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Abstract 

Genome sequences are computationally assembled from millions of much shorter sequencing reads. Although 

this process can be impressively accurate with long reads, it is still subject to a variety of types of errors, including 

large structural misassembly errors in addition to localised base pair substitutions. Recent advances in long single 

molecule sequencing in combination with other long-range technologies such as synthetic long read clouds and 

Hi-C have dramatically increased the contiguity of assembly. This makes it all the more important to be able to 

validate the structural integrity of the chromosomal scale assemblies now being generated. Here we describe a 

novel assembly evaluation tool, Asset, which evaluates the consistency of a proposed genome assembly with 

multiple primary long-range data sets, identifying both supported regions and putative structural misassemblies. 

We present tests on three de novo assemblies from a human, a goat and a fish species, demonstrating that Asset 

can identify structural misassemblies accurately by combining regionally supported evidence from long read and 

other raw sequencing data. Not only can Asset be used to assess overall assembly confidence, and discover 

specific problematic regions for downstream genome curation, a process that leads to improvement in genome 

quality, but it can also provide feedback to automated assembly pipelines. 
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Background 

De novo assembly is essential to generate reference 

genome sequences for new species. Until recently this 

has relied on computational assembly of millions of short 

fragmented DNA sequences from next generation 

sequencing (NGS) machines. The assembly obtained in 

this way is often known to be problematic [1] due to 

repetitive sequences, sequencing bias, heterozygous 

alleles, etc. Repeat sequences that make up a major 

proportion of all eukaryotic species genomes [2], can trap 

the assembly algorithm and lead to misassemblies, 

especially when the repeat size is larger than the read 

size, which is typical for NGS data. Sequence composition 

bias, also often called GC bias, and can further affect 

genome completeness when portions of the genome 

have very high or low GC content [3]. 

In the last few years, the advent of long read 

sequencing technologies, such as PacBio Single Molecule 

RealTime (SMRT) sequencing and Oxford Nanopore 

Technology sequencing (ONT), which have read lengths 

at least two orders of magnitude larger than NGS data 

and exhibit much less sequencing bias, has been 

revolutionising genome assembly studies. This has 

stimulated the development of new genome assembly 

tools such as Falcon [4], which is a string graph-based 

assembler[5], and Canu [6], an overlap graph-based 

assembly tool. The application of long reads in genome 

assembly has greatly improved assembly continuity and 

completeness compared to that of NGS assembly 

[7]. 

Ambitious new de novo sequencing projects are taking 

advantage of these long read technologies, such as the 

Vertebrate Genomes Project (VGP) which hopes to 

generate de novo assemblies for all the vertebrate 

species [8] and ultimately the Earth BioGenome Project, 

which advocates sequencing over 1.5 million eukaryotic 

species, including animals, plants and microbiomes, in 

the next ten years [9]. With the number of de novo 

assemblies likely to be released over the coming years a 

method is needed to reliably evaluate their accuracy. 

A number of metrics are frequently used to assess a 

draft assembly. In particular, genome continuity is 

typically measured by contig or scaffold N50, which is the 

longest length such that at least half of the total 

sequence is in contigs or scaffolds longer than this. The 

larger the N50, the more continuous the assembly is, and 

so researchers prefer tools that can generate a larger 

N50. However N50 can only reflect the continuity of the 

assembly: one can force erroneous joins to make a larger 

N50, and in this case the assembly quality is poor even 

with a large N50. Another assembly metric, genome 

completeness, can be gauged by BUSCO [10], which relies 

on single-copy orthologs to quantify genome 

completeness. 

However, neither of the above metrics measure the 

accuracy of the draft assembly. Several tools have been 

developed to address this. GAGE (Genome Assembly 

Golden-standard Evaluation) [11] compares a set of NGS 

data assemblies based on deep sequencing data and 

summarises putative misassemblies into two categories, 

indels, and misjoins which is subclassified into inversions, 

relocations (within chromosomes) and translocations 

(between chromosomes). QUAST [12] and QUAST-LG [13] 

require a reference, with respect to which they give a 

detailed description of a proposed assembly, such as 

NA50 which is the N50 of the aligned assembly blocks, 

and again the numbers of misassemblies split into 

relocations, inversions and translocations. They also 

supply various visualized results for better understanding 

the assembly quality. 

However, these tools rely on an existing reference 

genome to find misassemblies, which makes them not 

applicable to newly sequenced species. Even if a 

reference genome exists, the natural mutations between 

the samples may still lead to false positive misassemblies. 

