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Abstract

Genome sequences are computationally assembled from millions of much shorter sequencing reads. Although
this process can be impressively accurate with long reads, it is still subject to a variety of types of errors, including
large structural misassembly errors in addition to localised base pair substitutions. Recent advances in long single
molecule sequencing in combination with other long-range technologies such as synthetic long read clouds and
Hi-C have dramatically increased the contiguity of assembly. This makes it all the more important to be able to
validate the structural integrity of the chromosomal scale assemblies now being generated. Here we describe a
novel assembly evaluation tool, Asset, which evaluates the consistency of a proposed genome assembly with
multiple primary long-range data sets, identifying both supported regions and putative structural misassemblies.
We present tests on three de novo assemblies from a human, a goat and a fish species, demonstrating that Asset
can identify structural misassemblies accurately by combining regionally supported evidence from long read and
other raw sequencing data. Not only can Asset be used to assess overall assembly confidence, and discover
specific problematic regions for downstream genome curation, a process that leads to improvement in genome
quality, but it can also provide feedback to automated assembly pipelines.
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Background

De novo assembly is essential to generate reference
genome sequences for new species. Until recently this
has relied on computational assembly of millions of short
fragmented DNA sequences from next generation
sequencing (NGS) machines. The assembly obtained in
this way is often known to be problematic [1] due to
repetitive sequences, sequencing bias, heterozygous
alleles, etc. Repeat sequences that make up a major
proportion of all eukaryotic species genomes [2], can trap
the assembly algorithm and lead to misassemblies,
especially when the repeat size is larger than the read
size, which is typical for NGS data. Sequence composition
bias, also often called GC bias, and can further affect
genome completeness when portions of the genome
have very high or low GC content [3].

In the last few vyears, the advent of long read
sequencing technologies, such as PacBio Single Molecule
RealTime (SMRT) sequencing and Oxford Nanopore
Technology sequencing (ONT), which have read lengths
at least two orders of magnitude larger than NGS data
and exhibit much less sequencing bias, has been
revolutionising genome assembly studies. This has
stimulated the development of new genome assembly
tools such as Falcon [4], which is a string graph-based
assembler[5], and Canu [6], an overlap graph-based
assembly tool. The application of long reads in genome
assembly has greatly improved assembly continuity and
completeness compared to that of NGS assembly
[71.

Ambitious new de novo sequencing projects are taking
advantage of these long read technologies, such as the
Vertebrate Genomes Project (VGP) which hopes to
generate de novo assemblies for all the vertebrate
species [8] and ultimately the Earth BioGenome Project,
which advocates sequencing over 1.5 million eukaryotic
species, including animals, plants and microbiomes, in
the next ten years [9]. With the number of de novo
assemblies likely to be released over the coming years a
method is needed to reliably evaluate their accuracy.

A number of metrics are frequently used to assess a
draft assembly. In particular, genome continuity is
typically measured by contig or scaffold N50, which is the
longest length such that at least half of the total
sequence is in contigs or scaffolds longer than this. The
larger the N50, the more continuous the assembly is, and
so researchers prefer tools that can generate a larger
N50. However N50 can only reflect the continuity of the
assembly: one can force erroneous joins to make a larger
N50, and in this case the assembly quality is poor even
with a large N50. Another assembly metric, genome
completeness, can be gauged by BUSCO [10], which relies
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on single-copy orthologs to quantify
completeness.

However, neither of the above metrics measure the
accuracy of the draft assembly. Several tools have been
developed to address this. GAGE (Genome Assembly
Golden-standard Evaluation) [11] compares a set of NGS
data assemblies based on deep sequencing data and
summarises putative misassemblies into two categories,
indels, and misjoins which is subclassified into inversions,
relocations (within chromosomes) and translocations
(between chromosomes). QUAST [12] and QUAST-LG [13]
require a reference, with respect to which they give a
detailed description of a proposed assembly, such as
NA50 which is the N50 of the aligned assembly blocks,
and again the numbers of misassemblies split into
relocations, inversions and translocations. They also
supply various visualized results for better understanding
the assembly quality.

