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Abstract 

Experiments in which data are collected by 

multiple independent resources, including 

multicentre data, different laboratories within 

the same centre or with different operators are 

challenging in design, data collection and 

inferences. This may lead to inconsistent 

results across the resources. In this paper, we 

propose a statistical solution for the problem 

of multi-resource consensus inferences when 

statistical results from different resources 

show variation in magnitude, directionality and 

significance. Our proposed method allows 

combining the corrected p-values, effect sizes 

and the total number of centres into a global 

consensus score. We apply this method to 

obtain a consensus score for data collected by 

the International Mouse Phenotyping 

Consortium (IMPC) across 11 centres. We 

show the application of this method to detect 

sexual dimorphism in haematological data and 

discuss the suitability of the methodology.  

 

Keywords: consensus score, IMPC, knockout 

mice, multicentre, statistical inference, 

 

Introduction  

Measuring response to a treatment based on 
data collected from multiple resources, such as 
multicentre clinical trials or animal 
experiments benefits from (1) lower noise 
level, because results are not strongly 
resource-dependent [1], and (2) effectiveness, 
because they apply to a broader population 
[2,3]. In these experiments, obtaining a global 
consensus in the statistical inference across 
resources is desired. However, even in highly 
controlled experiments, it is not always 
possible to control for all sources of variation 
across all resources. This makes aggregating 
statistical results from multiple resources 
challenging because the results may be 
vulnerable to biases, which lead to inconsistent 
inferences. The design of the study, sample 
size, power of the analysis and unknown errors 
are examples that may affect obtaining a valid 
global statistical conclusion across resources 
[4–6]. Other factors are the equipment that is 
used to perform the measurements in 
different resources (e.g., centres, laboratories, 
etc.), the level of experience of the staff and 
more complex environmental factors that 
typically arise in animal tests such as diet, litter, 
handling, circadian rhythm, housing and 
husbandry. Therefore, in multi-resource 
experiments, it is crucial to control for as many 
variables as possible to be able to reach global 
agreements across inferences made from all 
resources [4,7–9].  

In this paper, we present a methodological 
approach which seeks to find a solution to the 
problem of multi-resource consensus with a 
focus on multicentre experiments. The 
proposed method allows calculating a global 
consensus score for the effect of interest (e.g., 
genotype, sexual dimorphism, bodyweight 
effect) in multicentre studies. The method 
takes into consideration the number of centres 
where the test of interest is performed at, the 
direction and magnitude of the effect size and 
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the significance level obtained from individual 
centres and combines the values into a global 
consensus score. We apply our method to data 
obtained by the International Mouse 
Phenotyping Consortium (IMPC), a 
transnational multicentre endeavour that 
screens the phenotypes of single-gene 
knockout mouse lines and wild-type mice to 
understand gene function [10]. 

 

Method  

There are several approaches typically used to 

aggregate inferences from multicentre data. 

One method is to utilise group decision-making 

processes, such as the DELPHI method [11,12]. 

Another is to use a simple majority rule criteria, 

such as all centres agree versus at least one 

centre disagree. Other approaches have 

employed simple statistics or probabilistic 

criteria, such as more than half/mean/median 

centres/results agree or simple statistical tests 

such as T-test or ANOVA [13] or have 

incorporated the centre effect into the 

statistical model [2]. These approaches may 

suffer from insufficient power, individual bias 

(such as misjudgements or making decisions 

based on insufficient information) and have 

strong underlying assumptions as well as 

require a large M, the total number of centres, 

to converge to the true inference [2,14]. 

Here we propose an alternative approach that 

considers the corrected p-values (q-values) 

such as in [15–17], as well as the effect sizes 

from individual centres for the test of interest. 

