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Abstract

Experiments in which data are collected by
multiple independent resources, including
multicentre data, different laboratories within
the same centre or with different operators are
challenging in design, data collection and
inferences. This may lead to inconsistent
results across the resources. In this paper, we
propose a statistical solution for the problem
of multi-resource consensus inferences when
statistical results from different resources
show variation in magnitude, directionality and
significance. Our proposed method allows
combining the corrected p-values, effect sizes
and the total number of centres into a global
consensus score. We apply this method to
obtain a consensus score for data collected by
the International Mouse Phenotyping
Consortium (IMPC) across 11 centres. We
show the application of this method to detect
sexual dimorphism in haematological data and
discuss the suitability of the methodology.
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Introduction

Measuring response to a treatment based on
data collected from multiple resources, such as
multicentre  clinical  trials or  animal
experiments benefits from (1) lower noise
level, because results are not strongly
resource-dependent [1], and (2) effectiveness,
because they apply to a broader population
[2,3]. In these experiments, obtaining a global
consensus in the statistical inference across
resources is desired. However, even in highly
controlled experiments, it is not always
possible to control for all sources of variation
across all resources. This makes aggregating
statistical results from multiple resources
challenging because the results may be
vulnerable to biases, which lead to inconsistent
inferences. The design of the study, sample
size, power of the analysis and unknown errors
are examples that may affect obtaining a valid
global statistical conclusion across resources
[4-6]. Other factors are the equipment that is
used to perform the measurements in
different resources (e.g., centres, laboratories,
etc.), the level of experience of the staff and
more complex environmental factors that
typically arise in animal tests such as diet, litter,
handling, circadian rhythm, housing and
husbandry. Therefore, in multi-resource
experiments, it is crucial to control for as many
variables as possible to be able to reach global
agreements across inferences made from all
resources [4,7-9].

In this paper, we present a methodological
approach which seeks to find a solution to the
problem of multi-resource consensus with a
focus on multicentre experiments. The
proposed method allows calculating a global
consensus score for the effect of interest (e.g.,
genotype, sexual dimorphism, bodyweight
effect) in multicentre studies. The method
takes into consideration the number of centres
where the test of interest is performed at, the
direction and magnitude of the effect size and
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the significance level obtained from individual
centres and combines the values into a global
consensus score. We apply our method to data
obtained by the International Mouse
Phenotyping Consortium (IMPC), a
transnational multicentre endeavour that
screens the phenotypes of single-gene
knockout mouse lines and wild-type mice to
understand gene function [10].

Method

There are several approaches typically used to
aggregate inferences from multicentre data.
One method is to utilise group decision-making
processes, such as the DELPHI method [11,12].
Another is to use a simple majority rule criteria,
such as all centres agree versus at least one
centre disagree. Other approaches have
employed simple statistics or probabilistic
criteria, such as more than half/mean/median
centres/results agree or simple statistical tests
such as T-test or ANOVA [13] or have
incorporated the centre effect into the
statistical model [2]. These approaches may
suffer from insufficient power, individual bias
(such as misjudgements or making decisions
based on insufficient information) and have
strong underlying assumptions as well as
require a large M, the total number of centres,
to converge to the true inference [2,14].

Here we propose an alternative approach that
considers the corrected p-values (g-values)
such as in [15-17], as well as the effect sizes
from individual centres for the test of interest.
We propose calculating a consensus score for
the test

Consensus score (s)
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Wherei =1, 2, ..., M represents the it" centre
from a total of M centres, M the total number
of centres where the test is performed at (M is
not necessarily equivalent to M in multicentre

multi-test studies where the aim is to compare
several measurements across centres while
fixing the number of centres), g; the corrected
p-value (g-value) from the statistical test
performed in centre i for the effect of interest
(e.g. sex, genotype, body weight effect, etc.),
p; the estimated standardised effect size from
the statistical test that is performed in centre
i, such as Cohen’s d effect size [18] and P =
| i Sign(p;)/M]| is a penalty term, where the
Sign(p) is the sign function defined by

1 p>0
Sign(p) =10 p=0.
-1 p<O0

Finally, ¢, § and p are the minimum required
number of centres for the analysis, the
expected g-value and effect size from the prior
information. We recommend ¢ = 3, § = 0.05
and moderate expected effect size p = 0.5
[3,19,20] for high-throughput experiments,
such as in the IMPC. We further assume that all
centres utilise a consistent and sufficiently
powerful set of statistical tests that is adequate
for the data under study and that the effect
sizes are estimated from the normalised data.
Here normalising data refers to performing the
statistical analysis on the standardised data as
below

Xi = Uxi

Oxi

standardised data for centre i =

Where x;, l4y; and o,; are the raw values, mean
and standard deviation of the data from centre
i respectively. The resulting scores from Eq.1
range in the (0,+) interval and the
agreement of the multicentre statistical results
can be evaluated by using —log (s) so that

{ Consensus across centres if —log(s) >0
Not enough consensus across centres if —log(s) <0

The magnitude of —log (s) from Eq.1 is not
bounded. A larger value in the positive (or
negative) direction reflects a stronger
agreement (or lack of agreement) among
resources. For the special case where
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—log(s) = 0, one can conclude that either
there is not enough information in the data to
calculate the scores or there is not enough
agreement across centres, as we show in the
results section.