However, these tools rely on an existing reference
genome to find misassemblies, which makes them not
applicable to newly sequenced species. Even if a
reference genome exists, the natural mutations between
the samples may still lead to false positive misassemblies.
To address this, tools such as Amosvalidate [14], REAPR
[15] and Tigment [16] all evaluate a de novo assembly
against primary data sets. Amosvalidate applies a method
of combining multiple sources of misassembly signals,
including mate-pair orientation, repeat content, read
depth, micro-heterogeneities, and read alignment
breakpoints, to detect suspicious misassembled regions.
However, it was developed before the invention of NGS
technologies and requires an AMOS Bank format as input,
which are not generated by most of the genome
assemblers. REAPR uses independent paired-end reads
alignments to calculate a fragment coverage distribution
(FCD) for each base and use FCD outliers to pinpoint
misassemblies, and Tigment calculates molecular
coverage for the whole assembly from linked reads, and
then uses that as evidence for misassembly detection.

Although all these tools can be used to detect
misassemblies, none of them uses the full collection of
long-range sequencing data that is now typically available,
which in principle should provide more reliable results.
We therefore designed and developed a tool “Asset”
which uses the four types of long-range sequencing
datasets currently used by the VGP, namely PacBio long
reads, 10X linked reads, Bionano optical maps, and Hi-C
[17], to identify suspect misassemblies. We performed
experiments on three de novo assemblies, and
demonstrate that none of the data types individually are
sufficient to validate a genome assembly, but that in
combination “Asset” can identify misassemblies
accurately. With more and more de novo sequencing
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projects being launched, Asset has the potential to be
applied systematically to help accelerate and standardise
the genome evaluation process. Furthermore, it can
provide lists of potential problems for subestquent
genome curation to focus on [18, 19], and rank genome
assemblers.

Results

Asset methods overview

As described above, Asset is able to use information from
four primary data types. We first briefly describe these
and the principles behind the information that they
provide.

Because they sequence single molecules without
amplification subject to composition bias, current long
read platforms give rather uniform sampling across the
genome. Therefore evenness of long read coverage is
one good indicator for identifying misassemblies, where
regions with extremely low or high read depth are
potentially misassembled. However, this metric can be
confused by perfect or near perfect repetitive sequence
regions. The reads mapped to these regions are usually
ignored for read depth calculation due to ambiguous
mapping positions, or alternatively are randomly
assigned, both of which can result in anomalous depth
and a misassembled region recognized by some tools.
Further, sufficiently long repetitive regions will have no
spanning reads, and thus are often discarded or treated
as misassemblies. Of course, it is precisely around these
long repetitive regions that missassemblies are likely to
occur.

These problems can be partially solved by using linked
reads. Linked-read or “read cloud” data consists of
barcoded reads from a long fragment of DNA, such as are
produced by 10X Genomics or similar technology.
Following alignment to a reference or assembly it is
possible to reconstruct the likely extent of the underlying
20-200kb DNA fragments [20], and from this calculate the
physical long fragment coverage for each base. Places
where the molecule coverage drops to zero or near zero
frequently indicate missassemblies. However an
exception to this can occur when missing a large piece of
sequence over 200kb.

The restriction map is another useful data type for
misassembly identification. Although a full nucleotide
sequence is not provided, the longer molecule lengths
used by modern optical restriction mapping technologies
such as BioNano are capable of spanning regions over
250kb and can cover longer repetitive regions. Bionano’s
new direct label and stain (DLS) technique, which
eliminates repeated breakpoints in the fragments, can
give information on very long range structure across tens
of megabases. However, there remain some long regions,
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typically over 1Mb such as centromeres, which are not
spanned by BioNano maps, but across which order and
orientation can be confirmed using Hi-C reads.

Hi-C is based on Chromatin Conformation Capture
technology, where DNA is cut and re-ligated in situ in the
nucleus, and then following selective purification of
chimeric ligation products a short read library is made for
deep sequencing [17, 21]. This gives contact information
beetween DNA fragments at multiple resolutions up to
chromosome scale, allowing us in principle to use Hi-C
data to confirm whether a contig is correctly
concatenated with its neighbours regardless of the length
of the missing piece.

It is worth noting that the goal of Asset is to confirm
that the sequence given is fully supported by the data,
not that it is complete in the sense of explaining all the
data. This means that even for a diploid assembly which
describes both chromosomes, or provides a primary
assembly plus alternate "haplotig" material [4], we are
able to just assess the primary assembly. This is what we
do throughout the rest of this paper.

Asset pipeline

The Asset pipeline is illustrated in Additional file 1: Figure
S1, and described fully in the Methods section. Here we
give a brief overview.

