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The time taken for cells to complete a round of cell division is a stochastic process controlled, in
part, by intracellular factors. These factors can be inherited across cellular generations which gives
rise to, often non-intuitive, correlation patterns in cell cycle timing between cells of different family
relationships on lineage trees. Here, we formulate a framework of hidden inherited factors affecting
the cell cycle that unifies known cell cycle control models and reveals three distinct interdivision time
correlation patterns: aperiodic, alternator and oscillator. We use Bayesian inference with single-
cell datasets of cell division in bacteria, mammalian and cancer cells, to identify the inheritance
motifs that underlie these datasets. From our inference, we find that interdivision time correlation
patterns do not identify a single cell cycle model but generally admit a broad posterior distribution
of possible mechanisms. Despite this unidentifiability, we observe that the inferred patterns reveal
interpretable inheritance dynamics and hidden rhythmicity of cell cycle factors. This reveals that
cell cycle factors are commonly driven by circadian rhythms, but their period may differ in cancer.
Our quantitative analysis thus reveals that correlation patterns are an emergent phenomenon that
impact cell proliferation and these patterns may be altered in disease.

I. INTRODUCTION

Cell proliferation, the process of repeated rounds of
DNA replication and cell division, is driven by multiple
cell extrinsic and intrinsic factors [1, 2]. Stochasticity in
any or all of these factors therefore influences the time
taken for a cell to divide, generating heterogeneity in cell
cycle length, even in genetically identical populations.
For example, stochastic gene expression [3] can lead to
heterogeneity in cell cycle length [4–6] as these fluctua-
tions can be propagated by concerted cellular cues [7].
These cues can exhibit reproducible stochastic patterns
that are important in development, homeostasis and ul-
timately, for cell survival [8].

Single-cell technologies illuminate a world of cellu-
lar variation by replacing bulk-average information with
single-cell distributions. A key challenge is to exploit cell-
to-cell variability to identify the mechanisms of cellular
regulation and responses [8, 9]. Time-lapse microscopy
allows us to resolve cell dynamics such as division tim-
ing, growth and protein expression [10] (Figure 1a, left).
This has led to many discoveries in cell cycle dynamics
in bacteria [11–14] and mammalian cells [15–18]. Early
advances included measuring the distribution of division
times across single cells [19] and the correlations between
cellular variables leading to cell size homeostasis [11],
while more recent applications of time-lapse microscopy
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have captured multiple generations of proliferating cells,
making lineage tracing possible [20, 21].

While single-cell distributions measure variation be-
tween cellular variables, they ignore both temporal sig-
nals and variations propagating across generations to en-
tire lineage trees [24, 26–28]. These lineage tree correla-
tion patterns can be robust and steady, similar to what
is known in spatio-temporal pattern formation [29, 30].
Common examples of lineage tree correlation patterns
concern the mother-daughter and the sister correlations
that have been used to study cell size homeostasis in E.
coli [11, 31] and other mechanisms generating correlated
interdivision times such as population growth rate [19]
and initiation of DNA synthesis [32].

A counter-intuitive correlation pattern presented by
many cell types is the ‘cousin-mother inequality’ [27],
where the interdivision times of cousin cells are more
correlated than those of mother-daughter pairs. This
inequality can be observed both in bacteria and mam-
malian cells (Figure 1b). More generally, lineage tree
data gives rise to correlation patterns by comparing a
single cell to any other cell on the tree (Figure 1a, right).
Family relations – such as daughter, grandmother, cousin
cells etc. – encode inheritance patterns, and correlations
between these related cells have been used to understand
the dynamics of cell populations [33, 34] (Figure 1c). Sev-
eral stochastic models have been proposed to explain in-
terdivision time correlation patterns. Most of them make
prior assumptions on the underlying mechanism control-
ling cell division such as those focusing on cell size control
[31], DNA replication [32, 35] or underlying oscillators
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FIG. 1. Using interdivision time data on lineage trees to infer the hidden cell cycle factors. (a) Time lapse
observations. Cartoon demonstrating how time-lapse microscopy allows single cells to be tracked temporally as they go through
the cell cycle to division. Multiple different factors affect the rate at which cells progress through the cell cycle from birth to
subsequent division. Interdivision time data. Example lineage tree structure with possible ‘family relations’ of a cell between
which correlations in interdivision time can be calculated. (b) Lineage correlation pattern. Plot of mother-daughter interdivision
time correlation against cousin-cousin interdivision time correlation for the six publicly available datasets used in this work
(Appendix 1 - Table A1, [13, 22–25]). The shaded red area indicates the region where the cousin-mother inequality is satisfied.
(c) Identifying hidden cell cycle factors. Schematic showing the model motivation and process. We produce a generative model
that describes the inheritance of multiple hidden ‘cell cycle factors’ that affect the interdivision time. The model is fitted to
lineage tree data of interdivision time, and we analyse the model output to reveal the possible biological factors that affect the
interdivision time correlation patterns of cells.

[14]. For example, inheritance of DNA content can ex-
plain the correlation in interdivision time between sister
cells in bacteria [32]. Similarly, it has been shown that
a simple model with interdivision time correlations [28]
cannot satisfy the ‘cousin-mother inequality’ [27], but a
more complex kicked cell cycle model does [36]. It is
presently unclear what information correlation patterns
carry about the underlying mechanisms that generate
them. This is because a unified and systematic frame-
work to generate any desired interdivision time correla-
tion pattern is lacking.

Here, we propose a stochastic model to investigate how
cell cycle factors – which we define in this work as hid-
den properties that affect interdivision time – shape the
lineage tree correlation patterns of cells. These could in-
clude physiological factors, such as cell size, growth rate
and cell cycle checkpoints, or specific cell cycle drivers
such as CDKs, mitogens and division proteins. We will

only focus on data describing patterns of interdivision
time in bacterial and mammalian cell types, which cir-
cumvents intricate measurements of cell volume, mass,
and DNA replication. This also avoids dealing with fluo-
rescent reporter strains that may be difficult to engineer
depending on cell type. We propose a generative model
of correlation patterns that involves a number of hidden
cell cycle factors and reduces to common mechanistic cell
cycle models for specific parameter choices. Our theory
predicts three distinct lineage correlation patterns; ape-
riodic, alternator and oscillator. We demonstrate how
the model can be used to identify these patterns using
Bayesian inference in bacteria and mammalian cells. Our
analysis reveals several dynamical signatures of cell cycle
factors hidden in lineage tree interdivision time data.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.06.27.497837doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497837
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

II. RESULTS

A. A general inheritance matrix model provides a
unified framework for lineage tree correlation

patterns

Previous studies [27, 28] found that simple inheritance
rules, where interdivision times are correlated from one
generation to another through a single parameter, can-
not explain the lineage correlation patterns seen in exper-
imental single-cell data. To address this issue, we propose
a unified framework where the interdivision time is de-
termined by a number of cell cycle factors that represent
hidden variables such as cell cycle phase lengths, protein
levels, cell growth rate or other unknowns (Figure 1c),
that each have their own inheritance pattern.

The states of the cell cycle factors is assumed to be
a vector yp = (yp,1, yp,1, . . . , yp,N )⊤ that determine the
interdivision time of a cell with index p via

τp = f(yp). (1a)

Inheritance from mother to daughter of the N cell cy-
cle factors is described by a nonlinear stochastic Markov
model on a lineage tree:

y2m = g (ym) + e2m,

y2m+1 = g (ym) + e2m+1,
(1b)

where m in N denotes the mother cell index and 2m
and 2m + 1 the daughter cell indices. f : RN

+ → R+

and g : RN
+ → RN

+ are possibly nonlinear functions
that model the dependence of the interdivision time
on cell cycle factors and the inheritance process.
ep = (ep,1, ep,2, . . . , ep,N )⊤ is a noise vector for which the
pair e2m, e2m+1 are identically distributed random vec-
tors with covariance matrix independent of m. A non-
zero covariance between these noise vectors can account
for correlated noise of sister cells. We implicitly assume
symmetric cell division such that the deterministic part
of the inheritance dynamics g is identical between the
daughter cells. Note that we choose (1a) to be deter-
ministic since division noise can be modelled by adding
one more cell cycle factor that does not affect inheritance
dynamics g.
The general model (1) includes many known cell cycle

models as a special case. For example, the interactions
between cell cycle factors could model cell size control
mechanisms (Appendix 1 - SectionA6 1), the coordina-
tion of cell cycle phases (Appendix 1 - SectionA6 3), or
deterministic cues, such as periodic forcing of the cell
cycle (Appendix 1 - SectionA7 1), or coupling of the
circadian clock to cell size control (Appendix 1 - Sec-
tion A7 2).

