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Oxysterols drive inflammation via GPR183 during influenza virus and SARS-CoV-2

infection
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Author Summary: Viral infections trigger oxysterol production in the lung, attracting
macrophages via GPR183. Blocking GPR183 reduced inflammation and disease severity in

SARS-CoV-2 infection, making GPR183 a putative target for therapeutic intervention.
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Abstract

Rationale: Severe viral respiratory infections are often characterized by extensive myeloid
cell infiltration and activation and persistent lung tissue injury. However, the immunological

mechanisms driving excessive inflammation in the lung remain elusive.

Objectives: To identify the mechanisms that drive immune cell recruitment in the lung during
viral respiratory infections and identify novel drug targets to reduce inflammation and disease

severity.
Methods: Preclinical murine models of influenza virus and SARS-CoV-2 infection.

Results: Oxidized cholesterols and the oxysterol-sensing receptor GPR183 were identified
as drivers of monocyte-macrophage infiltration to the lung during influenza virus (IAV) and
SARS-CoV-2 infections. Both IAV and SARS-CoV-2 infections upregulated the enzymes
cholesterol 25-hydroxylase (CH25H) and cytochrome P450 family 7 subfamily member B1
(CYP7B1) in the lung, resulting in local production of the oxidized cholesterols 25-
hydroxycholesterol and 7a,25-dihydroxycholesterol (7a,25-OHC). Loss-of-function mutation
of GPR183, or treatment with a GPR183 antagonist, reduced macrophage infiltration and
inflammatory cytokine production in the lungs of IAV- or SARS-CoV-2-infected mice. The
GPR183 antagonist also significantly attenuated the severity of SARS-CoV-2 infection by

reducing weight loss and viral loads.

Conclusion: This study demonstrates that oxysterols drive inflammation in the lung and
provides the first preclinical evidence for therapeutic benefit of targeting GPR183 during

severe viral respiratory infections.
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Introduction

Severe viral respiratory infections including influenza and COVID-19 are associated with
extensive myeloid cell recruitment to the lung, which can lead to a cytokine storm, severe
tissue injury and the development of acute respiratory distress syndrome (ARDS) (1, 2). A
shift in lung macrophage composition and function is associated with COVID-19 severity. A
study of >600 hospitalised patients found that in severe cases resident alveolar macrophages
were depleted and replaced by large numbers of inflammatory monocytes and monocyte-
derived macrophages (3). Rapid monocyte infiltration of the lung during the acute phase of
severe acute respiratory coronavirus 2 (SARS-CoV-2) infection is replicated in several animal
models (4-6). On the other hand, monocyte recruitment is also an essential component of
repair following lung injury (7). Therapeutic approaches are required that balance pro-

inflammatory and pro-repair functions of recruited monocytes.

Oxidized cholesterols, so called oxysterols, have recently emerged as markers of
inflammation in the lung. Oxysterols were increased in bronchoalveolar lavage fluid (BALF)
from inflamed airways after allergen challenge and strongly correlated with infiltrating
leukocytes (8). They were also increased in the sputum from patients with chronic obstructive
pulmonary disease (COPD) correlating with disease severity (9, 10) and in the lungs of mice
after lipopolysaccharide (LPS)-induced lung inflammation (9). However, the role of oxysterols

in the lung during viral respiratory infections has not been investigated.

Oxysterols have a range of properties and receptors sharing a common role in inflammation
(11, 12). One of these oxysterol producing pathways leads to the production of 7a,25-
hydroxycholesterol (7a,25-OHC), via cholesterol 25-hydroxylase (CH25H) and cytochrome
P450 family 7 subfamily B member 1 (CYP7B1) (12, 13) (Figure 1A). 7a,25-OHC is the
endogenous high affinity agonist of the oxidized cholesterol-sensing G protein-coupled
receptor GPR183 (also known as Epstein-Barr virus-induced gene 2; EBI2) (14, 15). GPR183
is expressed on cells of the innate and adaptive immune systems, including macrophages,
dendritic cells, innate lymphoid cells, eosinophils and T and B lymphocytes (8, 16-18). With
its oxysterol ligands GPR183 facilitates the chemotactic distribution of immune cells to
secondary lymphoid organs (12, 14, 16, 17). In vitro GPR183 mediates migration of human

and mouse macrophages towards a 7a,25-OHC gradient (19-21).

In this study, we hypothesized that viral respiratory infections lead to the production of

oxysterols in the lung and that these oxysterols contribute to excessive immune cell infiltration
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and inflammation. We show here that oxysterols drive GPR183-dependent monocyte
infiltration in preclinical models of IAV and SARS-CoV-2 infection. Administration of a
GPR183 antagonist significantly reduces inflammation, viral load and disease severity in mice
infected with SARS-CoV-2. Accordingly, GPR183 is a putative host target for therapeutic

intervention to mitigate disease severity in viral respiratory infections.

Methodology
Ethics and biosafety

All experiments were approved by the University of Queensland Animal Ethics Committee
(MRI-UQ/596/18, AE000186) by the Institutional Biosafety Committee of the University of
Queensland (IBC/465B/MRI/TRI/AIBN/2021).

Viral Strains

Virus stocks of A/H1N1/Auckland/1/2009(H1N1) (Auckland/09) were prepared in
embryonated chicken eggs. Viral titers were determined by plaque assays on Madin-Darby
canine kidney (MDCK) cells as previously described (22). A mouse-adapted SARS-CoV-2
strain was obtained through serial passage of SARS-CoV-2 (B.1.351; hCoV-
19/Australia/QLD1520/2020, GISAID accession EPI_ISL_968081, collected on 29 December
2020, kindly provided by Queensland Health Forensic and Scientific Services). Six x 10* PFU
of B1.351 was administrated intranasally to ketamine-anesthetized mice. Mice were
monitored daily for weight loss and clinical signs of disease severity. Four days after
inoculation, mice were euthanized, and bronchoalveolar lavage (BAL) was performed. The
BALF was subsequently pooled and used to intranasally inoculate a new batch of mice. The
process was repeated until a virulent phenotype of the virus was observed as determined by
weight loss and clinical signs, which happened after four passages. To determine whether
the mouse adapted SARS-CoV-2 acquired mutations sequencing of viral RNA was
performed. Briefly, viral RNA was extracted from BALF using the Qiagen Mini kit and the
quality confirmed suing the Agilent Bioanalyzer with 210 Expert software. Library
preparations was performed using the lllumina Stranded Total RNA Ribo Zero Plus Kit.
Sequencing was performed using the NextSeq Midoutput kit, 125bp paired-end configuration
with 19-25 million reads per sample. Sequencing analysis was executed using Galaxy
software. Whole-genome ssequencing revealed a C to T mutation in position 10804 of the
SARS-CoV-2 Beta genome resulting in the NSP5 mutation P252L. This mutation was rapidly

selected from 3.4% in the initial virus stock to 8.8% in passage one. From passage two, this
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mutation reached consensus (60%) and underwent further fixation in passage three at 87%
to final frequency of 92% in passage four. A mutation in NSP5 was detected in this mouse
adapted SARS-CoV-2 strain (Figure S1). BALF of the mice from the fourth passage was
subsequently pooled and used to inoculate Vero E6 cells for propagation, creating the viral
stocks for our mouse-adapted strain. To verify the virulent phenotype of the mouse-adapted
virus was retained after propagation in Vero E6 cells, the cell grown virus was used to
inoculate a new batch of mice. The same viral stock was used to infect mice with 8x10* PFU

for the experiments described.