Given an input of a primary assembly and four types of
long-range data including long reads, linked reads,
restriction maps and Hi-C reads, we apply the following
strategy to identify suspect misassemblies.

To begin we partition the assembly scaffolds into
sequences, which are composed of A,C,G,T bases, and
joins, which are runs of Ns between contigs. We then
apply different strategies to confirm sequences and joins.

For the sequences, we align the long reads and
restriction maps to the scaffolds. Only considering the
primary alignments, so each part of a read/map is aligned
in at most one place, and ignoring the 300bp at the end
of each read alignment, we label segments of the contigs
that are neither covered by long reads nor consistent
restriction map intervals as unsupported sequence.

To confirm joins we consider three possible types of
evidence. First, a restriction map alignment that spans
across a join with consistent spacing. Second, for linked
reads, we identify molecule extents as intervals
containing a sufficient density of mapped reads with the
same barcode. We require a sufficient number of
inferred molecules to cross a join to confirm it. Third, for
Hi-C data, we split all contigs into two equal halves, and
calculate the number of Hi-C read pairs linking each pair
of contig-halves; to be confirmed, we require that the
right contig-half is the best partner of the left contig-half
and vice versa, where by “best” we mean that it is the
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Table 1 Assemblies and sequencing datasets used for Asset analysis
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CHM13 Goat fEcheNal
Accession v0.6 GCF_001704415.1 GCA_900963305.1
Length (Mb) 2,941 2,923 544
Assembly Scaffold # 503 29,907 38
Scaffold N50 (Mb) 90.1 87.3 23.3
Contig # 593 30,697 178
Contig N50 (Mb) 71.7 18.2 12.4
# reads (k) Read 35,146 62,901 3,524
N50 23,857 19,195 14,808
PacBio # bases (Gb) 262.59 400.84 45.14
# read pairs (M) Mol. 610 - 423
10X cov. 345 - 543
Mol N50 119,106 - 65,120
Hi-C # read pairs (M) 417 115 9.17
-
Insert size N50 (Mb) 23.89 39.21
. Total len. (Mb) contig 2,973 2,748 579
Bionano
N50 (Mb) 59.61 1.59 20.60

contig-half linked by the greatest normalised number of
read pairs. Joins not supported by any of these evidence
types are labelled as unsupported joins.

Finally, we combine the two sets of unsupported
regions, merging regions within 10kb of each other. We
also drop isolated regions of unsupported sequence that
are within a fixed distance (default: 1kb) of a gap since
they are mostly called by natural drop of long read depth.
We regard the remaining unsupported regions as suspect
misassemblies.

Evaluation of results
Three different assemblies were evaluated using a variety
of primary data, as listed in Table 1.

To quantify the accuracy for each tool, we examined a
representative subset of suspect misassemblies by hand.
For Asset results we selected all those on one
chromosome, while for the other methods we randomly
selected 20 candidates, since they produce too many
misassemblies to validate all of them on a chromosome.
To further investigate the types of misassemblies found
by Asset, we classified these into nine types: HAPDUP
(haplotypic duplication, where both divergent haplotypes
are included), HAPMIX (mixed haplotype, where a mosaic
of divergent haplotypes is given), DUPSEQ (local
sequence duplication), INS (sequence insertion), MIS
(sequence deletion), COLL (local sequence collapsing),
INV (inversion), RELOC (relocation), TRAN (translocation).

Application on the CHM13 assembly

We carried out our first experiment on the CHM13
human assembly assembled using Canu v1.7.1 with 39X
rell Oxford Nanopore data and 70X PacBio reads at
scaffold level by the Telomere-to-Telomere (T2T)
consortium [22]. This represents the genome of the
CHM13hTERT cell line, which was obtained from a
hydatidiform mole and hence is homozygous diploid,
avoiding problems of heterozygosity. The greatest effort
was made on ChrX, where the gaps were manually
checked and filled, which created a full length of ChrX.

Table 2 Misassembly identification results

Asset QUAST REAPR

CHM13 368 2,942 98,501
Goat_ARS1 541 - 128,262
fEcheNal 171 - 28,304

QUAST could only be applied to the human assembly because it
requires a reference genome to identify misassemblies, which is not
independently available for goat and fEcheNal .