The full model can only be solved for specific choices
of f and g, and these functions are generally unknown
in inference problems. To overcome this limitation, we
assume small fluctuations resulting in an approximate

linear stochastic system (see Appendix 1 - SectionA1 for
a derivation) involving the interdivision time

τp = τ̄ +α⊤xp. (2a)

The vector of cell cycle factor fluctuations
xp = (xp,1, xp,2, · · · , xp,N )⊤ obeys

x2m = θxm + z2m,

x2m+1 = θxm + z2m+1.
(2b)

Here, τ̄ is the stationary mean interdivision time, θ
is the N × N inheritance matrix and z2m and z2m+1

are two noise vectors of length N that capture the
stochasticity of inheritance dynamics and differentiate
the sister cells (Figure 2a). We denote the N × N co-
variance matrices S1 = Var(z2m) = Var(z2m+1) and
S2 = Cov(z2m, z2m+1), for all m in N of the noise terms
z (and e) in individual cells and between sister cells, re-
spectively. The noise terms are independent for all other
family relations. The cell cycle factor fluctuations are
scaled such that α = (α1, α2, . . . , αN )⊤ is a binary vector
of length N made up of 1s and 0s depending on whether
the function f determining the interdivision time has de-
pendence on a given cell cycle factor (see Appendix 1 -
SectionA1 for details). Under this scaling each cell cycle
factor has a positive effect on the interdivision time, and
hence we do not distinguish between factors with positive
or negative effects on interdivision time.
When the special case of a single cell cycle factor (N =

1) is considered, the inheritance matrix model system
reduces to a well-known model with correlated division
times [28, 37–39], and we will refer to this case as simple
inheritance rules (see also Appendix 1 - SectionA5). In
the following, we will explore the correlation patterns
generated by multiple cell cycle factors.

B. The inheritance matrix model reveals three
distinct interdivision time correlation patterns

Here, we define a correlation pattern to be the correla-
tion coefficients of pairs of cells on a lineage tree. Here we
introduce a function ρ(k, l) which we call the generalised
tree correlation function:

ρ(k, l) =
Cov(τk, τl)

sτ
, (3)

where τk and τl are the interdivision times of cells in
the pair (k, l), and sτ is the interdivision time variance.
The coordinate (k, l) describes the distance in genera-
tions from each cell in the pair to their shared near-
est common ancestor (Figure 2b,c). We have derived a
closed-form formula for ρ(k, l) (Eq. (M3) in Methods A;
see Appendix 1 - SectionA3 for a full derivation) as a
weighted sum of powers of the inheritance matrix eigen-
values λ:

ρ(k, l) =
N∑

i,j=1

wijλ
k
i λ

l
j , (4)
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FIG. 2. Analysis of the inheritance matrix model identifies three distinct lineage tree correlation patterns. (a)
Diagram illustrating the inheritance matrix model with two cell cycle factors which affect the interdivision time of a cell. Each
factor in the mother exerts an influence on a factor in the daughter through the inheritance matrix θ. (b,c) Schematics showing
how the coordinate (k, l) introduced in Section II B is determined. This coordinate describes the distance to the most recent
common ancestor for chosen pair of cells. Examples shown are (b) sister pairs with (k, l) = (1, 1), and (c), aunt-niece pairs with
(k, l) = (2, 1). (d-o) Panels demonstrating the three correlation patterns that arise from the inheritance matrix model with
two cell cycle factors. (d-f) Example inheritance matrices θ that produce the desired patterns: (d) aperiodic, (e) alternator
and (f) oscillator correlation patterns. (g-i) Three-dimensional plot of the generalised tree correlation function (Equation M3)
demonstrating each of the three patterns. On each plot we highlight the lineage generation correlation function (k = 0 or
l = 0) (red line) and the cross-branch generation correlation function (k = l) (blue line). The shading of the 3D plot indicates
the correlation coefficient at that point on the surface. (j-l) The lineage and cross-branch generation correlation functions
plotted individually, showing the different dynamics for each pattern. (m-o) Region plots showing parameter values where
the relevant pattern is obtained (orange) and where the cousin-mother inequality is satisfied (blue) for the θ matrices given in
panels (d-f). White bands on (o) indicate where P = 2

k
which results in real eigenvalues and therefore does not produce an

oscillator pattern. Within the parameter region that both produces the desired pattern and also satisfied the cousin-mother
inequality, we choose a parameter set (red cross) which is used for the corresponding plots in the panels above. In all panels
we fix α = (1, 1)T and the noise vector z to have covariance equal to the identity matrix.
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with

wij =
α̂iα̂j

α̂⊤Σ̂α̂

(
(Ŝ1)ij
1− λiλj

+ δk≥1δl≥1
(Ŝ2)ij
λiλj

)
. (5)

We observe that the eigenvalues determine the depen-
dence of the tree correlation function on k and l, while
the noise matrices S1 and S2 determine their relative
weights wij (see (5)).
Our theoretical analysis reveals three distinct correla-

tion patterns that can be generated by the inheritance
matrix model (further details in Methods B). These
can be classified by the eigenvalues of the inheritance
matrix θ: (i) if the inheritance matrix exhibits real pos-
itive eigenvalues, we observe an aperiodic pattern (Fig-
ure 2d); (ii) if the inheritance matrix has real eigenvalues
with at least one negative eigenvalue, we observe an al-
ternator pattern (Figure 2e); and (iii) if there is a pair
of complex eigenvalues we observe an oscillator pattern
(Figure 2f). An intuitive interpretation of the eigenvalue
decomposition is that it transforms the cell cycle factors
into effective factors inherited independently. Hence, the
inheritance matrix is diagonal in this basis. However,
the analogy is limited to the case where the inheritance
matrix is symmetric and the eigenvalues are real. For
simplicity, we will focus on models with two cell cycle
factors and note that in higher dimensions (N ≥ 3), the
correlation patterns involve a mixture of the three pat-
terns discussed in detail in this section (Appendix 1 -
Figure A6c,d and g,h).
To demonstrate the aperiodic correlation pattern, we

utilise an inheritance matrix with positive real eigenval-
ues (Figure 2d). Characteristically, the modelled inter-
division time correlations decay to zero as the distance
to the most recent ancestor increases (Figure 2g) since
the eigenvalues in (4) are bounded between 0 and 1. To
look more closely at the patterns on the tree, we utilise
two reductions of the generalised tree correlation func-
tion. These are the lineage correlation function (ρ(k, l)
for k or l = 0) and the cross-branch correlation function
(ρ(k, l) for k = l). We look at these functions for contin-
uous k, l to visualise better the patterns that occur down
the lineage and across the branches of the tree. The lin-
eage correlation function gives the correlation dynamics
as you go down the lineage tree, whereas the cross-branch
correlation function gives the correlation dynamics as you
move across neighbouring branches of the lineage tree.
We observe that the interdivision time correlations de-
crease as we move both across generations and branches
(Figure 2j).
In contrast, the alternator pattern generates oscilla-