Bioinformatic analysis of mouse-adapted SARS-CoV-2 sequence data

Base-called fastq files were mapped to the QLD1520 SARS-CoV-2 isolate (GISAID
accession EPI_ISL_968081) using Bowtie2 (v2.4.2) (Langmead and Salzberg 2012) under
default alignment conditions. Sub consensus variants of alignment files were identified using
iVar (v1.2.2) (Grubaugh et al. 2019) with a minimum quality score threshold of 20 and depth
of 5000. Coverage of mapped alignment files was determined using samtools (v1.3) depth.
Frequencies and coverage of variant positions were manually validated using Integrative
Genomics Viewer (Version: 2.7.0) (Thorvaldsdottir, Robinson, and Mesirov 2013). Variant
frequencies and alignment depth was 4isualized using GraphPad Prism (v9.3.1). Raw fastq
data generated in this study have been deposited in the Sequence Read Archive hosted by

the National Center for Biotechnology Information with accession number PRJNA849351.

Plaque assays
IAV plaque assays were carried out on confluent monolayers of MDCK cells as previously
described (22). SARS-CoV-2 plaque assays were carried out on Vero E6 cells as described

previously (23).

Mouse models

Gpr183tm1Lex were obtained from Lexicon Pharmaceuticals (The Woodlands, USA), back-
crossed to a C57BL/6J background and bred in-house at the Biological Resources Facility at
the Translational Research Institute, Australia. Eight to 10-week-old C57BL/6J and
Gpr183tm1Lex (C57BL/6J background; Gpr183’) mice were anesthetized with isoflurane
(4% isoflurane, 0.4 L/min oxygen flow rate) before being inoculated intranasally with 5,500
PFU of A/Auckland/01/09 (H1N1). Mice were monitored for weight loss. For SARS-CoV-2
infection, C57BL/6J and Gpr183”- mice were anesthetized with ketamine/Xylanzine
(80mg/kg/5mg/kg) before being inoculated intranasally with 8x10* PFU of mouse-adapted

SARS-CoV-2 and monitored for weight loss. Lungs were collected at specified timepoints for

4
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subsequent downstream analysis. The GPR183 antagonist NIBR189 was administrated from
1 dpi. IAV infected mice were sacrificed at 3 dpi and 7 dpi for examination. SARS-CoV-2
infected mice were sacrificed at 2 dpi and 5 dpi. Lungs homogenised in DMEM for use in
plaque assays and ELISAs. For RNA processing, lungs were collected in TRIzol (Invitrogen).
For oxysterol extraction, lungs were collected in methanol. For histological analysis the lungs

were fixed in 10% neutral buffered formalin.

RNA isolation and RT-qPCR

Total RNA was isolated using ISOLATE Il RNA Mini Kit (Bioline Reagents Ltd., London, UK)
as previously described (24). The list of primers (Sigma Aldrich) is provided in Table S1. The
relative expression (RE) of each gene using the 2-2¢t method, normalizing to the reference

gene (Hypoxanthine-guanine phosphoribosyltransferase; HPRT).

Oxysterol extraction from lung tissues

The oxysterol extraction and quantification method was adapted from Ngo et al. (24). Lung
lobes from IAV and SARS-CoV-2-infected mice were homogenized in methanol. Oxysterols
were extracted using a 1:1 dichloromethane:methanol solution containing 50 pg/mL BHT in
a 30°C ultrasonic bath. Tubes were flushed with nitrogen to displace oxygen, sealed with a
polytetrafluoroethylene (PTFE)-lined screw cap, and incubated at 30°C in the ultrasonic bath
for 10 mins. Following centrifugation (3,500 rpm, 5 min, 25°C), the supernatant from each
sample was decanted into a new tube. For liquid-liquid extraction, Dulbecco’s phosphate-
buffered saline (DPBS) was added to the supernatant, agitated and centrifuged at 3,500 rpm
for 5 mins at 25°C. The organic layer was recovered and evaporated under nitrogen using a
27-port drying manifold (Pierce; Fisher Scientific, Fair Lawn, NJ). Oxysterols were isolated
by solid-phase extraction (SPE) using 200 mg, 3 mL aminopropyl SPE columns (Biotage;
Charlotte, NC). The samples were dissolved in 1 ml of hexane and transferred to the SPE
column, followed by a rinse with 1 ml of hexane to elute nonpolar compounds. Oxysterols
were eluted from the column with 4.5 ml of a 23:1 mixture of chloroform: methanol and dried
under nitrogen. Samples were resuspended in 50ul of warm (37°C) 90% methanol with 0.1%
DMSO, and placed in an ultrasonic bath for 5 min at 30°C. A standard curve was extracted
for 25-OHC (Sigma-Aldrich, H1015) and 7a,25-OHC (SML0541, Sigma-Aldrich) using the
above method. Dichloromethane, butylated hydroxytoluene (BHT) and hexane were

purchased from Sigma-Aldrich.

Mass spectrometric quantitation of 25-OHC and 7a,25-OHC
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Samples were analysed on an AB Sciex QTRAP® 5500 (ABSCIEX, Redwood City, CA) mass
spectrometer coupled to a Shimadzu Nexera2 UHPLC. A Kinetex Pentafluorophenyl (PFP)
column (100 x 2.1mm, 1.7uM, 100°A, Phenomenex) was used for the separation of 25-OHC
and 7a,25-OHC from other oxysterols. Mobile phase used for separation were, A - 0.1%
formic acid with water and B - 100% acetonitrile with 0.1% formic acid. Five yL of sample
were loaded at 0.5 mL/min and separated using linear gradient with increasing percentage
of acetonitrile. Samples were washed for 1.3 min after loading with 30% mobile phase B
followed by linear gradient of 30% - 70% over 9 min and 70% to 99% over 1 min. The column
was washed with 99% mobile phase B for 2 min followed by equilibration with 30% B 2 min
before next injection. Column oven and auto-sampler were operated at 50°C and 15°C,
respectively. Elution of analytes from the column was monitored in positive ion mode (ESI)
with multiple reaction monitoring on ABSciex QTRAP® mass spectrometer equipped with
Turbo spray ion source, which was operated at temp 550°C, ion spray voltage of 5500 V,
curtain gas (CUR) of 30 psi, ion source gas1 (GS1) of 65 psi and ion source gas 2 (GS2) of
50 psi. Quadrupole 1 and 3 were operated at unit mass resolution at all time during the
experiment. MRM pairs 385.3 > 367.3, 385 >133, 385.3 > 147.1 were monitored for 25-OHC
and for 7a,25-OHC following MRM pairs were used 383.2 > 365.3, 383.2 > 147.3, 383.2 >
159.0. Deuterated 25-OHC (11099, Sapphire Bioscience, Redfern, Australia) and 7a,25-OHC
(700078P, Merck) were used as internal standards. Following MRM transitions were recoded
for internal standards 391.1 > 373.2, 391.1 >133.1, 391.1>123.1 (25-OHC) and 407.2 > 389.0
(7a,25-OHC). De-clustering potential (DP), collision energy (CE), entrance (EP) and collision
cell exit potential (CXP) were optimised for each MRM pair to maximise the sensitivity. Data
was processed using AbSciex MultiQuant™ software (Version 3.0.3). Oxysterol
concentrations were subsequently normalized to the lung weights. High-performance liquid
chromatography (HPLC) grade methanol, acetonitrile and chloroform were purchased from
Merck.