The whole assembly contains 2.94 Gb bases, with scaffold
N50 90.1 Mb, and contig N50 71.7 Mb (Table 1). In this
experiment, we used 35 million PacBio reads from 215
runs, 610 million 10X linked read pairs and 417 million Hi-
C read pairs. The Bionano consensus map is created from
the DLE-1 direct labelling enzyme data (Table 1). We ran
QUAST-LG with default settings using the GRCh38
assembly as a reference and REAPR with default settings
using the linked reads.
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In our experiment, Asset found 368 misassemblies on
the CHM13 super scaffolds. We manually checked 14
misassemblies on two major scaffolds Super-
Scaffold_434 (SS434) and Super-Scaffold_445 (S5445) of
Chrl, for which we validated 5 and 7 misassemblies
respectively. We also validated another 2 candidate
misassemblies on the complete ChrX sequence. Of these
14 candidate misassemblies, 10 were confirmed as real,
giving a specificity of approximately 71.4%.

QUAST-LG discovered 2,942 extensive misassemblies
on the super scaffolds, 20 were randomly picked up for
manual validation from the same scaffolds as above, 3 of
them appeared to be correctly identified, while yields an
accuracy of 15%. QUAST-LG found 345 misassemblies on
the complete ChrX assembly, including 319 relocations,
13 translocations and 13 inversions, most of these are
recognized due to segmental duplication, centromeres
and telomeres which are not well resolved in the GRCh38
assembly. Additional file 1: Figure S6 demonstrates an
example of QUAST-LG translocations which are falling
into a segmental duplicated region on ChrX and ChrY in
the GRCh38 assembly. As is shown in the figure, the start
of ChrX is mapped to ChrX and ChrY in the reference
assembly (Figure S6a), and QUAST-LG found 8
translocations in that region, which are not true based on
the Bionano Access view (Figure S6b). REAPR identified
98,501 misassemblies in total, 20 were randomly chosen
for validation, 1 is correct, which results in an accuracy of
5%, around 60% misrecognised misassemblies are caused
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by repeat elements and the others are misclassified
because of uneven read depth distribution.

In the 14 manually checked misassemblies from Asset,
we classified them into the nine categories mentioned
above, 6 of them are DUPSEQs, 1 is a MIS and 2 are
COLLs, 4 are close to the centromere which are hard to
classify, one can either be a MIS or INS, which proves
CHM13 may not be a complete haploid. We give an
example of a DUPSEQ found on SS445 in Figure 1. From
the dotplot (Figure 1a), SS445 is mapped to the GRCh38
Chrl assembly, both two regions ~130-250kb and ~250-
370kb on SS445 are mapped to ~700-810kb on
NC_000001.11, the duplicate region is marked in red, the
PacBio coverage in its corresponding region drops almost
to zero. From the Bionano Access (Figure 1b), we can see
a clear divergence between the DLE consensus maps and
the SS445, which indicates a ~120kb insertion in the
scaffold. Combining the evidence from Bionano Access
and the dotplot, there is a ~120kb DUPSEQ on the SS5445.

The most intriguing case found by Asset on SS434 may
indicate the CHM13hTERT cell is not a comprehensive
haploid. The misassembly is located on 12,121,611-
12,126,513 of SS434, where the PacBio coverage is low
and Bionano alignment is screwed up. Figure 2 illustrates
the alignments between the Bionano DLE consensus map
and the scaffold for this region. Through comparing the
two Bionano consensus maps, we can observe an
apparent divergence between
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Table 3 Manually checked Asset misassemblies results
# checked HAPDUP DUPSEQ HAPMIX INS MIS COLL INV RELOC TRAN
CHM13 14" 0 6 0 0 1 2 0 0 0
Goat_ARS1 30 117 0 0 0 1 0 4 8
fEcheNal 84 51 0 7 3 5 7 0 0 0

': One misassembly is not shown here due to unclassified category. ’: it was not possible to distinguish haplotypic duplications from standard duplicat
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Figure 1 A DUPSEQ on CHM13 SS445 (a) dotplot of SS445 mapped to GRCh38 Chrl (NC_000001.11). The duplicate sequence
is marked in red. The PacBio coverage in the duplicated region almost drops to zero.l§) Bionano Access view of the alignment
between SS445 and the DLE consensus map. Based on alignment, there is a around 120kb large insertion from 0.24 to 0.36 Mb in
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them, there is a ~82kb difference between “A-a” and “B-a”
regions, where A, B, a are all restriction enzyme sites.
Even though the assembler seemed to recover the larger
haplotype, it still missed a ~26kb sequence.

