

1
2 **Dystroglycan N-terminal domain enables LARGE1 to extend matriglycan on**
3 **α -dystroglycan and prevents muscular dystrophy**

4
5
6
7
8 **Hidehiko Okuma¹, Jeffrey M. Hord¹, Ishita Chandel¹, David Venzke¹, Mary E. Anderson¹,**
9 **Ameya S. Walimbe¹, Soumya Joseph¹, Zeita Gastel¹, Yuji Hara², Fumiaki Saito³,**
10 **Kiichiro Matsumura³, and Kevin P. Campbell^{1*}**

11
12
13
14 ¹Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized
15 Research Center, Department of Molecular Physiology and Biophysics and Department of
16 Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa
17 City, Iowa 52242, USA

18 ²Department Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of
19 Shizuoka, Shizuoka 4228526, Japan

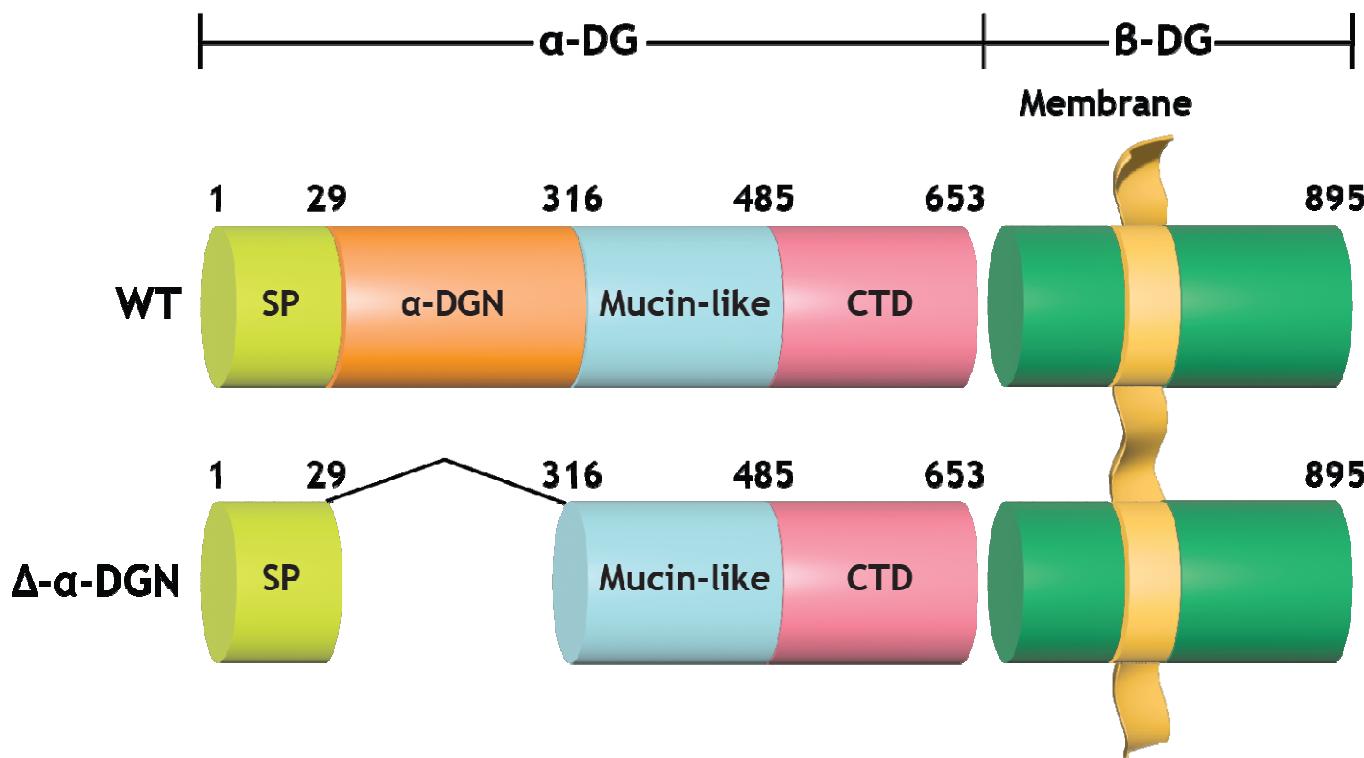
20 ³Department of Neurology, School of Medicine, Teikyo University, Tokyo 1738606, Japan

21

22 * Corresponding author

23 **Abstract**

24 Dystroglycan (DG) requires extensive post-translational processing to function as a
25 receptor for extracellular matrix proteins containing laminin-G-like (LG) domains. Matriglycan
26 is an elongated polysaccharide of alternating xylose and glucuronic acid that is uniquely
27 synthesized on α -dystroglycan (α -DG) by like-acetylglucosaminyltransferase-1 (LARGE1) and
28 binds with high affinity to matrix proteins like laminin. Defects in the post-translational
29 processing of α -DG that result in a shorter form of matriglycan reduce the size of α -DG and
30 decrease laminin binding, leading to various forms of muscular dystrophy. However, little is
31 known regarding mechanisms that generate full-length matriglycan on α -DG (~150-250 kDa).
32 Here, we show that LARGE1 can only synthesize a short, non-elongated form of matriglycan in
33 mouse skeletal muscle that lacks the DG N-terminus (α -DGN), resulting in a ~100-125 kDa α -
34 DG. This smaller form of α -DG binds laminin and maintains specific force but does not prevent
35 muscle pathophysiology, including reduced force induced by eccentric contractions and
36 abnormalities in neuromuscular junctions. Collectively, our study demonstrates that α -DGN is
37 required for LARGE1 to extend matriglycan to its full mature length on α -DG and thus prevent
38 muscle pathophysiology.

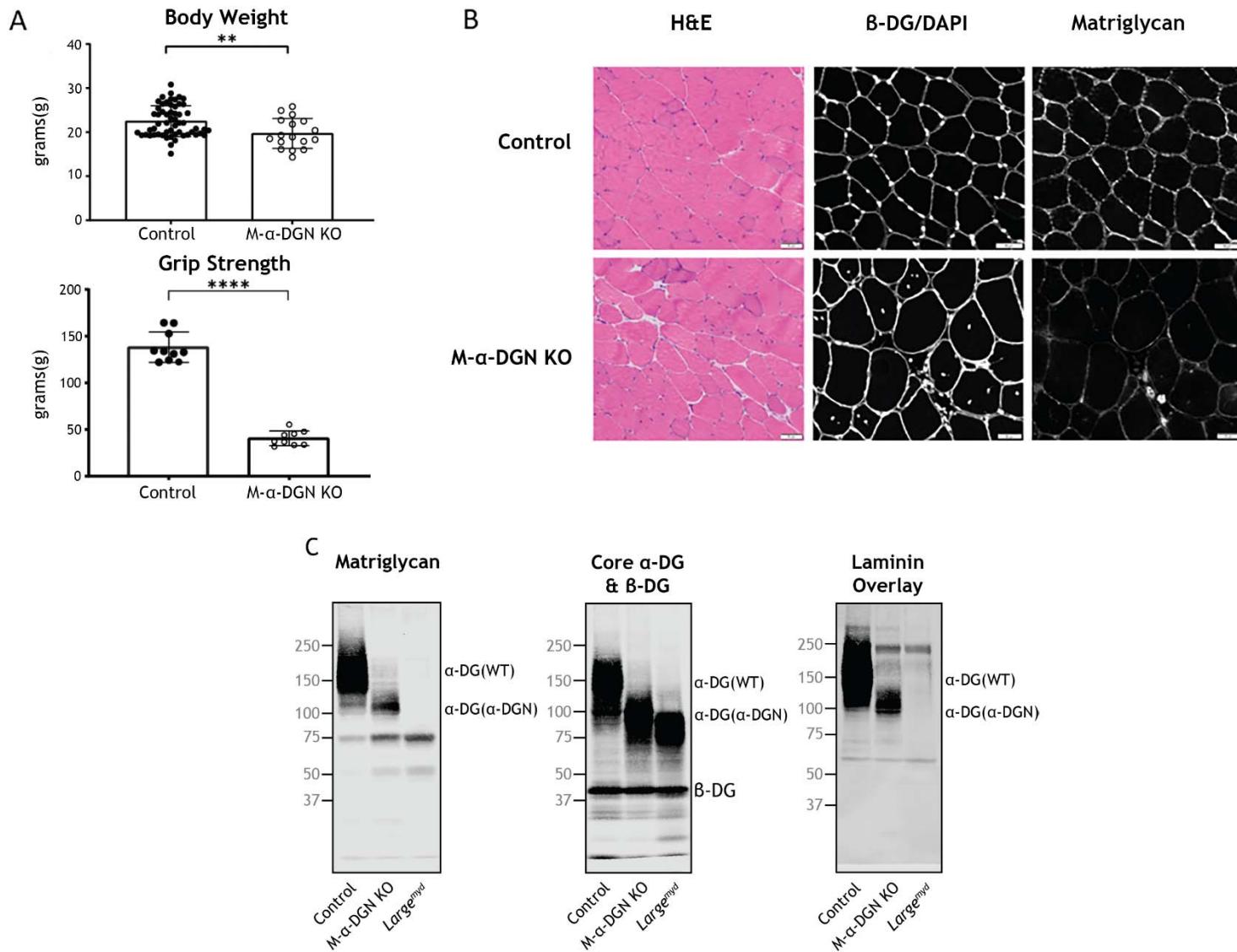

39 **Introduction**

40 The basement membrane is a specialized network of extracellular matrix macromolecules
41 that surrounds epithelium, endothelium, muscle, fat, and neurons (**Rowe and Weiss, 2008**).
42 Skeletal muscle cells are bound to the basement membrane through transmembrane receptors,
43 including dystroglycan (DG) and the integrins, which help maintain the structural and functional
44 integrity of the muscle cell membrane (**Roberts et al., 1985; Sonnenberg et al., 1988**;
45 **Ibraghimov-Beskrovnyaya et al., 1992; Han et al., 2009**). DG is a central component of the
46 dystrophin-glycoprotein complex (DGC). It is encoded by a single gene, DAG1, and cleaved into
47 α - and β -subunits (α -DG and β -DG, respectively) by post-translational processing (**Ibraghimov-**
48 **Beskrovnyaya et al., 1992**). Extensive *O*-glycosylation of α -dystroglycan (α -DG) is required for
49 normal muscle function, and defects in this process result in various forms of muscular
50 dystrophy. (**Michele et al., 2002; Yoshida-Moriguchi and Campbell, 2015**)

51 α -DG binds to ECM ligands containing laminin-G domains (e.g., laminin, agrin,
52 perlecan) that are essential components of the basement membrane (**Michele et al., 2002**). DG,
53 therefore, physically links the cell membrane to the basement membrane. This process requires
54 synthesis of matriglycan, a heteropolysaccharide [-GlcA- β 1,3-Xyl- α 1,3-]_n, on α -DG by the
55 bifunctional glycosyltransferase, like-acetylglucosaminyltransferase-1 (LARGE1) (**Chiba et al.,**
56 **1997; Michele et al., 2002; Inamori et al., 2012; Yoshida-Moriguchi and Campbell, 2015;**
57 **Hohenester, 2019; Michele et al., 2002; Ohtsubo and Marth, 2006**). *O*-glycosylation and the
58 glycosylation-specific kinase, Protein O-Mannose Kinase (POMK), which phosphorylates
59 mannose of the core M3 trisaccharide (GalNAc- β 1,3-GlcNAc- β 1,4-Man), are required to
60 produce full-length, high-molecular weight forms of matriglycan (**Yoshida-Moriguchi and**
61 **Campbell, 2015; Hohenester, 2019; Jae et al., 2013; Yoshida-Moriguchi et al., 2013; Zhu et**
62 **al., 2016**). In the absence of phosphorylation of core M3 by POMK, LARGE1 synthesizes a

63 short, non-elongated form of matriglycan on α -DG (**Walimbe et al., 2020**). Notably, a loss of
64 function in the post-translational addition of matriglycan causes dystroglycanopathies, which are
65 congenital and limb-girdle muscular dystrophies with or without brain and eye abnormalities.
66 Disease severity is dependent on the ability of matriglycan to bind ECM ligands, which is
67 dictated by its length and expression (**Goddeeris et al., 2013**): matriglycan that is low molecular
68 weight (e.g., short) can cause muscular dystrophy, even if its capacity to bind laminin-G domains
69 is not completely lost (**Puckett et al., 2009; Hara et al., 2011; Carss et al., 2013; Cirak et al.,**
70 **2013; Dong et al., 2015; Walimbe et al., 2020**). However, the regulation of matriglycan
71 elongation by factors other than POMK is still unknown.

72 α -DG is composed of three distinct domains: the N-terminal (α -DGN) domain, a central
73 mucin-like domain, and the C-terminal domain (**Figure 1**) (**Brancaccio et al., 1995**). α -DGN
74 functions as a binding site for LARGE1 in the Golgi and is required for the functional
75 glycosylation of the mucin-like domain of α -DG (**Kanagawa et al., 2004**). Therefore, we
76 hypothesized that α -DGN must be involved in regulating the production and elongation of
77 matriglycan. Here, we used a multidisciplinary approach to show that LARGE1 synthesizes a
78 non-elongated form of matriglycan on DG that lacks α -DGN (i.e., α -DGN-deleted dystroglycan)
79 resulting in ~100-125 kDa α -DG. This short form of matriglycan binds laminin and maintains
80 muscle-specific force. However, it fails to prevent lengthening contraction-induced reduction in
81 force, neuromuscular junction abnormalities, or dystrophic changes in muscle, as these effects
82 require the expression of α -DG with the matriglycan modification that is at least 150 kDa.
83 Therefore, this study shows that LARGE1 requires α -DGN to generate full-length (~150-250
84 kDa) matriglycan in skeletal muscle, but synthesis of a shorter form of matriglycan still occurs in
85 the absence of this domain.

