

A consensus score to combine inferences from multiple centres

Hamed Haselimashhadi *#

Kolawole Babalola

Robert Wilson

Tudor Groza

Violeta Muñoz-Fuentes #

European Bioinformatics Institute, European Molecular Biology Laboratory

* hamedhm@ebi.ac.uk

Main contribution

Abstract

Experiments in which data are collected by multiple independent resources, including multicentre data, different laboratories within the same centre or with different operators are challenging in design, data collection and inferences. This may lead to inconsistent results across the resources. In this paper, we propose a statistical solution for the problem of multi-resource consensus inferences when statistical results from different resources show variation in magnitude, directionality and significance. Our proposed method allows combining the corrected p-values, effect sizes and the total number of centres into a global consensus score. We apply this method to obtain a consensus score for data collected by the International Mouse Phenotyping Consortium (IMPC) across 11 centres. We show the application of this method to detect sexual dimorphism in haematological data and discuss the suitability of the methodology.

Keywords: consensus score, IMPC, knockout mice, multicentre, statistical inference,

Introduction

Measuring response to a treatment based on data collected from multiple resources, such as multicentre clinical trials or animal experiments benefits from (1) lower noise level, because results are not strongly resource-dependent [1], and (2) effectiveness, because they apply to a broader population [2,3]. In these experiments, obtaining a global consensus in the statistical inference across resources is desired. However, even in highly controlled experiments, it is not always possible to control for all sources of variation across all resources. This makes aggregating statistical results from multiple resources challenging because the results may be vulnerable to biases, which lead to inconsistent inferences. The design of the study, sample size, power of the analysis and unknown errors are examples that may affect obtaining a valid global statistical conclusion across resources [4–6]. Other factors are the equipment that is used to perform the measurements in different resources (e.g., centres, laboratories, etc.), the level of experience of the staff and more complex environmental factors that typically arise in animal tests such as diet, litter, handling, circadian rhythm, housing and husbandry. Therefore, in multi-resource experiments, it is crucial to control for as many variables as possible to be able to reach global agreements across inferences made from all resources [4,7–9].

In this paper, we present a methodological approach which seeks to find a solution to the problem of multi-resource consensus with a focus on multicentre experiments. The proposed method allows calculating a global consensus score for the effect of interest (e.g., genotype, sexual dimorphism, bodyweight effect) in multicentre studies. The method takes into consideration the number of centres where the test of interest is performed at, the direction and magnitude of the effect size and

the significance level obtained from individual centres and combines the values into a global consensus score. We apply our method to data obtained by the International Mouse Phenotyping Consortium (IMPC), a transnational multicentre endeavour that screens the phenotypes of single-gene knockout mouse lines and wild-type mice to understand gene function [10].

Method

There are several approaches typically used to aggregate inferences from multicentre data. One method is to utilise group decision-making processes, such as the DELPHI method [11,12]. Another is to use a simple majority rule criteria, such as *all centres agree* versus *at least one centre disagree*. Other approaches have employed simple statistics or probabilistic criteria, such as *more than half/mean/median centres/results agree* or simple statistical tests such as T-test or ANOVA [13] or have incorporated the centre effect into the statistical model [2]. These approaches may suffer from insufficient power, individual bias (such as misjudgements or making decisions based on insufficient information) and have strong underlying assumptions as well as require a large M , the total number of centres, to converge to the true inference [2,14].

Here we propose an alternative approach that considers the corrected p-values (q-values) such as in [15–17], as well as the effect sizes from individual centres for the test of interest. We propose calculating a consensus score for the test

$$\text{Consensus score (s)} = \begin{cases} \frac{\sum_i (q_i \times \sqrt{|\rho_i|})}{\bar{M}^2 \times \hat{q} \times \sqrt{\hat{\rho}}} \times \text{Max} \left(\frac{M}{2}, \bar{M} \right) & , \bar{M} \times P > c \\ 1 & , \text{o.w} \end{cases} \quad (1)$$