To address this, tools such as Amosvalidate [14], REAPR 

[15] and Tigment [16] all evaluate a de novo assembly 

against primary data sets. Amosvalidate applies a method 

of combining multiple sources of misassembly signals, 

including mate-pair orientation, repeat content, read 

depth, micro-heterogeneities, and read alignment 

breakpoints, to detect suspicious misassembled regions. 

However, it was developed before the invention of NGS 

technologies and requires an AMOS Bank format as input, 

which are not generated by most of the genome 

assemblers. REAPR uses independent paired-end reads 

alignments to calculate a fragment coverage distribution 

(FCD) for each base and use FCD outliers to pinpoint 

misassemblies, and Tigment calculates molecular 

coverage for the whole assembly from linked reads, and 

then uses that as evidence for misassembly detection. 

Although all these tools can be used to detect 

misassemblies, none of them uses the full collection of 

long-range sequencing data that is now typically available, 

which in principle should provide more reliable results. 

We therefore designed and developed a tool “Asset” 

which uses the four types of long-range sequencing 

datasets currently used by the VGP, namely PacBio long 

reads, 10X linked reads, Bionano optical maps, and Hi-C 

[17], to identify suspect misassemblies. We performed 

experiments on three de novo assemblies, and 

demonstrate that none of the data types individually are 

sufficient to validate a genome assembly, but that in 

combination “Asset” can identify misassemblies 

accurately. With more and more de novo sequencing 
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projects being launched, Asset has the potential to be 

applied systematically to help accelerate and standardise 

the genome evaluation process. Furthermore, it can 

provide lists of potential problems for subestquent 

genome curation to focus on [18, 19], and rank genome 

assemblers. 

Results 

Asset methods overview 

As described above, Asset is able to use information from 

four primary data types. We first briefly describe these 

and the principles behind the information that they 

provide. 

Because they sequence single molecules without 

amplification subject to composition bias, current long 

read platforms give rather uniform sampling across the 

genome. Therefore evenness of long read coverage is 

one good indicator for identifying misassemblies, where 

regions with extremely low or high read depth are 

potentially misassembled. However, this metric can be 

confused by perfect or near perfect repetitive sequence 

regions. The reads mapped to these regions are usually 

ignored for read depth calculation due to ambiguous 

mapping positions, or alternatively are randomly 

assigned, both of which can result in anomalous depth 

and a misassembled region recognized by some tools. 

Further, sufficiently long repetitive regions will have no 

spanning reads, and thus are often discarded or treated 

as misassemblies. Of course, it is precisely around these 

long repetitive regions that missassemblies are likely to 

occur. 

These problems can be partially solved by using linked 

reads. Linked-read or “read cloud” data consists of 

barcoded reads from a long fragment of DNA, such as are 

produced by 10X Genomics or similar technology. 

Following alignment to a reference or assembly it is 

possible to reconstruct the likely extent of the underlying 

20-200kb DNA fragments [20], and from this calculate the 

physical long fragment coverage for each base. Places 

where the molecule coverage drops to zero or near zero 

frequently indicate missassemblies. However an 

exception to this can occur when missing a large piece of 

sequence over 200kb. 

The restriction map is another useful data type for 

misassembly identification. Although a full nucleotide 

sequence is not provided, the longer molecule lengths 

used by modern optical restriction mapping technologies 

such as BioNano are capable of spanning regions over 

250kb and can cover longer repetitive regions. Bionano’s 

new direct label and stain (DLS) technique, which 

eliminates repeated breakpoints in the fragments, can 

give information on very long range structure across tens 

of megabases. However, there remain some long regions, 

typically over 1Mb such as centromeres, which are not 

spanned by BioNano maps, but across which order and 

orientation can be confirmed using Hi-C reads. 

Hi-C is based on Chromatin Conformation Capture 

technology, where DNA is cut and re-ligated in situ in the 

nucleus, and then following selective purification of 

chimeric ligation products a short read library is made for 

deep sequencing [17, 21]. This gives contact information 

beetween DNA fragments at multiple resolutions up to 

chromosome scale, allowing us in principle to use Hi-C 

data to confirm whether a contig is correctly 

concatenated with its neighbours regardless of the length 

of the missing piece. 

It is worth noting that the goal of Asset is to confirm 

that the sequence given is fully supported by the data, 

not that it is complete in the sense of explaining all the 

data. This means that even for a diploid assembly which 

describes both chromosomes, or provides a primary 

assembly plus alternate "haplotig" material [4], we are 

able to just assess the primary assembly. This is what we 

do throughout the rest of this paper. 

Asset pipeline 

The Asset pipeline is illustrated in Additional file 1: Figure 

S1, and described fully in the Methods section. Here we 

give a brief overview. 