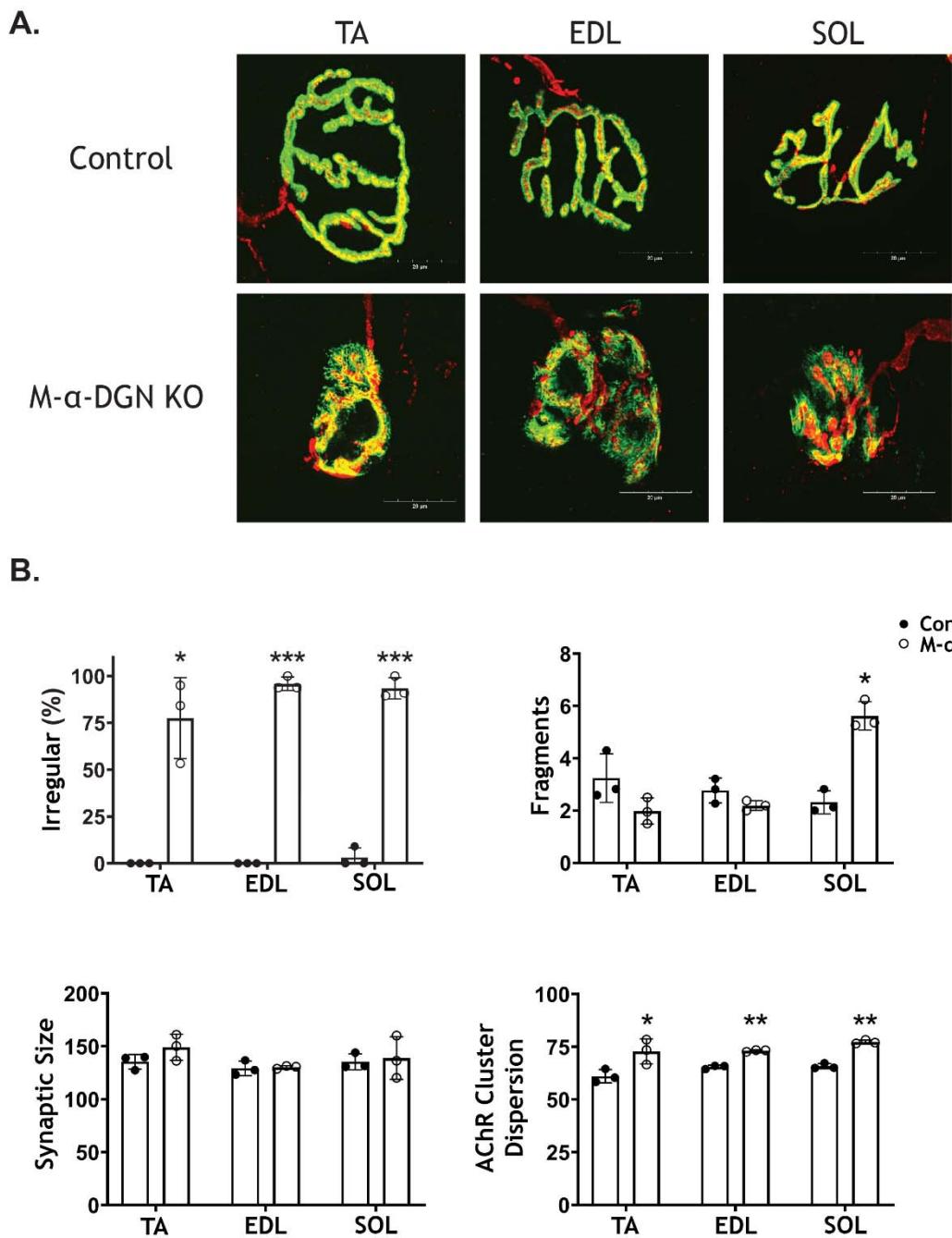

86

87 **Figure 1. Domain structure of DG and Δ-α-DGN.** Wild-type DG is a pre-protein with an
88 N-terminal signal peptide (light green) that is translated in the rough endoplasmic reticulum. The
89 globular N-terminal domain (α-DGN; orange) is present in wild-type DG but absent in the
90 mutant (Δ-α-DGN). The junction between α-DGN and the mucin-like domain (light teal)
91 contains a furin convertase site. The globular extracellular C-terminal domain (CTD; pink)
92 contains a SEA (sea urchin sperm protein, enterokinase and agrin) autoproteolysis site, which
93 cleaves pro-DG into α-DG and β-DG (green). Glycosylation has been omitted for clarity.

94 **Results**

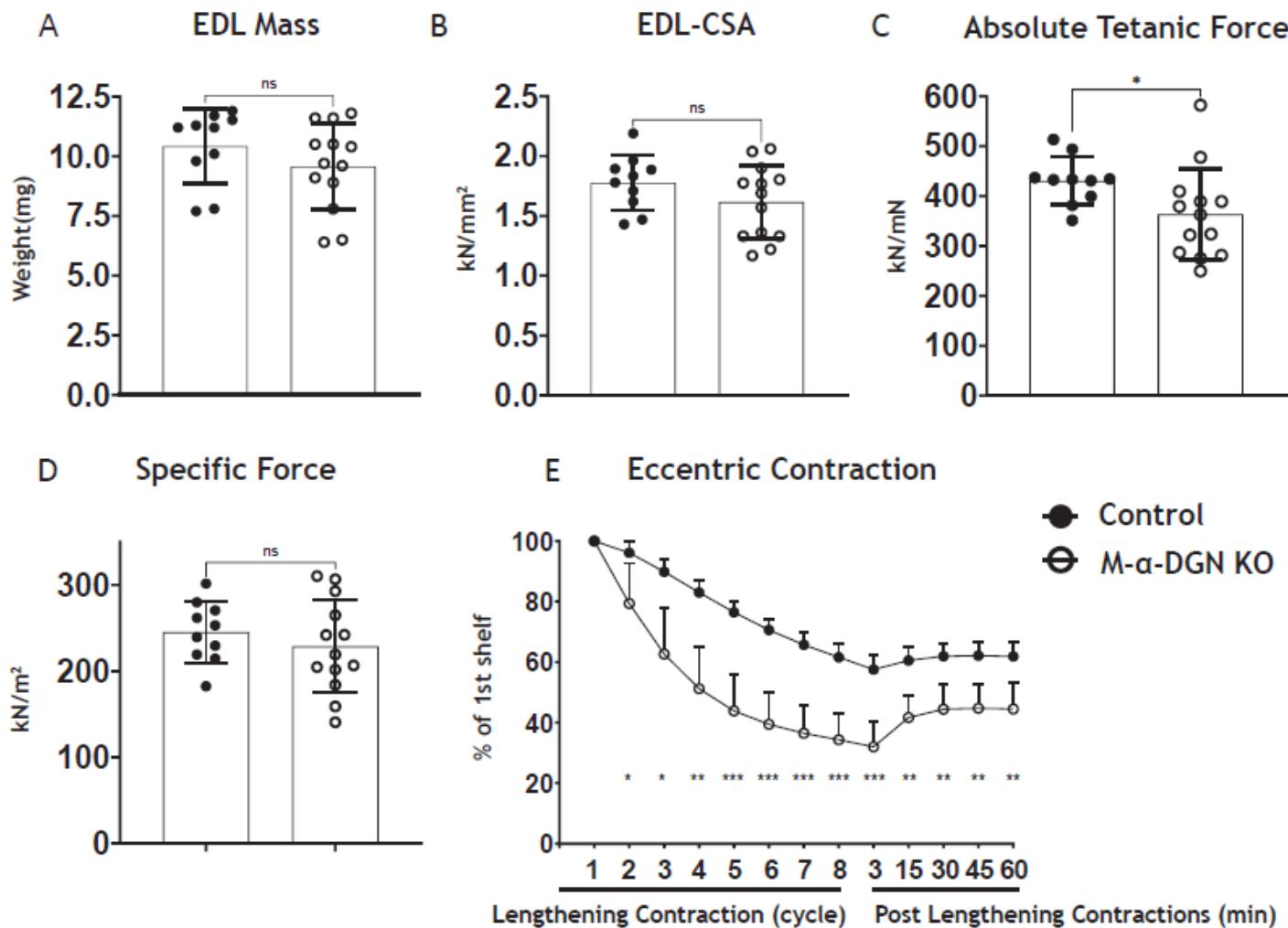
95 To ablate α -DGN in skeletal muscle, we used mice expressing Cre recombinase under the
96 control of the *paired box 7* (*Pax7*) promoter (*Pax7*^{Cre}), floxed DG mice (*Dag1*^{fl/fl}), and
97 heterozygous α -DGN deleted mice (*Dag1*^{wt/Δα-DGN}) to generate *Pax7*^{Cre}*Dag1*^{fl/fl} $\Delta\alpha$ -DGN (M- α -DGN
98 KO) mice (**Figure 2**). Constitutive deletion of DG in mice causes embryonic lethality due to the
99 absence of Reichert's membrane, an extraembryonic basement membrane required for *in utero*
100 development (**Williamson et al., 1997**). Deletion of α -DGN in mice also causes embryonic
101 lethality (**de Greef et al., 2019**). However, mice that are heterozygous for α -DGN deletion are
102 viable and express α -DG of two different sizes (**Figure 2-figure supplement 1**) corresponding to
103 both wild-type (WT) and the α -DGN-deleted ($\Delta\alpha$ -DGN) forms of DG.

104 To evaluate the gross phenotype of mice expressing only α -DGN-deleted DG in skeletal
105 muscle (i.e., M- α -DGN KO mice), we first measured body weight and grip strength. M- α -DGN
106 KO mice were lower in weight than WT littermates (control) mice at 12 weeks and they
107 exhibited decreased forelimb grip strength (**Figure 2A**). To determine whether deletion of α -
108 DGN affects matriglycan expression, we performed histological analysis of quadriceps muscle
109 from control or M- α -DGN KO mice. M- α -DGN KO mice showed characteristic features of
110 muscular dystrophy, including an increase in centrally nucleated fibers (**Figure 2B**).
111 Immunofluorescence analyses of M- α -DGN KO muscle showed reduced levels of matriglycan
112 relative to controls, but a similar expression of β -DG, the transmembrane subunit of DG (**Figure**
113 **2B**).


114

115 **Figure 2. Characterization of muscle-specific α -DGN-deficient mice** (A) Body weight and
116 grip strength of 12-week-old WT littermates (control) and M- α -DGN KO mice. Double and
117 quadruple asterisks: statistical significance determined by Student's unpaired t-test (**p-
118 value=0.005, ****p-value<0.0001). (B) Histological analyses of quadriceps muscles from 12-
119 week-old control and M- α -DGN KO mice. Sections stained with H&E or used for
120 immunofluorescence to detect β -DG (affinity purified rabbit anti- β -DG), DAPI, and matriglycan
121 (IIH6). (C) Immunoblot analysis of quadriceps skeletal muscle from control, M- α -DGN KO, and
122 Large myd mice. Glycoproteins were enriched using wheat-germ agglutinin (WGA)-agarose with
123 10 mM EDTA. Immunoblotting was performed to detect matriglycan (IIH11), core α -DG, β -DG
124 (AF6868), and laminin overlay. α -DG in WT control muscle (α -DG (WT)) and α -DG in α -DGN-
125 deficient muscle (α -DG (Δ α -DGN)) are indicated on the right. Molecular weight standards in
126 kilodaltons (kDa) are shown on the left.

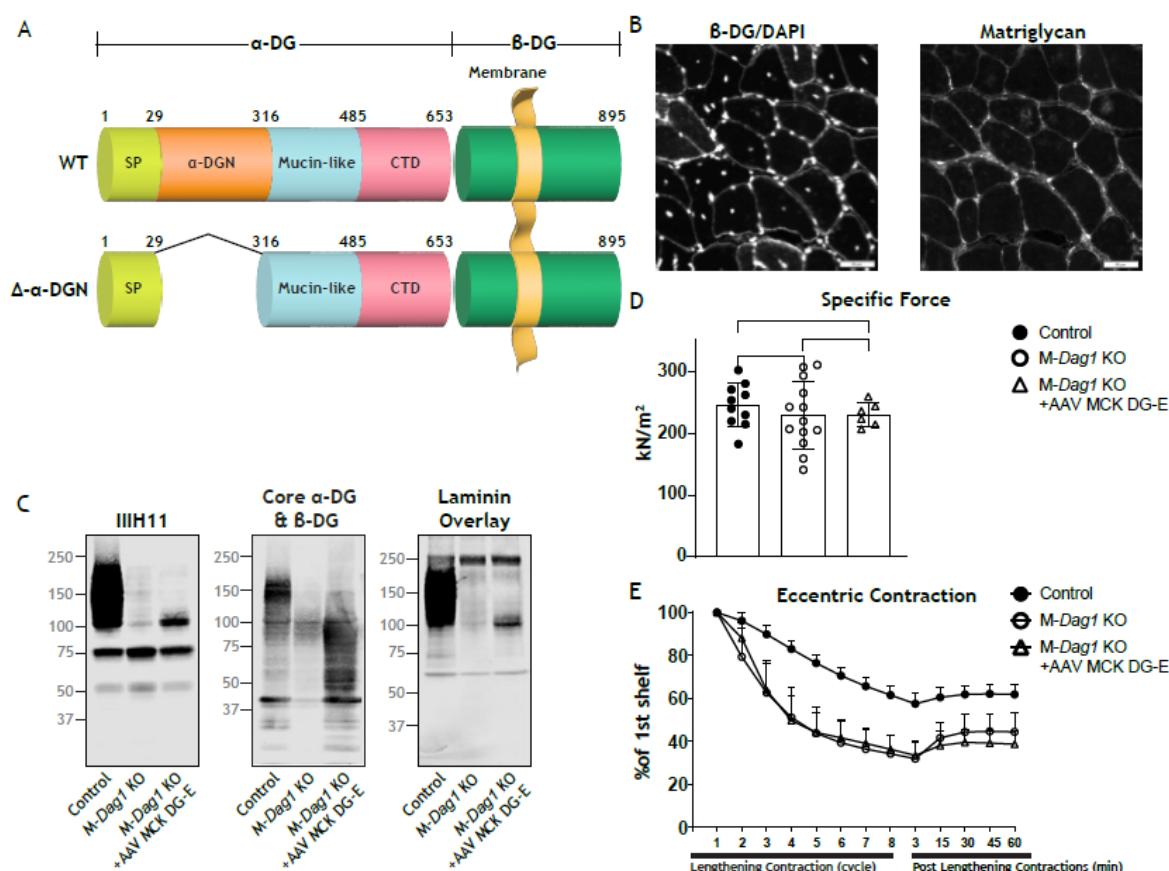
127 Immunoblot analysis of skeletal muscle from M- α -DGN KO mice demonstrated
128 expression of a shorter form of matriglycan resulting in a ~100-125 kDa α -DG, a decrease in the
129 molecular weight of the core α -DG, and no change in β -DG (**Figure 2C**). No matriglycan is seen
130 in *Large*^{myd} mice which have a deletion in *Large1* (**Figure 2C**). To investigate how the loss of α -
131 DGN affected ligand binding, we performed a laminin overlay using laminin-111. Skeletal
132 muscle from control mice showed a broad band centered at ~100-250 kDa, indicative of α -DG-
133 laminin-binding; in contrast, we observed laminin-binding at ~100-125 kDa in M- α -DGN KO
134 skeletal muscle (**Figure 2c**). To further confirm that the ~100-125 kDa band seen with anti-
135 matriglycan antibodies in M- α -DGN KO muscle is matriglycan, we digested it overnight with β -
136 glucuronidase (*Thermotoga maritima*) and α -xylosidase (*Sulfolobus solfataricus*). Immunoblot
137 analysis after digestion with anti-matriglycan antibodies or laminin overlay revealed that the
138 ~100-125 kDa was completely lost, indicating that the ~100-125 kDa band is indeed matriglycan
139 on α -DG (**Figure 2-figure supplement 2**).


140 The neuromuscular junctions (NMJs) in adult control mice showed a normal pretzel-like
141 shape whereas NMJs from M- α -DGN KO mice displayed a variety of abnormalities, including a
142 granular appearance and AChR-rich streaks extending beyond the pre-synaptic terminal (**Figure**
143 **3**). Postsynaptic morphology in adult M- α -DGN KO mice was predominately irregular in the
144 tibialis anterior (TA), extensor digitorum longus (EDL), and soleus (SOL) muscles (**Figure 3**).
145 Although the overall synaptic size did not differ between controls and M- α -DGN KO mice, the
146 dispersion of AChR clusters was greater in the M- α -DGN KOs (**Figure 3**), in line with an
147 increased percentage of plaque-like formations and AChR extensions that projected beyond the
148 nerve terminal. Despite the post-synaptic abnormalities, all NMJs from M- α -DGN KO mice
149 were fully innervated.