Where $i = 1, 2, \dots, M$ represents the i^{th} centre from a total of M centres, \bar{M} the total number of centres where the test is performed at (M is not necessarily equivalent to \bar{M} in multicentre

multi-test studies where the aim is to compare several measurements across centres while fixing the number of centres), q_i the corrected p-value (q-value) from the statistical test performed in centre i for the effect of interest (e.g. sex, genotype, body weight effect, etc.), ρ_i the estimated standardised effect size from the statistical test that is performed in centre i , such as Cohen's d effect size [18] and $P = |\sum_i \text{Sign}(\rho_i)/\bar{M}|$ is a penalty term, where the $\text{Sign}(\rho)$ is the sign function defined by

$$\text{Sign}(\rho) = \begin{cases} 1 & \rho > 0 \\ 0 & \rho = 0 \\ -1 & \rho < 0 \end{cases}$$

Finally, c , \hat{q} and $\hat{\rho}$ are the minimum required number of centres for the analysis, the expected q-value and effect size from the prior information. We recommend $c = 3$, $\hat{q} = 0.05$ and moderate expected effect size $\hat{\rho} = 0.5$ [3,19,20] for high-throughput experiments, such as in the IMPC. We further assume that all centres utilise a consistent and sufficiently powerful set of statistical tests that is adequate for the data under study and that the effect sizes are estimated from the normalised data. Here normalising data refers to performing the statistical analysis on the standardised data as below

$$\text{standardised data for centre } i = \frac{x_i - \mu_{xi}}{\sigma_{xi}}$$

Where x_i , μ_{xi} and σ_{xi} are the raw values, mean and standard deviation of the data from centre i respectively. The resulting scores from Eq.1 range in the $(0, +\infty)$ interval and the agreement of the multicentre statistical results can be evaluated by using $-\log(s)$ so that

$$\begin{cases} \text{Consensus across centres} & \text{if } -\log(s) > 0 \\ \text{Not enough consensus across centres} & \text{if } -\log(s) \leq 0 \end{cases}$$

The magnitude of $-\log(s)$ from Eq.1 is not bounded. A larger value in the positive (or negative) direction reflects a stronger agreement (or lack of agreement) among resources. For the special case where

$-\log(s) = 0$, one can conclude that either there is not enough information in the data to calculate the scores or there is not enough agreement across centres, as we show in the results section.

Results

In this section, we show the application of the proposed scoring method to identify sexual dimorphism in the IMPC haematological data collected from wild-type (WT) mice, 15–17 weeks in age, over a 3-year period from 1st January 2018 to 31st December 2020, with a minimum required threshold of 50 mice per sex. Our choice of data is inspired by the importance of the haematology parameters in reflecting overall health. The data used in this study can be accessed via the IMPC web portal under the URL www.mousephenotype.org (data release 15.1 – October 2021).

The IMPC is a global effort aiming to generate and characterise knockout mouse lines for every protein-coding gene in mice [21–24]. The IMPC data are collected from several independent centres worldwide [10]. Every centre contributes to the data collection by adhering to a set of standardised phenotype assays defined in the International Mouse Phenotyping Resource of Standardised Screens (IMPRess www.mousephenotype.org/impress). Although all centres follow the same Standard Operating Procedures (SOPs), there may be unavoidable or necessary variations in the implementation of the experiments (such as mouse age or time of the day when the test is performed), equipment (such as manufacture, model and kits) as well as the level of expertise and experience of staff, in addition to variations in inbred mouse strain (Table 1) [25]. This may lead to differing results across centres, which makes a universal inference from the results challenging.

IMPC haematology. The IMPC haematology procedure encapsulates 22 measurements of blood properties such as counts and concentrations (white blood cell count, red blood cell count, haemoglobin concentration, platelet counts, etc.), as well as additional and derived haematological parameters (haematocrit, mean red blood cell volume, mean red blood cell haemoglobin, mean red blood cell haemoglobin concentration, etc.). Figure 1 (top) shows red blood cell counts and (bottom) the haemoglobin concentration collected by 11 IMPC centres. The shifts in the means are most likely due to differences in the equipment used to take the measurements and can be removed by normalising the data. The top plot shows consistently higher red blood cell counts in males than females across centres, whereas there is not a clear pattern for the haemoglobin concentration.