We propose calculating a consensus score for 

the test 

Consensus score (s)

=  {

∑ (𝑞𝑖 × √|𝜌𝑖|)𝑖

𝑀̅ 2 × 𝑞̂ × √𝜌̂
× 𝑀𝑎𝑥 (

𝑀

2
, 𝑀̅)  , 𝑀̅ × 𝑃 > 𝑐

1                                             , 𝑜. 𝑤

 
(1) 

 

Where 𝑖 = 1, 2, … , 𝑀 represents the 𝑖𝑡ℎ centre 

from a total of 𝑀 centres, 𝑀̅ the total number 

of centres where the test is performed at (𝑀 is 

not necessarily equivalent to 𝑀̅ in multicentre 

multi-test studies where the aim is to compare 

several measurements across centres while 

fixing the number of centres), 𝑞𝑖 the corrected 

p-value (q-value) from the statistical test 

performed in centre 𝑖 for the effect of interest 

(e.g. sex, genotype, body weight effect, etc.), 

𝜌𝑖 the estimated standardised effect size from 

the statistical test that is performed in centre 

𝑖, such as Cohen’s 𝑑 effect size [18] and 𝑃 =

| ∑ Sign(𝜌𝑖) 𝑀̅|⁄𝑖  is a penalty term, where the 

𝑆𝑖𝑔𝑛(𝜌) is the sign function defined by 

𝑆𝑖𝑔𝑛(𝜌) = {

1           𝜌 > 0
0           𝜌 = 0
−1        𝜌 < 0

. 

Finally, 𝑐, 𝑞̂ and 𝜌̂ are the minimum required 

number of centres for the analysis, the 

expected q-value and effect size from the prior 

information. We recommend 𝑐 = 3, 𝑞̂ = 0.05 

and moderate expected effect size 𝜌̂ = 0.5 

[3,19,20] for high-throughput experiments, 

such as in the IMPC. We further assume that all 

centres utilise a consistent and sufficiently 

powerful set of statistical tests that is adequate 

for the data under study and that the effect 

sizes are estimated from the normalised data. 

Here normalising data refers to performing the 

statistical analysis on the standardised data as 

below 

standardised data for centre 𝑖 =
𝑥𝑖 − 𝜇𝑥𝑖

𝜎𝑥𝑖
 

Where 𝑥𝑖, 𝜇𝑥𝑖 and 𝜎𝑥𝑖 are the raw values, mean 

and standard deviation of the data from centre 

𝑖 respectively. The resulting scores from Eq.1 

range in the (0, +∞) interval and the 

agreement of the multicentre statistical results 

can be evaluated by using −log (s) so that  

 

{
Consensus across centres                         if − log(s) > 0

Not enough consensus across centres   if − log(s) ≤ 0
. 

 

The magnitude of −log (s) from Eq.1 is not 

bounded. A larger value in the positive (or 

negative) direction reflects a stronger 

agreement (or lack of agreement) among 

resources. For the special case where 
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− log(s) = 0, one can conclude that either 

there is not enough information in the data to 

calculate the scores or there is not enough 

agreement across centres, as we show in the 

results section. 

 

Results 

In this section, we show the application of the 

proposed scoring method to identify sexual 

dimorphism in the IMPC haematological data 

collected from wild-type (WT) mice, 15-17 

weeks in age, over a 3-year period from 1st  

January 2018 to 31st December 2020, with a 

minimum required threshold of 50 mice per 

sex. Our choice of data is inspired by the 

importance of the haematology parameters in 

reflecting overall health. The data used in this 

study can be accessed via the IMPC web portal 

under the URL www.mousephenotype.org 

(data release 15.1 – October 2021). 

The IMPC is a global effort aiming to generate 
and characterise knockout mouse lines for 
every protein-coding gene in mice [21–24]. The 
IMPC data are collected from several 
independent centres worldwide [10]. Every 
centre contributes to the data collection by 
adhering to a set of standardised phenotype 
assays defined in the International Mouse 
Phenotyping Resource of Standardised Screens 
(IMPReSS - www. 
mousephenotype.org/impress). Although all 
centres follow the same Standard Operating 
Procedures (SOPs), there may be unavoidable 
or necessary variations in the implementation 
of the experiments (such as mouse age or time 
of the day when the test is performed), 
equipment (such as manufacture, model and 
kits) as well as the level of expertise and 
experience of staff, in addition to variations in 
inbred mouse strain (Table 1) [25]. This may 
lead to differing results across centres, which 
makes a universal inference from the results 
challenging.  