150 To determine the effect that the loss of α -DGN has on muscle force production, we
151 characterized the phenotype and function of EDL muscles in 12-17-week-old WT (control) and
152 M- α -DGN KO mice. Specifically, we measured muscle mass, muscle cross-sectional area
153 (CSA), production of absolute isometric tetanic force, specific force, and lengthening
154 contraction-induced reduction in force. Muscle mass and CSA were comparable between control
155 and M- α -DGN KO mice (**Figure 4A and B**). Although the production of absolute isometric
156 tetanic force was significantly lower in M- α -DGN KO mice than in control mice (**Figure 4C**),
157 specific forces were comparable between the two groups when normalized to muscle CSA
158 (**Figure 4D**). Lengthening contraction-induced reduction in force for M- α -DGN KO EDL
159 remained greater than those from control EDL for the entire 60 minutes that muscles were
160 assessed (**Figure 4E**). These results suggest that the short form of matriglycan on α -DG in M- α -
161 DGN KO mice enables force production but cannot prevent force reduction caused by
162 lengthening contractions. POMK KO skeletal muscle also expresses a short form of matriglycan,
163 similar to M- α -DGN KO muscle, which maintains force production but cannot prevent
164 lengthening contraction-induced force decline (*Walimbe et al., 2020*). Therefore, we compared
165 the muscle function of EDL muscles from POMK KO mice with those from M- α -DGN KO *ex*
166 *vivo*. We did not observe significant differences in lengthening contraction-induced force deficits
167 between the two mouse strains (**Figure 4-figure supplement 1**). These results suggest that
168 matriglycan of a similar molecular weight exhibits similar muscle force production and
169 lengthening contraction-induced force decline.

170

171 **Figure 3. α -DGN deficiency results in postsynaptic defects.** Neuromuscular junctions (NMJs)
172 from tibialis anterior (TA), extensor digitorum longus (EDL), and soleus (SOL) muscles
173 obtained from 35-39-week-old adult control and M- α -DGN KO mice. (A) Representative images
174 of post-synaptic terminals (α -BTX-488; green), motor axons (anti-neurofilament-H; red), and
175 pre-synaptic terminals (anti-synaptophysin; red) from TA, EDL, and SOL muscles. Scale bars =
176 20 μ m. (B) Scoring of postsynaptic defects by blinded observers (scoring criteria described in
177 Methods). Statistical significance determined by Student's unpaired t-test; * p-value < 0.05; **
178 p-value < 0.001; *** p-value < 0.0001.

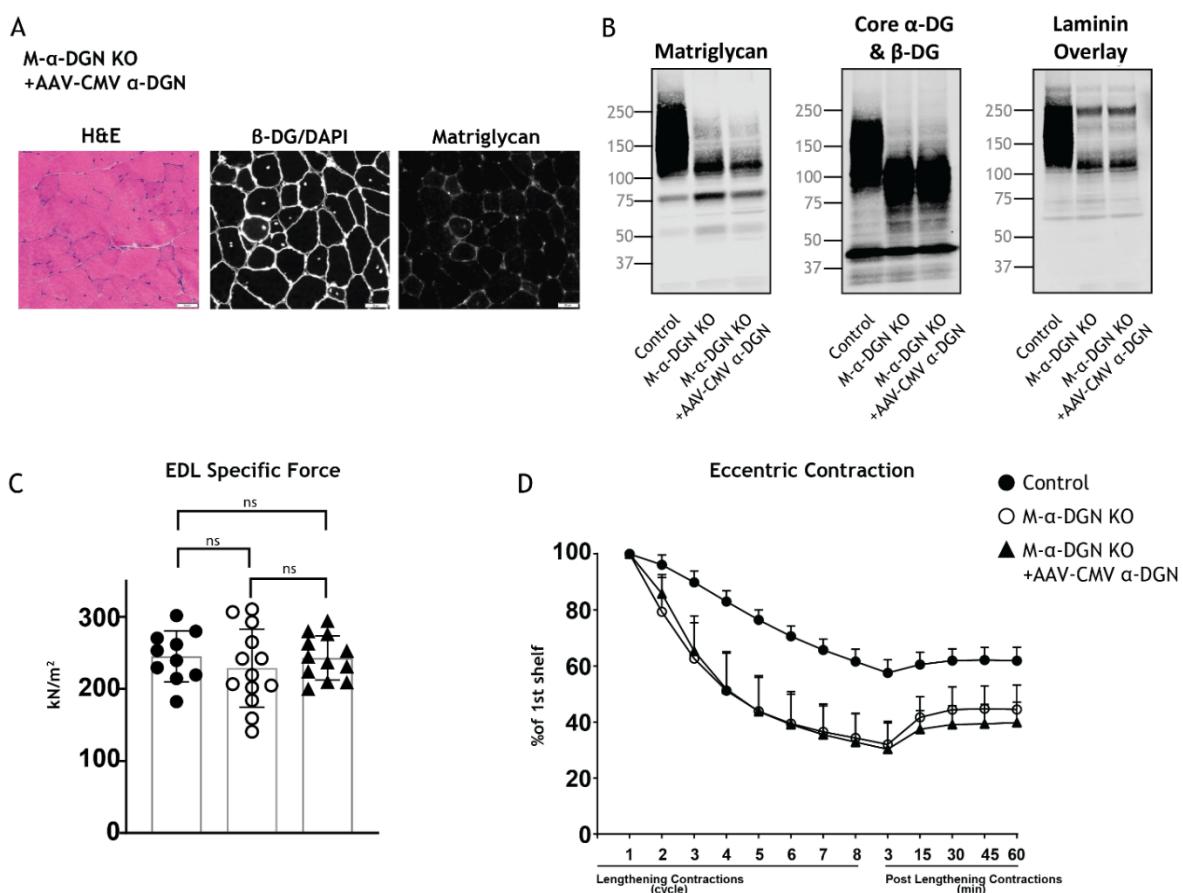


179
180 **Figure 4. α -DGN-deficient Extensor Digitorum Longus (EDL) muscle demonstrates a**
181 **decline in lengthening contraction-induced force. (A) Weight (milligrams) of EDL muscles**
182 **from WT littermates (controls) and M- α -DGN KO mice; p=0.2469, as determined by Student's**
183 **unpaired t-test. (B) Cross-sectional area of EDL muscles; p=0.1810, as determined by Student's**
184 **unpaired t-test. (C) Maximum absolute tetanic force production in EDL muscles. p=0.0488, as**
185 **determined by Student's unpaired t-test. (D) Specific Force production in EDL muscles;**
186 **p=0.4158, as determined by Student's unpaired t-test. (E) Force deficit and force recovery after**
187 **eccentric contractions in EDL muscles from 12- to 17-week-old male & female control (closed**
188 **circles; n=7) and M- α -DGN KO (open circles; n=7) mice. *p<0.05; **p<0.01; ***p<0.001, as**
189 **determined by Student's unpaired t-test of at any given lengthening contractions cycle. Bars**
190 **represent the mean +/- the standard deviation.**

191 We next determined if exogenous DG lacking α -DGN (**Figure 5**) produces the short form
192 of matriglycan. We first produced muscle-specific DG KO mice to achieve muscle-specific
193 deletion of DG. To do this, we used mice expressing Cre under control of the paired box 7
194 (Pax7) promoter (Pax7-Cre) and *Dag1*^{fl/fl} mice to generate Pax7Cre; *Dag1*^{fl/fl} (M-*Dag1*
195 KO) mice. To assess muscle function, we evaluated muscle-specific force and lengthening
196 contraction-induced reduction in force *ex vivo*, which showed that muscle-specific force was
197 significantly decreased and that muscles were more susceptible to lengthening contraction-
198 induced force decline in the absence of DG (**Figure 5-figure supplement 1**). Collectively, these
199 results show that M-*Dag1* KO mice harbor a more complete deletion of DG in muscle than the
200 previously generated mouse model (MCK-Cre *Dag1*^{fl/fl}) harboring muscle-specific deletion of
201 DG (*Cohn et al., 2002*). To assess the presence of DG, we performed immunostaining of
202 quadriceps muscles from 12-week-old M-*Dag1* KO mice, which showed the absence of DG-
203 positive fibers (**Figure 5-figure supplement 1**). Immunoblot analysis showed that matriglycan
204 and α -DG derived from skeletal muscle were not observed in M-*Dag1* KO mice (**Figure 5-**
205 **figure supplement 1**). This is consistent with prior reports showing that only peripheral-nerve
206 derived matriglycan of 110 kDa is observed in M-*Dag1* KO mice in the presence of EDTA,
207 which improves the extraction of matriglycan positive α -DG and acts as a protease inhibitor by
208 chelating calcium (*Saito et al., 2003*).

209 We next generated an adeno-associated virus (AAV) construct of DG lacking the α -DGN
210 (AAV-MCK DG-E; **Figure 5A**), which we injected into M-*Dag1* KO mice through the retro-
211 orbital sinus. A previous report found that matriglycan was not produced when a similar
212 adenovirus construct of DG lacking the α -DGN was used to infect ES cells (*Kanagawa et al.,*
213 **2004**). However, we found that matriglycan of similar size was produced in M-*Dag1* KO mice

214 injected with AAV-MCK DG-E as in M- α -DGN KO mice (**Figure 5**). Immunofluorescence
215 analysis of quadriceps muscle from M-*Dag1* KO mice injected with AAV-MCK DG-E showed
216 decreased immunoreactivity to matriglycan-positive muscle fibers but restored expression of β -
217 DG (**Figure 5B**). Immunoblot analysis of skeletal muscle from M-*Dag1* KO mice injected with
218 AAV-MCK-DG-E showed expression of α -DG containing matriglycan around ~100-125 kDa
219 (**Figure 5C**), which was the same size as α -DG with matriglycan in M- α -DGN KO (**Figure 2C**).
220 The molecular weight of α -DG was decreased in muscle from these mice, similar to that
221 observed in M- α -DGN KO mice, whereas the molecular weight of β -DG was unchanged relative
222 to M- α -DGN KO mice (**Figure 2C**). We also observed laminin-binding at ~100-125 kDa in
223 muscle from M-*Dag1* KO + AAV-MCK DG-E mice (**Figure 5C**). In addition, we assessed the
224 physiologic effects of expressing DG without the N-terminal domain. We observed that the
225 specific force was comparable in M-*Dag1* KO + AAV-MCK DG-E and M- α -DGN KO mice
226 (**Figure 5D**) and that the two groups exhibited similar amounts of lengthening contraction-
227 induced force decline (**Figure 5E**). Therefore, these data demonstrate that AAV-mediated
228 delivery of exogenous DG lacking the α -DGN into an M-*Dag1* KO mouse also produces short
229 matriglycan and exhibits the same muscle function as M- α -DGN KO mice.

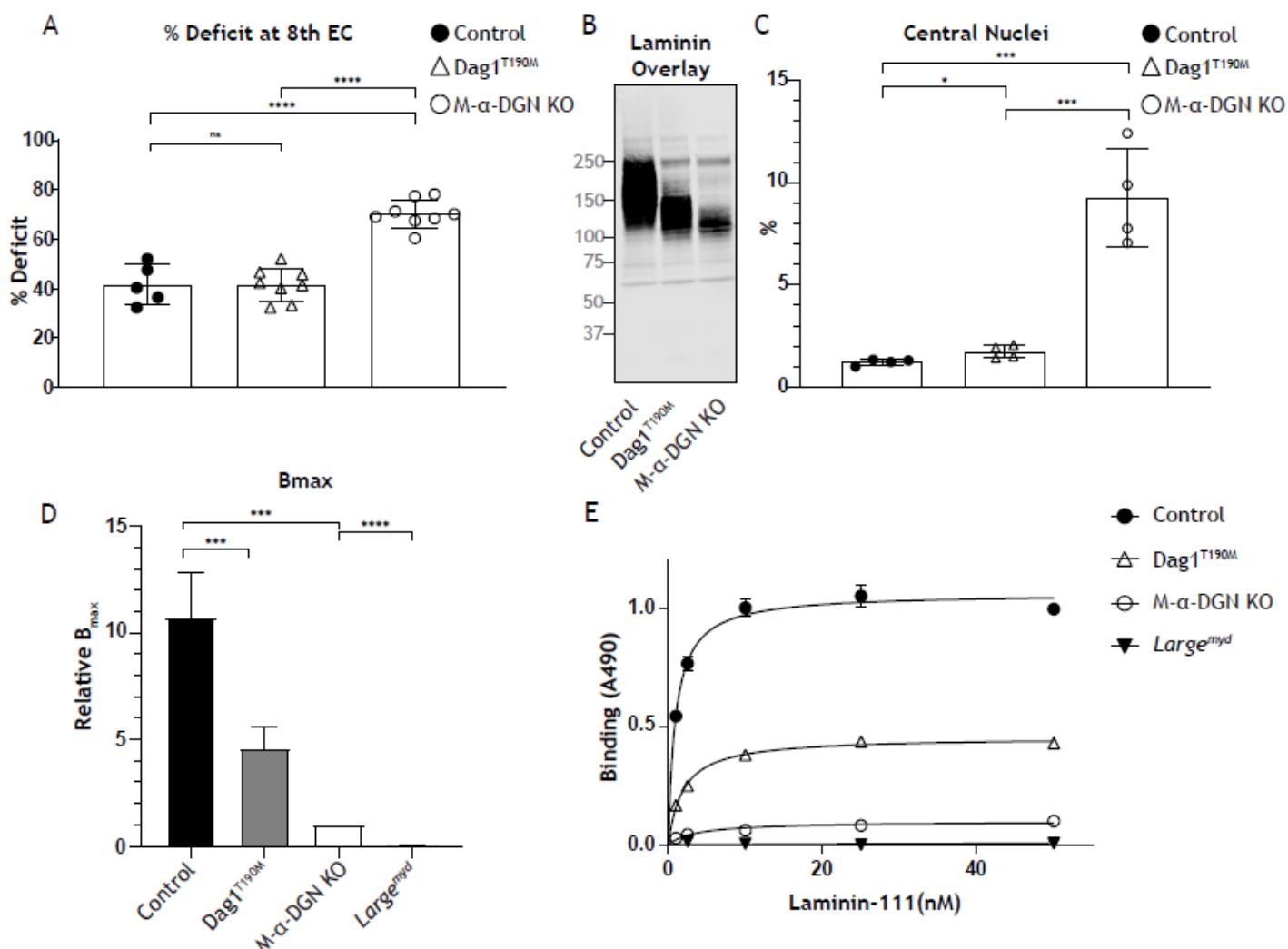


230

231 **Figure 5. Exogenous α-DGN-deficient DG also produces short matriglycans similar to M-**
232 **Dag1 KO mice. (A)** Schematic representation of WT DG, adeno-associated virus (AAV), and a
233 mutant DG in which the N-terminal domain has been deleted (DG-E) adeno-associated virus. α-
234 DG is composed of a signal peptide (SP, amino acids 1–29), an N-terminal domain (amino acids
235 30–316), a mucin-like domain (amino acids 317–485), and a C-terminal domain (amino acids
236 486–653). The green box represents β-DG. **(B)** Immunofluorescence analyses of quadriceps
237 muscles from 12-week-old M-Dag1 KO mice injected with AAV-MCK DG-E to detect β-DG,
238 nuclei (DAPI) and matriglycan (IIH6). **(C)** Immunoblot analysis of skeletal muscle obtained
239 from littermate controls (control), M-Dag1 KO mice or M-Dag1 KO mice injected with AAV-
240 MCK DG-E. Glycoproteins were enriched from quadriceps skeletal muscles using WGA-agarose
241 with 10 mM EDTA. Immunoblotting was performed to detect matriglycan (IIH11), core α-DG
242 and β-DG (AF6868), and laminin (overlay). **(D)** Production of specific force in EDL muscles
243 from 12- to 17-week-old male & female M-Dag1 KO mice (controls; closed circles, n=10); M-α-
244 DGN KO mice (open circles, n=13); and M-Dag1 KO+AAVMCK DG-E mice (open triangles,
245 n=6). P-values determined by Student's unpaired t-test; controls vs M-Dag1 KO: p=0.4158;
246 controls vs M-Dag1 KO+AAVMCK DG-E: p=0.3632; M-Dag1 KO vs M-Dag1 KO+AAVMCK
247 DG-E: p=0.948. **(E)** Force deficits and recovery in EDL muscles from mice in D. There is no
248 significant difference in M-Dag1 KO vs M-Dag1 KO+AAVMCK DG-E as determined by
249 Student's unpaired t-test at any given lengthening contraction cycle or post-lengthening
250 contraction.