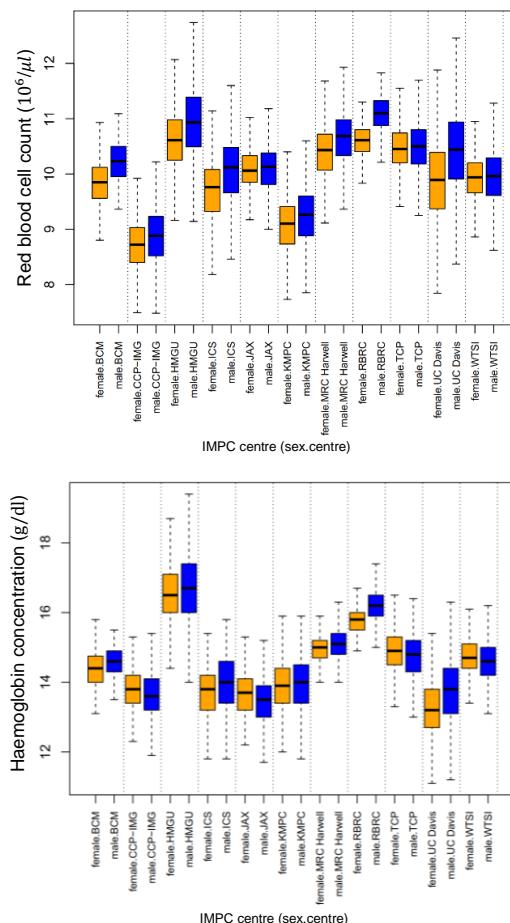


Figure 1. The distribution of red blood cell counts (top) and the haemoglobin concentration (bottom) for wild-type mice from the IMPC split by sex and phenotyping centre. The orange and blue represent females and males, respectively. The consensus score for the red blood cell

count trait is $-\log(s) = 0.30$, which implies a global agreement across IMPC centres in identifying sexual dimorphism; the sign of the average effect size indicates whether males (positive) or females (negative) present higher values (males in this case, see Table 2). In contrast, the consensus score for the haemoglobin concentration trait is $-\log(s) = 0$, which implies lack of agreement among the IMPC centres to detect sexual dimorphism for this parameter.

Table 1. Mouse strains used by the IMPC centres for the haematological data collected from 1st January 2018 to 31st December 2020.

IMPC centre	BCM	CCP-IMG	HMGU	ICS	JAX	KMPC	MRC HARWELL	RBRC	TCP	UCDAVIS	WTSI
Mouse strain											
C57BL/6N	✓	-	-	✓	-	-	-	-	-	-	✓
C57BL/6NCRL	-	✓	✓	-	-	-	-	-	✓	✓	-
C57BL/6NJ	-	-	-	-	✓	-	-	-	-	-	-
C57BL/6NJCL	-	-	-	-	-	-	-	✓	-	-	-
C57BL/6NTAC	-	-	-	-	-	✓	✓	-	-	-	-

Consensus score. In line with [3], the sexual dimorphism effect is tested for all 22 haematology traits, independently for WT mice from each of the 11 centres, corresponding to the same mouse strain and metadata group split. We used a windowed linear mixed model described in [26,27] and implemented in the software R [28], packages OpenStats and SmoothWin [29,30]. As in [3], *Sex* and *Body Weight* in the fixed effect terms

$$\text{Response} = \text{Sex} + \text{BodyWeight} + e,$$

and Batch (the date when the test is performed on mice) in the random effect term. We then apply the scoring method to obtain a consensus global inference from the multicentre results, following the logic described in the flowchart below (Fig.2).

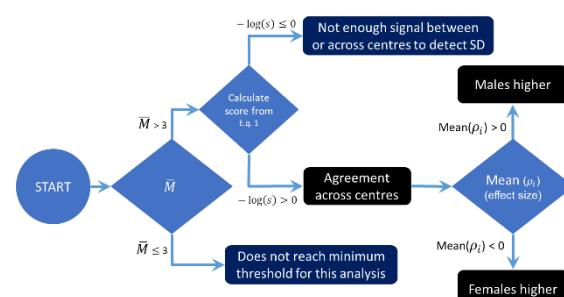


Figure 2. Flowchart showing the logic behind the scoring method to obtain a consensus global inference from multicentre results. The first step involves examining the number of centres performing the test; when there are more than 3 centres, the consensus score is calculated. Provided $-\log(s) > 0$, a multicentre consensus signal is established (accepted) and the direction of sexual dimorphism based on the sign of the average effect sizes is reported.