Application on the goat reference assembly The third
experiment is applied on a Capra hircus assembly
(domestic goat, RefSeq assembly accession:

GCF_001704415.1) [23]. It was assembled using The
Celera Assembler PacBio Corrected Reads pipeline[7]
with 69X PacBio subreads, and scaffolded with 98X
optical mapping data and 115 million Hi-C read pairs. The
final assembly contains 2.92 Gb bases in total, the
scaffold N50 is 87.3 Mb, and the contig N50 is 18.2 Mb
(Table 1).
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Figure 2 Bionano Access view of CHM13 heterozygous
haplotypes on SS434.A, B and a are all restriction enzyme
recognition sites. In two consensus maps, both site A and site
B are mapped to site a, which indicates an apparent
divergence between two haplotypes of SS434. And the region
is found because the assembler fails in representing either of
the haplotypes.

In this experiment, Asset used 63 million PacBio reads
in 325 runs, the datasets contain total 400.84 Gb bases,
and 115 million Hi-C read pairs (Table 1). Lacking publicly
available linked reads for the assembly, we did not use
linked read data in the experiment. For Bionano data, we
used the Irys BspQl consensus map assembled by the
Bionano Access software package and the sequencing
data mentioned in the assembly paper is from a male
offspring of the original species. REAPR used public
Illumina datasets containing 443 million read pairs for the
test and ran in default mode.

Asset found 541 misassemblies on chromosomes. We
manually checked the 30 misassemblies on Chr1, found
24 were real misassemblies, this gives an approximate
accuracy of 80%. We discovered 8 of them were involved
in TRANs, 11 were DUPSEQs or HAPDUPs which are hard
to classify due to insufficient evidence,

4 were RELOCs and 1 was COLL. REAPR reported

128,262 assembly errors. Among 20 randomly selected
misassemblies, 2 were real, which results in an accuracy
of 10%.

We chose one asset-identified relocation region on
40.87-41.89Mb of Chrl and demonstrated it in Figure 3,
this region is also identified in the Goat assembly paper.
In the HiGlass [24] view (Figure 3a), we can observe a
strong signal between the start of the scaffold and this
region, indicating this region should be moved to the
front of the scaffold. The same situation shows in the
dotplot (Figure 3b), where we mapped Chrl to another
assembly CHIR_2.0 (Yunnan Black Goat, GenBank
assembly accession GCA_000317765.2) [25], the 40.87-
41.89Mb on Chrl is mapped to the start of the Chrl of
the black goat assembly. Meanwhile, from the Access
view (Figure 3c), we can see that two breaks at 40.8Mb
and 41.9Mb, the middle regions from 40.8-41.9Mb are
aligned continuously, however it is not joined with either
side. Based on these evidences, the region found by
Asset is a relocation.
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Application on the VGP fEcheNal assembly Our final
experiment is performed on a VGP assembly, Echeneis
naucrates (fEcheNal, GenBank assembly accession:
GCA_900963305.1) is assembled by Sanger VGP assembly
group. It goes through a VGP assembly routine v1.5,
where the assembly is built with ~60X PacBio sequencing
data using Falcon, uses Falcon-unzip to construct
pseudohaplotypes, and scaffolded with 10X reads by
using scaffold10x (https:// github.com/wtsi-
hpag/Scaff10X) and Bionano optical mapping data. The
scaffolds finally reached chromosome level with Hi-C
data using SALSA [26], and went into a stringent curation
process by Sanger GRIT team. The curated assembly
contains 38 scaffolds, including a total 544Mb bases, the
scaffold N50 is 23.3Mb and contig N50 is 12.4Mb.

With regard to the number of misassembly, the
fEcheNal assembly is better than the other two tested
assemblies, but it still has a few misassemblies. Asset
identified a total of 171 misassemblies on chromosomes.
We manually check the 84 misassemblies on the scaffolds
which are larger than scaffold N50, 73 of them are real
which generates an accuracy of 86.9%. Majorities of
these misassemblies are HAPDUPs(51, 60.7%), 7 were
COLLs, 7 were HAPMIXs, 3 were INSs, 5 were MISs, and
the remaining ones locating at the telomeres were hard
to classify. REAPR found 28,304 chromosomal
misassemblies, 20 were randomly picked up for manual
checking, 6 were real misassemblies, which yields an
accuracy of 30%.