251 Our studies show that DG lacking the α -DGN expresses a short form of matriglycan; this
252 suggests that α -DGN is necessary for the production of full-length matriglycan. To test this
253 hypothesis, we determined if matriglycan expression could be restored in mice lacking α -DGN.
254 We injected M- α -DGN KO mice with an AAV expressing α -DGN (AAV-CMV α -DGN) and
255 harvested the skeletal muscles of these mice eight to ten weeks after injection. H&E staining in
256 M- α -DGN KO mice injected with AAV-CMV α -DGN was unchanged from M- α -DGN KO mice
257 (**Figure 2B, 6A**). Quadriceps muscles from M- α -DGN KO mice injected with AAV-CMV α -
258 DGN showed a reduced intensity of matriglycan relative to littermate controls (**Figure 6A**).
259 Immunoblot analysis of these mice showed that matriglycan had a molecular weight of ~100-125
260 kDa and the size of α -DG was shifted down, whereas β -DG remained unchanged (**Figure 6B**).
261 Laminin-binding was observed at ~100-125 kDa in M- α -DGN KO skeletal muscle infected with
262 AAV-CMV α -DGN (**Figure 6B**). Collectively, this phenotype is similar to that observed in the
263 skeletal muscles of M- α -DGN KO mice. Expressing α -DGN in M- α -DGN KO mice did not alter
264 specific force or improve force deficits induced by lengthening contractions (**Figure 6C, 6D**).
265 Thus, supplementing M- α -DGN KO skeletal muscle with α -DGN fails to improve matriglycan
266 elongation.

267 To determine if excess LARGE1 produces full-size matriglycan in M- α -DGN KO
268 muscle, we evaluated immunoblot analysis of skeletal muscle from littermate controls, M- α -
269 DGN KO, and M- α -DGN KO mice injected with AAV-MCK-Large1. M- α -DGN KO mice
270 injected with AAV-MCK-Large1 demonstrated no change in the molecular weight of
271 matriglycan, α -DG, and β -DG relative to M- α -DGN KO. A laminin overlay using laminin-111
272 also showed no change (**Figure 6-figure supplement 1**). These results indicate that even if
273 LARGE1 is overexpressed, full-size matriglycan cannot be produced without α -DGN.



274

275 **Figure 6. Expression of α -DGN in M- α -DGN KO mice does not rescue matriglycan**
276 **elongation.** (A) Representative sections of quadriceps muscles from 17-week-old M- α -DGN KO
277 mice injected with AAV-CMV α -DGN. Sections were stained with H&E and
278 immunofluorescence to detect matriglycan (IIH6) and β -DG (AP83). (B) Immunoblot analysis of
279 skeletal muscle obtained from littermate controls or M- α -DGN KO mice and M- α -DGN KO
280 mice injected with AAV-CMV α -DGN (M- α -DGN KO+AAV-CMV α -DGN). Glycoproteins
281 were enriched using WGA-agarose with 10 mM EDTA. Immunoblotting was performed to
282 detect matriglycan (IIIH11), core α -DG and β -DG (AF6868), and laminin overlay. (C)
283 Production of specific force in EDL muscles from 12- to 17-week-old male & female M- α -DGN
284 WT littermates (controls; closed circles, n=10); M- α -DGN KO (open circles, n=13); and M- α -
285 DGN KO+AAV-CMV α -DGN (closed triangles, n=12). P-values determined by Student's
286 unpaired t-test; controls vs M- α -DGN KO+AAV-CMV α -DGN: p=0.8759; controls vs M- α -
287 DGN KO: p=0.4333; M- α -DGN KO vs M- α -DGN KO+AAV-CMV α -DGN: p=0.4333. (D)
288 Force deficit and force recovery after lengthening contractions in EDL muscles from 12- to 17-
289 week-old male & female M- α -DGN KO WT littermates (controls, closed circles; n=6) and M- α -
290 DGN KO (KO, open circles; n=7) mice, and in M- α -DGN KO mice injected with AAV-CMV α -
291 DGN (KO+AAV-CMV α -DGN, closed triangles; n=8). There is no significant difference in M-
292 α -DGN KO vs M- α -DGN KO+AAV-CMV α -DGN as determined by Student's unpaired t-test at
293 any given lengthening contractions cycle or post lengthening contractions.

294 The length of matriglycan is correlated with its ability to bind ECM ligands (*Goddeeris et*
295 *al., 2013*). Therefore, we hypothesized that the susceptibility to force decline by lengthening
296 contractions would differ depending on the length of matriglycan. To test this, we performed
297 physiological muscle tests in three different mouse models to determine the difference in
298 susceptibility to lengthening contraction-induced reduction in force. Specifically, we used: 1) M-
299 α -DGN KO mice, which express a short form of matriglycan, 2) *Dag1^{T190M}* mice, which harbor a
300 knock-in mutation (T190M) in *DAG1* that inhibits the DG-LARGE1 interaction and leads to
301 incomplete post-translational modification of α -DG (*Hara et al., 2011*), and 3) C57BL/6J WT
302 (C57) mice, which have full-length matriglycan. The percent deficit value of the 8th eccentric
303 contraction (EC) shows the largest difference in the EC protocol; therefore, we compared these
304 values between our three different mouse models (*Figure 7A*). M- α -DGN KO mice showed a
305 significantly higher percent deficit ($70.2\% \pm 5.7$) compared to C57 ($41.7\% \pm 8.0$) and *Dag1^{T190M}*
306 (41.6 ± 6.7) mice, with no difference observed between the latter groups. Immunoblot analysis of
307 laminin in skeletal muscle showed α -DG laminin-binding at \sim 150-250 kDa in skeletal muscle
308 from C57 mice, \sim 100-150 kDa in skeletal muscle from *Dag1^{T190M}* mice, and \sim 100-125 kDa in
309 skeletal muscle from M- α -DGN KO mice (*Figure 7C*). Moreover, the percentage of centrally
310 nucleated fibers differed significantly in *Dag1^{T190M}* ($1.73\% \pm 0.31$) and M- α -DGN KO
311 ($9.28\% \pm 2.41$) mice compared to C57 mice ($1.22\% \pm 0.15$) (*Figure 7B*). The reduction of laminin-
312 binding activity of α -DG is thought to be the main cause of dystroglycanopathy (*Kanagawa et*
313 *al., 2009; Goddeeris et al., 2013*). Indeed, we observed a reduced binding capacity (relative
314 B_{max}) for laminin-111 in solid-phase binding analyses in skeletal muscle from M- α -DGN KO and
315 *Dag1^{T190M}* mice compared to skeletal muscle from C57 mice (10.7-fold and 2.3-fold difference
316 relative to WT, respectively) (*Figure 7D*). However, the binding capacity of skeletal muscle

317 from $Dag1^{T190M}$ and M- α -DGN KO mice was higher than that of $Large^{myd}$ muscle (**Figure 7E**).
318 M- α -DGN KO and $Dag1^{T190M}$ also displayed an increase in dissociation constant (**Figure 7E**).
319 Collectively, these results suggest that α -DG positive matriglycan of at least ~150 kDa is
320 sufficient to prevent force decline from lengthening contractions and significant dystrophic
321 changes, despite a 45% reduction in laminin-binding activity.

322

323 **Figure 7. Relationship between matriglycan length and dystrophic phenotype.** (A) % deficit
324 of 8th eccentric contraction (EC) in EDL muscles from C57BL/6J WT (control), M-α-DGN KO,
325 and *Dag1*^{T190M} mice. p-values determined by Student's unpaired t-test; control vs *Dag1*^{T190M}:
326 p=0.0263; control and *Dag1*^{T190M} vs M-α-DGN KO: p<0.001. (B) Percentage of muscle fibers
327 with central nuclei in 12- to 19-week-old control, *Dag1*^{T190M} and M-α-DGN KO mice; n=4 for all
328 groups. P-values determined by Student's unpaired t-test; control and *Dag1*^{T190M} vs M-α-DGN
329 KO: p<0.001; control vs *Dag1*^{T190M}: p=0.0263. (C) Immunoblot analysis of quadriceps skeletal
330 muscles from control, *Dag1*^{T190M} and M-α-DGN KO mice. Glycoproteins were enriched using
331 WGA-agarose with 10 mM EDTA. Immunoblotting was performed with laminin (laminin
332 overlay). (D) Comparison of average solid-phase determined relative B_{max} values for laminin.
333 B_{max} values for M-α-DGN KO were set to 1 to allow for direct comparisons; error bars indicate
334 s.e.m. P-values determined using Student's unpaired t-test; control vs *Dag1*^{T190M} and control vs
335 M-α-DGN KO: p<0.01, and M-α-DGN KO vs *Large*^{myd}: p<0.001. (E) Solid-phase analysis of
336 laminin-binding using Laminin-111 in skeletal muscle from control, *Dag1*^{T190M}, M-α-DGN KO,
337 and *Large*^{myd} KO mice (three replicates for each group). Control K_d: 0.9664 ± 0.06897 nM;
338 *Dag1*^{T190M} K_d: 1.902 ± 0.1994 nM; and M-α-DGN KO K_d: 2.322 ± 0.6114 nM.

339 **Discussion**

340 Functional glycosylation of α -DG requires α -DGN (*Kanagawa et al., 2004; Hara,*
341 *Kanagawa, et al., 2011*). However, it remains unclear how the loss of α -DGN affects
342 matriglycan synthesis. Here, we show that the lack of α -DGN does not preclude matriglycan
343 synthesis entirely. Instead, in the absence of α -DGN, LARGE1 synthesizes a short, non-
344 elongated form of matriglycan on α -DG (~100-125 kDa), which demonstrates that the N-
345 terminal domain is required for matriglycan elongation. Thus, LARGE1- α DGN holds the
346 enzyme-substrate complex together over multiple cycles of sugar addition. These findings build
347 on our previous study demonstrating that phosphorylation of the core M3 trisaccharide by
348 POMK is also necessary for matriglycan elongation (*Walimbe et al., 2020*). Thus, the generation
349 of full-length mature matriglycan on α -DG (~150-250 kDa) by *LARGE1* requires both POMK
350 and α -DGN to be bound to DG; in the absence of either, a shorter form is generated.

351 In our study, muscle-specific deletion of α -DGN resulted in the production of short forms
352 of matriglycan on α -DG (~100-125 kDa). Mice lacking α -DGN exhibited low bodyweight and
353 grip strength, and histological characterization of quadriceps muscles revealed mild muscular
354 dystrophy and a lack of homogeneous matriglycan expression. Physiological examination
355 revealed that M- α -DGN KO muscle was susceptible to lengthening contraction-induced force
356 decline, although specific force was maintained. These results are consistent with those obtained
357 when α -DGN-deleted DG was administered to muscle-specific DG KO mice and indicates that
358 DG lacking α -DGN produces short forms of matriglycan, which does not prevent dystrophic
359 muscle changes in this mouse model. Furthermore, DG in the postsynaptic membrane is known
360 to play a key role in synaptic maturation (*Nishimune et al., 2008*). However, the NMJs in M- α -

361 DGN KO mice in our study were abnormal and irregularly shaped. This indicates both that DG
362 and matriglycan are required for synaptic maturation.

363 If LARGE1 binding to α -DGN enables its ability to elongate matriglycan, then we would
364 expect that rescuing M- α -DGN KO skeletal muscle with α -DGN would restore the expression of
365 full-length matriglycan. However, this failed to occur and indicates that solely restoring α -DGN
366 expression is not sufficient for LARGE1 to elongate matriglycan. These results indicate that the
367 ability for LARGE1 to elongate matriglycan requires α -DGN to be attached to DG. This finding
368 is consistent with data showing that matriglycan is not elongated when α -DGN is deleted, even
369 when LARGE1 is overexpressed. Therefore, α -DGN acts as a recognition site for the
370 glycosyltransferase *LARGE1* and establishes a model where α -DGN, together with
371 phosphorylated core M3, anchors *LARGE1* to the matriglycan production site to enable its
372 synthesis and elongation. Notably, although the molecular recognition of α -DGN by *LARGE1* is
373 considered essential for the expression of functional DG (Kanagawa et al., 2004), our results
374 show that *LARGE1* can synthesize a short non-elongated form of matriglycan in the absence of
375 α -DGN, indicating that LARGE1 is capable of adding matriglycan to α -DG independent of its
376 interaction with α -DGN.

377 To determine how much matriglycan is needed to prevent lengthening contraction-
378 induced reduction in force, we used mice that express different sizes of matriglycan. Muscle
379 from M- α -DGN KO mice showed an increased force deficit and a 7.6-fold increase in centrally
380 nucleated fibers compared to muscle from C57 mice, indicating that short forms of matriglycan
381 do not prevent dystrophic changes. However, despite the lower amount of matriglycan in muscle
382 from *Dag1*^{T190M} mice compared to that from C57 mice, the force deficit was not different
383 between the two groups, and centrally nucleated fibers were increased in α -DGN mutant

384 (T190M) mice by only 1.4-fold. This indicates that short matriglycan, if over 150kDa, can
385 prevent muscular dystrophy.

386 Muscular dystrophy is not observed in a mouse model of Fukuyama congenital muscular
387 dystrophy, which occurs due to a retrotransposition insertion in the mouse *fukutin* ortholog and
388 causes laminin-binding at 50% of normal levels (Kanagawa *et al.*, 2009). In *Dag1*^{T190M} mice, the
389 laminin-binding level is about 45% of normal, which likely explains a mild increase in centrally
390 nucleated fibers compared to C57 muscle. However, in muscle from M- α -DGN KO mice, the
391 laminin-binding level is only 9% relative to that of C57 mice and leads to a marked increase in
392 centrally nucleated fibers and force deficit induced by lengthening contractions. This indicates
393 that matriglycan length is critical for regulating damage induced by lengthening contractions and
394 that the production of ~120-150 kDa α -DG significantly prevents dystrophic change, suggesting
395 that this pathologic effect can be prevented without the expression of full-length matriglycan.
396 Thus, our results describe a relationship between matriglycan size, damage induced by
397 lengthening contractions, and the degree of dystrophic change. However, the difference between
398 the abundance of central nuclei and the results of damage due to lengthening contractions in C57
399 and *Dag1* mice indicate that other factors likely contribute to normal physiologic function in
400 muscle.