tions with a fixed period of two generations in the lin-
eage correlation function. The behaviour is typically
observed for cell cycle factors with negative mother-
daughter correlations (Appendix 1 - Section A6 1). In
this case, we have at least one negative eigenvalue and
thus (4) will alternate between positive and negative val-
ues for successive generations, producing the period two
oscillation. We demonstrate this correlation pattern for

the generalised tree correlation function (Figure 2h) using
a diagonal θ matrix (Figure 2e). We observe alternating
correlations across generations in the lineage correlation
function, and the continuous interpolation of the cross-
branch correlation function (Figure 2k). Although the
period is fixed to two generations, the amplitude of the
correlation oscillation varies with the absolute magnitude
of the eigenvalues (Methods B).
To investigate the oscillator correlation pattern, we

propose a hypothetical inheritance matrix θ with eigen-
values λ = (De+i 2π

P , De−i 2π
P ) which are complex for

D,P ̸= 0 and P ̸= 2
k , k in Z (Figure 2f). The parameters

P and D control the period and the respective damping
of an underlying oscillator, i.e., the limit D → 1 leads to
an undamped oscillation and D → 0 corresponds to an
overdamped oscillation (see Methods C for details). Cor-
respondingly, the graph of the generalised tree correlation
function (Figure 2i) shows clear oscillations across gen-
erations. These correlation oscillations are also evident
in the lineage correlation function but are absent in the
cross-branch correlation function (Figure 2l). However,
oscillations are possible in the cross branch correlation
function for other choices of θ with complex eigenvalues
(see model fits in Section IID and Methods B). In sum-
mary, the qualitative behaviour of the interdivision time
correlation patterns can be studied using the eigenvalue
decomposition of the inheritance matrix θ.

C. The cousin-mother inequality is not required to
generate complex correlation patterns

Our analysis shows that of the three specified patterns,
only the oscillator pattern cannot arise from simple in-
heritance rules. This is because it requires at least two in-
herited cell cycle factors (N ≥ 2) for the inheritance ma-
trix to possess complex eigenvalues. We therefore asked
whether the oscillator pattern is necessary for the cousin-
mother inequality to be satisfied. We find that this is
not the case, but instead, all three correlation patterns
can be compatible with the cousin-mother inequality if
N ≥ 2. To demonstrate this, we choose three specific
two-dimensional inheritance matrices θ that produce the
required eigenvalue structure (Figure 2d-f). We then use
these matrices with our analytical solution for the gen-
eralised tree correlation function (Methods A) to map
the regions where the cousin-mother inequality can be
satisfied (Figure 2m-o). Interestingly, we find that oscil-
lations can arise even in parameter regions that violate
the cousin-mother inequality (Figure 2o). We conclude
that both the cousin-mother inequality and the oscillator
pattern are sufficient but not necessary conditions to rule
out simple inheritance rules.
To understand which datasets can be explained by sim-

ple inheritance rules, we fit the one-dimensional model
(N = 1) to six publicly available lineage tree datasets
(Appendix 1 - Table A1) using Bayesian methods (Meth-
ods D). These datasets were chosen as they each had
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a sufficient number of cells for correlation analysis and
covered a broad range of cell types. We found that the
model fit is poor for the datasets that display the cousin-
mother inequality, which is the case for cyanobacteria,
clock-deleted cyanobacteria, neuroblastoma and human
colorectal cancer cells (Appendix 1 - Figure A1a-f). De-
spite not obeying the cousin-mother inequality, the fit
is also poor for mouse embryonic fibroblasts (Appendix
1 - Figure A1f) as the median inferred correlation lies
outside the 95% confidence intervals for both the grand-
mother and cousin correlations which are included in the
model fit, and the confidence intervals for the data vs
the credible intervals from the inference show minimal
overlap (Appendix 1 - Figure A2f). Another inequal-
ity may be violated in this dataset that cannot be ex-
plained using the one-dimensional model, suggesting that
the absence of the cousin-mother inequality cannot rule
out more complex division rules. The only cell type that
has a good fit for the one-dimensional model is mycobac-
teria (Appendix 1 - Figure A1c). We thus conclude that
the majority of the datasets must be described by higher
dimensional inheritance dynamics of multiple cell cycle
factors.

D. The two-dimensional inheritance matrix model
fits interdivision time correlation patterns from a

range of cell types

We asked whether the correlation patterns are bet-
ter described by a two-dimensional inheritance matrix
model. Bayesian inference (Methods D) produced a good
model fit for all six datasets (Figure 3a-f) for the two-
factor inheritance matrix model, within relatively nar-
row error bars of mother, grandmother, sister and cousin
correlations (Appendix 1 - Table A1). The credible inter-
vals from the Bayesian inference matched the confidence
intervals of correlations used for fitting (Appendix 1 -
Figure A2). We quantified the quality of our fits us-
ing the Akaike information criterion (AIC) (Methods D,
(M11)) for each dataset and compared these to the one-
dimensional model (Appendix 1 - Table A1). The AIC es-
timates the goodness of fit with a penalty for model com-
plexity allowing us to select the simplest model that ex-
plains the data. The AIC values indicate that the inher-
itance matrix model with two cell cycle factors provides
the simplest fit for all cell types used here, except for the
mycobacteria data where simple inheritance rules pro-
vided an equally good fit with a significant reduction in
the number of model parameters. We expected the AIC
to select the two dimensional model where the cousin-
mother inequality was satisfied such as in cyanobacteria,
clock-deleted cyanobacteria, neuroblastoma and human
colorectal cancer cells. The match with the two-factor
inheritance matrix model in fibroblasts was less obvious.

Crucially, we find that the model has a good predictive
capacity for correlations further down the lineage tree.
For each pattern, we show several samples from the con-

ditional posterior distribution (solid and shaded lines) to
illustrate fits of the lineage correlation and cross-branch
correlation function (Figure 3a-f). For all datasets ex-
cept neuroblastoma, the curves also intercept the great-
grandmother and great-great-grandmother correlations
that were not used for fitting (Figure 3a-d,f), and boot-
strapped confidence intervals from the data overlapped
with the credible intervals obtained from Bayesian infer-
ence (Appendix 1 - Figure A2). We then asked which
correlation patterns underlie the data. To assess this,
we calculated the eigenvalues of each posterior sample of
the inheritance matrix to categorise the aperiodic, alter-
nator and oscillator patterns (Figure 3a-f, bar charts).
We found that in every dataset, the dominant correla-
tion pattern was identifiable with probabilities well above
50%, except for mycobacteria (Figure 3c) that was bet-
ter described by simple inheritance rules (Appendix 1 -
Figure A1c).
Cyanobacteria, (Figure 3a), human colorectal cancer

(Figure 3d) and mouse embryonic fibroblasts (Figure 3f)
display a dominant oscillator pattern, but we see that
their lineage correlation functions exhibit widely differ-
ent periodicities. For example, the posterior lineage cor-
relation for cyanobacteria displays a higher frequency os-
cillation than those in human colorectal cancer cells and
fibroblasts. Clock-deleted cyanobacteria (Figure 3b) and
mycobacteria (Figure 3c) display a dominant alternator
pattern which could be induced by strong sister corre-
lations. We see that clock-deleted cyanobacteria (Fig-
ure 3b) has a 100% alternator pattern in contrast to the
100% oscillator pattern seen for wild type cyanobacteria,
suggesting that the deletion of the clock gene has com-
pletely transformed the correlation pattern and has abol-
ished the underlying oscillation. Neuroblastoma (Fig-
ure 3e) displays a dominant aperiodic pattern. The pre-
dictive capacity for this cell type is weaker than for the
other datasets, which we assume is due to the tight con-
fidence interval in the correlations. Despite this discrep-
ancy, we find that the inheritance matrix model produces
excellent fits and has good predictive capacity for all
other cell types studied in this work.