Results

In this section, we show the application of the
proposed scoring method to identify sexual
dimorphism in the IMPC haematological data
collected from wild-type (WT) mice, 15-17
weeks in age, over a 3-year period from 1°
January 2018 to 31 December 2020, with a
minimum required threshold of 50 mice per
sex. Our choice of data is inspired by the
importance of the haematology parameters in
reflecting overall health. The data used in this
study can be accessed via the IMPC web portal
under the URL www.mousephenotype.org
(data release 15.1 — October 2021).

The IMPC is a global effort aiming to generate
and characterise knockout mouse lines for
every protein-coding gene in mice [21-24]. The
IMPC data are collected from several
independent centres worldwide [10]. Every
centre contributes to the data collection by
adhering to a set of standardised phenotype
assays defined in the International Mouse
Phenotyping Resource of Standardised Screens
(IMPReSS - WWW.
mousephenotype.org/impress). Although all
centres follow the same Standard Operating
Procedures (SOPs), there may be unavoidable
or necessary variations in the implementation
of the experiments (such as mouse age or time
of the day when the test is performed),
equipment (such as manufacture, model and
kits) as well as the level of expertise and
experience of staff, in addition to variations in
inbred mouse strain (Table 1) [25]. This may
lead to differing results across centres, which
makes a universal inference from the results
challenging.

IMPC haematology. The IMPC haematology
procedure encapsulates 22 measurements of
blood properties such as counts and
concentrations (white blood cell count, red
blood cell count, haemoglobin concentration,
platelet counts, etc.), as well as additional and
derived haematological parameters
(haematocrit, mean red blood cell volume,
mean red blood cell haemoglobin, mean red
blood cell haemoglobin concentration, etc.).
Figure 1 (top) shows red blood cell counts and
(bottom) the haemoglobin concentration
collected by 11 IMPC centres. The shifts in the
means are most likely due to differences in the
equipment used to take the measurements
and can be removed by normalising the data.
The top plot shows consistently higher red
blood cell counts in males than females across
centres, whereas there is not a clear pattern
for the haemoglobin concentration.
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Figure 1. The distribution of red blood cell counts (top)
and the haemoglobin concentration (bottom) for wild-
type mice from the IMPC split by sex and phenotyping
centre. The orange and blue represent females and males,
respectively. The consensus score for the red blood cell
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count trait is —log(s) = 0.30, which implies a global
agreement across IMPC centres in identifying sexual
dimorphism; the sign of the average effect size indicates
whether males (positive) or females (negative) present
higher values (males in this case, see Table 2). In contrast,
the consensus score for the haemoglobin concentration
trait is —log(s) = 0, which implies lack of agreement
among the IMPC centres to detect sexual dimorphism for
this parameter.

Table 1. Mouse strains used by the IMPC centres for the
haematological data collected from 1%t January 2018 to
315t December 2020.

® Qa I 5 §$ 3 2 ® 4 ¢ 5
o o \a 2 @® QO o6
IMPCcentre 2 ® 3 X3 838 ° g &
g c z z
o] £ @
s
m
[
Mouse strain
C57BL/6N v - - v - - - - - - v
C57BL/6NCRL Y 2 2 Y
C57BL/6NJ - - - - v
C57BL/6NJCL _ - . - - - - v
C57BL/6NTAC - - - - - v v

Consensus score. In line with [3], the sexual
dimorphism effect is tested for all 22
haematology traits, independently for WT
mice from each of the 11 centres,
corresponding to the same mouse strain and
metadata group split. We used a windowed
linear mixed model described in [26,27] and
implemented in the software R [28], packages
OpenStats and SmoothWin [29,30]. As in [3],
Sex and Body Weight in the fixed effect
terms

Response = Sex + BodyWeight + e,

and Batch (the date when the test is performed
on mice) in the random effect term. We then
apply the scoring method to obtain a
consensus global inference from the
multicentre results, following the logic
described in the flowchart below (Fig.2).

—log(s) =0

Mean (p;)

(affect siza)

Does not reach minimum
threshold for this analysis

Figure 2. Flowchart showing the logic behind the scoring
method to obtain a consensus global inference from
multicentre results. The first step involves examining the
number of centres performing the test; when there are
more than 3 centres, the consensus score is calculated.
Provided — log(s) > 0, a multicentre consensus signal is
established (accepted) and the direction of sexual
dimorphism based on the sign of the average effect sizes
is reported.