Cytokine quantification using ELISA

Cytokines in lung homogenates were measured with DuoSet ELISA (IFNB (DY8234-05), IFNy
(DY485), IFNA (DY1789B), IL-6 (DY406), TNFa (DY410), IL-18 (DY401), IL-10 (DY417) and
CCL2 (DY479), R&D systems) according to the manufacturer’s protocol.

Flow cytometry
Lung lobes of IAV-infected mice digested in digestion buffer (Librase; Roche) and passed

through 40-pm nylon mesh to obtain single cell suspensions. Red blood cells lysis performed
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using BD Pharm Lyse (BD Biosciences, San Jose, CA). Cells were labelled with: Zombie
Green Fixable Viability kit (423111, Biolegend), PerCP-CD45 (30-F11), Brilliant Ultraviolet
395-CD3e (145-2C11, BD Biosciences), Brilliant Violet (BV) 786-CD4 (L3T4, BD
Biosciences), PE/Cyanine7-CD11b (M1/70), BV510-CD11c (N418), APC/Cyanine7-F4/80
(BM8), BV605-Ly6G (1A8, BD Bioscience), PE-B220 (RA3-6B2), BV421-I-A/I-E
(M5/114.15.2), APC-Siglec-F (CD170, S17007L, BD bioscience) before flow cytometric
analysis on the BD LSRFortessa X20. Post-acquisition analysis was performed using FlowJo

software (TreeStar).

Immunohistochemistry

Heat-induced epitope retrieval was performed using citrate buffer (pH 6, 95°C, 30 mins)
(BP327-1; Thermo Fisher Scientific). Sections were blocked for endogenous peroxidase
activity using 3% hydrogen peroxide (HLOO1-2.5L-P, Chem Supply, Adelaide, South
Australia), washed with tris-buffered saline (TBS; Bio-Rad) containing 0.05% polysorbate 20
(Tween-20; Sigma Aldrich; TBST) and blocked using background sniper (BS966, Biocare
Medical, Concord, CA) for 30 mins. Immunohistochemistry (IHC) was performed on
deparaffinized and rehydrated lung sections. Immunolabeling was performed with rabbit
antibodies against SARS-CoV-2 nucleocapsid protein antibody (1 hour at 25°C, 1:5000)
(40143-R040 Sino Biological), IBA1 (2 hours at 25°C 1:1000) (019-19741; NovaChem),
CH25H (4°C overnight 1:600) (BS-6480R, Bioss Antibodies), CYP7B1 (4°C overnight 1:1000)
(BS-5052R, Bioss Antibodies) and isotype control (rabbit IgG 31235, Thermo Fisher
Scientific) diluted in Da Vinci Green Diluent (PD900, Biocare Medical) followed by incubation
with horseradish peroxidase (HRP)-conjugated goat anti-rabbit Ig antibody (1:200) (ab6721,
Abcam). Isotype controls are shown in (Figure S2). Sections were washed with TBST before
applying chromogen detection, using diaminobenzidine (ab64238, DAB substrate kit Abcam,)
as per the manufacturer's instructions. Counterstaining was performed with Mayer’'s
hematoxylin (Sigma-Aldrich) before dehydrating the sections in a series of increasing ethanol
concentrations (70% to 100% ethanol). Sections were clarified with xylene, and mounted
using a xylene-based mounting medium (15-184-40, SHURMount Mounting Media, Fisher
scientific). Slides were scanned in an Olympus SLIDEVIEW VS200 using a 20x objective.

DAB-positive areas were quantified using Imaged (https://imagej.nih.gov/ij/).

Statistical analysis
Data were analysed on GraphPad Prism software. Data were also assessed for normality

using Shapiro-Wilk test. Spearman rank correlation was used to analyse correlations. For two
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group comparisons, parametric Student’s two-tailed t test was used for normally distributed
data while nonparametric Mann-Whitney U test was used for skewed data that deviate from

normality.

Results

IAV infection increases CH25H and CYP7B1 expression and oxysterol production in
the lung

To investigate whether IAV infection induces the production of oxidized cholesterols, we
infected mice with IAV (Figure 1B) and determined the mRNA expression of oxysterol
producing enzymes in the lung. Ch25h and Cyp7b1 mRNA was increased in the lungs of IAV-
infected mice compared to uninfected animals (Figure 1C). Similarly, CH25H and CYP7B1
protein expression was also increased, as demonstrated by immunohistochemical labelling
of lung sections with antibodies detecting CH25H and CYP7B1 protein (Figure 1D,E). The
induction of oxysterol producing enzymes was associated with increased concentrations of
the oxysterols 7a,25-OHC and 25-OHC in IAV-infected lungs at both 3 days post infection
(dpi) and 7 dpi (Figure 1F, G). In uninfected lungs, 7a,25-OHC was undetectable in most
samples tested. Consistent with the increase in oxysterols, Gpr183 mRNA was increased at
3 dpi and 7 dpi (Figure S3A), suggesting increased recruitment of GPR183-expressing
immune cells to the lung upon infection. Gpr183 expression was positively correlated with
Ch25h and Cyp7b1 (Figure S3B, C).