Given an input of a primary assembly and four types of 

long-range data including long reads, linked reads, 

restriction maps and Hi-C reads, we apply the following 

strategy to identify suspect misassemblies. 

To begin we partition the assembly scaffolds into 

sequences, which are composed of A,C,G,T bases, and 

joins, which are runs of Ns between contigs. We then 

apply different strategies to confirm sequences and joins. 

For the sequences, we align the long reads and 

restriction maps to the scaffolds. Only considering the 

primary alignments, so each part of a read/map is aligned 

in at most one place, and ignoring the 300bp at the end 

of each read alignment, we label segments of the contigs 

that are neither covered by long reads nor consistent 

restriction map intervals as unsupported sequence. 

To confirm joins we consider three possible types of 

evidence. First, a restriction map alignment that spans 

across a join with consistent spacing. Second, for linked 

reads, we identify molecule extents as intervals 

containing a sufficient density of mapped reads with the 

same barcode. We require a sufficient number of 

inferred molecules to cross a join to confirm it. Third, for 

Hi-C data, we split all contigs into two equal halves, and 

calculate the number of Hi-C read pairs linking each pair 

of contig-halves; to be confirmed, we require that the 

right contig-half is the best partner of the left contig-half 

and vice versa, where by “best” we mean that it is the 
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contig-half linked by the greatest normalised number of 

read pairs. Joins not supported by any of these evidence 

types are labelled as unsupported joins. 

Finally, we combine the two sets of unsupported 

regions, merging regions within 10kb of each other. We 

also drop isolated regions of unsupported sequence that 

are within a fixed distance (default: 1kb) of a gap since 

they are mostly called by natural drop of long read depth. 

We regard the remaining unsupported regions as suspect 

misassemblies. 

Evaluation of results 

Three different assemblies were evaluated using a variety 

of primary data, as listed in Table 1. 

To quantify the accuracy for each tool, we examined a 

representative subset of suspect misassemblies by hand. 

For Asset results we selected all those on one 

chromosome, while for the other methods we randomly 

selected 20 candidates, since they produce too many 

misassemblies to validate all of them on a chromosome. 

To further investigate the types of misassemblies found 

by Asset, we classified these into nine types: HAPDUP 

(haplotypic duplication, where both divergent haplotypes 

are included), HAPMIX (mixed haplotype, where a mosaic 

of divergent haplotypes is given), DUPSEQ (local 

sequence duplication), INS (sequence insertion), MIS 

(sequence deletion), COLL (local sequence collapsing), 

INV (inversion), RELOC (relocation), TRAN (translocation). 

Application on the CHM13 assembly 

We carried out our first experiment on the CHM13 

human assembly assembled using Canu v1.7.1 with 39X 

rel1 Oxford Nanopore data and 70X PacBio reads at 

scaffold level by the Telomere-to-Telomere (T2T) 

consortium [22]. This represents the genome of the 

CHM13hTERT cell line, which was obtained from a 

hydatidiform mole and hence is homozygous diploid, 

avoiding problems of heterozygosity. The greatest effort 

was made on ChrX, where the gaps were manually 

checked and filled, which created a full length of ChrX. 
Table 2 Misassembly identification results 

 Asset QUAST REAPR 

CHM13 368 2,942 98,501 

Goat_ARS1 541 - 128,262 

fEcheNa1 171 - 28,304 
QUAST could only be applied to the human assembly because it 

requires a reference genome to identify misassemblies, which is not 

independently available for goat and fEcheNa1 . 

The whole assembly contains 2.94 Gb bases, with scaffold 

N50 90.1 Mb, and contig N50 71.7 Mb (Table 1). In this 

experiment, we used 35 million PacBio reads from 215 

runs, 610 million 10X linked read pairs and 417 million Hi-

C read pairs. The Bionano consensus map is created from 

the DLE-1 direct labelling enzyme data (Table 1). We ran 

QUAST-LG with default settings using the GRCh38 

assembly as a reference and REAPR with default settings 

using the linked reads. 