E. Bayesian inference reveals that individual
inheritance parameters are not identifiable

We next ask which mechanisms are responsible for gen-
erating the observed correlation patterns. The Bayesian
inference used for model fitting (Methods D) samples
parameters using a MCMC Gibbs sampler. The Gibbs
sampler can be thought of as a random walk in parame-
ter space that settles around parameter regions with high
likelihood. We found that the explorations of the Gibbs
sampler did not settle in a particular parameter subspace
but meandered off to explore vast areas of the parameter
space without improving the likelihood values (Appendix
1 - Figure A3a,b). Such behaviour is expected when
model parameters are not identifiable and the posterior
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FIG. 3. The inheritance matrix model with two cell cycle factors fits interdivision time correlation patterns
for a range of cell types. Posterior correlation functions based on fitting to mother-daughter, grandmother-granddaughter,
sister-sister and cousin-cousin correlations for three bacterial (left) and three mammalian (right) datasets: (a) cyanobacteria,
(b) clock-deleted cyanobacteria, (c) mycobacteria, (d) human colorectal cancer, (e) neuroblastoma, and (f) mouse embryonic
fibroblasts. Pearson correlation coefficients (white circles) and 95% bootstrapped confidence intervals (error bars) obtained
through re-sampling with replacement of the original data (10,000 re-samples). Posterior distribution samples were clustered
into aperiodic, alternator, and oscillator patterns (bar charts). We show multiple representative samples (solid and shaded lines)
drawn from the posterior distribution (cf. Appendix 1 - Figure A2 without clustering). Where correlations appear missing,
this is in cases where the lineage trees in the data were not deep enough for the correlations to be calculated. Only lineage
and cross branch generations 1 and 2 were used in model fitting. Here all panels assume α = (1, 1)⊤, but taking α = (1, 0)⊤

produces similar results (Appendix 1 - Figure A4).

distribution of parameters cannot be efficiently sampled
[40, 41].

To provide further evidence of unidentifiablity, we ob-
tained four histograms of a single parameter of the inher-
itance matrix for different initialisations. The four distri-
butions are very different (Figure 4a), showing that the
random walk does not settle to a stationary distribution.
We further observe that the mean squared displacement
increases without bound (Figure 4b) showing that the
sampling does not settle in a particular subset of the pa-
rameter space. In contrast to the individual parameters,
the sampled posterior distribution of the eigenvalues is
consistent across the averages (Figure 4c) and their mean
squared displacement converges rapidly (Figure 4d). We

note that unidentifiability arises for the inheritance ma-
trix model with multiple cell cycle factors and does not
feature for simple inheritance rules (Appendix 1 - Sec-
tionA5). This ultimately demonstrates that the interdi-
vision time correlation patterns do not identify a single
set of inheritance parameters, but rather need to be de-
scribed by a distribution of inheritance mechanisms.

F. The inheritance matrix model predicts the
hidden dynamical correlations of cell cycle factors

Clock-deleted cyanobacteria and neuroblastoma both
satisfy the cousin-mother inequality (Figure 1b), which
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FIG. 4. Bayesian inference predicts hidden dynamical correlations between cell cycle factors. (a) Posterior
distribution histograms for θ11 depend on the realisations of a Gibbs sampler and do not settle to a stationary distribution.
(b) A log-log plot of mean squared displacement for the four θ variables that make up the inheritance matrix θ. The mean
squared displacement for all four parameters increases linearly, meaning the sampling does not settle in any particular region
of parameter space. (c) Sampled posterior distribution histograms for the eigenvalue λ1 for each realisation. The histograms
are almost identical across the four averages, showing the distribution has converged. (d) Mean squared displacement for the
eigenvalues of the inheritance matrix θ settles to a finite value. Plots (a) - (d) utilise sampling from the inference for the
clock-deleted cyanobacteria dataset. (e) Density histogram of the real eigenvalue pairs for clock-deleted cyanobacteria (pink)
and neuroblastoma (brown) demonstrating where the eigenvalues lie in the aperiodic (yellow) and alternator (red) regions. (f)
Density histogram of same-factor against alternate-factor mother-daughter correlation for clock-deleted cyanobacteria (pink)
and neuroblastoma (brown). We take a minimum threshold of 0.3 for the probability density to remove irrelevant samples. (g-h)
Influence diagrams for same factor vs alternate factor correlations for (g) clock-deleted cyanobacteria and (h) neuroblastoma.
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indicates that at least two cell cycle factors are respon-
sible for the corresponding correlation patterns. The
eigenvalues of the inheritance matrix concentrate in dif-
ferent regions of the admissible parameter space (Fig-
ure 4e), suggesting the correlation patterns that generate
the cousin-mother inequality are distinct. For the clock-
deleted cyanobacteria dataset, we found that all posterior
samples were consistent with an alternator correlation
pattern, while most posterior samples presented aperi-
odic correlation patterns in neuroblastoma (Figure 3b,e
bar charts).

We hypothesised that different inheritance models
generate these patterns. To verify this hypothesis
and since we cannot identify the cell cycle factors di-
rectly, we computed the mother-daughter correlations
between the two hidden cell cycle factors. Since
the order of factors is interchangeable, we only dis-
tinguish between mother-daughter correlations between
the same (corr(xm,i, x2m,i) and corr(xm,i, x2m+1,i) for
i = 1, 2) and alternate factors (corr(xm,i, x2m+1,j) and
corr(xm,i, x2m,j) for i ̸= j = 1, 2). The resulting poste-
rior distributions revealed distinct correlation patterns of
cell cycle factor correlations for clock-deleted cyanobac-
teria and neuroblastoma (Figure 4f). For clock-deleted
cyanobacteria, we predict that at least one factor has
a negative mother-daughter correlation while its cross-
correlation with the other factor must be positive; while
the correlations are of opposite sign for neuroblastoma
(Figure 4f). We sketch influence diagrams that sum-
marise these relationships between factors (Figure 4g,h).
Thus, the different interdivision time correlation patterns
observed for clock-deleted cyanobacteria and neuroblas-
toma stem from distinct hidden correlation patterns of
cell cycle factor fluctuations.

G. The inheritance matrix model reveals biological
rhythms underlying the cell cycle

We observe that the lineage correlation functions of
cyanobacteria, human colorectal cancer cells, and fibrob-
lasts exhibit vastly different correlation oscillation peri-
ods (Figure 3). Next, we are interested to see whether
the oscillations seen in these datasets are compatible with
biological oscillators known to affect cell cycle control.

1. Correlation oscillations and underlying rhythms can
exhibit vastly different periods

The period of the correlation oscillation is related to
the location of the eigenvalues of the inheritance matrix
on the complex plane. We consider an eigenvalue λ of the
inheritance matrix. In terms of the mean interdivision
time τ̄ , the correlation period T0 is:

T0 = τ̄
2π

|Arg(λ)|
≥ 2τ̄ , (6)

and the inequality means that the period T0 is always
greater than twice the mean interdivision time τ̄ . More
generally, there is an oscillation period associated with
each eigenmode of the inheritance matrix, but the pe-
riod is infinite for real eigenvalues, and thus only com-
plex eigenvalues generate correlation oscillations. This
inequality follows from (6) using |Arg(λ)| ≤ π. How-
ever, known biological oscillators that influence cell cycle
control often have periods less than twice the mean inter-
division time, such as stress response regulators [42, 43]
and gene expression oscillations [44–46]. How can rela-
tively slow observed correlation oscillations be compati-
ble with much faster biological oscillators underlying the
cell cycle?
The resolution to this issue is that the period of the cor-

relation oscillation does not always match the frequency
of the underlying oscillator. Instead there are a number
of possible oscillator periods Tn compatible with the cor-
relation oscillation period T0 (Appendix 1 - SectionA4)
given by:

Tn =
τ̄T0

|τ̄ + nT0|
, (7)

for n in Z. This phenomenon, that the same correla-
tion oscillation can be explained by multiple underlying
oscillators, can be understood using the intuition in Fig-
ure 5a.