Table 2 shows the outcome of the scoring method for the 22 haematological parameters measured by the IMPC, as well as the comparison with a consensus method based on all centres agreeing on a significant sex effect. Using the method proposed here, there is consensus among 11 IMPC centres for 14 traits with $-\log(s) > 0$, with males on average higher than females for 9 traits (red blood cell count, red blood cell distribution width, haematocrit, platelet count, white blood cell count, lymphocyte cell count, neutrophil cell count, monocyte cell count, eosinophil cell count) and females on average higher than males for 5 traits (mean cell volume, mean corpuscular haemoglobin, mean cell haemoglobin concentration, mean platelet volume, and lymphocyte differential count). For 8 traits, the scoring method leads to zero or negative values, reflecting a lack of consensus (6 traits), or does not reach the minimum threshold of three centres providing measurements for the results to be processed (lack of information in the data - 2 traits).

Table 2. The outcome of applying the scoring method to 22 haematological measurements collected by 11 IMPC centres. The traits are shown in rows followed by the counts for the centre-based statistical test results, the mean effect size for the 11

centres, the consensus score and the inference, which is based on the $-\log(score)$ and the sign of the mean effect size. The scoring method identifies consensus in sexual dimorphism across centres for 14 traits (green and red rows), no agreement for 8 traits (blue rows) and 2 traits which do not meet the minimum requirements for the calculation of the score (yellow rows). Only in 2 cases, all centres agree (in bold).

Trait name	Count of outcomes across centres			Do all centres agree?	Consensus score		
	Not significant	Male higher	Female higher		Mean effect size	$-\log(score)$	Inference
Platelet count	1	10	0	No	1.25	0.35	Males Higher
White blood cell count	1	9	0	No	1.17	1.12	Males Higher
Lymphocyte cell count	1	5	0	No	1.01	0.86	Males Higher
Neutrophil cell count	0	6	0	Yes	0.80	1.71	Males Higher
Monocyte cell count	0	5	1	No	0.62	2.28	Males Higher
Red blood cell count	2	9	0	No	0.55	0.30	Males Higher
Red blood cell distribution width	1	7	0	No	0.53	0.74	Males Higher
Haematocrit	4	6	1	No	0.38	0.16	Males Higher
Eosinophil cell count	0	5	1	No	0.35	1.08	Males Higher
Lymphocyte differential count	2	1	3	No	-0.32	0.13	Female Higher
Mean cell volume	1	0	10	No	-0.47	0.42	Female Higher
Mean platelet volume	1	0	7	No	-0.51	0.22	Female Higher
Mean cell haemoglobin concentration	3	0	8	No	-0.52	0.14	Female Higher
Mean corpuscular haemoglobin	1	0	10	No	-0.90	0.64	Female Higher
Large Unstained Cell (LUC) count	0	3	0	Yes	0.83	0.00	Does not reach the minimum threshold for this analysis
Large Unstained Cell (LUC) differential count	2	1	0	No	0.39	0.00	Does not reach the minimum threshold for this analysis
Neutrophil differential count	3	2	1	No	0.35	-0.07	Not enough signal between or across centres to detect SD
Basophil cell count	1	3	1	No	0.25	0.00	Not enough signal between or across centres to detect SD
Haemoglobin	5	4	2	No	0.13	0.00	Not enough signal between or across centres to detect SD
Monocyte differential count	4	1	1	No	0.03	0.00	Not enough signal between or across centres to detect SD
Eosinophil differential count	4	1	1	No	-0.06	0.00	Not enough signal between or across centres to detect SD
Basophil differential count	2	1	2	No	-0.16	0.00	Not enough signal between or across centres to detect SD

Conclusion and future work

Collecting data from multiple resources such as, in the case of this study, mouse phenotyping centres, benefits from a higher signal-to-noise ratio and a broader representation of a population. However, extra attention is required in the design and implementation of the experiments and statistical analysis to be able to make a global consensus inference from the aggregated results from individual resources [2–9,31,32]. Due to unavoidable, uncontrolled and unobserved factors, the results from all resources may only partially agree and a metric of consensus is required. In this paper, we propose a novel method which combines several aspects of multicentre experiment results including the corrected p-values, the magnitude and direction of effect sizes and the number of centres into one global consensus score.