Gpr183’- mice have reduced macrophage infiltration into the lungs upon IAV infection
To investigate whether oxysterol-mediated immune cell recruitment is dependent on
oxysterol-sensing GPR183, we performed experiments in mice genetically deficient in
Gpr183 (Gpr1837). Gpr183” mice are viable and exhibit normal gross phenotype (25).
However, upon infection with IAV, Gpr183” mice had lower IBA1* macrophage numbers in
the lung at 3 dpi and 7 dpi compared to infected C57BL/6J controls (Figure 2A). Gpr183
expression was positively correlated with mRNA expression of the pro-inflammatory
cytokines 1l6, Tnf and Ccl2 in C57BL/6J mice (Figure S4) and reduced macrophage
infiltration in Gpr1837 mice was associated with reduced //6 and Tnf, but not Cc/2 at 7 dpi
(Figure S5). Body weights and viral titers through the course of IAV infection were

comparable across the two genotypes (Figure S6). These results demonstrate that GPR183
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is required for macrophage infiltration into the lung upon IAV infection and that lower

macrophage numbers are associated with reduced expression of pro-inflammatory cytokines.

GPR183 inhibition reduces macrophage infiltration

To investigate whether GPR183 is a putative therapeutic target to reduce inflammation, the
synthetic GPR183 antagonist NIBR189 (14, 21) was administered to C57BL/6J mice twice
daily starting from 24 h post-infection until the end of the experiment (Figure 2B). Like
Gpr1837 mice, C57BL/6J animals treated with NIBR189 had significantly reduced
macrophage infiltration into the lung both at 3 and 7 dpi as determined by IHC (Figure 2C).

In addition, flow cytometry analysis was performed on lung single cell suspensions from
C57BL/6J and Gpr183” mice treated with NIBR189 and vehicle, respectively, using a
previously published gating strategy (26) (Figure S7). NIBR189-treated C57BL/6J mice and
Gpr1837 mice had lower percentages of macrophages (F480"9"/CD11b*/Ly6G/SigF-)
(Figure 3A, B) compared to vehicle-treated C57BL/6J animals after IAV infection. NIBR189
treatment did not change the percentages of other immune cell subsets in the lung, including
neutrophils (B220/CD3/Ly6G*/CD11b*) (Figure 3A, C), CD4+ T cells, CD8+ T cells, B cells,
DCs, and alveolar macrophages (Figure S8). Body weights and lung viral loads were not

affected by genotype or treatment (Figure S9).

Taken together our results demonstrate that the GPR183 antagonist NIBR189 significantly
reduced the infiltration of macrophages to the lung without affecting the recruitment of other

immune cell subsets to the site of infection.

GPR183 inhibition reduces IAV-induced pro-inflammatory cytokine concentrations

We next determined if the reduced macrophage infiltration mediated by the GPR183
antagonist NIBR189 results in reduced inflammatory cytokine production in the lung. At 3 dpi,
no significant differences in cytokine production were observed between treatment groups
(Figure $10). However, |IAV-Infected C57BL/6J mice treated with NIBR189 had significantly
lower concentrations of IL-6, TNF and IFNB (Figure 4A-D) at 7 dpi. This was again
comparable to the phenotype of IAV-infected Gpr1837 mice, with NIBR189 treatment having
no additional effect in mice deficient in GPR183. In addition, no significant differences were
observed in IFNA across the two timepoints (Figure 4D and Figure $S10) demonstrating that
the GPR183 antagonist treatment does not negatively impact the production of type Il IFNs
which are important for viral control in the lung (27). No differences between treatment groups

were observed at either timepoint for protein concentrations of IL-1p3, CCL2 or IFNy between
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treatment groups (Figure S10 and S11). Thus, GPR183 can be inhibited pharmacologically

to reduce proinflammatory cytokines upon severe IAV infection.

GPR183 inhibition reduces SARS-CoV-2 infection severity

Excessive macrophage infiltration and activation is a hallmark of severe COVID-19 (3, 28).
To evaluate whether the benefits of inhibiting GPR183 extend to SARS-CoV-2 infection, we
established a mouse-adapted SARS-CoV-2 strain by passaging the Beta variant of SARS-
CoV-2 (B.1.351) four times in C57BL/6J mice. This resulted in a viral stock that contained a
mutation in NSP5 and caused clinical signs in infected mice as indicated by body weight loss
(Figure S1). Consistent with the 1AV infection results, mMRNA expression of Ch25h and
Cyp7b1 was significantly upregulated in the lungs of SARS-CoV-2 infected mice compared
to uninfected mice (Figure 5A). This was confirmed also at the protein level by IHC (Figure
5B, C). Further, 25-OHC and 70a,25-OHC concentrations in lung homogenates were
significantly increased at 2 dpi, returning to uninfected levels by 5 dpi by which time the
animals began to recover from the infection (Figure 5D). NIBR189 or vehicle was
administered to C57BL/6J or Gpr183” mice twice daily from 24 h post-SARS-CoV-2 infection
until the end of the experiment (Figure 6A). NIBR189-treated C57BL/6J mice lost significantly
less weight and recovered faster compared to infected C57BL/6J mice receiving vehicle
(Figure 6B and S12). Similarly, Gpr1837” had less severe SARS-CoV-2 infection.
Collectively, these data demonstrate that oxysterols are produced in the lung upon SARS-
CoV-2 infection and inhibition of GPR183 significantly reduced the severity of SARS-CoV-2

infection.

GPR183 inhibition reduces macrophage infiltration and inflammatory cytokine
expression in the lung of SARS-CoV-2 infected mice

Next, we investigated whether the inhibition of GPR183 also decreases macrophage
infiltration and inflammatory cytokines in the lung. SARS-CoV-2-infected C57BL/6J mice
treated with NIBR189 had significantly reduced macrophage infiltration into the lung at 2 dpi
and 5 dpi (Figure 6C). NIBR189 treatment was also associated with reduced Tnf, /110 and
Ifng MRNA expression at 2 dpi (Figure 7A-C), as well as reduced Tnf, I/1b and 116 expression
at 5 dpi (Figure 7D-F). Early interferon responses were not affected by NIBR189 treatment
with comparable Ifnb and Ifnl expression at 2 dpi in C57BL/6J mice that received NIBR189
treatment versus vehicle (Figure 8A, B). Late interferon responses (5 dpi) were significantly
lower in NIBR-treated animals compared to controls (Figure 8C, D). No differences between

treatment groups were observed for mMRNAs encoding Ccl2, Il1b, or /6 at 2 dpi as well as
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those encoding Ccl2, 1110 and Ifng at 5 dpi (Figure S13). These results demonstrate that
reduced macrophage infiltration in NIBR-treated mice was associated with reduced pro-
inflammatory cytokine expression in the lung, while the early antiviral IFN responses
remained unchanged. The mechanism(s) by which oxysterols attract macrophages to the

lung to produce pro-inflammatory cytokines are therefore conserved across viral infections.

