure S5, 100 ul of assay was loaded onto
1045  al00 pl loop and loaded onto the column with 0.4 ml of SEC buffer.

1046

1047  Fluoresence Polarisation

1048  Fluoresence polarisation assays were conducted using FITC-labelled peptides (peptide

1049  sequences indicated in figures). For all assays: a 1:2 dilution series of MBP-PLK 1?BP

was
1050  conducted in FP buffer (50 mM Tris-HCI, pH 7.5, 150 mM NaCl, 0.5 mM TCEP) with a
1051  constant concentration of 100 nM FITC-labelled peptide. Assays were left for 10-30 min
1052 before briefly centrifuged and 10 pl of each concentration was loaded onto a black 384 well
1053  plate (Greiner) in triplicate. Plates were then centrifuged (2k rpm, 2 min) before being

1054  analysed in a PheraStar FS (BMG Labtech) under the following conditions: excitation: 485
1055  nm, emission: 520 nm, 25°C, positioning delay 0.3 s, 50 flashes per well, 9.3 mm focal
1056  height. Average mP for each triplicate was then plotted against the MBP-PLK 178D

1057  concentration using and a non-linear curve fitted using GraphPad Prism ‘One Site — Total’
1058  equation.

1059

1060  Phenotype Analysis

1061  We defined misalignment as metaphase defects. Alignment was counted within the 5 frames

1062 (1 min) before anaphase onset, which was the frame prior to the detection of two separating

1063  chromosome masses. When one bivalent was misaligned (either in angle or distance to
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1064  metaphase plate) it was recorded as mild metaphase defect. When two or more bivalents were
1065  misaligned, this was considered as a severe metaphase defect.
1066  The anaphase phenotype was assess during segregation. If lagging chromosome were detected
1067  during chromosome segregation but this was resolved before polar body extrusion, it was
1068  scored as mild anaphase defect. If we could not detect two segregating masses of
1069  chromosomes or if these masses differed in size/intensity, it was quantified as a severe
1070  anaphase defect.
1071  Polar body defect was recorded when no polar body was extruded or if all of the maternal
1072  DNA content was extruded as a polar body, with no maternal DNA remaining in the
1073  cytoplasm.
1074  Graphs were prepared using Graphpad Prism 9.0.

1075
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Table S1: C. elegans strains used in this study

GFP::tubulin; mCherry::histone

GFP::HCP-4

PLK-1::sfGFP

GFP::ASPM-1

PLK-1::sfGFP; mCherry::histone

hep-4(T163A)

bub-1(T527A)/hT2

plk-1(as)

GFP::tubulin; mCherry::histone; bub-1(T527A)/hT2

0ODg68

0D3410

0D2425

EU2861

FGP263

FGP669

FGP672

0OD3697

FGP674

1tS5i220[pOD1249/pSW077; Pmex-5::GFP::tbhb-
2::operon_linker::mCHerry: :his-11; cb-unc-119(+)]1

hep-4(1t72[GFP: :hep-4])1

plk-1(1t18[plk-1::sGFP]::loxp)IlI]

orl935[GFP::aspm-1]I1

pli-1(1t18[plk-1::sGFP]::loxp)ll; Itls37 [pAA64, pie-
1/mCHERRY::his-58; unc-119 (+)]1V

hep-4(fgp58[hep-4(T1634)])1

bub-1(fgp4[bub-1(T5274)])I; hT2 [bli-4(e937) let-
2(q782) qls48](I:11I)

plk-1((1t106[plk-1 C52V] 1t109[plk-1 L115G])LI

1tSi220[pOD1249/pSW077; Pmex-5::GFP::tbhb-
2::0peron_linker::mCHerry::his-11; cb-unc-119(+)]1;
bub-1(fgp4[bub-1(T527A4)])1; hT2 [bli-4(e937) let-
2(q782) qls48](I;111)

Taylor, Bel Borja et al.

(Green et al., 2013)
PMID: 24217623

(Cheerambathur et al., 2019)
PMID: 30827898

(Martino et al., 2017)
PMID: 29065307

(Connolly et al., 2015)
PMID: 26370499

This study

This study

This study

(Gomez-Cavazos et al., 2020)
PMID: 32619481

This study

49


https://doi.org/10.1101/2022.10.07.511262
http://creativecommons.org/licenses/by-nc/4.0/

1077

GFP::tubulin; mCherry::histone; plk-1(as)

PLK-1::sGFP; mCherry::histone; hcp-4(T163A)

GFP::ASPM-1; mCherry::histone; plk-1(as)

GFP::HCP-4; mCherry::histone; TIR1

FGP675

FGP719

FGP725

FGP311

1tS5i220[pOD1249/pSW077; Pmex-5::GFP::thb-
2::0operon_linker::mCHerry::his-11; cb-unc-119(+)]1;
plk-1((1t106/plk-1 C52V] It109/plk-1 L115G])III

pli-1(1t18[plk-1::sGFP]::loxp)ll; Itls37 [pAA64, pie-
1/mCHERRY::his-58; unc-119 (+)]1V; hcp-
4(fap58[hcp-4(T1634)])

orl935/GFP::aspm-1] I; itls37[pie-
Ip::mCherry::H2B::pie-1 3'UTR + unc-119(+)] IV;
plk-1((1t106[plk-1 C52V] It109/plk-1 L115G])III

hep-4(1t72[GFP::hep-4])1; Itls37 [pAA64; pie-
1/mCHERRY::his-58; unc-119 (+)]IV)I; ieSi65 [sun-
1p::TIRI::sun-1 3’'UTR + Cbr-unc-119(+)] II; unc-
119(ed3)II1

Taylor, Bel Borja et al.

This study

This study

This study

This study
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