 

IMPC haematology. The IMPC haematology 
procedure encapsulates 22 measurements of 
blood properties such as counts and 
concentrations (white blood cell count, red 
blood cell count, haemoglobin concentration, 
platelet counts, etc.), as well as additional and 
derived haematological parameters 
(haematocrit, mean red blood cell volume, 
mean red blood cell haemoglobin, mean red 
blood cell haemoglobin concentration, etc.). 
Figure 1 (top) shows red blood cell counts and 
(bottom) the haemoglobin concentration 
collected by 11 IMPC centres. The shifts in the 
means are most likely due to differences in the 
equipment used to take the measurements 
and can be removed by normalising the data. 
The top plot shows consistently higher red 
blood cell counts in males than females across 
centres, whereas there is not a clear pattern 
for the haemoglobin concentration.  

 

Figure 1. The distribution of red blood cell counts (top) 
and the haemoglobin concentration (bottom) for wild-
type mice from the IMPC split by sex and phenotyping 
centre. The orange and blue represent females and males, 
respectively. The consensus score for the red blood cell 
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count trait is − 𝑙𝑜𝑔(𝑠) = 0.30, which implies a global 
agreement across IMPC centres in identifying sexual 
dimorphism; the sign of the average effect size indicates 
whether males (positive) or females (negative) present 
higher values (males in this case, see Table 2). In contrast, 
the consensus score for the haemoglobin concentration 
trait is − 𝑙𝑜𝑔(𝑠) = 0, which implies lack of agreement 
among the IMPC centres to detect sexual dimorphism for 
this parameter. 

Table 1. Mouse strains used by the IMPC centres for the 
haematological data collected from 1st January 2018 to 
31st December 2020. 
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Mouse strain 

C57BL/6N ✓ - - ✓ - - - - - - ✓ 

C57BL/6NCRL - ✓ ✓ - - - - - ✓ ✓ - 

C57BL/6NJ - - - - ✓ - - - - - - 

C57BL/6NJCL - - - - - - - ✓ - - - 

C57BL/6NTAC - - - - - ✓ ✓ - - - - 

 

Consensus score. In line with [3], the sexual 

dimorphism effect is tested for all 22 

haematology traits, independently for WT 

mice from each of the 11 centres, 

corresponding to the same mouse strain and 

metadata group split. We used a windowed 

linear mixed model described in [26,27] and 

implemented in the software R [28], packages 

OpenStats and SmoothWin [29,30]. As in [3],  

𝑆𝑒𝑥 and 𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 in the fixed effect 

terms 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑆𝑒𝑥 + 𝐵𝑜𝑑𝑦𝑊𝑒𝑖𝑔ℎ𝑡 + 𝑒, 

and Batch (the date when the test is performed 
on mice) in the random effect term. We then 
apply the scoring method to obtain a 
consensus global inference from the 
multicentre results, following the logic 
described in the flowchart below (Fig.2).  

 

Figure 2. Flowchart showing the logic behind the scoring 
method to obtain a consensus global inference from 
multicentre results. The first step involves examining the 
number of centres performing the test; when there are 
more than 3 centres, the consensus score is calculated. 
Provided − 𝑙𝑜𝑔(𝑠) > 0, a multicentre consensus signal is 
established (accepted) and the direction of sexual 
dimorphism based on the sign of the average effect sizes 
is reported. 

Table 2 shows the outcome of the scoring 

method for the 22 haematological parameters 

measured by the IMPC, as well as the 

comparison with a consensus method based 

on all centres agreeing on a significant sex 

effect. Using the method proposed here, there 

is consensus among 11 IMPC centres for 14 

traits with − log(𝑠) > 0, with males on 

average higher than females for 9 traits (red 

blood cell count, red blood cell distribution 

width, haematocrit, platelet count, white 

blood cell count, lymphocyte cell count, 

neutrophil cell count, monocyte cell count, 

eosinophil cell count) and females on average 

higher than males for 5 traits (mean cell 

volume, mean corpuscular haemoglobin, mean 

cell haemoglobin concentration, mean platelet 

volume, and lymphocyte differential count). 

For 8 traits, the scoring method leads to zero 

or negative values, reflecting a lack of 

consensus (6 traits), or does not reach the 

minimum threshold of three centres providing 

measurements for the results to be processed 

(lack of information in the data - 2 traits).  