Table 2 shows the outcome of the scoring
method for the 22 haematological parameters
measured by the IMPC, as well as the
comparison with a consensus method based
on all centres agreeing on a significant sex
effect. Using the method proposed here, there
is consensus among 11 IMPC centres for 14
traits with —log(s) > 0, with males on
average higher than females for 9 traits (red
blood cell count, red blood cell distribution
width, haematocrit, platelet count, white
blood cell count, lymphocyte cell count,
neutrophil cell count, monocyte cell count,
eosinophil cell count) and females on average
higher than males for 5 traits (mean cell
volume, mean corpuscular haemoglobin, mean
cell haemoglobin concentration, mean platelet
volume, and lymphocyte differential count).
For 8 traits, the scoring method leads to zero
or negative values, reflecting a lack of
consensus (6 traits), or does not reach the
minimum threshold of three centres providing
measurements for the results to be processed
(lack of information in the data - 2 traits).

Table 2. The outcome of applying the scoring method to 22 haematological measurements collected by 11 IMPC centres. The
traits are shown in rows followed by the counts for the centre-based statistical test results, the mean effect size for the 11
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centres, the consensus score and the inference, which is based on the -log(score) and the sign of the mean effect size. The
scoring method identifies consensus in sexual dimorphism across centres for 14 traits (green and red rows), no agreement for
8 traits (blue rows) and 2 traits which do not meet the minimum requirements for the calculation of the score (yellow rows).
Only in 2 cases, all centres agree (in bold).

Count of outcomes

across centres Consensus score
[
£ 5 o
© P = -
£ 2 o o T
s F o3 5 8
2 '5 = Do all centres < 2
. - © £ 2 ] -4
Trait name z° s g agree? s k) Inference
Platelet count 1 10 0 No 1.25 0.35 Males Higher
White blood cell count 1 9 0 No 1.17 1.12 Males Higher
Lymphocyte cell count 1 5 0 No 1.01 0.86 Males Higher
Neutrophil cell count 0 6 0 Yes 0.80 1.71 Males Higher
Monocyte cell count 0 5 1 No 0.62 2.28 Males Higher
Red blood cell count 2 9 0 No 0.55 0.30 Males Higher
Red blood cell distribution width 1 7 0 No 0.53 0.74 Males Higher
Haematocrit 4 6 1 No 0.38 0.16 Males Higher
Eosinophil cell count 0 5 1 No 0.35 1.08 Males Higher
Lymphocyte differential count 2 1 3 No -0.32 0.13 Female Higher
Mean cell volume 1 0 10 No -0.47 0.42 Female Higher
Mean platelet volume 1 0 7 No -0.51 0.22 Female Higher
Mean cell haemoglobm 3 0 8 No -0.52 0.14 .
concentration Female Higher
Mean corpuscular haemoglobin 1 0 10 No -0.90 0.64 Female Higher
L Unstained Cell (LUC t D h the mini
arge Unstained Cell ( ) coun 0 3 0 Yes 083 0.00 oes not reac t e mlnlmum
threshold for this analysis
L i Il (L D h the mini
?rge Un.stalned Cell (LUC) ) 1 0 No 0.39 0.00 oes not reac t e mlnlmum
differential count threshold for this analysis
Neutrophil differential count 3 5 1 No 0.35 -0.07 Not enough signal between or
across centres to detect SD
Basophil cell count 4 3 4 No 0.25 0.00 Not enough signal between or
across centres to detect SD
H lobi i
aemoglobin 5 4 ) No 0.13 0.00 Not enough signal between or
across centres to detect SD
M te diff tial t i
onocyte differential coun 4 1 1 No 0.03 0.00 Not enough signal between or
across centres to detect SD
Eosinophil differential count 4 1 1 No -0.06 0.00 Not enough signal between or
across centres to detect SD
Basophil differential count ) 1 ) No -0.16 0.00 Not enough signal between or
across centres to detect SD
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Conclusion and future work

Collecting data from multiple resources such
as, in the case of this study, mouse
phenotyping centres, benefits from a higher
signal-to-noise  ratio and a broader
representation of a population. However,
extra attention is required in the design and
implementation of the experiments and
statistical analysis to be able to make a global
consensus inference from the aggregated
results from individual resources [2-9,31,32].
Due to unavoidable, uncontrolled and
unobserved factors, the results from all
resources may only partially agree and a metric
of consensus is required. In this paper, we
propose a novel method which combines
several aspects of multicentre experiment
results including the corrected p-values, the
magnitude and direction of effect sizes and the
number of centres into one global consensus
score.

We applied this method to identify sexual
dimorphism in 22 haematological
measurements collected from wildtype mice in
11 globally distributed centres forming part of
the International Mouse Phenotyping
Consortium (IMPC). We compared the results
of this method to those obtained by applying a
binary method based on the agreement of all
centres on the detection of sexual dimorphism.
While the binary method found 2 traits
reaching consensus across all IMPC centres,
the method presented here allows to conclude
sexual dimorphism in 14 traits, with males on
average higher than females for 9 traits and
females on average higher than males for 5
traits. This study has focused on the IMPC
haematology traits, but we believe the
approach could be applied more generally and
would be suitable to assess other IMPC
parameters in the future.
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