Table 1 Assemblies and sequencing datasets used for Asset analysis 

  CHM13 Goat fEcheNa1 

Assembly 

Accession 
Length (Mb) 

Scaffold # 

v0.6 
2,941 
503 

GCF_001704415.1 
2,923 

29,907 

GCA_900963305.1 
544 
38 

 Scaffold N50 (Mb) 90.1 87.3 23.3 

 Contig # 593 30,697 178 

 Contig N50 (Mb) 71.7 18.2 12.4 

PacBio 

# reads (k) Read 

N50 
# bases (Gb) 

35,146 
23,857 
262.59 

62,901 
19,195 
400.84 

3,524 
14,808 
45.14 

10X 
# read pairs (M) Mol. 

cov. 
610 
345 

- 
- 

423 
543 

 Mol N50 119,106 - 65,120 

Hi-C 
# read pairs (M) 

Insert size N50 (Mb) 
417 

23.89 
115 

39.21 
9.17 

Bionano 
Total len. (Mb) contig 

N50 (Mb) 
2,973 
59.61 

2,748 
1.59 

579 
20.60 
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In our experiment, Asset found 368 misassemblies on 

the CHM13 super scaffolds. We manually checked 14 

misassemblies on two major scaffolds Super-

Scaffold_434 (SS434) and Super-Scaffold_445 (SS445) of 

Chr1, for which we validated 5 and 7 misassemblies 

respectively. We also validated another 2 candidate 

misassemblies on the complete ChrX sequence. Of these 

14 candidate misassemblies, 10 were confirmed as real, 

giving a specificity of approximately 71.4%. 

QUAST-LG discovered 2,942 extensive misassemblies 

on the super scaffolds, 20 were randomly picked up for 

manual validation from the same scaffolds as above, 3 of 

them appeared to be correctly identified, while yields an 

accuracy of 15%. QUAST-LG found 345 misassemblies on 

the complete ChrX assembly, including 319 relocations, 

13 translocations and 13 inversions, most of these are 

recognized due to segmental duplication, centromeres 

and telomeres which are not well resolved in the GRCh38 

assembly. Additional file 1: Figure S6 demonstrates an 

example of QUAST-LG translocations which are falling 

into a segmental duplicated region on ChrX and ChrY in 

the GRCh38 assembly. As is shown in the figure, the start 

of ChrX is mapped to ChrX and ChrY in the reference 

assembly (Figure S6a), and QUAST-LG found 8 

translocations in that region, which are not true based on 

the Bionano Access view (Figure S6b). REAPR identified 

98,501 misassemblies in total, 20 were randomly chosen 

for validation, 1 is correct, which results in an accuracy of 

5%, around 60% misrecognised misassemblies are caused 

by repeat elements and the others are misclassified 

because of uneven read depth distribution. 

In the 14 manually checked misassemblies from Asset, 

we classified them into the nine categories mentioned 

above, 6 of them are DUPSEQs, 1 is a MIS and 2 are 

COLLs, 4 are close to the centromere which are hard to 

classify, one can either be a MIS or INS, which proves 

CHM13 may not be a complete haploid. We give an 

example of a DUPSEQ found on SS445 in Figure 1. From 

the dotplot (Figure 1a), SS445 is mapped to the GRCh38 

Chr1 assembly, both two regions ~130-250kb and ~250-

370kb on SS445 are mapped to ~700-810kb on 

NC_000001.11, the duplicate region is marked in red, the 

PacBio coverage in its corresponding region drops almost 

to zero. From the Bionano Access (Figure 1b), we can see 

a clear divergence between the DLE consensus maps and 

the SS445, which indicates a ~120kb insertion in the 

scaffold. Combining the evidence from Bionano Access 

and the dotplot, there is a ~120kb DUPSEQ on the SS445. 

The most intriguing case found by Asset on SS434 may 

indicate the CHM13hTERT cell is not a comprehensive 

haploid. The misassembly is located on 12,121,611-

12,126,513 of SS434, where the PacBio coverage is low 

and Bionano alignment is screwed up. Figure 2 illustrates 

the alignments between the Bionano DLE consensus map 

and the scaffold for this region. Through comparing the 

two Bionano consensus maps, we can observe an 

apparent divergence between 
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them, there is a ~82kb difference between “A-a” and “B-a” 

regions, where A, B, a are all restriction enzyme sites. 

Even though the assembler seemed to recover the larger 

haplotype, it still missed a ~26kb sequence. 

Application on the goat reference assembly The third 

experiment is applied on a Capra hircus assembly 

(domestic goat, RefSeq assembly accession: 

GCF_001704415.1) [23]. It was assembled using The 

Celera Assembler PacBio Corrected Reads pipeline[7] 

with 69X PacBio subreads, and scaffolded with 98X 

optical mapping data and 115 million Hi-C read pairs. The 

final assembly contains 2.92 Gb bases in total, the 

scaffold N50 is 87.3 Mb, and the contig N50 is 18.2 Mb 

(Table 1). 

Table 3 Manually checked Asset misassemblies results 

 # checked HAPDUP DUPSEQ HAPMIX INS MIS COLL INV RELOC TRAN 

CHM13 14
1  0 6 0 0 1 2 0 0 0 

Goat_ARS1 30 11
2 0 0 0 1 0 4 8 

fEcheNa1 84  51 0 7 3 5 7 0 0 0 
1
: One misassembly is not shown here due to unclassified category. 