401 Collectively our study demonstrates that α -DG with α -DGN is required for the synthesis
402 of full-length matriglycan on α -DG (~150-250 kDa). In the absence of α -DGN, LARGE1 can
403 synthesize a short non-elongated form of matriglycan on α -DG (~100-125kDa) in skeletal
404 muscle in a process that is independent of its interaction with α -DGN. These findings are
405 essential for a complete understanding of the mechanisms underlying matriglycan synthesis and

406 show that matriglycan length regulates the severity of muscular dystrophy and may serve as a
407 therapeutic target for the treatment of α -dystroglycanopathy.

408 **Materials and methods**

409 **Animals**

410 All mice were maintained in a barrier-free, specific pathogen-free grade facility and had access
411 to normal chow and water *ad libitum*. All animals were manipulated in biosafety cabinets and
412 change stations using aseptic procedures. The mice were maintained in a climate-controlled
413 environment at 25°C on a 12/12 hour light/dark cycle. Animal care, ethical usage, and
414 procedures were approved and performed in accordance with the standards set forth by the
415 National Institutes of Health and the University of Iowa Animal Care and Use Committee
416 (IACUC). Mouse lines used in the study that have been previously described are: *Dag1*^{-/-} (JAX#
417 006836; **Williamson et al., 1997**), *Dag*^{fl/fl} (JAX# 009652; **Cohn et al., 2002**), *Dag1*^{Δa-DGN} (**de**
418 **Greef et al., 2019**), *Dag1*^{T190M} (**Hara et al., 2011**), *Large1*^{myd} (JAX# 000300) (**Lane et al., 1976**),
419 *Mck*^{cre} (JAX# 006475) (**Brüning et al., 1998**), *Pax7*^{cre} (JAX# 010530) (**Keller et al., 2004**), and
420 *Mck*^{cre} *Pax7*^{cre} *POMK*^{fl/fl} (**Walimbe et al., 2020**).

421 **Muscle-specific DG knockout mice (Pax7^{cre} Dag1^{fl/fl})**

422 Male mice expressing the *Pax7-Cre* transgene were bred to female mice that were homozygous
423 for the floxed *Dag1* allele (*Dag1*^{fl/fl}). Male F1 progeny with the genotype *Pax7*^{Cre}; *Dag1*^{fl/+}
424 were bred to female *Dag1*^{fl/fl} mice. A *Cre* PCR genotyping protocol was used to genotype the
425 *Cre* allele using standard *Cre* primers. The primers used were Sense:
426 TGATGAGGTTCGCAAGAACCC and Antisense: CCATGAGTGAACGAAACCTGG.
427 Genotyping of *Pax7*_{Cre}; *Dag1*^{fl/fl} mice was performed by Transnetyx using real-time PCR.

428 **Muscle-specific α -DGN knockout mice (M- α -DGN KO)**

429 Male mice expressing the *Pax7-Cre* transgene were bred to female mice that were heterozygous
430 for the *Dagl*^{Δ α-DGN} allele (*Dagl*^{wt/Δα-DGN}). Male F1 progeny with the genotype *Pax7*^{Cre};
431 *Dagl*^{wt/Δα-DGN} were bred to female mice homozygous for the floxed *Dagl* allele (*Dagl*^{fl/fl}).
432 Genotyping of *Pax7*^{Cre}*Dagl*^{fl/flΔα-DGN} mice was performed by Transnetyx using real-time PCR.
433 For studies with M- α -DGN KO mice, three mice of each genotype (control and
434 *Pax7*^{Cre}*Dagl*^{fl/flΔα-DGN}) were used.
435 Littermate controls were employed whenever possible. The number of animals required was
436 based on previous studies (*de Greef et al., 2016; Goddeeris et al., 2013, Walimbe et al., 2020*)
437 and experience with standard deviations of the given techniques.

438 **Forelimb grip strength test**

439 Forelimb grip strength was measured at three months using previously published methods (*de*
440 *Greef et al., 2016, Walimbe, et al., 2020*). A mouse grip strength meter (Columbus Instruments,
441 Columbus, OH) was mounted horizontally, with a non-flexible grid connected to the force
442 transducer. The mouse was allowed to grasp the grid with its two front paws and then pulled
443 away from the grid by its tail until the grip was broken. This was done three times over five
444 trials, with a one-minute break between each trial. The gram force was recorded per pull, and any
445 pull where only one front limb or any hind limbs were used was discarded. If the mouse turned,
446 the pull was also discarded. After 15 pulls (five sets of three pulls), the mean of the three highest
447 pulls of the 15 was calculated and reported. Statistics were calculated using GraphPad Prism 8
448 software. Student's t-test was used (two-sided). Differences were considered significant at a p-
449 value less than 0.05. Graph images were also created using GraphPad Prism and the data in the
450 present study are shown as the means + / - SD unless otherwise indicated.

451 **Body weight measurements**

452 Mice were weighed as previously described (*de Greef et al., 2016, Walimbe et al., 2020*).
453 Weights were measured after testing grip strength using a Scout SPX222 scale (OHAUS
454 Corporation, Parsippany, NJ), and the tester was blinded to genotype. Statistics were calculated
455 using GraphPad Prism 8 software and Student's t-test was used (two-sided). Differences were
456 considered significant at a p-value less than 0.05. Graph images were also created using
457 GraphPad Prism and the data in the present study are shown as the means + / - SD unless
458 otherwise indicated.

459 **Measurement of *in vitro* muscle function**

460 To compare the contractile properties of muscles, EDL muscles were surgically removed as
461 described previously (*Rader et al., 2016; de Greef et al., 2016, Walimbe et al., 2020*). The
462 muscle was immediately placed in a bath containing a buffered physiological salt solution
463 (composition in mM: NaCl, 137; KCl, 5; CaCl₂, 2; MgSO₄, 1; NaH₂PO₄, 1; NaHCO₃, 24;
464 glucose, 11). The bath was maintained at 25°C, and the solution was bubbled with 95% O₂ and
465 5% CO₂ to stabilize pH at 7.4. The proximal tendon was clamped to a post and the distal tendon
466 was tied to a dual mode servomotor (Model 305C; Aurora Scientific, Aurora, ON, Canada).
467 Optimal current and whole muscle length (L₀) were determined by monitoring isometric twitch
468 force. Optimal frequency and maximal isometric tetanic force (F₀) were also determined. The
469 muscle was then subjected to an EC protocol consisting of eight ECs at three-minute intervals. A
470 fiber length L_f-to-L₀ ratio of 0.45 was used to calculate L_f. Each EC consisted of an initial 100
471 millisecond isometric contraction at optimal frequency immediately followed by a stretch of L₀
472 to 30% of L_f beyond L₀ at a velocity of 1 L_f/s at optimal frequency. The muscle was then
473 passively returned to L₀ at the same velocity. At 3, 15, 30, 45, and 60 minutes after the EC

474 protocol, isometric tetanic force was measured. After the analysis of the contractile properties,
475 the muscle was weighed. The CSA of muscle was determined by dividing the muscle mass by
476 the product of L_f and the density of mammalian skeletal muscle (1.06 g/cm³). The specific force
477 was determined by dividing F_0 by the CSA (kN/mm²). 18–20-week-old male mice were used,
478 and right and left EDL muscles from each mouse were employed whenever possible, with five to
479 eight muscles used for each analysis. Each data point represents an individual EDL. Statistics
480 were calculated using GraphPad Prism 8 software and Student's unpaired t-test was used (two-
481 sided). Differences were considered significant at a p-value less than 0.05.

482 **H&E and immunofluorescence analysis of skeletal muscle**

483 Histology and immunofluorescence of mouse skeletal muscle were performed as described
484 previously (*Goddeeris et al., 2013*). Mice were euthanized by cervical dislocation and directly
485 after sacrifice, quadriceps muscles were isolated, embedded in OCT compound and then snap
486 frozen in liquid nitrogen-cooled 2-methylbutane. 10 μ M sections were cut with a cryostat (Leica
487 CM3050S Research Cryostat; Amsterdam, the Netherlands) and H&E stained using conventional
488 methods. Whole digital images of H&E-stained sections were taken by a VS120-S5-FL Olympus
489 slide scanner microscope (Olympus Corporation, Tokyo, Japan). For immunofluorescence
490 analyses, a mouse monoclonal antibody to matriglycan on α -DG (IIH6, 1:100 dilution,
491 Developmental Studies Hybridoma Bank, University of Iowa; RRID:AB_2617216) was added to
492 sections overnight at 4 °C followed by Alexa Fluor-conjugated goat IgG against mouse IgM
493 (Invitrogen, Carlsbad, CA, 1:500 dilution) for 40 minutes. The sections were also stained with
494 rabbit polyclonal antibody to β -DG (AP83; 1:50 dilution) followed by Alexa Fluor-conjugated
495 488 Goat anti-rabbit IgG (1:500). Whole sections were imaged with a VS120-S5-FL Olympus
496 slide scanner microscope. Antibody IIH6 is a mouse monoclonal to matriglycan on α -DG

497 (Ervasti and Campbell, 1991), and AP83 is a rabbit polyclonal antibody to the C-terminus of β -
498 DG (Ervasti and Campbell, 1991), both of which have been described previously.

499 For histologic analysis of skeletal muscle, H&E staining on 10 μ M frozen section was
500 performed using the Leica ST5020 Multistainer workstation (Leica Biosystems, Buffalo Grove,
501 IL) according to the manufacturer's instructions. For immunofluorescence analysis, unfixed
502 frozen serial sections (7 μ M) were incubated with primary antibodies for one hour, and then with
503 the appropriate biotinylated secondary antibodies for 30 minutes followed by streptavidin
504 conjugated to Alexa Fluor 594 (ThermoFisher Scientific, UK) for 15 minutes. Primary antibodies
505 used were mouse monoclonal: α -DG IIH6 (clone IIH6C4) (Ervasti and Campbell, 1991), β -DG
506 (Leica, Milton Keynes, UK; clone 43DAG1/8D5). All washes were made in PBS and
507 incubations were performed at room temperature. Sections were evaluated with a Leica DMR
508 microscope interfaced to MetaMorph (Molecular Devices, Sunnyvale, CA).

509 **Neuromuscular Junction (NMJ) Morphology**

510 Immediately upon harvest, EDL muscles were washed in PBS three times for five minutes each.
511 EDL muscles were fixed in 4% paraformaldehyde for 20 minutes followed by three washes in
512 PBS. Fixed muscle samples were split into three to four fiber bundles before incubating in 3%
513 Triton-X 100/PBS for three hours at 4 °C. Muscles were subsequently washed in PBS followed
514 by blocking at 4 °C for four hours in Background Buster (Innovex; NB306). Samples incubated
515 with primary antibodies against neurofilament H (NF-H; EnCor; CPCA-NF-H) at 1:1,000 and
516 synaptophysin (Thermo Fisher Scientific; MA5-14532) at 1:100 diluted in 5% Background
517 Buster/1% Triton-X 100/PBS at 4 °C overnight. The muscles were then washed with PBS and
518 incubated with fluorescently conjugated secondary antibodies and Alexa Fluor 488-conjugated
519 α -bungarotoxin (Invitrogen; B13422) diluted in 5% Background Buster/PBS for two hours.

520 Images were acquired using an Olympus FLUOVIEW FV3000 confocal laser scanning
521 microscope. Complete *enface* NMJs were identified and acquired with Z-stacks using 60x and
522 100x objectives. Maximum intensity Z-stacks were reconstructed with the FV31S (Olympus)
523 software and deconvoluted with cellSens Dimension (Olympus). Blinded observers analyzed α -
524 BTX-488-labeled AChR cluster formations to determine irregularities, fragmentation, synaptic
525 size, and dispersion. Irregularities included AChR plaques, AChR perforated plaques, ring-
526 shaped or c-shaped clusters, and extensive fragmentation. Fragmentation was determined by the
527 number of identifiable individual AChR clusters within the footprint of the synapse. FUJI ImageJ
528 software was used for semi-automatic analysis of AChR clusters. Synaptic size refers to the total
529 perimeter or footprint of the postsynapse. AChR cluster dispersion was determined by the (total
530 stained area/total area) *100.

531 **Tissue biochemical analysis**

532 Mouse skeletal muscle was minced into small pieces and homogenized with polytron
533 (Kinematica, PT10-35) three times for 10 seconds at power 4 to 5 in 15 ml of TBS (150 mM
534 NaCl) with 1% TX100 and 10 mM EDTA, and protease inhibitors (per 10 mL buffer: 67 mL
535 each of 0.2 M phenylmethylsulfonylfluoride (PMSF), 0.1 M benzamidine, and 5 μ L of each of
536 leupeptin (Sigma/Millipore) 5 mg/mL, pepstatin A (Millipore) 1 mg/mL in methanol, and
537 aprotinin (Sigma-Aldrich) 5 mg/mL. The samples were incubated in a cold room 1 hr. with
538 rotation. The samples were centrifuged in a Beckman Coulter Avanti J-E centrifuge for 30
539 minutes at 20,000xg, 4 °C. The supernatant was combined with WGA slurry at 600 μ L per gram
540 of starting muscle and rotated at 4C over night.

541 The WGA beads were washed using 10X volume of WGA beads/wash 3X for three minutes at
542 1000 x g with 0.1%Tx/TBS, plus protease inhibitors. After the final wash, the WGA beads

543 (Vector Laboratories, AL-1023) were eluted with Laemmli Sample Buffer (LSB) at 600 μ L per
544 gram of starting material at 99 °C for 10 minutes. The final concentration was 1.11 mg skm/ μ L
545 beads and LSB. Samples were loaded (beads and LSB) in a 3-15% gradient gel. The proteins
546 were transferred to PVDF-FL membranes (Millipore) as previously published (*Michele et al.*,
547 2002; *Goddeeris et al.*, 2013). EDTA (10 mM) was used in the homogenization to more
548 efficiently extract α -DG containing matriglycan in the muscle homogenates. (*Figure 7-figure*
549 *supplement 1 WT and POMK*), while EDTA had no effect on *Large^{myd}* α -DG (matriglycan-
550 negative) extraction (*Figure 7-figure supplement 1 Large^{myd}*).

551 **Immunoblotting and ligand overlay**

552 The mouse monoclonal antibody against matriglycan on α -DG (IIIH6, Developmental Studies
553 Hybridoma Bank, University of Iowa; RRID:AB_2617216) was characterized previously and
554 used at 1:100 (*Ervasti and Campbell, 1991*). The polyclonal antibody, AF6868 (R&D Systems,
555 Minneapolis, MN; RRID:AB_10891298), was used at a concentration of 1:100 for
556 immunoblotting the core α -DG and β -DG proteins, and the secondary was a donkey anti-sheep
557 (LI-COR Bioscience, Lincoln, NE) used at 1:10,000 concentration. The mouse xxxx antibody
558 against matriglycan on α -DG (III HII) was previously used (*Groh et al., 2009*). Blots were
559 developed with infrared (IR) dye-conjugated secondary antibodies (*Walimbe et al., 2020*) and
560 scanned using the Odyssey infrared imaging system (LI-COR Bioscience). Blot images were
561 captured using the included Odyssey image-analysis software.

562 Laminin overlay assays were performed as previously described (*Michele et al., 2002*;
563 *Goddeeris et al.*, 2013). Immobilon-FL membranes were blocked in laminin-binding buffer
564 (LBB: 10 mM triethanolamine, 140 mM NaCl, 1 mM MgCl₂, 1 mM CaCl₂, pH 7.6) containing
565 5% milk followed by incubation with mouse Engelbreth-Holm-Swarm (EHS) laminin

566 (ThermoFisher, 23017015) overnight at a concentration of 7.5 nM at 4 °C in LBB containing 3%
567 bovine serum albumin (BSA) and 2 mM CaCl₂. Membranes were washed and incubated with
568 anti-laminin antibody (L9393; Sigma-Aldrich 1:1000 dilution) followed by IRDye 800 CW dye-
569 conjugated donkey anti-rabbit IgG (LI-COR, 926-32213) at 1:10,000.