2. Circadian oscillations in cyanobacteria and fibroblasts
support coupling of the circadian clock and the cell cycle

Cyanobacteria and fibroblasts both exhibit correlation
patterns consistent with an oscillator underlying cell di-
visions (Figure 3e, bar chart). We observe that the pos-
terior distribution of the eigenvalues is confined to a re-
gion with negative real parts for cyanobacteria and pos-
itive real parts for fibroblasts (Figure 5c). Using these
distributions we estimate the median period of the cor-
relation oscillations (using Equation 6) to be 41.7h for
cyanobacteria and 144.3h for fibroblasts (Figure 5d). We
wondered whether the stark difference in the periods of
the correlation oscillations indicates a different under-
lying rhythm. Conversely, we found this was not the
case, but both correlation patterns were consistent with
an approximate circadian rhythm. The posterior of the
oscillator period T−1, which is closest to the period of
correlation oscillation T0, suggests a median period of
24.6h for cyanobacteria and a median period of 23.8h
for fibroblasts (Figure 5e). We also validated the in-
ference result using simulated data (Appendix 1 - Fig-
ure A9). This finding supports a strong coupling of cir-
cadian rhythms to the cell cycle, as reported previously
for both cyanobacteria [13, 47] and fibroblasts [48–50].
Notably, we see that clock-deleted cyanobacteria displays
100% alternator pattern (Figure 3b) and therefore has a
lineage tree correlation pattern that cannot be described
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FIG. 5. The inheritance matrix reveals the periodicity of hidden biological oscillators underlying the cell cycle.
(a) Schematic showing how sampling a high frequency rhythm at each cell division could result in a lower frequency oscillator
being constructed. (b) Possible oscillator periods (Equation 7) indexed by n for a correlation oscillation period T0 = 3τ̄ .
(c) Density plot of the complex eigenvalue output from the model sampling for cyanobacteria (purple) and mouse embryonic
fibroblasts (orange). (d) Posterior distributions of the correlation oscillation period T0 in cyanobacteria (purple) and mouse
embryonic fibroblasts (orange). (e) Posterior distributions of the oscillator period T−1 in cyanobacteria (purple) and mouse
embryonic fibroblasts (orange). Arbitrary units in (d) and (e) are used to compare histograms, the density values are not
normalised in relation to each other in order to display both histograms clearly on the same plot. (f) Density plot of complex
eigenvalues for human colorectal cancer. (g) Posterior distributions of the correlation oscillation period in human colorectal
cancer (shaded area) and oscillator clusters corresponding to positive (cluster A, orange) and negative real parts (B, blue).
The bar chart shows the posterior mass of the clusters. (h) Posterior distributions of the oscillator periods T−1 corresponding
to (g). (i) Model fit and 95% credible intervals for human colorectal cancer (cf. legend of Figure 3). Red area indicates
the grandmother granddaughter correlation explored in (j). (j) Posterior distribution of oscillator vs alternator clusters give
grandmother correlations with opposite signs. (k) Lineage and cross-branch correlation functions of oscillator clusters A
(orange) and B (blue) in human colorectal cancer. Red area indicates the great-grandmother great-granddaughter correlation
explored in (l). (l) Posterior distributions of oscillator clusters A (orange) and B (blue) have great-grandmother correlations
of opposite signs.
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by an approximate 24h oscillator, in contrast to wild type
cyanobacteria.

3. Bimodal posterior distribution of underlying oscillations
in human colon cancer

Finally, we turn to the analysis of cancer cell data.
The dominant correlation pattern was oscillatory (78%
posterior probability, Figure 3d, bar chart). The poste-
rior distribution of complex eigenvalues for the oscilla-
tor pattern has support in a large region of the param-
eter space. It has two distribution modes depending on
whether the eigenvalues have positive or negative real
parts (Figure 5f). Similarly, the posterior of the correla-
tion oscillation period is bimodal, too (Figure 5g), which
means that two competing oscillator patterns are com-
patible with the data.

To disentangle these alternative hypotheses, we cluster
the posterior samples by the real part of the eigenvalues.
We label cluster A for negative real parts and cluster B
for positive ones. The correlation periods of the indi-
vidual clusters do not provide us with immediate clues
about the underlying oscillators. Cluster A has a median
correlation oscillation period of 51.2h while cluster B has
a median period of 100.6h (Figure 5g). We therefore in-
spected the oscillator periods T−1 for each cluster, which
are closest to the observed correlation period (Figure 5h).
The median of the predicted oscillator period of cluster
A has an oscillator period T−1 of 24.1h, which hints at
a circadian oscillator underlying the cell cycle in agree-
ment with a previous model [23]. However, only about
33% of posterior samples with complex eigenvalues were
assigned to this cluster. The majority of posterior sam-
ples, cluster B, had a different predicted period with a
median of 19.6h (Figure 5h). A possible explanation is
that the circadian period is shortened in cancer cells.

A strength of the Bayesian framework is that it allows
us to express our confidence in this prediction. We find
that our analysis is not conclusive about the correlation
pattern as 78% of posterior samples showed an oscillator
pattern. As a result, about 52% of all the posterior sam-
ples favour a 19.6h oscillator and 26% for the 24.1h os-
cillator, matching approximately circadian rhythm. 16%
of the samples demonstrate alternator correlation pat-
terns, and the remaining 6% samples are aperiodic (com-
pare bar charts in Figures 3d and 5g). We therefore ask
whether these competing models make predictions that
translate into testable hypotheses. We found that the
oscillator correlation pattern predicts a negative grand-
mother correlation while the alternator pattern predicts
a positive grandmother correlation (Figure 5i,j). Thus
measuring the grandmother correlation with higher pre-
cision, for example, via increasing sample size, would
tighten the confidence intervals of measured correlations
(Figure 5i), and improve our ability to narrow down the
true pattern. On the contrary, predicting the great-
grandmother correlation allows us to distinguish between

the 19.6h and 24.1h rhythms (Figure 5h). Posterior sam-
ples in cluster A predicted a positive interdivision time
correlation between a cell and its great-grandmother,
while cluster B predicted a negative correlation (Fig-
ure 5k,l). While the great-grandmother correlation could
not be estimated using the present data, deeper lineage
trees could be used to discriminate the period of the bi-
ological oscillator and help reveal whether the circadian
period is altered in cancer cells, or not. In summary, our
theory helps to predict the hidden periodicities of biolog-
ical oscillators from lineage tree interdivision time data.

III. DISCUSSION

We propose a Bayesian approach to predict hidden cell
cycle factor dynamics from interdivision time correlation
patterns. Our underlying model fits the lineage tree data
for a range of bacterial and mammalian cell types and al-
lows us to classify different correlation patterns. Our in-
ference demonstrates that these patterns are identifiable,
but the individual inheritance parameters are not. This
finding suggests that interdivision time correlations alone
are insufficient to gain mechanistic insights into cell cycle
control mechanisms. The identified correlation patterns,
however, reveal the dynamics of the underlying cell cycle
factors.
We focused on a data-driven approach without any

prior assumptions of the division mechanism, allowing
the interdivision time data to speak for itself. Other stud-
ies used a model similar to the inheritance matrix model
proposed here, and linked latent factors to the interplay
between cell cycle progression and growth [24]. Auto-
regressive models have also been used in bacteria to dis-
criminate between different mechanisms of cell size con-
trol [14]. Additionally, they have been used to combine
growth and cell cycle reporters to explain interdivision
time dynamics in fibroblasts [25]. In principle, the inher-
itance matrix model can be used to model the inheritance
dynamics of any factor affecting the interdivision time of
a cell. In fact, it comprises many mechanistic models as
special cases, such as those based on DNA replication,
cell size control or cell cycle phases (Appendix 1 - Sec-
tion A6 and Appendix 1 - Figure A5 and A6). In future
work, it will be useful to improve the identifiability of the
model parameters. This could be accomplished either
through including knowledge of inheritance mechanisms
through prior distributions, or by including additional
data on measured cell cycle factor dynamics – such as
cell cycle phases, cell size, protein expression etc. – in
the inference.
Another limitation of our inference is that we com-

puted the interdivision time variance sτ in (M2) of the
model assuming that trees have equal number of genera-
tions in each branch. The advantage of this estimator is
that it does not assume any particular noise distribution
but this may lead to a statistical bias compared to the
sample variance of tree-structured data with branches of
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varying length [19, 24, 27, 51–53]. However, the approx-
imation does not change the identified correlation pat-
terns and the conclusion of this work, since any variance
bias can be compensated by multiplying the noise matri-
ces (S1,2 in Eqs. (5)) with a constant, and, for the data
analysed, the interdivision time variance estimators can-
not be distinguished within the 95% confidence intervals
(Appendix 1 - Table A3). Developing a theory correcting
for such biases in lineage tree data will be the subject of
future work.