2
: it was not possible to distinguish haplotypic duplications from standard duplicat

Figure 1 A DUPSEQ on CHM13 SS445 . ( a ) dotplot of SS445 mapped to GRCh38 Chr1 (NC_000001.11). The duplicate sequence 
is marked in red. The PacBio coverage in the duplicated region almost drops to zero. ( b ) Bionano Access view of the alignment 
between SS445 and the DLE consensus map. Based on alignment, there is a around 120kb large insertion from 0.24 to 0.36 Mb in 
the original scaffold. 
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In this experiment, Asset used 63 million PacBio reads 

in 325 runs, the datasets contain total 400.84 Gb bases, 

and 115 million Hi-C read pairs (Table 1). Lacking publicly 

available linked reads for the assembly, we did not use 

linked read data in the experiment. For Bionano data, we 

used the Irys BspQI consensus map assembled by the 

Bionano Access software package and the sequencing 

data mentioned in the assembly paper is from a male 

offspring of the original species. REAPR used public 

Illumina datasets containing 443 million read pairs for the 

test and ran in default mode. 

Asset found 541 misassemblies on chromosomes. We 

manually checked the 30 misassemblies on Chr1, found 

24 were real misassemblies, this gives an approximate 

accuracy of 80%. We discovered 8 of them were involved 

in TRANs, 11 were DUPSEQs or HAPDUPs which are hard 

to classify due to insufficient evidence, 

4 were RELOCs and 1 was COLL. REAPR reported 

128,262 assembly errors. Among 20 randomly selected 

misassemblies, 2 were real, which results in an accuracy 

of 10%. 

We chose one asset-identified relocation region on 

40.87-41.89Mb of Chr1 and demonstrated it in Figure 3, 

this region is also identified in the Goat assembly paper. 

In the HiGlass [24] view (Figure 3a), we can observe a 

strong signal between the start of the scaffold and this 

region, indicating this region should be moved to the 

front of the scaffold. The same situation shows in the 

dotplot (Figure 3b), where we mapped Chr1 to another 

assembly CHIR_2.0 (Yunnan Black Goat, GenBank 

assembly accession GCA_000317765.2) [25], the 40.87-

41.89Mb on Chr1 is mapped to the start of the Chr1 of 

the black goat assembly. Meanwhile, from the Access 

view (Figure 3c), we can see that two breaks at 40.8Mb 

and 41.9Mb, the middle regions from 40.8-41.9Mb are 

aligned continuously, however it is not joined with either 

side. Based on these evidences, the region found by 

Asset is a relocation. 

Application on the VGP fEcheNa1 assembly Our final 

experiment is performed on a VGP assembly, Echeneis 

naucrates (fEcheNa1, GenBank assembly accession: 

GCA_900963305.1) is assembled by Sanger VGP assembly 

group. It goes through a VGP assembly routine v1.5, 

where the assembly is built with ~60X PacBio sequencing 

data using Falcon, uses Falcon-unzip to construct 

pseudohaplotypes, and scaffolded with 10X reads by 

using scaffold10x (https:// github.com/wtsi-

hpag/Scaff10X) and Bionano optical mapping data. The 

scaffolds finally reached chromosome level with Hi-C 

data using SALSA [26], and went into a stringent curation 

process by Sanger GRIT team. The curated assembly 

contains 38 scaffolds, including a total 544Mb bases, the 

scaffold N50 is 23.3Mb and contig N50 is 12.4Mb. 

With regard to the number of misassembly, the 

fEcheNa1 assembly is better than the other two tested 

assemblies, but it still has a few misassemblies. Asset 

identified a total of 171 misassemblies on chromosomes. 

We manually check the 84 misassemblies on the scaffolds 

which are larger than scaffold N50, 73 of them are real 

which generates an accuracy of 86.9%. Majorities of 

these misassemblies are HAPDUPs(51, 60.7%), 7 were 

COLLs, 7 were HAPMIXs, 3 were INSs, 5 were MISs, and 

the remaining ones locating at the telomeres were hard 

to classify. REAPR found 28,304 chromosomal 

misassemblies, 20 were randomly picked up for manual 

checking, 6 were real misassemblies, which yields an 

accuracy of 30%. 

Figure 4 gives an example of a HAPDUP on Chr13 

(NC_042523.1), in the figure, the dotplot illustrates the 

self versus self alignment of NC_042523.1, we can see 

the read depth in the middle region goes down to about 

half of its normal coverage (~60X), and from the Access 

view, there is a ~170kb from 24.9425.11Mb, which is 

corresponding to the duplication. HAPDUP is a common 

issue for heterozygous assemblies, and the problem is 

partially resolved by a tool “purge_dups”[27] developed 

by the authors. 