570 **Digestion of α-DG with exoglycosidases**

571 β-glucuronidase from *Thermotoga maritima* and α-xylosidase from *Sulfolobus solfataricus* were
572 cloned into pET-28a (+) vector between NheI/XhoI sites in frame with the N-terminal 6xHis tag.
573 The plasmids (20ng each) were chemically transformed into 50μl BL21DE3 One shot competent
574 cells. One colony each was picked and inoculated in 20ml LB (with kanamycin 50 μg/ml)
575 overnight at 37 °C. The next day, 10 ml of the overnight culture was inoculated into 1-liter LB
576 (with kanamycin 50μg/ml). After reaching 0.6 OD at 600 nm the cultures were induced with 1
577 mM IPTG and incubated at 16 °C overnight. The next day the cells were centrifuged at 5000g,
578 for 10 minutes at 4 °C. Cell pellets were stored at -80 °C until ready for purification.

579 The pellets were dissolved in 20 ml homogenization buffer (50 mM Tris-Cl, 150 mM
580 NaCl, 1% TX-100, and all protease inhibitors) per liter culture. The cells were stored again
581 overnight in 50 ml falcon tubes at -80 °C for ice crystal formation. Cells were thawed the next
582 day for purification. Nuclease (Pierce) was added at 1.25kU and cells were sonicated at power
583 level four-five for four times with 10s intervals in between at 4 °C. Cells were then centrifuged at
584 15000g for 20 minutes at 4 °C. The supernatant was heat fractionated at 75 °C for 10 minutes
585 after which it was centrifuged at 15000g for 30 minutes at 4 °C. Meanwhile, a TALON
586 superflow metal affinity column was prepared by packing 3 ml of resin and equilibrating with
587 wash buffer 1 (50 mM Tris-Cl, 100 mM NaCl, 0.1% TX-100, all PIs). All further purification
588 steps were performed at 4 °C. The extract was applied to the column three times, such that each

589 time, the extract was incubated with the column for 15-30 minutes on gentle rocking platform.
590 All flowthrough was saved. The column was washed three times with wash buffer 1. All washes
591 were saved. The column was next washed with high salt wash buffer (50 mM Tris-Cl, 500 mM
592 NaCl, 0.1% TX-100, all PIs) to remove nonspecific interactions and the high salt wash was
593 saved. Proteins were then eluted with elution buffer (50 mM Tris-Cl, 100 mM NaCl, 0.1% TX-
594 100 and 300 mM Imidazole) in five fractions of three milliliters each. The relevant fractions
595 (elute 1 and 2) were pooled together, and buffer exchanged with 1XPBS pH 7.4 with 30 kDa
596 concentrators (Amicon). 100 μ l was loaded on SDS PAGE from all fractions and washes to
597 visualize with Coomassie.

598 WGA enriched glycoproteins (elutes) were buffer exchanged with Sodium acetate buffer
599 pH 5.5 using 30 kDa concentrators and heated for five minutes in the presence of 10 mM β -
600 mercaptoethanol at 99 °C. All protease inhibitors were added after the mixture cooled down. 50
601 μ l of each enzyme was added per 500 μ l of WGA-enriched and buffer-exchanged glycoproteins.
602 The initial time point was aliquoted as T_0 and the rest was incubated at 75 °C with 600 rpm
603 shaking for 16 hours.

604 **AAV vector production and AAV injection**

605 The sequence encoding mouse *l-like-acetylglucosaminyltransferase-1* (*Large1*) was synthesized
606 (Genscript, Piscataway, NJ) and cloned into the AAV backbone under the transcriptional control
607 of the ubiquitous CMV promoter. The AAV2/9 vector contains the genome of serotype 2
608 packaged in the capsid from serotype 9 and was selected due to its ability to improve muscle
609 transduction efficiency as well as alter tropism. The vector AAV2/9-CMV-*Large1* was generated
610 by the University of Iowa Viral Vector Core Facility. For adult mice, 100 μ L (4.35×10^{12} vg) of
611 the vector solution was administered once intraperitoneally or intravenously via the retro-orbital

612 (RO) sinus. The sequence encoding mouse *like-acetylglucosaminyltransferase-1 (Large1)* was
613 synthesized (Genscript, Piscataway, NJ) and cloned into the AAV backbone under the
614 transcriptional control of the muscle-specific MCK promoter (gift from Jeff Chamberlain). The
615 vector AAV2/9-MCK-*Large1* was generated by the University of Iowa Viral Vector Core
616 Facility. For adult mice, 100 μ L (2.55×10^{12} vg) of the vector solution were administered once
617 intraperitoneally or intravenously via the retro-orbital (RO) sinus. The sequence encoding mouse
618 *α -DG lacking the N-terminal domain (H30 – A316)* was synthesized (Genscript) and cloned into
619 the AAV backbone under the transcriptional control of the muscle-specific MCK promoter. The
620 vector AAV2/9-MCK-*DG-E* was generated by the University of Iowa Viral Vector Core
621 Facility. For adult mice, 100 μ L (6.17×10^{11} vg) of the vector solution was administered once
622 intraperitoneally or intravenously via the retro-orbital (RO) sinus. The sequence encoding mouse
623 *alpha-DG N terminal domain(α -DGN)* was synthesized (Genscript) and cloned into the AAV
624 backbone under the transcriptional control of the ubiquitous CMV promoter. The AAV2/9 vector
625 contains the genome of serotype 2 packaged in the capsid from serotype 9 and was selected due
626 to its ability to improve muscle transduction efficiency as well as alter tropism. The vector
627 AAV2/9CMV α -*DGN* was generated by the University of Iowa Viral Vector Core Facility. For
628 adult mice, 100 μ L (1.7×10^{12} vg) of the vector solution was administered once intraperitoneally
629 or intravenously via the retro-orbital (RO) sinus.

630 **Solid-phase assay**

631 Solid-phase assays were performed as described previously (*Michele et al., 2002; Goddeeris et*
632 *al., 2013*). Briefly, WGA N-acetyl-glycosamine buffer eluates were diluted 1:50 in TBS and
633 coated on polystyrene ELISA microplates (Costar 3590) overnight at 4 °C. Plates were washed
634 in LBB and blocked for two hours in 3% BSA/LBB at room temperature. The wells were washed

635 with 1% BSA/LBB and incubated for one hour with L9393 (1:5000 dilution) in 3% BSA/LBB
636 followed by incubation with Horseradish Peroxidase (HRP)-conjugated anti-rabbit IgG
637 (Invitrogen, 1:5000 dilution) in 3% BSA/LBB for 30 minutes. Plates were developed with o-
638 phenylenediamine dihydrochloride and H₂O₂, and reactions were stopped with 2 N H₂SO₄.
639 Absorbance per well was read at 490 nm by a microplate reader.

640 **Statistics**

641 The included Shimadzu post-run software was used to analyze LARGE1 activity in mouse
642 skeletal muscle, and the percent conversion to the product was recorded. The means of three
643 experimental replicates (biological replicates, where each replicate represents a different pair of
644 tissue culture plates or animals, i.e. control and knockout) were calculated using Microsoft
645 Excel, and the mean percent conversion to product for the WT or control sample (control mouse
646 skeletal muscle or *M-α-DGN KO* mouse skeletal muscle and *Large^{myd}* mouse skeletal muscle,
647 respectively) reaction was set to one. The percent conversion of each experimental reaction was
648 subsequently normalized to that of the control, and statistics on normalized values were
649 performed using GraphPad Prism 8. For analysis of LARGE1 activity in mouse skeletal muscle,
650 Student's t-test was used (two-sided). Differences were considered significant at a p-value less
651 than 0.05. Graph images were also created using GraphPad Prism and the data in the present
652 study are shown as the means + / - SD unless otherwise indicated. The number of sampled units,
653 n, upon which we report statistics for *in vivo* data, is the single mouse (one mouse is n = 1).

654 **Data Availability**

655 All data generated or analyzed during this study are included in this published article.

656 **Acknowledgements**

657 We thank Keith Garringer for technical assistance and the University of Iowa Viral Vector Core
658 for generating the adeno-associated viral vector (<http://www.medicine.uiowa.edu/vectorcore>).
659 The MCK promoter was a gift from Jeff Chamberlain (University of Washington, Seattle, WA).
660 We are grateful to Dr. Jennifer Barr of the Scientific Editing and Research Communication Core
661 at the University of Iowa Carver College of Medicine for her critical reading of the manuscript.
662 We are also grateful to Amber Mower for her assistance with administrative support and Rachel
663 Poe for her support in figure design.

664 **Ethics**

665 Animal experimentation: This study was performed in strict accordance with the
666 recommendations in the Guide for the Care and Use of Laboratory Animals of the National
667 Institutes of Health. All animal experiments were approved by the Institutional Animal Care and
668 Use Committee (IACUC) protocols of the University of Iowa (#0081122).

669 **Competing Interests**

670 The authors declare no competing financial interests. Correspondence and requests for materials
671 should be addressed to K.P.C. (kevin-campbell@uiowa.edu).

672 **Funding**

673 This work was supported in part by a Paul D. Wellstone Muscular Dystrophy Specialized
674 Research Center grant (1U54NS053672 to KPC). KPC is an investigator of the Howard Hughes
675 Medical Institute. This work was also supported by the Cardiovascular Institutional Research
676 Fellowship (5T32HL007121-45 to JMH). A.S.W. is a student in the University of Iowa Medical
677 Scientist Training Program, which is funded by Medical Scientists Training Program Grant by
678 the National Institute of General Medical Sciences (NIGMS) 5 T32 GM007337.

679 **Author contributions**

680 Conceptualization: H.O., K.P.C.
681 Methodology: H.O., J.M.H., I.C., M.E.A., D.V., A.S.W., S.J., Y.H., F.S., K.M., K.P.C.
682 Formal analysis: H.O., J.M.H., I.C., M.E.A., D.V., A.S.W., S.J., K.P.C.
683 Investigation: H.O., J.M.H., I.C., M.E.A., D.V., A.S.W., S.J., Y.H., F.S., K.M., K.P.C.
684 Writing – original draft preparation: H.O., K.P.C.
685 Writing – review & editing: H.O., J.M.H., I.C., M.E.A., D.V., A.S.W., S.J., K.P.C.
686 Supervision: K.P.C.
687 Project administration: K.P.C.
688 Funding acquisition: K.P.C.

689 **Author ORCIDs**

690 Hidehiko Okuma <https://orcid.org/0000-0002-2749-9855>
691 Jeffrey M Hord <https://orcid.org/0000-0003-1343-5938>
692 Ishita Chandel <https://orcid.org/0000-00003-4821-1918>
693 Mary E Anderson <https://orcid.org/0000-0001-5342-530X>
694 David Venzke <http://orcid.org/0000-0001-8180-9562>
695 Ameya S Walimbe <https://orcid.org/0000-0002-3248-0761>
696 Soumya Joseph <https://orcid.org/0000-0002-0487-1378>
697 Zeita Gastel <https://orcid.org/0000-0003-2302-952X>
698 Yuji Hara <https://orcid.org/0000-0003-0021-1740>
699 Fumiaki Saito <https://orcid.org/0000-0002-5532-6193>
700 Kiichiro Matsumura <https://orcid.org/0000-0002-5237-8430>
701 Kevin P Campbell <https://orcid.org/0000-0003-2066-5889>

702 **References**

703 Brancaccio, A., Schulthess, T., Gesemann, M., Engel, J. (1995). Electron microscopic evidence
704 for a mucin-like region in chick muscle alpha-dystroglycan. *FEBS Lett*, 368(1), 139-142.
705 DOI: 10.1016/0014-5793(95)00628-m, PMID: 7615068

706 Carss, K. J., Stevens, E., Foley, A. R., Cirak, S., Riemersma, M., Torelli, S., Hoischen, A.,
707 Willer, T., Van Scherpenzeel, M., Moore, S. A., Messina, S., Bertini, E., Bönnemann, C.
708 G., Abdenur, J. E., Grosmann, C. M., Kesari, A., Punetha, J., Quinlivan, R., Waddell, L.
709 B., Young, H. K., Wraige, E., Yau, S., Brodd, L., Feng, L., Sewry, C., MacArthur, D. G.,
710 North, K. N., Hoffman, E., Stemple, D. L., Hurles, M. E., van Bokhoven, H., Campbell,
711 K. P., Lefeber, D. J., UK10K Consortium, Lin, Y. Y., Muntoni, F. (2013). Mutations in
712 GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular
713 dystrophies associated with hypoglycosylation of alpha-dystroglycan. *Am J Hum Genet*,
714 93(1), 29-41. DOI: 10.1016/j.ajhg.2013.05.009, PMID: 23768512

715 Chiba, A., Matsumura, K., Yamada, H., Inazu, T., Shimizu, T., Kusunoki, S., Kanazawa, I.,
716 Kobata, A., Endo, T. (1997). Structures of sialylated O-linked oligosaccharides of bovine
717 peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type
718 oligosaccharide in the binding of alpha-dystroglycan with laminin. *J Biol Chem*, 272(4),
719 2156-2162. DOI: 10.1074/jbc.272.4.2156, PMID: 8999917

720 Cirak, S., Foley, A. R., Herrmann, R., Willer, T., Yau, S., Stevens, E., Torelli, S., Brodd, L.,
721 Kamynina, A., Vondracek, P., Roper, H., Longman, C., Korinthenberg, R., Marrosu, G.,
722 Nürnberg, P., UK10K Consortium, Michele, D. E., Plagnol, V., Hurles, M., Moore, S. A.,
723 Sewry, C. A., Campbell, K. P., Voit, T., Muntoni, F. (2013). ISPD gene mutations are a

724 common cause of congenital and limb-girdle muscular dystrophies. *Brain*, 136(Pt 1),
725 269-281. DOI: 10.1093/brain/aws312, PMID: 23288328

726 Cohn, R. D., Henry, M. D., Michele, D. E., Barresi, R., Saito, F., Moore, S. A., Flanagan, J. D.,
727 Skwarchuk, M. W., Robbins, M. E., Mendell, J. R., Williamson, R. A., Campbell, K. P.
728 (2002). Disruption of DAG1 in differentiated skeletal muscle reveals a role for
729 dystroglycan in muscle regeneration. *Cell*, 110(5), 639-648. DOI: 10.1016/s0092-
730 8674(02)00907-8, PMID: 12230980

731 de Greef, J. C., Hamlyn R., Jensen B. S., Ocampo Landa, R., Levy J. R., Kobuke K., Campbell
732 K. P. (2016). Collagen VI deficiency reduces muscle pathology, but does not improve
733 muscle function, in the γ -sarcoglycan-null mouse. *Human Molecular Genetics*. 25(7),
734 1357-1369. DOI: 10.1093/hmg/ddw018, PMID: 26908621

735 de Greef, J. C., Slutter, B., Anderson, M. E., Hamlyn, R., O'Campo Landa, R., McNutt, E. J.
736 Hara, Y., Pewe, L. L., Venzke, D., Matsumura, K., Saito, F., Harty, J. T., Campbell, K. P.
737 (2019). Protective role for the N-terminal domain of alpha-dystroglycan in Influenza A
738 virus proliferation. *Proc Natl Acad Sci U S A*, 116(23), 11396-11401. DOI:
739 10.1073/pnas.1904493116, PMID: 31097590

740 Dong, M., Noguchi, S., Endo, Y., Hayashi, Y. K., Yoshida, S., Nonaka, I., Nishino, I. (2015).
741 DAG1 mutations associated with asymptomatic hyperCKemia and hypoglycosylation of
742 alpha-dystroglycan. *Neurology*, 84(3), 273-279. DOI: 10.1212/WNL.0000000000001162,
743 PMID: 25503980

744 Ervasti, J. M., & Campbell, K. P. (1993). A role for the dystrophin-glycoprotein complex as a
745 transmembrane linker between laminin and actin. *J Cell Biol*, 122(4), 809-823. DOI:
746 10.1083/jcb.122.4.809, PMID: 8349731

747 Goddeeris, M. M., Wu, B., Venzke, D., Yoshida-Moriguchi, T., Saito, F., Matsumura, K.,

748 Moore, S. A., Campbell, K. P. (2013). LARGE glycans on dystroglycan function as a

749 tunable matrix scaffold to prevent dystrophy. *Nature*, 503(7474), 136-140. DOI:

750 10.1038/nature12605, PMID: 24132234

751 Groh S, Zong H, Goddeeris MM, Lebakken CS, Venzke D, Pessin JE, Campbell KP.

752 Sarcoglycan complex: implications for metabolic defects in muscular dystrophies. *J Biol*

753 *Chem*. 2009 Jul 17;284(29):19178-82. doi: 10.1074/jbc.C109.010728. Epub 2009 Jun 3.