An important result of the present analysis is that lin-
eage tree correlation patterns of very different cell types
– cyanobacteria, mouse embryonic fibroblasts and human
colorectal cancer – can be explained through an under-
lying circadian oscillator coupled to cell division. While
the coupling between the cell cycle and circadian clock is
well established both in cyanobacteria and mouse embry-
onic fibroblasts, it is less well studied in cancer [54, 55].
Our method robustly reconstructs the circadian rhythms
from the interdivision time correlation patterns despite
the lack of the cousin-mother inequality for fibroblasts,
demonstrating the cousin-mother inequality is not re-
quired for complex correlation patterns (Section IIC).
It is interesting to observe the differences in the oscilla-
tory correlation patterns in these organisms. They are
characterised by complex eigenvalues with negative real
parts in cyanobacteria, but positive real parts in fibrob-
lasts (Figure 5c), resulting in opposite mother-daughter
correlations for these datasets (Figure 3a,f).

It would be interesting to explore what mechanisms
underlie these different patterns. While the circadian
clock in fibroblasts relies on transcriptional mechanisms
[49, 56, 57], the origin of the clock is non-transcriptional
in cyanobacteria [58–60]. The negative mother-daughter
correlation in cyanobacteria likely stems from size control
mechanisms that are modulated by the circadian clock
[13]. However, the mechanisms that generate positive
mother-daughter correlations in fibroblasts are still to
be explored. Interestingly, in human colorectal cancer,
two oscillatory correlation patterns divide the posterior
distributions into two distinct clusters with positive and
negative mother-daughter correlations. If the circadian
clock was to generate a positive mother-daughter corre-
lation, as it does in fibroblasts which have a structurally
related clock, the period corresponds to a 20h rhythm.
This finding thus suggests that the circadian period is
altered in cancerous cells. Indeed, several studies report
similar periods of 18h and 20h for gene expressions in the
human colorectal cancer core-clock [61, 62].

Our theory predicts that an oscillator’s period does not
always match the period of the observed correlation os-
cillations. We describe a lower bound on the correlation
period that is reminiscent of the Nyquist-Shannon sam-
pling theorem. This theorem describes temporal aliasing
in digital audio processing, where a high frequency sig-
nal produces low frequency oscillations when sampled at
a frequency less than twice the sampling frequency. Simi-
larly, spatial aliasing is observed in digital image process-

ing as a moire pattern. In our analogy, the high frequency
signal is a biological oscillator that couples to cell division
and is sampled at the cell division frequency (Figure 5a).
Our result thus extends the Nyquist-Shannon sampling
theorem to lineage trees. Our finding has fundamental
implications for the reconstruction of oscillator periods
from interdivision time data, revealing that there exists
a number of oscillators that can all explain the same cor-
relation pattern.

Here, we concentrated on the oscillator periods T−1

that are closest to the correlation oscillation periods
T0. In principle, we cannot exclude that oscillators with
shorter physiological periods are contributing to the ob-
served lineage tree correlation patterns. For example,
HES1 expression oscillates with a period of around 5h
in human colon cancer cells [44, 45]. The stress re-
sponse regulators NF-κB and p53, which are critical for
tumour development, oscillate with periods of approxi-
mately 100min and 5h respectively [42, 43]. The poste-
rior distributions for periods in this region are not well
separated (Appendix 1 - Figure A7c), which makes it
challenging to identify factors that oscillate significantly
faster than the cell cycle using interdivision time data. It
is, however, unknown whether such hypothetical factors
couple to cell division specifically in a manner to induce
oscillatory interdivision time correlation patterns.

Going forward, there is a need to go beyond the
Nyquist-Shannon limit and develop methods that have
increased sensitivity to discriminate a broader range of
oscillator periods. One way to circumvent the limitation
would be to employ fluorescent reporters of the circadian
clock that could be correlated directly with cell division
timing. Another way, would be to provide parallel read-
outs of the underlying rhythm through events that sub-
sample the cell cycle, such as DNA replication, or the
timing of individual cell cycle phases. Not only would
we be able to look at the correlation in interdivision time
between cells on a lineage tree, but we would also be able
to analyse the correlations between individual phases and
family members, to reveal specific phase control mecha-
nisms. Our main findings result from the the inheritance
matrix model with two cell cycle factors, as this was suf-
ficient to explain the correlation patterns of the chosen
data. In principle, increasing the number of interacting
cell cycle factors can lead to more complex composite
patterns that involve combinations of the three patterns
discussed in this paper, such as the alternator-oscillator
(Appendix 1 - Figure A6c, d), aperiodic-oscillator (Ap-
pendix 1 - Figure A6g, h), or birhythmic correlation pat-
terns. Such composite patterns could also arise as the
result of nonlinear fluctuations that, within our frame-
work, can be described by adding complexes of cell cy-
cle factors to the inheritance matrix model (Appendix
1 - Section A2). The presence of such complexes in-
duces higher-order harmonics in the correlation oscilla-
tions, similar to those observed in the cyanobacterial and
mammalian circadian clock [12, 63], and detecting such
complexes could provide an alternative route to increase

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.06.27.497837doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497837
http://creativecommons.org/licenses/by-nc-nd/4.0/


13

the sensitivity of our inference method.
In summary, our findings highlight the predictive

power of Bayesian inference on single-cell data and how
it can be leveraged to draw testable hypotheses for the
design of future experiments. This was exemplified for
human colorectal cancer cells, where various patterns
were compatible with the data, something that non-
probabilistic approaches cannot accomplish as they fit
only a single correlation pattern. In the future, it will
be crucial to understand why different cell types have
evolved specific lineage correlation patterns and how
these patterns affect cell proliferation and disease. It
would be interesting to understand whether specific cor-
relation patterns give or reveal some fitness advantage
and whether we can use them to predict cell survival.
We anticipate that identifying hidden cell cycle factors
and their rhythmicity using non-invasive methods such
as interdivision time measurements will be instrumental
in answering these questions and may benefit other fields
where cell proliferation plays a pivotal role.

CODE AVAILABILITY

Code available at https://github.com/pthomaslab/
Lineage-tree-correlation-pattern-inference.
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METHODS

A. Analytical solution of the inheritance matrix
model

From (2) and IE[zp] = 0, for all p in N, we see that
the vector of cell cycle factors has zero mean IE[xp] = 0.
Its N ×N covariance matrix Σ = Cov(xp,xp) satisfies a
discrete-time Lyapunov equation:

S1 = Σ− θΣθ⊤. (M1)

From the solution of (M1), we compute the variance of
the interdivision time

sτ = α⊤Σα, (M2)

and the generalised tree correlation function ρ(k, l) (see
Appendix 1 - SectionA3 for a detailed derivation) given
by:

ρ(k, l) =
α⊤ω(k, l)α

α⊤Σα
, (M3)

where ω(k, l) = θkΣ
(
θl
)⊤

+ δk≥1δl≥1θ
k−1S2

(
θl−1

)⊤
with

δi≥1 =

{
1 if i ≥ 1

0 otherwise
for i = k, l. (M4)

To ensure that the lineage tree correlation pat-
tern is stationary, we require SR(θ) < 1 where
SR(θ) = max(λ1, λ2, . . . , λN ) is the spectral radius of θ.
This also ensures that the solutions to (M1); Σ, S1 and
the function (M3) are unique and independent of the ini-
tial conditions.