Another assembly problem for highly heterozygous 

assemblies is HAPMIX, in Addtional file 1: Figure S9. It 

shows an example of a HAPMIX misassembly on Chr5, the 

two aligned Bionano DLE consensus maps represent each 

haplotype of the genome, while the draft sequence 

assembly conflates the haplotypes into one incorrect 

representation switching between the two. 

Discussion 

In this study, we propose a novel method “Asset” to 

perform misassembly identification based on multiple 

different types of long-range sequencing data. Through 

manually checking and comparing with the other tools, 

we prove that Asset can identify misassemblies 

Figure 2 Bionano Access view of CHM13 heterozygous 
haplotypes on SS434. A, B and a are all restriction enzyme 
recognition sites. In two consensus maps, both site A and site 
B are mapped to site a, which indicates an apparent 
divergence between two haplotypes of SS434. And the region 
is found because the assembler fails in representing either of 
the haplotypes. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.10.491304doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491304
http://creativecommons.org/licenses/by-nc-nd/4.0/


Guan et al. Page 8 of 13 

accurately, and it discovers much less misassemblies 

which makes it applicable in the genome curation process. 

Here, we think “Asset” has the following features which 

makes it suitable for assembly evaluation: 

Firstly, Asset can evaluate assemblies based on 

sequencing data. This is the key feature of Asset and 

makes it valuable to the de novo assembly projects such 

as G10K [8], Bat1K [28]. As more and more newly 

assembled species are being generated nowadays, 

reference-based tools are impossible to be applied under 

most circumstances. Although a reference genome can 

be available in some rare cases, structure variants 

between the reference genome and the quality of the 

reference assembly are still big concerns, using such a 

reference genome to evaluate the assembly can lead to 

incorrect outcomes. 

Secondly, Asset can identify the misassemblies in long 

repetitive regions and gap regions more accurately with 

multiple long-range sequencing data, which is valuable to 

those genomes containing numerous repetitive 

structures, such as human (50-70%), mouse (45%). 

Thirdly, Asset can generate a limited number of 

misassemblies, which is helpful during a genome curation 

process. We have to admit none assemblers are perfect 

and the genome itself is full of various complex structures, 

this means even though using a mixed sequencing data 

to assemble, the final assembly can still involve all kinds 

of misassemblies. Genome curation is still necessary for 

producing a high-quality assembly. By using Asset, it can 

report a suitable number of misassemblies that the 

genome curators can check easily. 

Figure 3 A RELOC on goat Chr1 (NC_030808.1) assembly. ( a ) HiGlass view on Chr1. A strong signal implies the between 0 to 
40.8 Mb. ( b ) dotplot of 0-50Mb on Chr1 mapped to CM001710.2 (Chr1 of Yunnan black goat assembly). The dotplot indicates that 
40.8–41.9 Mb of Chr1 should be moved to the start of the chromosome. ( c ) Access view shows the same situation, the middle region 
s misplaced. 
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Asset is our first try to integrate supporting information 

from different sequencing technologies, to discover the 

structural errors in a draft assembly. This project is far 

from being finished, we are still checking the 

misassemblies manually to find out their causalities, 

more work needs to be done on automatic misassembly 

classification method and after classification, an 

automatic program should be applicable to fix those 

errors as well. Even though Asset can report 

misassemblies, which can be an indicator for assembly 

algorithm comparison and can be helpful for generating 

updated assembly reports including curated N50 or some 

other metrics, like genome completeness, a 

comprehensive genome evaluation system will be more 

useful in the near future. We would consider Asset as our 

first step to implement such a system. The evaluation 

system is going to be able to identify, classify, modify and 

generate updated assembly metrics for our draft or 

finished assemblies. 

As many de novo sequencing projects are being 

launched at the moment, project like EBP is chasing its 

goal to sequence 1.5 million species on earth in next ten 

Figure 4 A HAPDUP on fEcheNa1 Chr13 assembly . ( a ) dotplot of self vs self alignment, Chr13 (NC_042523.1) is mapped to 
tself, and from the PacBio coverage, it is clear the coverage of the matched block drops to about half of the normal coverage. ( b ) 

the Access view indicates an insertion in the assembly. 
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years, which means 150 thousand de novo assemblies are 

coming out on average each year. and we believe it can 

be imported into the modern assembly pipeline to help 

the genome curation process and help to evaluate 

assembly software or pipelines. 