754 PMID: 19494113; PMCID: PMC2740540.

755 Han, R., Kanagawa, M., Yoshida-Moriguchi, T., Rader, E., Ng., R.A., Michele, D.E., Muirhead,

756 D.E., Kunz, S., Moore, S.A., Iannaccone, S.T., Miyake, K., McNeil, P.L., Mayer, U.,

757 Oldstone, M.B.A., Faulkner, J.A. and Campbell, K.P. (2009). Basal Lamina Strengthens

758 Cell Membrane Integrity via the Laminin G Domain Binding of α -Dystroglycan. *Proc.*

759 *Natl. Acad. Sci. U.S.A.* 106(31), 12573-12579. DOI: 10.1073/pnas.0906545106, PMID:

760 19633189

761 Hara, Y., Balci-Hayta, B., Yoshida-Moriguchi, T., Kanagawa, M., Beltran-Valero de Bernabe,

762 D., Gündesli, H., Willer, T., Satz, J. S., Crawford, R. W., Burden, S. J., Kunz, S.,

763 Oldstone, M. B. A., Accardi, A., Talim, B., Muntoni, F., Topaloğlu, H., Dinçer, P.,

764 Campbell, K. P. (2011). A dystroglycan mutation associated with limb-girdle muscular

765 dystrophy. *N Engl J Med*, 364(10), 939-946. DOI: 10.1056/NEJMoa1006939, PMID:

766 21388311

767 Hara, Y., Kanagawa, M., Kunz, S., Yoshida-Moriguchi, T., Satz, J. S., Kobayashi, Y. M., Zhu,

768 Z., Burden, S. J., Oldstone, M. B. A., Campbell, K. P. (2011). Like-

769 acetylglucosaminyltransferase (LARGE)-dependent modification of dystroglycan at Thr-

770 317/319 is required for laminin binding and arenavirus infection. *Proc Natl Acad Sci U S*
771 *A*, 108(42), 17426-17431. DOI: 10.1073/pnas.1114836108, PMID: 21987822

772 Henry, M. D. and Campbell, K. P. (1998) A Role for Dystroglycan in Basement Membrane
773 Assembly. *Cell*, 95(6), 859-870. DOI: 10.1016/s0092-8674(00)81708-0, PMID: 9865703

774 Hohenester, E. (2019). Laminin G-like domains: dystroglycan-specific lectins. *Curr Opin Struct*
775 *Biol*, 56, 56-63. DOI: 0.1016/j.sbi.2018.11.007, PMID: 30530204

776 Ibraghimov-Beskrovnyaya, O., Ervasti, J. M., Leveille, C. J., Slaughter, C. A., Sernett, S. W.,
777 Campbell, K. P. (1992). Primary structure of dystrophin-associated glycoproteins linking
778 dystrophin to the extracellular matrix. *Nature*, 355(6362), 696-702. DOI:
779 10.1038/355696a0, PMID: 1741056

780 Inamori, K., Yoshida-Moriguchi, T., Hara, Y., Anderson, M. E., Yu, L., Campbell, K. P. (2012).
781 Dystroglycan Function Requires Xylosyl- and Glucuronyltransferase Activities of
782 LARGE. *Science*, 335(6064), 93-96. DOI: 10.1126/science.1214115, PMID: 22223806

783 Jung, D., Yang, B., Meyer, J., Chamberlain, J. S., Campbell, K. P. (1995). Identification and
784 characterization of the dystrophin anchoring site on beta-dystroglycan. *J Biol Chem*,
785 270(45), 27305-27310. DOI: 10.1074/jbc.270.45.27305, PMID: 7592992

786 Kanagawa, M., Nishimoto, A., Chiyonobu, T., Takeda, S., Miyagoe-Suzuki, Y., Wang, F.,
787 Fujikake, N., Taniguchi, M., Lu, Z., Tachikawa, M., Nagai, Y., Tashiro, F., Miyazaki, J.,
788 Tajima, Y., Takeda, S., Endo, T., Kobayashi, K., Campbell, K. P., Toda, T. (2009).
789 Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE
790 in novel model mice to dystroglycanopathy. *Hum Mol Genet*, 18(4), 621-631. DOI:
791 10.1093/hmg/ddn387, PMID: 19017726

792 Kanagawa, M., Saito, F., Kunz, S., Yoshida-Moriguchi, T., Barresi, R., Kobayashi, Y. M.,

793 Muschler, J., Dumanski, J. P., Michele, D. E., Oldstone, M. A. B., Campbell, K. P.

794 (2004). Molecular recognition by LARGE is essential for expression of functional

795 dystroglycan. *Cell*, 117(7), 953-964. DOI: 10.1016/j.cell.2004.06.003, PMID: 15210115

796 Lane, P. W., Beamer, T. C., Myers, D. D. (1976). Myodystrophy, a new myopathy on

797 chromosome 8 of the mouse. *J. Hered.* 67, 135-138. DOI:

798 10.1093/oxfordjournals.jhered.a108687, PMID: 939913

799 Michele, D. E., Barresi, R., Kanagawa, M., Saito, F., Cohn, R. D., Satz, J. S., Dollar, J., Nishino,

800 I., Kelley, R. I., Somer, H., Straub, V., Mathews, K. D., Moore, S. A., Campbell, K. P.

801 (2002). Post-translational disruption of dystroglycan-ligand interactions in congenital

802 muscular dystrophies. *Nature*, 418(6896), 417-422. DOI: 10.1038/nature00837, PMID:

803 12140558

804 Nishimune, H., Valdez, G., Jarad, G., Moulson, C. L., Müller, U., Miner, J. H., & Sanes, J. R.

805 (2008). Laminins promote postsynaptic maturation by an autocrine mechanism at the

806 neuromuscular junction. *Journal of Cell Biology*, 182(6), 1201–1215. DOI:

807 10.1083/jcb.200805095

808 Ohtsubo, K., & Marth, J. D. (2006). Glycosylation in cellular mechanisms of health and disease.

809 *Cell*, 126(5), 855-867. DOI: 10.1016/j.cell.2006.08.019, PMID: 16959566

810 Puckett, R. L., Moore, S. A., Winder, T. L., Willer, T., Romansky, S. G., Covault, K. K.,

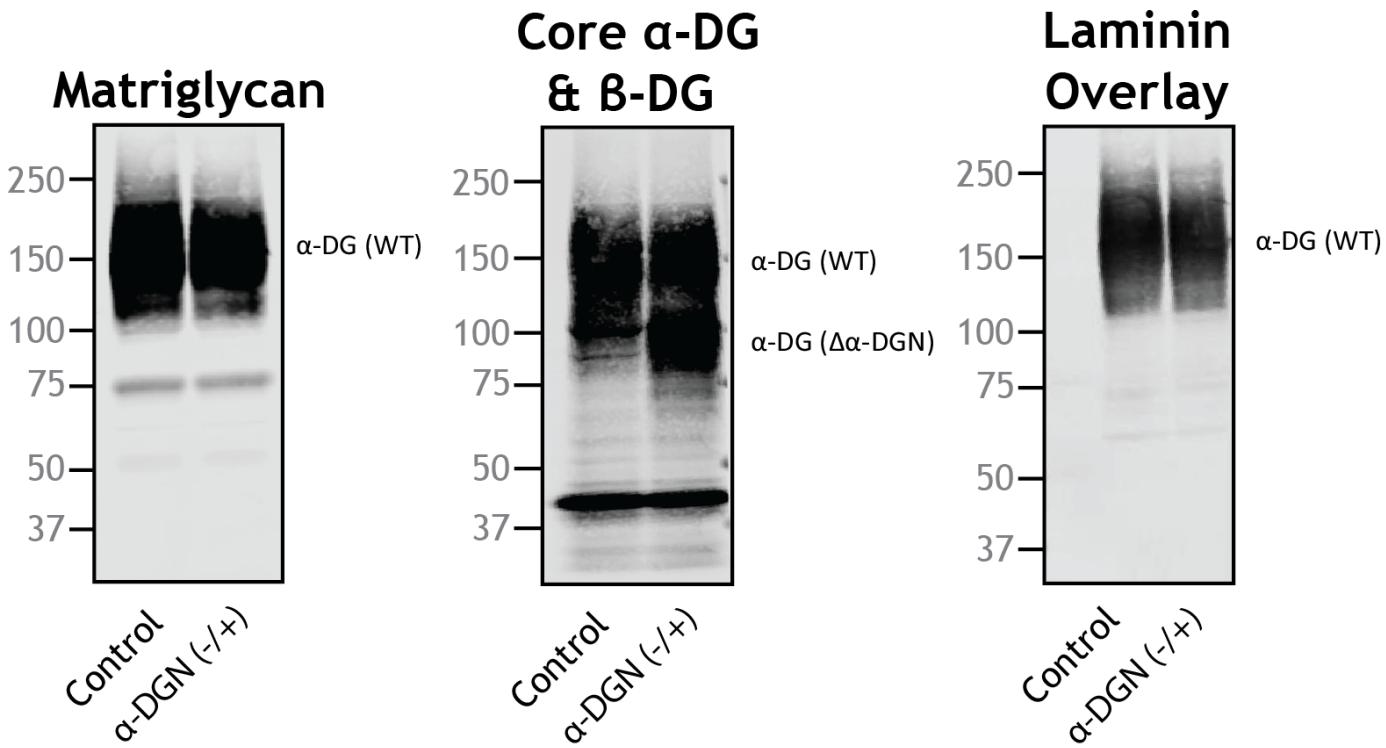
811 Campbell, K. P., Abdenur, J. E. (2009). Further evidence of Fukutin mutations as a cause

812 of childhood onset limb-girdle muscular dystrophy without mental retardation.

813 *Neuromuscul Disord*, 19(5), 352-356. DOI: 10.1016/j.nmd.2009.03.001, PMID:

814 19342235

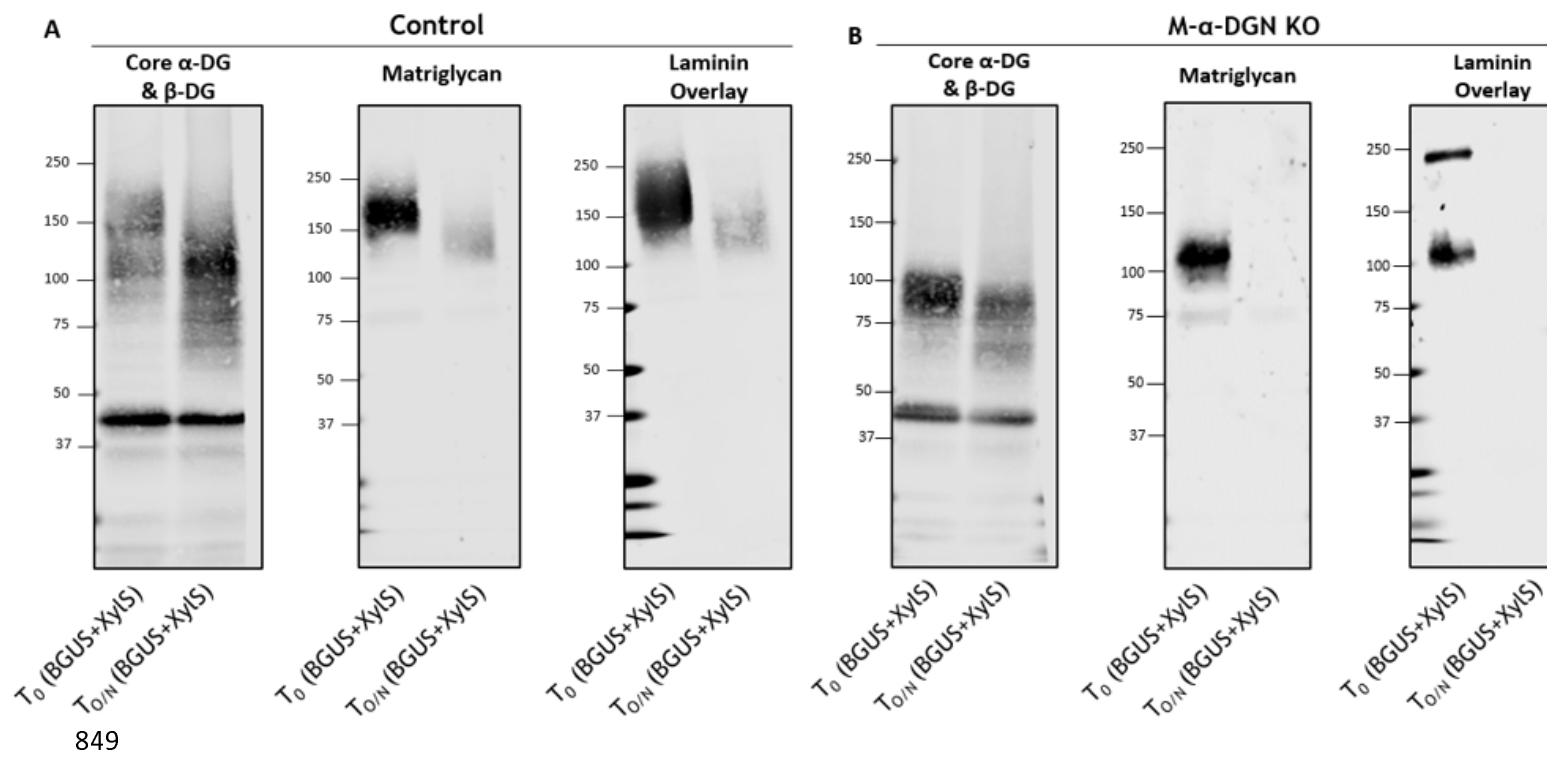
815 Rowe., R. G., Weiss, S. J. (2008). Breaching the basement membrane: who, when, and how?
816 *Trends in Cell Biology*, 18(11), 560-574. DOI: 10.1016/j.tcb.2008.08.007. Epub 2008 Oct
817 9. PMID: 18848450.