 

 
 
 
 

Table 2. The outcome of applying the scoring method to 22 haematological measurements collected by 11 IMPC centres. The 
traits are shown in rows followed by the counts for the centre-based statistical test results, the mean effect size for the 11 
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centres, the consensus score and the inference, which is based on the -log(score) and the sign of the mean effect size. The 
scoring method identifies consensus in sexual dimorphism across centres for 14 traits (green and red rows), no agreement for 
8 traits (blue rows) and 2 traits which do not meet the minimum requirements for the calculation of the score (yellow rows). 
Only in 2 cases, all centres agree (in bold). 

Trait name 

Count of outcomes 

across centres 

Do all centres 

agree? 

Consensus score 
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Inference 

Platelet count 1 10 0 No 1.25 0.35 Males Higher 

White blood cell count 1 9 0 No 1.17 1.12 Males Higher 

Lymphocyte cell count 1 5 0 No 1.01 0.86 Males Higher 

Neutrophil cell count 0 6 0 Yes 0.80 1.71 Males Higher 

Monocyte cell count 0 5 1 No 0.62 2.28 Males Higher 

Red blood cell count 2 9 0 No 0.55 0.30 Males Higher 

Red blood cell distribution width 1 7 0 No 0.53 0.74 Males Higher 

Haematocrit 4 6 1 No 0.38 0.16 Males Higher 

Eosinophil cell count 0 5 1 No 0.35 1.08 Males Higher 

Lymphocyte differential count 2 1 3 No -0.32 0.13 Female Higher 

Mean cell volume 1 0 10 No -0.47 0.42 Female Higher 

Mean platelet volume 1 0 7 No -0.51 0.22 Female Higher 

Mean cell haemoglobin 

concentration 
3 0 8 No -0.52 0.14 

Female Higher 

Mean corpuscular haemoglobin 1 0 10 No -0.90 0.64 Female Higher 

Large Unstained Cell (LUC) count 
0 3 0 Yes 0.83 0.00 

Does not reach the minimum 

threshold for this analysis 

Large Unstained Cell (LUC) 

differential count 
2 1 0 No 0.39 0.00 

Does not reach the minimum 

threshold for this analysis 

Neutrophil differential count 
3 2 1 No 0.35 -0.07 

Not enough signal between or 

across centres to detect SD 

Basophil cell count 
1 3 1 No 0.25 0.00 

Not enough signal between or 

across centres to detect SD 

Haemoglobin 
5 4 2 No 0.13 0.00 

Not enough signal between or 

across centres to detect SD 

Monocyte differential count 
4 1 1 No 0.03 0.00 

Not enough signal between or 

across centres to detect SD 

Eosinophil differential count 
4 1 1 No -0.06 0.00 

Not enough signal between or 

across centres to detect SD 

Basophil differential count 
2 1 2 No -0.16 0.00 

Not enough signal between or 

across centres to detect SD 
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Conclusion and future work  

Collecting data from multiple resources such 

as, in the case of this study, mouse 

phenotyping centres, benefits from a higher 

signal-to-noise ratio and a broader 

representation of a population. However, 

extra attention is required in the design and 

implementation of the experiments and 

statistical analysis to be able to make a global 

consensus inference from the aggregated 

results from individual resources [2–9,31,32]. 

Due to unavoidable, uncontrolled and 

unobserved factors, the results from all 

resources may only partially agree and a metric 

of consensus is required. In this paper, we 

propose a novel method which combines 

several aspects of multicentre experiment 

results including the corrected p-values, the 

magnitude and direction of effect sizes and the 

number of centres into one global consensus 

score. 

 We applied this method to identify sexual 

dimorphism in 22 haematological 

measurements collected from wildtype mice in 

11 globally distributed centres forming part of 

the International Mouse Phenotyping 

Consortium (IMPC). We compared the results 

of this method to those obtained by applying a 

binary method based on the agreement of all 

centres on the detection of sexual dimorphism. 

While the binary method found 2 traits 

reaching consensus across all IMPC centres, 

the method presented here allows to conclude 

sexual dimorphism in 14 traits, with males on 

average higher than females for 9 traits and 

females on average higher than males for 5 

traits. This study has focused on the IMPC 

haematology traits, but we believe the 

approach could be applied more generally and 

would be suitable to assess other IMPC 

parameters in the future. 
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