GPR183 inhibition reduces SARS-CoV-2 loads

Finally, we investigated whether the reduced macrophage infiltration and inflammatory
cytokine profile in the lung of the NIBR189-treated mice is associated with altered viral loads.
Viral nucleocapsid protein (Np) expression was reduced in C57BL/6J mice treated with
NIBR189 compared to those administered vehicle at 2 dpi (Figure 9A, B). Np expression
was not detected at 5 dpi, when the animals recovered from the infection. However, at the
mMRNA level, viral Mpro RNA loads in the lungs of NIBR189-treated mice were significantly
lower at 5 dpi (Figure 9C). In summary, we demonstrate here that GPR183 inhibition reduces
viral loads, macrophage infiltration and production of pro-inflammatory cytokines that are

typically associated with immunopathology in the lung (Figure 10).
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Discussion

Here, we report that the oxysterols 25-OHC and 7a,25-OHC are produced in the lung upon
infection with either IAV or SARS-CoV-2 and attract monocytes-macrophages in a GPR183
dependent manner to the lung. Excessive macrophage infiltration and inflammation triggers
lung pathology and results in severe respiratory infection outcomes (1, 2, 29). Reduced
macrophage infiltration in Gpr1837 mice, as well as in C57BL/6J mice treated with the
GPR183 antagonist NIBR189, was associated with reduced inflammatory cytokine
production in the lungs of IAV and SARS-CoV-2 infected animals. Blocking GPR183 in
SARS-CoV-2-infected mice significantly improved SARS-CoV-2 infection severity and
attenuated viral loads. The antagonist had no impact on IAV viral loads and whether this is
due to pathogen-specific effects or due to more severe disease observed by increased weight
loss in the IAV model compared to the SARS-CoV-2 model, remains to be investigated.

However, macrophage infiltration and cytokine production was reduced in both viral models.

In non-human primates, influenza virus infection leads to infiltration of myeloid cells into the
lungs (30). Similarly, in several animal models of acute infection with SARS-CoV-2,
macrophages rapidly infiltrate the lungs (4-6). Patients with severe COVID-19 infection had
higher proportions of macrophages and neutrophils in BALF, with the macrophage phenotype
from deceased COVID-19 patients being more activated (28). This strongly implicates
macrophages as key cellular contributors to COVID-19-associated hyperinflammation. In
BALF from patients with severe COVID-19, the chemokines CCL2 and CCL7 that recruit
monocytes to the lung via the chemokine receptor CCR2 are also significantly enriched (31).
Historically, chemokines have been considered as the main drivers of immune cell migration
into the lung; however, our work here reveals that oxysterols have a non-redundant role in
macrophage infiltration. Similar to our observations in Gpr1837 mice, mice lacking the
chemokine receptor CCR2 have a significant delay in macrophage infiltration into the lung
(26). However, CCR2 is also required for T cell migration, therefore, animals lacking CCR2
also had delayed T cell infiltration, which correlated with significantly higher pulmonary viral
titers (32). Although GPR183 is expressed on T cells it is not essential for T cell migration
into the lung (33) and thus blocking GPR183 in our preclinical models did not negatively

impact the T cell compartment nor other immune cell subsets.

We recently showed in a murine model of Mycobacterium tuberculosis (Mtb) infection that
both GPR183 and CYP7B1, which produces the endogenous high affinity GPR183 agonist

70,25-OHC, are required for rapid macrophage infiltration into the lung upon bacterial
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infection (24). In the Mtb model, GPR183 was also required for infiltration of eosinophils into
the lung (18).

Reduced macrophage infiltration in both Gpr183” mice and C57BL/6J mice treated with the
GPR183 antagonist NIBR189 was associated with reduced pro-inflammatory cytokine
production in the lung of both IAV and SARS-CoV-2 infected animals, likely due to lower
numbers of pro-inflammatory macrophages present in the tissue. However, we cannot
exclude a direct effect of the GPR183 antagonist on cytokine production in macrophages and
potentially other immune cell subsets like T cells. We previously showed that GPR183 is a
constitutively negative regulator of type | IFNs in primary human monocytes infected with Mtb
(34). In vitro activation of GPR183 with the agonist 7a,25-OHC reduced Mtb-induced Ifnb
mRNA levels, while the GPR183 antagonist GSK682753 significantly increased Ifnb mRNA
expression elicited by Mtb (34). This antagonist did not affect Tnftranscription in these in vitro
assays; however, it cannot be excluded that NIBR189 used in the experiments presented

here directly affects cytokine expression in macrophages or other immune cell subsets.

Irrespective of the exact mechanism, reduced pro-inflammatory cytokine production was
associated with reduced SARS-CoV-2 infection severity. Excessive production of
proinflammatory cytokines contributes to the immunopathology in COVID-19 patients with
severe disease (35). Therefore, lower pro-inflammatory cytokine production in animals
treated with NIBR189 can explain, at least in part, the better disease outcomes compared to
vehicle-treated animals. While cytokines can be detrimental to the host and contribute to the
development of cytokine storms (36), early type | and Ill IFNs are crucial in controlling viral
replication during IAV (37, 38) and SARS-CoV-2 infections (39, 40), whereas prolonged type
| IFN responses can be detrimental to the host (41). The GPR183 antagonist did not alter
early type | or Il IFN responses in SARS-CoV-2-infected animals, suggesting that the anti-
viral response was not impaired by the treatment. However, antagonising GPR183 prevented
a prolonged IFN response, which was associated with more effective viral clearance

observed in NIBR189-treated animals.

While several oxysterols can have a direct anti-viral effect (12), it is not known whether
NIBR189 directly affects viral entry or replication. CH25H/25-OHC have been shown to inhibit
SARS-CoV-2 infection in vitro by blocking the virus-host cell membrane fusion (42, 43). It is

unlikely that NIBR189 directly affects viral entry and/or replication, given that it is structurally

13


https://doi.org/10.1101/2022.06.14.496214
http://creativecommons.org/licenses/by-nc-nd/4.0/

429
430

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

450
451
452

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.14.496214; this version posted June 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

very different from cholesterols and probably not able to disrupt the host cell membrane

composition typical for other anti-viral oxysterols.

We propose that GPR183, which belongs to the GPCR family, is a novel drug target for
severe COVID-19. GPCRs are popular targets because of their pharmacological tractability.
Indeed, 34% of all FDA approved drugs are directed against members of this receptor family,
with this accounting for global sales volumes of over 180 billion US dollars (44). In our SARS-
CoV-2 model the GPR183 antagonist demonstrated a dual benefit by not only reducing pro-
inflammatory cytokines without compromising early type | and type Il IFN responses, but
also by reducing viral loads. Other immunosuppressive therapies used in severe COVID-19
like glucocorticoids can increase ACE2 expression which promotes viral entry and replication
(45, 46). Consistent with this, glucocorticoid use delays SARS-CoV-2 clearance (47).
Glucocorticoids can also affect antibody production. While it remains to be established
whether NIBR189 has a similar effect, short term use of a GPR183 antagonist during the
acute viral infection is unlikely to negatively impact antibody responses. Currently available
antiviral treatments are effective, but mutations in SARS-CoV-2 conferring resistance to new
antivirals are already emerging (48). Therefore, adjunct host-directed therapy with a GPR183
antagonist together with conventional antivirals may increase treatment efficacy. Since a
GPR183 antagonist targets the host and not the virus it is not anticipated that viruses will
develop resistance against host directed therapy (49). Further, a GPR183 antagonist-based
therapy can also be immediately effective against newly emerging SARS-CoV-2 variants

without further adaption.