Methods 

In this section, we will explain the methods applied on 

each type of data to find out which sequences or joins 

are supported, and the method used to merge and filter 

the suspect misassemblies to get a reliable set of the 

misassemblies. 

Identification of supported sequences with PacBio data 

We first map the raw PacBio data to a given assembly 

using minimap2 [29] with settings of “-x map-pb”, then 

we calculate the base level read depth for the assembly 

with only primary alignment. Then we trim off N bp 

(default: 300) at the ends of the alignments to capture 

misassemblies at the boundary of the left and right 

flanking regions, and calculate read depth for each base. 

After that, we filter out the low coverage regions where 

read depth is less than l (default: 10) and high coverage 

regions where reads depth are more than h (default: 400). 

Next, we merged the regions that are less than b bp 

(default: 20) away from each other. Finally, we output 

the merged regions as PacBio support regions into a bed 

file. An example is shown in Figure 5a, with the green 

blocks supported by PacBio data, while the red blocks are 

not (for illustration purposes the minimum required 

coverage in this figure is one). 

Identification of supported regions with optical mapping 

consensus map 

Here, we use alignment results between the Bionano 

consensus map and the assembly to select support 

regions. We first mapped the Bionano consensus map to 

the given assembly by RefAligner, the official alignment 

tool provided by the Bionano company. Then we 

calculate differences for each mapped block and 

normalize them by dividing the assembly block length. 

Next, we used Turkey’s Fence [Q1 − 1.5 � (Q3 − Q1),Q3 + 

1.5 � (Q3 − Q1)] which is also applied in [30] to define the 

thresholds for normalized differences, where Q3 and Q1 

are the third and first quartiles respectively. The mapped 

blocks having normalized differences within the interval 

are supported. We output these regions into a bed file. If 

there are more than one consensus map, Asset will 

generate supported regions for each of them and merge 

their supported regions and make one bed file. 

As is shown in Figure 5b, alphabets A-G on the 

assembly and a-g on the consensus map are all digested 

restriction enzyme sites, and the blue line indicates a 

match. Regarding the alignment, region “A-B” has a very 

large divergence with its corresponding region “ab”, so 

“A-B” are not supported, while the other blocks are all 

supported. 

Identification of supported joins with linked reads In this 

study, we use 10X linked reads to validate the supported 

joins. First, we mapped the linked reads to the assembly 

with defaults settings of “bwa mem” [31]. Then we 

extract all alignments of the first reads in read pairs, and 

cluster them by their barcodes, which is usually 16bp in 

the front of the first read. Here we take all the first reads 

alignments to guarantee that we have sufficient reads 

with same barcode even in the low complexity regions 

(LCRs) to form complete molecules. Next, we filter out 

clusters having less than n alignments (default: 5). For 

each cluster, we then ordered its alignments by their 

mapped targets and loci, merge the alignments that are 

mapped to the same target and within l bp (default: 20kb) 

away from each other, and calculate average mapping 

quality q for the merged alignments, then drop the 

merged alignment composed of less than a alignments 

(default: 5) or less than a minimum mapping quality p 

(default: 20) . We treat the remaining merged alignments 

as DNA molecules involved in the sequencing process, 

the coordinates of the DNA molecule start from the left 

most read and end at the right most read. We calculate 

the molecular coverage for each base on the assembly, 

and calculate average molecular depth c for each 

contig/scaffold, and use to max(r �c,C) as the minimum 

molecular coverage, where C is a constant and default r is 

set to 0.15. We treat regions larger than the minimum 

coverage as support regions and output them to a bed 

file. 

As is observed in Figure 5c, the non-gray blocks on the 

assembly are s between two separate contigs, based on 

the molecular coverage, the first join which is marked in 

orange is supported, while the second one is not 

supported due to its zero molecular coverage. 

Identification of supported joins with Hi-C data Since Hi-

C is not a whole genome sequencing (WGS) technology, 

we use Hi-C to find supported joins. We first segment the 

assembly by cutting at the block N’s. Then we map Hi-C 

data to the segmented assembly using bwa mem with 

settings of “-SP” which allow the read pairs to be aligned 

individually. Then we split the contigs into two equal 

halves and define 5’ end as head (h) of the contig and 3’ 

end as tail (t), we use a function F to represent the link 

number between contig i and contig j in a specific link 

orientation o, where o can be head to head (hh), head to 

tail (ht), tail to head (th) and tail to tail (tt), 

Fo(i,j) = c 
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and we also set a function S to sum up all links between 

contig i and contig j. 