Figure 4 gives an example of a HAPDUP on Chrl3
(NC_042523.1), in the figure, the dotplot illustrates the
self versus self alignment of NC_042523.1, we can see
the read depth in the middle region goes down to about
half of its normal coverage (~60X), and from the Access
view, there is a ~170kb from 24.9425.11Mb, which is
corresponding to the duplication. HAPDUP is a common
issue for heterozygous assemblies, and the problem is
partially resolved by a tool “purge_dups”[27] developed
by the authors.

Another assembly problem for highly heterozygous
assemblies is HAPMIX, in Addtional file 1: Figure S9. It
shows an example of a HAPMIX misassembly on Chr5, the
two aligned Bionano DLE consensus maps represent each
haplotype of the genome, while the draft sequence
assembly conflates the haplotypes into one incorrect
representation switching between the two.

Discussion

In this study, we propose a novel method “Asset” to
perform misassembly identification based on multiple
different types of long-range sequencing data. Through
manually checking and comparing with the other tools,
we prove that Asset can identify misassemblies
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A

accurately, and it discovers much less misassemblies

which makes it applicable in the genome curation process.

Here, we think “Asset” has the following features which
makes it suitable for assembly evaluation:

Firstly, Asset can evaluate assemblies based on
sequencing data. This is the key feature of Asset and
makes it valuable to the de novo assembly projects such
as G10K [8], BatlK [28]. As more and more newly
assembled species are being generated nowadays,
reference-based tools are impossible to be applied under
most circumstances. Although a reference genome can
be available in some rare cases, structure variants
between the reference genome and the quality of the
reference assembly are still big concerns, using such a
reference genome to evaluate the assembly can lead to
incorrect outcomes.

Secondly, Asset can identify the misassemblies in long
repetitive regions and gap regions more accurately with
multiple long-range sequencing data, which is valuable to
those genomes containing numerous repetitive
structures, such as human (50-70%), mouse (45%).

Thirdly, Asset can generate a limited number of
misassemblies, which is helpful during a genome curation
process. We have to admit none assemblers are perfect
and the genome itself is full of various complex structures,
this means even though using a mixed sequencing data
to assemble, the final assembly can still involve all kinds
of misassemblies. Genome curation is still necessary for
producing a high-quality assembly. By using Asset, it can
report a suitable number of misassemblies that the
genome curators can check easily.

r this preprint (which
who has granted bioRxiv a license to display the preprint in perpetuity. It is made
r aCC-BY-NC-ND 4.0 International license.
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Asset is our first try to integrate supporting information  updated assembly reports including curated N50 or some
from different sequencing technologies, to discover the other metrics, like genome completeness, a
structural errors in a draft assembly. This project is far comprehensive genome evaluation system will be more
from being finished, we are still checking the useful in the near future. We would consider Asset as our
misassemblies manually to find out their causalities, first step to implement such a system. The evaluation
more work needs to be done on automatic misassembly  system is going to be able to identify, classify, modify and

(@ .
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‘igure 4 A HAPDUP on fEcheNal Chr13 assembly(a) dotplot of self vs self alignment, Chr13 (NC_042523.1) is mapped to
tself, and from the PacBio coverage, it is clear the coverage of the matched block drops to about half of the normal coverage. lf)
he Access view indicates an insertion in the assembly.

classification method and after classification, an generate updated assembly metrics for our draft or
automatic program should be applicable to fix those finished assemblies.

errors as well. Even though Asset can report As many de novo sequencing projects are being
misassemblies, which can be an indicator for assembly |aunched at the moment, project like EBP is chasing its
algorithm comparison and can be helpful for generating  goal to sequence 1.5 million species on earth in next ten
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years, which means 150 thousand de novo assemblies are
coming out on average each year. and we believe it can
be imported into the modern assembly pipeline to help
the genome curation process and help to evaluate
assembly software or pipelines.

Methods

In this section, we will explain the methods applied on
each type of data to find out which sequences or joins
are supported, and the method used to merge and filter
the suspect misassemblies to get a reliable set of the
misassemblies.