In summary, we provide the first preclinical evidence of GPR183 as a novel host target for
therapeutic intervention to reduce macrophage-mediated hyperinflammation, SARS-CoV-2

loads and disease severity in COVID-19.
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Figure 1. IAV infection leads to upregulation of CH25H and CYP7B1 expression in the
lung and production of the oxysterols 25-OHC and 7a,25-OHC

A) The biosynthetic pathway of 25-OHC and 7a,25-OHC. B) Experimental design. C57BL/6J
mice were infected intranasally with 5,500 PFU of A/Auckland/01/09 and mRNA expression
of C) Ch25h and Cyp7b1 were measured by gRT-PCR at 3 dpi and 7 dpi normalized to Hprt.
D) Quantitative analysis of CH25H and CYP7B1 protein labelling by IHC. E) Representative
IHC images of CH25H and CYP7B1 in lung sections of uninfected or IAV-infected mice.
Concentrations of F) 25-OHC and G) 7a,25-OHC in the lungs at 3 dpi and 7 dpi expressed
in pmol per gram lung tissue. Data are presented as mean + SD of n=4 uninfected and n=6-
10 infected mice per timepoint. Scale Bar = 100um; dpi = days post-infection; U/l = mock

infected; ns., not significant; *, P < 0.05; **, P <0.01 indicate significant differences.
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Figure 2. Deletion of the Gpr183 gene or administration of a GPR183 antagonist
reduces macrophage infiltration in IAV-infected lungs. C57BL/6J and Gpr183” mice
were infected intranasally with 5,500 PFU of A/Auckland/01/09. A) Representative IHC
images of IBA1 in lung sections of IAV-infected C57BL/6J and Gpr183” mice. Quantitative
analysis of IBA1 staining. B) Experimental design; C57BL/6J mice and Gpr183” mice were
infected intranasally with 5,500 PFU of A/Auckland/01/09. Mice were subsequently treated
orally with 7.6 mg/kg NIBR189 or vehicle control twice daily from 1 dpi until the end of the
experiment. C) Representative IHC images of IBA1 in lung sections of C57BL/6J and Gpr183
~ mice with the respective treatment groups at 3dpi and 7dpi. Quantitative analysis of IBA1
staining. Data are presented as mean + SD of n = 6-12 infected mice per genotype and
timepoint. dpi = days post-infection; Scale Bar = 100um; U/l = mock infected ns = not
significant; *, P < 0.05; **, P < 0.01; **, P < 0.001 indicate significant differences
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Figure 3. The GPR183 antagonist NIBR189 reduces macrophage infiltration and
inflammatory cytokine production. C57BL/6J and Gpr183” mice were infected intranasally
with 5,500 PFU of A/Auckland/01/09. Mice were subsequently treated orally with 7.6 mg/kg
NIBR189 or vehicle control twice daily from 1 dpi until the end of the experiment. A)
Frequency of infiltrating macrophages (F480"9"/CD11b*/Ly6G7/SigF-) and neutrophils (B220
CD3Ly6G*) was determined by flow cytometry relative to total viable CD45* immune cells 3
dpi. Graphs depicting the frequency of B) macrophages and C) neutrophils. Data are

presented as mean * SD of n=5-12 infected mice per genotype and timepoint. dpi = days
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720  Mice were subsequently treated orally with 7.6 mg/kg NIBR189 or vehicle control twice daily
721  from 1 dpi until the end of the experiment. Cytokine measurements of A) IL-6, B) TNF, C)
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Figure 5. SARS-CoV-2 infection leads to upregulation of CH25H and CYP7B1

expression in the lung and production of the oxysterols 25-OHC and 7a,25-OHC.
C57BL/6J mice were infected intranasally with approximately 8x10* PFU of mouse-adapted
SARS-CoV-2. mRNA expression of A) Ch25h and Cyp7b1 was measured by gqRT-PCR at 2
dpi and 5 dpi normalized to Hprt. B) Quantitative analysis of CH25H and CYP7B1 protein by
IHC labelling and C) representative IHC images of CH25H and CYP7B1 in lung sections in
uninfected, 2 dpi and 5 dpi. D) Concentrations of 25-OHC and 7a,25-OHC in the lungs at 2

dpi and 5 dpi expressed in pmol per gram lung tissue. Data are presented mean + SD of n=3

uninfected mice and n= 9-10 infected mice per timepoint. Scale Bar = 50um; U/l = mock

infected; dpi = days post-infection; ns = not significant; *, P < 0.05; **, P< 0.01; ***, P< 0.001;

**** P < 0.0001 indicate significant differences.
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Figure 6. GPR183 inhibition resulted in less SARS-CoV-2 infection-induced weight loss
and in reduced macrophage infiltration. C57BL/6J and Gpr183” mice were infected
intranasally with approximately 8x10* PFU of mouse-adapted SARS-CoV-2. Mice were
subsequently treated orally with 7.6 mg/kg NIBR189 or vehicle control twice daily from 1 dpi
until the end of the experiment. A) Experimental design. B) Weights of mice displayed as
percentage of the weight at time of inoculation. C) Representative IHC images of IBA1 in lung
of C57BL/6J and Gpr183” mice with the respective treatment groups at 2 dpi and 5 dpi (left).
Scale Bar = 100um. Quantitative analysis of IBA1 (right). Data are presented mean + SD of

n=9-12 infected mice per genotype and timepoint. Scale Bar = 100um; U/l uninfected; dpi =
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significant differences.
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Figure 7. GPR183 inhibition led to reduced inflammatory cytokine profile. C57BL/6J
and Gpr1837 mice were infected intranasally with approximately 8x10* PFU of mouse-
adapted SARS-CoV-2. Mice were subsequently treated orally with 7.6 mg/kg NIBR189 or
vehicle control twice daily from 1 dpi until the end of the experiment. Relative expression of
A) Tnf, B) Il110, C) Ifng at 2 dpi and D) Tnf, E) /l1b, F) II6 at 5 dpi in the lungs measured by

RT-gPCR, normalized to Hprt. Data are presented mean + SD of n=3 uninfected mice and

n= 9-12 infected mice per genotype and timepoint. U/l = mock infected; dpi = days post-

infection; ns = not significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001 indicate significant

differences.
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Figure 8. GPR183 inhibition led to reduced interferon responses at 5 dpi. C57BL/6J
and Gpr1837 mice were infected intranasally with approximately 8x10* PFU of mouse-
adapted SARS-CoV-2. Mice were subsequently treated orally with 7.6 mg/kg NIBR189 or
vehicle control twice daily from 1 dpi until the end of the experiment. Relative expression of
A) Ifnb, B) Ifnl at 2 dpi and C) Ifnb, D) Ifnl at 5 dpi in the lungs measured by RT-qPCR,

normalized to Hprt. Data are presented mean + SD of n=3 uninfected mice and n= 9-12

infected mice per genotype and timepoint. U/l = mock infected; dpi = days post-infection; ns

= not significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001 indicate significant differences.
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Figure 9. Mice treated with GPR183 antagonist had lower SARS-CoV-2 loads.