I(i,j) = Fo(i,j) 
o�{hh,ht,th,tt} 

We first initiate F with read pairs whose 5’ are mapped 

unambiguously onto different contigs of the same 

scaffold without soft or hard clipping and mapping 

quality are larger than a threshold (default: 10). Then for 

each contig i, we weigh a correlation between i and j as: 

Wi(j) = I(i,j)/(|i| + |j|) 

Where |i| and |j| represent the length of contig i and j 

respectively. For contig i, we sort Wi in a descending 

order. Then we iterate all linked contigs j in Wi, calculate 

the contact number h and t of the head and tail of contig 

i to contig j, seek for the first predecessor p and 

successor s of contig i. We consider s a successful 

successor, if (1) s appears after contig i, s equals i+1, and 

t is larger than h or h is not significantly larger than t; (2) s 

+ N appears after contig i, s + N equals i + 1, and t is 

significantly larger than h. N is configurable by users, the 

default value is 1. We apply the same way to validate if p 

is a successful predecessor. 

The details about the algorithm for identifying successful 

successor of contig i are supplied in Additional file 1: 

Algorithm S1, the same method is applied to check a 

predecessor. 

We can see from Figure 5d, ctg1, ctg2, ctg3, ctg4 are 

correctly in the natural sequence order and orientation, 

while ctg4 has a strong signal to join with the tail of ctg5, 

i.e., ctg5 should be flipped to join with ctg4, so the join 

between ctg4 and ctg5 are not supported (labelled in 

red), while other others are supported. 

Misassembly Identification 

After we get all the supported sequences and joins, we 

merge the supported sequences from PacBio and 

Bionano data, and output the regions that are not 

supported by any types of the data as our one set of 

misassemblies, and collect unsupported joins from 

Bionano, Hi-C and 10X linked-read data as our second set 

of misassemblies. Then we merge these two sets of 

misassemblies if they are away within nkb (default: 10), 

after merging, we filter out those misassemblies that are 

not spanning but are within 1kb to the gaps, they are 

possible cause by natural drop of PacBio data and missing 

of Bionano data. The remaining misassemblies are our 

final suspect misassemblies. All supported sequences and 

joins from each data type and the final misassemblies are 

output into bed files, which are easy to be incorporated 

into genome curation browsers like gEVAL [32]. 

Figure 5 Asset misassembly identification methods. ( a ) supported sequences identification based on PacBio reads. n bases are 
trimmed off at ends (dot lines) of the reads to capture the structural misassemblies at the right and left flanking regions, then 
coverage for each base is calculated, and sequences whose bases are all above a threshold are output as supported sequences (regions 
n gray). ( b ) supported regions identification based on the Bionano consensus map. All differences for mapped blocks are collected. 

An interval for supported regions is estimated based on the differences by using Turkey’s Fence, regions within the interval are 
treated as supported regions (regions in gray). ( c ) supported joins identification based on linked-reads. The molecules are 
reconstructed by using only first reads in read pairs, and molecular coverage for each base is computed, joins with molecular 
coverage in an interval are supported (regions in gray). ( d ) supported joins identification based on Hi-C reads. Contact numbers 
between all pairs of contigs belonging to the same scaffold are tallied, a join is supported only if its two adjacent contigs should be 
oined as the order and orientation in the scaffold. As is shown in the subfigure, in this case, ctg1, ctg2, ctg3 and ctg4 are joined 

correctly, however ctg5 should be flipped and joined with ctg4. 
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Software 

The software is implemented in C and is easy to integrate 

into a modern assembly pipeline. The source code is 

available at: https://github.com/dfguan/ asset. 

Data availability 

• CHM13: The assembly is downloaded from 

https://s3.amazonaws.com/nanopore-

humanwgs/chm13/assemblies/chm13.draft_v0. 

6.fasta.gz. The 215 PacBio RS datasets are available 

in NCBI under BioProject accession PRJNA269593, 

10X, Hi-C and Bionano consensus map are all 

avaibable from https://github.com/nanopore-

wgsconsortium/CHM13. 

• Goat: The assembly is available from NCBI RefSeq 

database with accession GCF_001704415.1. The 

PacBio data we used are all deposited in NCBI 

Sequence Read Archive (SRA) from SRR3142304-11, 

SRR3142319-621, and SRR3142754-66, and Hi-C 

data SRR3773499. The Bionano consensus map is 

download from https: 

//gembox.cbcb.umd.edu/goat/goat.cmap. The 

Illumina data used for REAPR are deposited in NCBI 

from SRR3798850-959. 

• fEcheNa1: the fEcheNa1 assembly is deposited in 

NCBI under BioProject accession PRJEB31992. The 

reads can be downloaded using the AWS Command 

Line Interface available at 

https://vgp.github.io/genomeark/ 

Echeneis_naucrates/ 
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