B. Analysis of tree correlation patterns

The patterns of the generalised tree correlation func-
tion can be characterised through its eigendecomposition.
The general decomposition proceeds through finding the
matrix of eigenvectors U of θ such that

UθU−1 = diag(λ1, λ2, . . . , λN ) (M5)

is the diagonal matrix of eigenvalues. Defining Ŝ1,2 =
US1,2U

⊤ and α̂ = (U−1)⊤α, the solution to (M1) is
given by

Σij =

N∑
k,l=1

U−1
ik U−1

jl

(Ŝ1)kl
(1− λkλl)

. (M6)

This result can then be used to find an explicit expression
for the generalised tree correlation function:

ρ(k, l) =
N∑

i,j=1

α̂iα̂j

α̂⊤Σ̂α̂
ω̂ij(k, l), (M7)

where

ω̂ij(k, l) =
(Ŝ1)ijλ

k
i λ

l
j

(1− λiλj)
+ δk≥1δl≥1(Ŝ2)ijλ

k−1
i λl−1

j .

(M8)

(M7) can be rewritten as a superposition of patterns (4)
with weights given by (5).
The pattern of the tree correlation function is thus

governed by the eigenvalues of the inheritance matrix θ:
(i) if one eigenvalue, say λ1, is positive then the factor
ω̂11(k, 0) = ω̂11(0, k) ∝ λk

1 contributing to lineage corre-
lation decays monotonically. The factor ω̂11(k, k) ∝ λ2k

1

contributing to the cross-branch correlation decays twice
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as fast; (ii) if there is a negative eigenvalue, the fac-
tor ω̂11(k, 0) = ω̂11(0, k) ∝ (−1)k|λ1|k alternates be-
tween negative and positive values with an envelope of
|λ1|k, while the corresponding contribution to the cross-
branch correlation decays monotonically with rate as
|λ1|2k. Finally, if we have a pair of complex eigenvalues
λ1 = λ∗

2 = DeiΩ then the factors ω̂i,j(k, 0) = ω̂i,j(0, k)
contributing to the lineage correlation function display
damped oscillations with frequency Ω and envelope Dk,
while the factor ω̂12(k, k) = ω̂∗

12(k, k) ∝ D2k and the
factor ω̂11(k, k) = ω̂∗

22(k, k) ∝ D2kei2Ωk oscillate with
frequency 2Ω.

C. Determining the period of correlation
oscillations from the eigenvalues

We consider the case where the inheritance ma-
trix θ has a pair of complex conjugate eigenvalues
λ± = De±i2π/P . The lineage correlation function then
oscillates whenever D ̸= {0, 1} and P ̸= 2

k , k in Z. The
period of correlation oscillations per generation is given
by

T0

τ̄
=

2π

| ln
(
ei2π/P

)
|
=

2

1−
∣∣2( 1

P mod 1)− 1
∣∣ , (M9)

where Arg(λ) in (−π, π] is the argument of the eigen-
value and ln(·) is the complex logarithm. The former is
the angle made between the line joining the origin and
the eigenvalue λ on the complex plane with the real axis.
This means that T0/τ̄ = P if and only if P > 2. Oth-
erwise, T0 is calculated in terms of P by equation (M9)
(Appendix 1 - Figure A8).

D. Data analysis & Bayesian inference of the
inheritance matrix model

We determined all pairs of cells in a lineage tree, sorted
them by family relations (k, l) and calculated the sample
correlation coefficient of interdivision times (3). To max-
imise the number of samples used to calculate these cor-
relations, an individual cell can appear in more than one
pair. For example, if a cell had two cousins, it would be
counted in two separate cousin pairs in the cousin-cousin
correlation coefficient calculation. For training, we fo-
cus on the sample statistics X̂ = (ŝτ , {ρ̂(k,l)}(k,l) in C)
with C = {(1, 0), (2, 0), (1, 1), (2, 2)} comprised of the
interdivision time sample variance and four interdivision
time sample correlation coefficients given by the mother-
daughter, grandmother-granddaughter, sister-sister and
cousin-cousin relations (Figure 2a). Note that ŝτ is com-
puted across all interdivision times used to calculate the

correlation coefficients in each dataset. Errors are es-
timated using bootstrapping by re-sampling cell pairs
with replacement 10,000 times. The resulting variances
and correlation coefficients are given in Appendix 1 - Ta-
ble A1.
The vector of inferred model parameters for the two-

dimensional model is Θ = (θ,S1), where we fix α =
(1, 1)⊤ and S2 = 0 for simplicity. A different choice
of α did not affect our results (Appendix 1 - Figure A4).
Since S1 is symmetric, it consists of the N variances and
N(N − 1)/2 correlation coefficients between the compo-
nents of z. Thus for N = 2 the inheritance matrix model
has seven free parameters to be estimated. We assumed
that the log-likelihood for these statistics is the sum of
square errors:

− lnL(Θ|X̂) =
(ŝτ − sτ (Θ))

2

σ̂ŝ2τ

+
∑

(k,l) in C

(
ρ̂(k,l) − ρ(k,l)(Θ)

)2
σ̂2
ρ̂(k,l)

,

(M10)
which is equivalent to assuming that the sample variance
and correlation coefficients are normally distributed for
large sample sizes. We calculate the interdivision time
variance sτ and the generalised tree correlation function
ρ(k, l) from (M2) and (M3). Note that (M2) is the inter-
division time variance from a tree where all lineages have
the same number of generations, which approximates the
variance across all cells in the observed trees (Appendix
1 - TableA3). For simplicity, we neglected possible cor-

relations between the sample statistics in X̂ and used
bootstrapped estimates for the standard deviation of the
sample statistics σ̂ŝτ and σ̂ρ̂(k,l)

(Appendix 1 - Table A1).
Note that the likelihood is independent of the mean since
it is irrelevant for the correlation pattern. We assumed
a flat prior with support restricted to SR(θ) < 1 and
S1 positive semi-definite to guarantee the existence of a
stationary correlation pattern.

The numerical implementation uses the adap-
tive Gibbs-sampler implemented in the Julia library
Mamba.jl [64]. For each dataset, we sample 11 million
parameter sets which include a burn-in transient of 1 mil-
lion samples. These samples are removed before analysis
of the output.

For model comparison we use the AIC [65] given by

AIC = 2k − 2 ln(L̂), (M11)

where k is the number of model parameters and ln(L̂) is
the maximum value of the log-likelihood function given
by (M10). For S2 ̸= 0, the inheritance matrix model
has k = d(1 + 2d) parameters where d is the number of
cell cycle factors in the model. For S2 = 0 the number
of parameters reduces to k = 1

2d(1 + 3d).
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Appendix: Patterns of interdivision time correlations reveal hidden cell cycle factors
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APPENDIX

A1. Small noise approximation

Here, we will derive the inheritance matrix model given by equations (2) in the main text. We assume that the
fluctuations in the hidden cell factor dynamics are small, which leads to a computationally efficient approximation.