C57BL/6J and Gpr183” mice were infected intranasally with approximately 8x10* PFU of
mouse-adapted SARS-CoV-2. Mice were subsequently treated orally with 7.6 mg/kg
NIBR189 or vehicle control twice daily from 1 dpi until the end of the experiment. A)
Representative IHC images of viral nucleocapsid (Np) expression at 2 dpi and 5dpi. B)
Quantitative analysis of viral Np expression of the treatment groups at 2 dpi. C) Viral load
was assessed in the lung through the detection of Mpro RNA by RT-gPCR at 5 dpi,
normalized to HPRT. Data are presented mean + SD of n=9-12 infected mice per genotype
and timepoint. Scale Bar = 50um; U/l = mock infected; dpi = days post-infection; ns = not

significant; *, P < 0.05; **, P < 0.01, indicate significant differences.
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Figure 10. Schematic figure of the role of GPR183 in the immune response to SARS-
CoV-2 and IAV infections. SARS-CoV-2 and IAV infections lead to the upregulation of
CH25H and CYP7B1 which results in the production of 7a,25-OHC. This oxysterol
chemotactically attracts GPR183-expressing macrophages to the lungs where they produce
pro-inflammatory cytokines. Pharmacological inhibition of GPR183 attenuates the infiltration
of GPR183-expressing macrophages, leading to reduced production of inflammatory

cytokines without negatively affecting antiviral responses.
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Figure S1. Evolution and coverage of mouse-adapted SARS-CoV-2 virus. A) Mutation
frequency of input SARS-CoV-2 Beta virus (blue circle) and passage one (orange diamond),
passage two (purple nabla), passage three (green triangle) and passage four (red square)
mouse-adapted viruses over the reference genome sequence as well as the final virus stocks
(black circle) amplified in VeroE6-hTMPRSS2 cells. The dotted line indicates the consensus
frequency of 0.5 B) Summary plots of read coverage of passaged SARS-CoV-2 viruses from
A) mapping to SARS-CoV-2 Beta strain. Depth of coverage of binary alignment files was
determined using samtools depth. C) Weight loss over time following infection with the Beta
variant of SARS-CoV-2 (original virus) or various doses of maSARS-CoV-2 (after four
passages in mice). Plaque forming units are indicated in brackets. Data indicates mean +
SEM.
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SARS-CoV-2 Np Isotype

Figure S2. Isotype staining controls for CYP7B1, CH25H, IBA1 and viral Np. IHC of IAV-
infected lung sections incubated with rabbit anti-CH25H, rabbit anti-CYP7B, rabbit anti-IBA1
and an isotype-matched control (Rabbit IgG; negative control). IHC of SARS-CoV-2-infected
lung sections incubated with rabbit anti-SARS-CoV-2 nucleocapsid protein (Np) and an

isotype-matched control (Rabbit IgG; negative control). Scale bar = 50um
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Figure S3. Gpr183 mRNA expression is upregulated in the lung during IAV infection
and correlates with expression of the oxysterol synthesising enzymes CH25H and
CYP7B1. C57BL/6J mice were infected intranasally with 5,500 PFU of A/Auckland/01/09. A)
Relative expression of Gpr183 mRNA measured by RT-gPCR, normalized to Hprt.
Correlation analyses were performed with mRNA expression levels of Gpr183 and oxysterol
synthesizing enzymes. Individual scatter plots showing correlations between Gpr183 and B)
Ch25h and C) Cyp7b1. Black dots represent uninfected samples while coloured dots
represent IAV-infected samples (Orange dots, 3 dpi; green dots, 7 dpi). Data are presented
as mean = SD of n=4 uninfected and n=8-10 infected mice per timepoint. ns = not significant;

*, P < 0.05 indicate significant differences. Spearman rank correlation test were used to
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calculate correlation coefficient and to determine significant correlations with values

displayed on each scatter plot.
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Figure S4. Correlations between lung mRNA expression of Gpr7183 and inflammatory

markers in IAV-infected mice.

Correlation analyses of Gpr183 mRNA expression with mRNA expression of inflammatory
cytokines in lung tissue from IAV-infected C57BL/6J mice (n=21 pairs). Relative gene
expression was determined by RT-gPCR, normalized to Hprt. Individual scatter plots showing
correlations between Gpr183 and A) 116, B) Tnfand C) Ccl2. Black dots represent uninfected
samples while coloured dots represent IAV-infected samples (Orange dots, 3dpi; green dots,
7dpi). Spearman rank correlation test were used to calculate correlation coefficient and to

determine significant correlations with values displayed on each scatter plot.
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Figure S5. Cytokine expression at mRNA and protein level in IAV-infected C57BL/6J
and Gpr183- mice. C57BL/6J and Gpr183” mice were infected intranasally with 5,500 PFU
of A/Auckland/01/09. Cytokine measurements of A) /16, B) Tnfand C) Ccl2 at 3 dpi and 7 dpi

measured by RT-gPCR, normalized to Hprt. Data are presented as mean + SD of n=4
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uninfected per genotype and n=8-10 infected mice per genotype and timepoint. U/l

uninfected; dpi = days post-infection; ns = not significant; *, P < 0.05; **, P < 0.01 indicate

significant differences.
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Figure S6. Weights of IAV and mock infected C57BL/6J and Gpr183”- mice and viral
loads. C57BL/6J and Gpr183” mice were infected intranasally with approximately 5,500 PFU
of A/Auckland/01/09. A) Weights of IAV- or mock-inoculated mice are displayed as
percentage of the weight at time of inoculation. B) Viral load was assessed by measuring the
PFU by plaque assays. Data are presented as mean £ SD for n=8-10 infected mice per
genotype and timepoint. dpi = days post-infection; ns = not significant; **, P < 0.01; ***, P <