Identification of supported sequences with PacBio data

We first map the raw PacBio data to a given assembly
using minimap2 [29] with settings of “-x map-pb”, then
we calculate the base level read depth for the assembly
with only primary alignment. Then we trim off N bp
(default: 300) at the ends of the alignments to capture
misassemblies at the boundary of the left and right
flanking regions, and calculate read depth for each base.
After that, we filter out the low coverage regions where
read depth is less than / (default: 10) and high coverage

regions where reads depth are more than h (default: 400).

Next, we merged the regions that are less than b bp
(default: 20) away from each other. Finally, we output
the merged regions as PacBio support regions into a bed
file. An example is shown in Figure 5a, with the green
blocks supported by PacBio data, while the red blocks are
not (for illustration purposes the minimum required
coverage in this figure is one).

Identification of supported regions with optical mapping
consensus map

Here, we use alignment results between the Bionano
consensus map and the assembly to select support
regions. We first mapped the Bionano consensus map to
the given assembly by RefAligner, the official alignment
tool provided by the Bionano company. Then we
calculate differences for each mapped block and
normalize them by dividing the assembly block length.
Next, we used Turkey’s Fence [Q1 - 1.5 @ (Q3 - Q1),Q3 +
1.5 @ (Q3 - Q1)] which is also applied in [30] to define the
thresholds for normalized differences, where Q3 and Q1
are the third and first quartiles respectively. The mapped
blocks having normalized differences within the interval
are supported. We output these regions into a bed file. If
there are more than one consensus map, Asset will
generate supported regions for each of them and merge
their supported regions and make one bed file.

As is shown in Figure 5b, alphabets A-G on the
assembly and a-g on the consensus map are all digested
restriction enzyme sites, and the blue line indicates a
match. Regarding the alignment, region “A-B” has a very
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large divergence with its corresponding region “ab”, so
“A-B” are not supported, while the other blocks are all
supported.

Identification of supported joins with linked reads In this
study, we use 10X linked reads to validate the supported
joins. First, we mapped the linked reads to the assembly
with defaults settings of “bwa mem” [31]. Then we
extract all alignments of the first reads in read pairs, and
cluster them by their barcodes, which is usually 16bp in
the front of the first read. Here we take all the first reads
alignments to guarantee that we have sufficient reads
with same barcode even in the low complexity regions
(LCRs) to form complete molecules. Next, we filter out
clusters having less than n alignments (default: 5). For
each cluster, we then ordered its alignments by their
mapped targets and loci, merge the alighments that are
mapped to the same target and within / bp (default: 20kb)
away from each other, and calculate average mapping
quality g for the merged alignments, then drop the
merged alignment composed of less than a alignments
(default: 5) or less than a minimum mapping quality p
(default: 20) . We treat the remaining merged alignments
as DNA molecules involved in the sequencing process,
the coordinates of the DNA molecule start from the left
most read and end at the right most read. We calculate
the molecular coverage for each base on the assembly,
and calculate average molecular depth ¢ for each
contig/scaffold, and use to max(r Bc,C) as the minimum
molecular coverage, where C is a constant and default r is
set to 0.15. We treat regions larger than the minimum
coverage as support regions and output them to a bed
file.

As is observed in Figure 5c, the non-gray blocks on the
assembly are s between two separate contigs, based on
the molecular coverage, the first join which is marked in
orange is supported, while the second one is not
supported due to its zero molecular coverage.

Identification of supported joins with Hi-C data Since Hi-
C is not a whole genome sequencing (WGS) technology,
we use Hi-C to find supported joins. We first segment the
assembly by cutting at the block N’s. Then we map Hi-C
data to the segmented assembly using bwa mem with
settings of “-SP” which allow the read pairs to be aligned
individually. Then we split the contigs into two equal
halves and define 5’ end as head (h) of the contig and 3’
end as tail (t), we use a function F to represent the link
number between contig i and contig j in a specific link
orientation o, where o can be head to head (hh), head to
tail (ht), tail to head (th) and tail to tail (tt),