We applied this method to identify sexual dimorphism in 22 haematological measurements collected from wildtype mice in 11 globally distributed centres forming part of the International Mouse Phenotyping Consortium (IMPC). We compared the results of this method to those obtained by applying a binary method based on the agreement of all centres on the detection of sexual dimorphism. While the binary method found 2 traits reaching consensus across all IMPC centres, the method presented here allows to conclude sexual dimorphism in 14 traits, with males on average higher than females for 9 traits and females on average higher than males for 5 traits. This study has focused on the IMPC haematology traits, but we believe the approach could be applied more generally and would be suitable to assess other IMPC parameters in the future.

Declarations

Acknowledgements and funding

We thank Helen Parkinson for her feedback on this manuscript. The research reported in this publication was supported by the European Molecular Biology Laboratory (EMBL-EBI) core funding and the National Human Genome Research Institute of the National Institutes of Health under Award Number 2UM1HG006370-11. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Authors' contributions H.H. and V.M. contributed to the development of the concept and writing of the manuscript. H.H., V.M. and K.B. contributed to the validation of the method. All authors contributed to the review of and approved the final version of the manuscript.

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data availability: All data used in the study are publicly available via the IMPC web portal under the URL www.mousephenotype.org

References

1. Karp NA, Speak AO, White JK, Adams DJ, de Angelis MH, Héault Y, et al. Impact of temporal variation on design and analysis of mouse knockout phenotyping studies. *PLoS One*. 2014;9. doi:10.1371/JOURNAL.PONE.0111239
2. Rashid MM, McKean JW, Kloke JD. R Estimates and Associated Inferences for Mixed Models With Covariates in a Multicenter Clinical Trial. <http://dx.doi.org/10.1080/1946631520>

11636293. 2012;4: 37–49.
doi:10.1080/19466315.2011.636293

3. Karp NA, Mason J, Beaudet AL, Benjamini Y, Bower L, Braun RE, et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. *Nat Commun.* 2017;8: 15475.
doi:10.1038/ncomms15475

4. Chung KC, Song JW, group W study. A Guide on Organizing a Multicenter Clinical Trial: the WRIST study group. *Plast Reconstr Surg.* 2010;126: 515.
doi:10.1097/PRS.0B013E3181DF64FA

5. Hu M, Shi X, Song PX-K. Collaborative causal inference with a distributed data-sharing management. 2022 [cited 14 Oct 2022].
doi:10.48550/arxiv.2204.00857

6. Knatterud GL, Rockhold FW, George SL, Barton FB, Davis CE, Fairweather WR, et al. Guidelines for Quality Assurance in Multicenter Trials: A Position Paper. *Control Clin Trials.* 1998;19: 477–493.
doi:10.1016/S0197-2456(98)00033-6

7. Chalmers I, Clarke M. Commentary: the 1944 patulin trial: the first properly controlled multicentre trial conducted under the aegis of the British Medical Research Council. *Int J Epidemiol.* 2004;33: 253–260.
doi:10.1093/ije/DYH162

8. Hogg RJ. Trials and tribulations of multicenter studies. Lessons learned from the experiences of the Southwest Pediatric Nephrology Study Group (SPNSG). *Pediatr Nephrol.* 1991;5: 348–351. doi:10.1007/BF00867501

9. Haselimashhadi H, Mason JC, Munoz-Fuentes V, López-Gómez F, Babalola K, Acar EF, et al. Soft windowing application to improve analysis of high-throughput phenotyping data. *Bioinformatics.* 2020;36: 1492–1500.
doi:10.1093/bioinformatics/btz744

10. Koscielny G, Yaikhom G, Iyer V, Meehan TF, Morgan H, Atienza-Herrero J, et al. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. *Nucleic Acids Res.* 2014;42. doi:10.1093/nar/gkt977

11. Ven AH van de, Delbecq AL. The Effectiveness of Nominal, Delphi, and Interacting Group Decision Making Processes1.
<https://doi.org/105465/255641>. 2017;17: 605–621.
doi:10.5465/255641

12. Dalkey N, Helmer O. An Experimental Application of the DELPHI Method to the Use of Experts.
<http://dx.doi.org/101287/mnsc93458>. 1963;9: 458–467.
doi:10.1287/MNSC.9.3.458

13. Mlecnik B, Bifulco C, Bindea G, Marliot F, Lugli A, Lee JJ, et al. Multicenter International Society for Immunotherapy of Cancer Study of the Consensus Immunoscore for the Prediction of Survival and Response to Chemotherapy in Stage III Colon Cancer. *Journal of Clinical Oncology.* 2020;38: 3638.
doi:10.1200/JCO.19.03205