818 Saito, F., Moore, S. A., Barresi, R., Henry, M. D., Messing, A., Ross-Barta, S. E., Cohn, R. D.,
819 Williamson, R. A., Sluka, K. A., Sherman, D. L., Brophy, P. J., Schmelzer, J. D., Low, P.
820 A., Wrabetz, L., Feltri, M. L., Campbell, K. P. (2003). Unique role of dystroglycan in
821 peripheral nerve myelination, nodal structure, and sodium channel stabilization. *Neuron*,
822 38(5), 747-758. DOI: 10.1016/s0896-6273(03)00301-5, PMID: 12797959

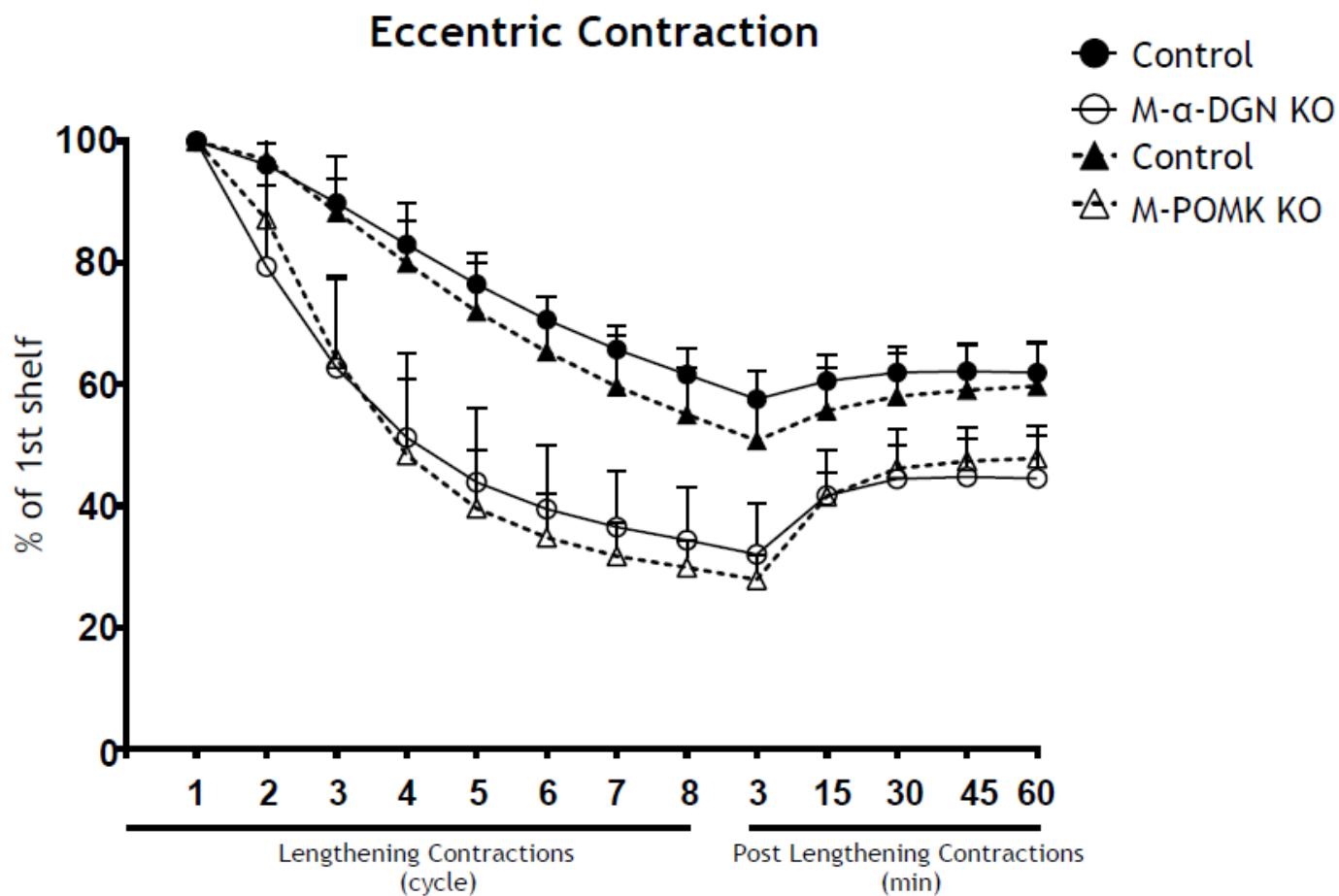
823 Suzuki, A., Yoshida, M., Hayashi, K., Mizuno, Y., Hagiwara, Y., Ozawa, E. (1994). Molecular
824 organization at the glycoprotein-complex-binding site of dystrophin. Three dystrophin-
825 associated proteins bind directly to the carboxy-terminal portion of dystrophin. *Eur J
826 Biochem*, 220(2), 283-292. DOI: 10.1111/j.1432-1033.1994.tb18624.x, PMID: 8125086

827 Walimbe, A. S., Okuma, H., Joseph, S., Yang, T., Yonekawa, T., Hord, J. M., Venzke, D.,
828 Anderson, M. E., Torelli, S., Manzur, A., Devereaux, M., Cuellar, M., Prouty, S.,
829 Ocampo Landa, S., Yu, L., Xiao, J., Dixon, J. E., Muntoni, F., Campbell, K. P. (2020).
830 POMK regulates dystroglycan function via LARGE1-mediated elongation of
831 matriglycan. *Elife*, 9. DOI: 10.7554/eLife.61388, PMID: 32975514

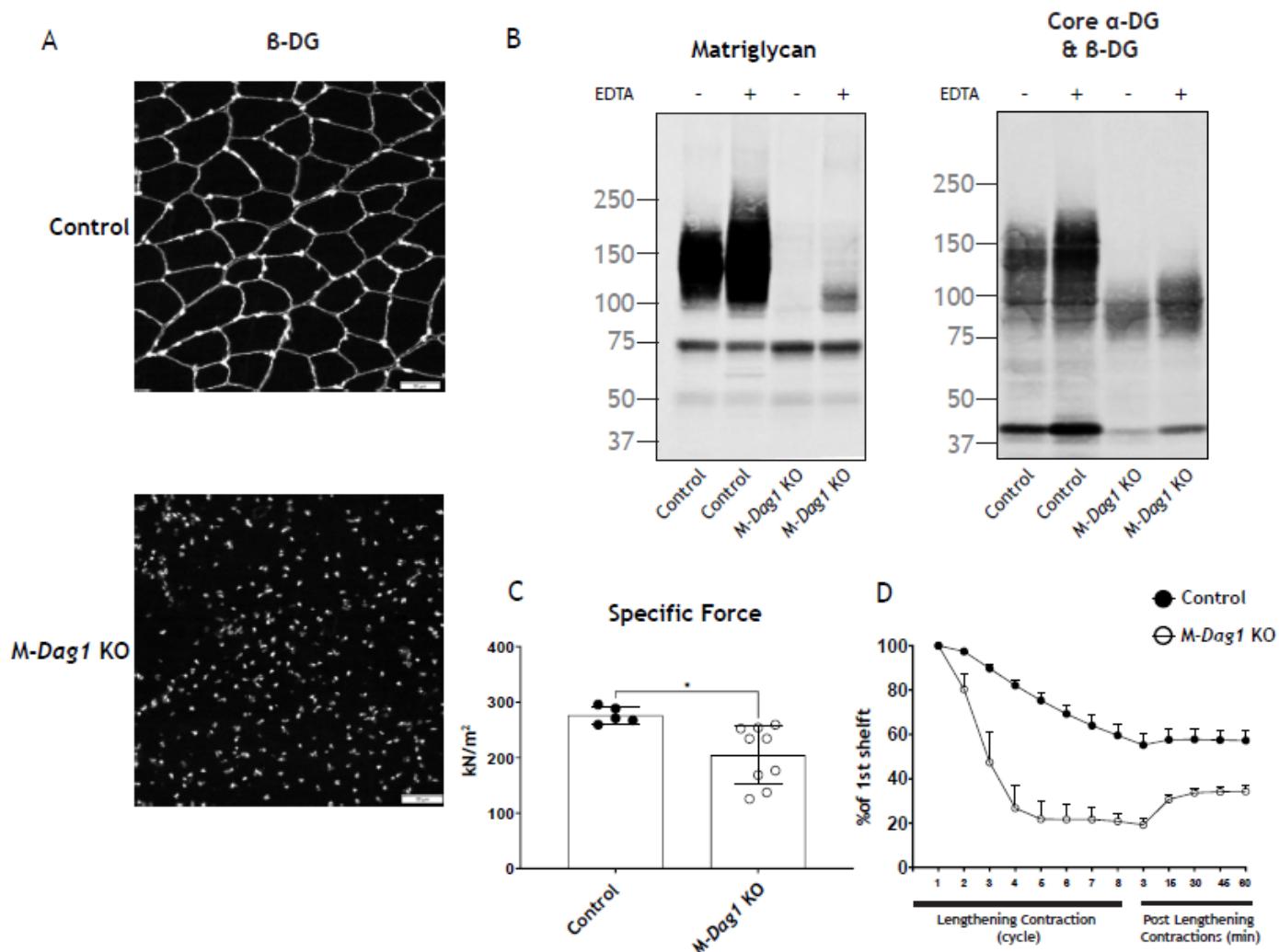
832 Williamson, R. A., Henry, M. D., Daniels, K. J., Hrstka, R. F., Lee, J. C., Sunada, Y.,
833 Ibraghimov-Beskrovnaya, O., Campbell, K. P. (1997). Dystroglycan is essential for early
834 embryonic development: disruption of Reichert's membrane in Dag1-null mice. *Hum Mol
835 Genet*, 6(6), 831-841. DOI: 10.1093/hmg/6.6.831, PMID: 9175728


836 Yoshida-Moriguchi, T., & Campbell, K. P. (2015). Matriglycan: a novel polysaccharide that
837 links dystroglycan to the basement membrane. *Glycobiology*, 25(7), 702-713. DOI:
838 10.1093/glycob/cwv021, PMID: 25882296

839 **Supplemental Figures**


840

841 **Figure 2-figure supplement 1. Heterozygous mice (+/-) for constitutive deletion of α-DGN**
842 **have two different sizes of α-DG** Immunoblot analysis of skeletal muscle from littermate
843 controls or mice that were heterozygous for the α-DGN KO allele (α-DGN (-/)). Glycoproteins
844 were enriched from quadriceps skeletal muscles of mice using WGA-agarose with 10 mM
845 EDTA. Immunoblotting was performed to detect matriglycan (IIIH11), core α-DG and β-DG
846 (AF6868), and laminin overlay. α-DG in WT control muscle (α-DG(WT)) and α-DG in α-DGN-
847 deficient muscle (α-DG(Δα-DGN)) are indicated on the right. Molecular weight standards in
848 kilodaltons (kDa) are shown on the left.


Figure 2-figure supplement 2. The short 100-120kDa band in M- α -DGN KO is matri glycan.

(A) Immunoblot analysis of total skeletal muscle from control mice after digestion with enzymes β -glucuronidase and α -xylosidase. Glycoproteins were enriched using wheat-germ agglutinin (WGA)-agarose with 10 mM EDTA and incubated overnight with β -glucuronidase (BGUS) and α -xylosidase (XyIS). Immunoblotting was performed to detect matri glycan (IIH6), core α -DG and β -DG (AF6868), and laminin overlay before (T_0) and after overnight digestion ($T_{0/N}$). (B) Immunoblot analysis of M- α -DGN KO total skeletal muscle after digestion with enzymes β -glucuronidase and α -xylosidase. Glycoproteins were enriched using wheat-germ agglutinin (WGA)-agarose with 10 mM EDTA and incubated overnight with β -glucuronidase and α -xylosidase. Immunoblotting was performed to detect matri glycan (IIH6), core α -DG and β -DG (AF6868), and laminin overlay before (T_0) and after digestion ($T_{0/N}$). Molecular weight standards in kilodaltons (kDa) are shown on the left.

862

863 **Figure 4-figure supplement 1. α -DGN-deficient muscle and POMK-deficient muscle with**
864 **similar short forms of matriglycan exhibit similar lengthening contraction-induced force**
865 **decline.** Force deficit and force recovery after eccentric contractions in EDL muscles from 12- to
866 17-week-old male & female controls (closed circles; n=7), M- α -DGN KO (open circles; n=7),
867 M-POMK littermate controls (closed triangles; n=3), and M-POMK KO (open triangles; n=4)
868 mice. There is no significant difference in M- α -DGN KO vs M-POMK KO as determined by
869 Student's unpaired t-test at any given lengthening contractions cycle and post lengthening
870 contractions.

871

872 **Figure 5-figure supplement 1. Characteristics of M-Dag1 KO (*Pax7*^{cre} *Dag1*^{fl/fl}) mice (A)**
873 Immunofluorescence analyses of quadriceps muscles from a 12-week-old WT littermate
874 (control) or M-Dag1 KO mouse. Sections were stained to detect β -DG (AP83) and nuclei
875 (DAPI). **(B)** Immunoblot analysis of skeletal muscle from control and M-Dag1 KO mice.
876 Glycoproteins were enriched from skeletal muscles (quadriceps) using WGA-agarose with (+)
877 and without (-) 10 mM EDTA. Immunoblotting was performed to detect matriglycan (IIIH11)
878 and core α -DG and β -DG (AF6868). **(C)** Specific force in EDL muscles of mice in indicated
879 groups; $p=0.0128$, as determined by Student's unpaired t-test. **(D)** Force deficit and force
880 recovery after eccentric contractions in EDL muscles of 12- to 17-week-old male & female
881 control (n=3) and M-Dag1 KO (n=6) mice.

882

883 **Figure 6-figure supplement 1. LARGE1 overexpression does not extend matriglycan on**
884 **dystroglycan lacking α-DGN.** AAV-MCK-LARGE1 was injected into the retro-orbital sinus 10-
885 to-24-week-old M-α-DGN KO mice. Quadriceps skeletal muscle was dissected 10 to 22 weeks
886 after injection from control, M-α-DGN KO, and M-α-DGN KO+AAV-MCK-mLARGE1 and
887 used for immunoblotting analysis. Glycoproteins were enriched using WGA-agarose with 10
888 mM EDTA. Immunoblotting was performed to detect matriglycan (IIIH11), core α-DG and β-
889 DG (AF6868), and laminin (overlay). Molecular weight standards in kilodaltons (kDa) are
890 shown on the left.

891

892 **Figure 7-figure supplement 1. Effect of EDTA on solubilization of α -DG from skeletal**
893 **muscle.** Western blot analysis of DG in glycoprotein-enriched samples of control, *M-POMK-*
894 *KO*, and *Large^{myd}* skeletal muscle. Homogenates were prepared with (+) and without (-) 10mM
895 EDTA (indicated on top) and enriched on WGA-agarose beads. Following washing, WGA-
896 agarose beads were eluted with Laemmli sample buffer, and samples were loaded onto SDS-
897 PAGE and blotted onto PVDF-FL membranes. Immunoblotting was performed to detect (A)
898 core α -DG & β -DG (AF6868), (B) matriglycan (IIIH11) and (C) matriglycan (IIH6). α -DG is
899 labeled with a bracket and varies in apparent molecular weight depending on glycosylation with
900 matriglycan. β -DG is labeled with an asterisk.