Folij)=c¢
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‘igure 5 Asset misassembly identification methodi&) supported sequences identification based on PacBio reads.n bases are
rimmed off at ends (dot lines) of the reads to capture the structural misassemblies at the right and left flanking regions, then
:overage for each base is calculated, and sequences whose bases are all above a threshold are output as supported sequences (regions
n gray). (b) supported regions identification based on the Bionano consensus map. All differences for mapped blocks are collected.
A\n interval for supported regions is estimated based on the differences by using Turkey’s Fence, regions within the interval are
reated as supported regions (regions in gray). £) supported joins identification based on linked-reads. The molecules are
‘econstructed by using only first reads in read pairs, and molecular coverage for each base is computed, joins with molecular
:overage in an interval are supported (regions in gray). d) supported joins identification based on Hi-C reads. Contact numbers
yetween all pairs of contigs belonging to the same scaffold are tallied, a join is supported only if its two adjacent contigs should be
oined as the order and orientation in the scaffold. As is shown in the subfigure, in this case, ctgl, ctg2, ctg3 and ctgd are joined
:orrectly, however ctg5 should be flipped and joined with ctg4.

Algorithm S1, the same method is applied to check a
predecessor.

We can see from Figure 5d, ctgl, ctg2, ctg3, ctgd are
correctly in the natural sequence order and orientation,
while ctg4 has a strong signal to join with the tail of ctg5,
i.e., ctg5 should be flipped to join with ctg4, so the join
between ctg4 and ctg5 are not supported (labelled in
red), while other others are supported.

and we also set a function S to sum up all links between
contig i and contig j.

1i.j) = Folirj)

oBifhh, ht, th,tt}
We first initiate F with read pairs whose 5’ are mapped
unambiguously onto different contigs of the same
scaffold without soft or hard clipping and mapping
quality are larger than a threshold (default: 10). Then for

. . ) h - Misassembly Identification
each contig i/, we weigh a correlation between i and j as:

After we get all the supported sequences and joins, we
merge the supported sequences from PacBio and
Bionano data, and output the regions that are not
supported by any types of the data as our one set of
misassemblies, and collect unsupported joins from

W) = IG)ALT + 1i])

Where [i] and /j[ represent the length of contig i and j

respectively. For contig i, we sort W;in a descending
order. Then we iterate all linked contigs j in W, calculate
the contact number h and t of the head and tail of contig
i to contig j, seek for the first predecessor p and
successor s of contig i. We consider s a successful
successor, if (1) s appears after contig i, s equals i+1, and
tis larger than h or his not significantly larger than t; (2) s
+ N appears after contig j, s + N equals i + 1, and t is
significantly larger than h. N is configurable by users, the
default value is 1. We apply the same way to validate if p
is a successful predecessor.

The details about the algorithm for identifying successful
successor of contig i are supplied in Additional file 1:

Bionano, Hi-C and 10X linked-read data as our second set
of misassemblies. Then we merge these two sets of
misassemblies if they are away within nkb (default: 10),
after merging, we filter out those misassemblies that are
not spanning but are within 1kb to the gaps, they are
possible cause by natural drop of PacBio data and missing
of Bionano data. The remaining misassemblies are our
final suspect misassemblies. All supported sequences and
joins from each data type and the final misassemblies are
output into bed files, which are easy to be incorporated
into genome curation browsers like gEVAL [32].


https://doi.org/10.1101/2022.05.10.491304
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.10.491304; this version posted May 10, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Guan et al.

Software

The software is implemented in C and is easy to integrate
into a modern assembly pipeline. The source code is
available at: https://github.com/dfguan/ asset.

Data availability

¢ CHM13: The assembly is downloaded from
https://s3.amazonaws.com/nanopore-
humanwgs/chm13/assemblies/chm13.draft_v0.
6.fasta.gz. The 215 PacBio RS datasets are available
in NCBI under BioProject accession PRINA269593,
10X, Hi-C and Bionano consensus map are all
avaibable  from  https://github.com/nanopore-
wgsconsortium/CHM13.

¢ Goat: The assembly is available from NCBI RefSeq
database with accession GCF_001704415.1. The
PacBio data we used are all deposited in NCBI
Sequence Read Archive (SRA) from SRR3142304-11,
SRR3142319-621, and SRR3142754-66, and Hi-C
data SRR3773499. The Bionano consensus map is
download from https:
//gembox.cbcb.umd.edu/goat/goat.cmap. The
lllumina data used for REAPR are deposited in NCBI
from SRR3798850-959.

e fEcheNal: the fEcheNal assembly is deposited in
NCBI under BioProject accession PRIEB31992. The
reads can be downloaded using the AWS Command
Line Interface available at
https://vgp.github.io/genomeark/
Echeneis_naucrates/
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