14. Using the Delphi method | IEEE Conference Publication | IEEE Xplore. [cited 7 Nov 2022]. Available: <https://ieeexplore.ieee.org/abstract/document/6017716>

15. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing on JSTOR. [cited 21 Oct 2022]. Available: <https://www.jstor.org/stable/2346101>

16. Wright SP. Adjusted P-Values for Simultaneous Inference. *Biometrics.* 1992;48: 1005. doi:10.2307/2532694

17. Hochberg Y. A Sharper Bonferroni Procedure for Multiple Tests of Significance. *Biometrika*. 1988;75: 800. doi:10.2307/2336325

18. Ellis P. The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. 2010. Available: <https://books.google.com/books?hl=en&lr=&id=UUcgAwAAQBAJ&oi=fnd&pg=PR13&dq=The+Essential+Guide+to+Effect+Sizes+&ots=d7gkrhpeO&sig=xjGU7RQ1tikVViYt6QII7LdtbQg>

19. Sullivan GM, Feinn R. Using Effect Size—or Why the P Value Is Not Enough. *J Grad Med Educ*. 2012;4: 279. doi:10.4300/JGME-D-12-00156.1

20. Sawilowsky SS. New Effect Size Rules of Thumb. *Journal of Modern Applied Statistical Methods*. 2009;8: 597–599. doi:10.22237/jmasm/1257035100

21. Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, et al. High-throughput discovery of novel developmental phenotypes. *Nature*. 2016;537: 508–514. doi:10.1038/nature19356

22. Bradley A, Anastassiadis K, Ayadi A, Battey JF, Bell C, Birling MC, et al. The mammalian gene function resource: The International Knockout Mouse Consortium. *Mammalian Genome*. 2012;23: 580–586. doi:10.1007/s00335-012-9422-2

23. Brown SDM, Moore MW. The International Mouse Phenotyping Consortium: Past and future perspectives on mouse phenotyping. *Mammalian Genome*. 2012;23: 632–640. doi:10.1007/s00335-012-9427-x

24. Hrabě de Angelis M, Nicholson G, Selloum M, White JK, Morgan H, Ramirez-Solis R, et al. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. *Nat Genet*. 2015;47: 969–978. doi:10.1038/ng.3360

25. Bryant CD, Zhang NN, Sokoloff G, Fanselow MS, Ennes HS, Palmer AA, et al. Behavioral Differences among C57BL/6 Substrains: Implications for Transgenic and Knockout Studies. *J Neurogenet*. 2008;22: 315. doi:10.1080/01677060802357388

26. Haselimashhadi H, Mason JC, Mallon AM, Smedley D, Meehan TF, Parkinson H. OpenStats: A robust and scalable software package for reproducible analysis of high-throughput phenotypic data. In: *PLoS ONE* [Internet]. 2020 [cited 21 Jan 2021]. doi:10.1371/journal.pone.0242933

27. Gałecki A, Burzykowski T. *Linear Mixed-Effects Model*. Springer. 2013. doi:10.1007/978-1-4614-3900-4_13

28. Team RC-VRC, 2013 undefined. *R: A language and environment for statistical computing*. yumpu.com. [cited 18 Oct 2022]. Available: <https://www.yumpu.com/en/document/view/6853895/r-a-language-and-environment-for-statistical-computing>

29. Haseli Mashhadi H. *Bioconductor - OpenStats*. 2022 [cited 21 Jan 2021]. doi:10.18129/B9.bioc.OpenStats

30. CRAN - Package SmoothWin. [cited 26 Oct 2022]. Available: <https://cran.rstudio.com/web/packages/SmoothWin/index.html>

31. Bierer BE, Crosas M, Pierce HH. Data Authorship as an Incentive to Data Sharing. *New England Journal of Medicine*. 2017;376: 1684–1687. doi:10.1056/NEJMSB1616595

32. International Consortium of Investigators for Fairness in Trial Data Sharing, Devereaux PJ, Guyatt G, Gerstein H, Connolly S, Yusuf S. Toward Fairness in Data Sharing. *N Engl J Med.* 2016;375: 405–7.
doi:10.1056/NEJMp1605654