0.001 indicate significant differences.
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Figure S7. Representative flow cytometry plots illustrating the gating strategy of
immune cells. C57BL/6J or Gpr183’- mice were infected intranasally with 5,500 PFU of
A/Auckland/01/09. Mice were subsequently treated orally with 7.6 mg/kg NIBR189 or vehicle
control twice daily from 1 dpi until the end of the experiment. Gates containing multiple cell
populations are numbered (G1-G9). Gates that contained a single cell population are labeled
with its respective cell type. These includes: B cells (B220*; G5), CD4* T cells (CD3*,CD4";
G6), CD8" T Cells (CD3*,CD4; G6), Neutrophils (B220,CD3,Ly6G*; G5), Alveolar
macrophages (B220,CD3-,Ly6G-,CD11c*,SigF*; G7), Macrophages (B220,CD3",Ly6G
,SigF-,CD11b*,F4/80Md":  G8) and Dendritic cells (DCs; B220,CD3-,Ly6G",SigF",
F4/80°,CD11c*, MHCII*; G9).
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Figure S8. Immune cell populations in the lungs of IAV-infected mice treated with the
GPR183 antagonist NIBR189. C57BL/6J or Gpr1837 mice were infected intranasally with
5,500 PFU of A/Auckland/01/09. Mice were subsequently treated orally with 7.6 mg/kg
NIBR189 or vehicle control twice daily from 1 dpi until the end of the experiment. A)
Frequency of B cells (B220%), T cells (CD3* CD8* or CD4*), neutrophils (B220-CD3Ly6G")
was determined by flow cytometry against total viable CD45* immune cells at 3 dpi. Alveolar
macrophages (CD11c¢*SigF*), infiltrating macrophages (F480M3"/CD11b*/Ly6G/SigF-) and
dendritic cells (SigF-F4/80-MHCII*CD11c*) were further identified from the B220-CD3Ly6G"
cell population. (B-G) Graphs depicting the frequency of B) Dendritic cells, C) alveolar
macrophages, D) CD4* T cells, E) CD8" T cells and F) B cells against total viable CD45*
immune cells. Data are presented mean + SD of n=5-12 infected mice per genotype and

timepoint. Ul = uninfected; dpi = days post-infection; ns = not significant.
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Figure S9. Body weights and viral loads of IAV-infected C57BL/6J and Gpr183” mice
treated with NIBR189 or vehicle. C57BL/6J mice and Gpr1837 mice were infected
intranasally with 5,500 PFU of A/Auckland/01/09. Mice were subsequently treated orally with
7.6 mg/kg NIBR189 or vehicle control twice daily from 1 dpi until the end of the experiment.
A) Weights of IAV- or mock-inoculated mice with or without treatment are displayed as
percentage of the weight at time of inoculation. B) Viral load was assessed by measuring the
PFU through plaque assay. Data are presented mean + SD of n=6-12 infected mice per

genotype and timepoint. Ul = uninfected; dpi = days post-infection; ns = not significant.
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Figure S10. Cytokine expression at protein level in IAV-infected C57BL/6J and Gpr183
~ mice treated with NIBR189 and/or vehicle. C57BL/6J and Gpr183” mice were infected
intranasally with 5,500 PFU of A/Auckland/01/09. Mice were subsequently treated orally with
7.6 mg/kg NIBR189 or vehicle control twice daily from 1 dpi until the end of the experiment.
Cytokine measurements of A) IL-6 B) TNF, C) IFNB, D) IFNA, E) CCL2, F) IFNy and G) IL-
1B, at 3 dpi measured by ELISA. Data are presented mean = SD of n=4 uninfected mice per
genotype and n=6-12 infected mice per genotype. U/l = uninfected; dpi = days post-infection;

ns = not significant. *, P < 0.05 indicate significant differences.
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Figure S11. Cytokine expression at protein level in IAV-infected C57BL/6J and Gpr183
~ mice treated with NIBR189 and/or vehicle. C57BL/6J and Gpr183” mice were infected
intranasally with 5,500 PFU of A/Auckland/01/09. Mice were subsequently treated orally with
7.6 mg/kg NIBR189 or vehicle control twice daily from 1 dpi until the end of the experiment.
Cytokine measurements of A) IL-13, B) CCL2, and C) IFNy at 7 dpi measured by ELISA.
Data are presented mean + SD of n=4 uninfected mice per genotype and n=6-12 infected

mice per genotype. U/l = uninfected; dpi = days post-infection; ns = not significant.

] Weights

Days
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Figure S12. GPR183 inhibition weight loss upon SARS-CoV-2 infection. C57BL/6J and
Gpr1837 mice were infected intranasally with approximately 8x10* PFU of mouse-adapted
SARS-CoV-2. Mice were subsequently treated orally with 7.6 mg/kg NIBR189 or vehicle
control twice daily from 1 dpi until the end of the experiment. Weights of mice displayed as

percentage of the weight at time of inoculation.
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Figure S13. Cytokine expression at mRNA in SARS-CoV-2-infected C57BL/6J and
Gpr183” mice treated with GPR183 antagonist at 2 dpi and 5 dpi. C57BL/6J and Gpr183-
 mice were infected intranasally with approximately 8x10* PFU of mouse-adapted SARS-
CoV-2. Mice were subsequently treated orally with 7.6 mg/kg NIBR189 or vehicle control
twice daily from 1 dpi until the end of the experiment. Expression of A) Ccl/2, B) /l1b and C)
16 at 2 dpi and D) Ccl2, E) /110 and F) Ifng 5 dpi was measured by RT-qPCR normalized to
HPRT. Data are presented mean + SD of n=3 uninfected mice and n= 9-12 infected; mice
per genotype and timepoint. U/l = uninfected dpi = days post-infection; ns = not significant. *,
P <0.05; **, P<0.01; ***, P <0.001 indicate significant differences.
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Table S1: Primers used in this study

Forward Reverse
Gpr183 GTCGTGTTCATCCTGTGCTTCAC | TCATCAGGCACACCGTGAAGTG
Ch25h CTGACCTTCTTCGACGTGCT GGGAAGTCATAGCCCGAGTG
Cyp7b1 | CGGAAATCTTCGATGCTCCAAAG | GCTTGTTCCGAGTCCAAAAGGC
Ccl2 GCTACAAGAGGATCACCAGCAG | GTCTGGACCCATTCCTTCTTGG
Hprt1 CCCCAAAATGGTTAAGGTTGC AACAAAGTCTGGCCTGTATCC
Ifnb1 AACTCCACCAGCAGACAGTG GGTACCTTTGCACCCTCCAG
Ifng CAGCAACAGCAAGGCGAAAAAGG | TTTCCGCTTCCTGAGGCTGGAT
110 CGGGAAGACAATAACTGCACCC | CGGTTAGCAGTATGTTGTCCAGC
I11b TGGACCTTCCAGGATGAGGACA | GTTCATCTCGGAGCCTGTAGTG
116 CTGCAAGTGCATCATCGTTGTTC | TACCACTTCACAAGTCGGAGGC
Ifnl AGCTGCAGGCCTTCAAAAAG TGGGAGTGAATGTGGCTCAG
Tnf TAGCCCACGTCGTAGCAAAC ACAAGGTACAACCCATCGGC
Hif1a CCTGCACTGAATCAAGAGGTGC | CCATCAGAAGGACTTGCRGGCT
mpro GAGACAGGTGGTTTCTCAATCG ACGGCAATTCCAGTTTGAGC
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