Firstly, in the limit of zero fluctuations, all cells must be identical. Hence, all cell cy-
cle factors are equal to their means µ = (µ1, µ2, · · · , µN )⊤ = IE(yp) and similarly for the noise vectors
β = (β1, β2, · · · , βN )⊤ = IE(e2m) = IE(e2m+1) in Eq. (1b). From (1a) and (1b) we then find that

τ̄ = f(µ), µ = g(µ) + β, (A1)

which can be efficiently solved for τ̄ and µ using standard numerical methods.
Secondly, we can decompose the interdivision time and the cell cycle factor vector into their respective mean and

fluctuating components by

τp = τ̄ + τ ′p, yp = µ+ x̃p. (A2)

Denoting the index of the present cell by p and the one of its mother by m, we can expand f and g around the limit
of zero fluctuations and we obtain to leading order

f(yp) = f(µ) + α̃⊤(yp − µ) + · · · (A3)

g(ym) = g(µ) + θ̃ (ym − µ) + . . . , (A4)

where

α̃i =
∂f(y)

∂yi

∣∣∣
y=µ

, θ̃ij =
∂gi(y)

∂yj

∣∣∣
y=µ

. (A5)

Using this expansion and (A2) in (1a) and (1b) of the main text we arrive at

τ̄ + τ ′p = f(µ) + α̃⊤x̃p + · · · , (A6)

µ+ x̃p =
(
g(µ) + θ̃x̃m + . . .

)
+ β + z̃p, (A7)

where we have set ep = β + z̃p and z̃p = (z̃p,1, z̃p,2, · · · , z̃p,N )⊤ giving the fluctuations around the mean for the noise
vectors. Comparing (A7) with (A1) and collecting terms to leading order, we obtain the linearised system:

τ ′p = α̃⊤x̃p (A8)

x̃p = θ̃x̃m + z̃p. (A9)

∗ Correspondence to a.barr@lms.mrc.ac.uk,
p.thomas@imperial.ac.uk
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Next, we define the diagonal scaling matrix Γ with non-zero elements as

Γii =

{
1 if α̃i = 0,

α̃i otherwise,
, (A10)

for i = 1, 2, . . . , N . Using the rescaled noise sources z = Γz̃, we find the rescaled inheritance matrix θ and α-
coefficients

αi =

{
0 if α̃i = 0,

1 otherwise,
, i = 1, 2, . . . , N, (A11)

θ = Γθ̃Γ−1. (A12)

The rescaled cell cycle factor fluctuations xm = Γx̃m follow (2) of the main text and we reach rescaled variance-
covariance matrices S1 and S2 as follows

S1 = ΓS̃1Γ
⊤, S2 = ΓS̃2Γ

⊤. (A13)

A2. Beyond the small noise approximation: cell cycle factor complexes account for nonlinear fluctuations

Here we analyse the effect of nonlinearity on the interdivision time correlation patterns. For simplicity we consider
a single cell cycle factor and follow the same lines as in section A1, Eq. (A9), while including terms of order x2. This
leads to the expansion interdivision time and factor fluctuations

τ ′p = α̃⊤x̃p + β̃⊤x̃2
p +O(x3), (A14)

x̃p = θ̃x̃m + H̃x̃2
m + z̃p +O(x3), (A15)

where θ̃ is the Jacobian of the cell cycle factor dynamics, as before, and H̃ = g′′(µx) is the Hessian. From the second
equation we obtain

x̃2
p = θ̃2x̃2

m + 2θ̃z̃px̃m + z̃2p +O(x3). (A16)

Defining X̃p = (x̃p, x̃
2
p) and Z̃p = (z̃p, z̃

2
p), combining Eqs. (A14) and (A16), and rescaling variables as in (A12) and

(A13), we find the extended inheritance matrix model

τ = µ+A⊤Xp,

X2m = ΘXm +B(Xm)Z2m,

X2m+1 = ΘXm +B(Xm)Z2m+1 (A17)

where

Θ =

(
θ H
0 θ2

)
, B(Xm) =

(
1 0

2xm 1

)
, A =

(
α
β

)
. (A18)

Here H = H̃α̃/β̃ and β = 1 if β̃ ̸= 0, and analogously, H = H̃α̃ and β = 0 if β̃ = 0. Hence, the interdivision time
correlation patterns with small to moderate fluctuations can be described through an extended linear system (A17) that
includes nonlinear terms x2

p. These additional terms can be interpreted as cell cycle factors forming binary complexes.
The presence of these complexes increases the number of cell cycle factors and extends the eigenvalue spectrum of
the effective inheritance matrix Θ by θ2. Hence, the presence of complexes leads to mixed correlation patterns. For
example, for a single cell cycle factor, the eigenvalues of Θ are (θ, θ2), which corresponds to an alternator pattern
for θ < 0. More generally, we may expect that nonlinear patterns can be described through mixtures of aperiodic,
alternator, and oscillatory patterns. For example, the complex eigenvalue spectrum of an oscillator pattern (e±i2π/P )
will include powers of complex eigenvalues (e±i4π/P ) resulting in harmonics of the fundamental correlation oscillation
frequency similar to higher order harmonics observed in single-cell time-series of the circadian clock [12, 63].
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A3. Derivation of the generalised tree correlation function

In this section we derive an analytical expression for the generalised tree correlation function. This gives the Pearson
correlation coefficient in interdivision time for any pair of related cells. We start with the equation for the Pearson
correlation coefficient, and from there derive a formula for the interdivision time covariance using the known properties
of the cell cycle factors x. From this, we can derive the general formula for the correlation coefficient between any
related cell pair.

We associate a cell pair with an index (k, l) which measures the distance to the nearest common ancestor as given
in Section II B (Figure 2a). From this, we denote their interdivision time fluctuations as τ ′k and τ ′l respectively. The
Pearson correlation coefficient between these fluctuations is given by

ρ(k, l) =
Cov(τ ′k, τ

′
l )

sτ ′
, (A19)

where sτ ′ is the variance of the interdivision time fluctuations.
The interdivision time fluctuations τ ′k and τ ′l are calculated from the vector of rescaled cell cycle factor fluctuations

xk as given in Section IIA, giving the equations

τ ′k = α⊤xk and τ ′l = α⊤xl. (A20)

Substituting (A20) into (A19), we obtain a formula for ρ(k, l) in terms of the cell cycle factor fluctuations x and the
α coefficients alone

ρ(k, l) =
Cov(α⊤xk,α

⊤xl)√
Var(α⊤xk)

√
Var(α⊤xl)

, (A21)

=
α⊤Cov(xk,xl)α√

α⊤Var(xk)α
√
α⊤Var(xl)α

. (A22)

Since xk and xl are identically distributed in steady state, we have that Var(xk) = Var(xl) = Cov(x,x) = Σ as
specified in Methods A. We can write ρ(k, l) now as

ρ(k, l) =
α⊤Cov(xk,xl)α

α⊤Σα
, (A23)

where α⊤Σα gives the variance of the interdivision time fluctuations τ ′.
Using the model equation (2) we can write the formula for the x vectors for the two cells in the cell pair (k, l) as

xk = θxk−1 + zk, (A24)

xl = θxl−1 + zl, (A25)

where cells k and l have mother cells k−1 and l−1 respectively. The two cells are sisters if and only if their subscripts
are both equal to 1, meaning they share a mother cell. Using recurrence of the model, we can write these equations
as

xk = θkx0 +
k∑

i=1

θk−izi,

xl = θlx0 +
l∑

j=1

θl−jzj ,

(A26)

where x0 is the vector of cell cycle factors for the most recent common ancestor for a cell pair given by (k, l).
All that remains is to derive a function for Cov(xk,xl) which we will denote ω(k, l). We calculate ω(k, l) as follows

using expectations:

ω(k, l) = Cov(xk,xl) = IE
[
(xk − µxk

) (xl − µxl
)
⊤
]
, (A27)

= IE
[
xkx

⊤
l

]
− µxk

µ⊤
xl
, (A28)

where µxk
and µxl

are the mean vectors of xk and xl respectively which are both equal to 0, giving

ω(k, l) = IE
[
xkx

⊤
l

]
. (A29)
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To find IE
[
xkx

⊤
l

]
in terms of the model parameters, we substitute in equations (A26) for xk and xl and get

IE
[
xkx

⊤
l

]
= IE

(θkx0

) (
θlx0

)⊤
+

(
k∑

i=1

θk−izk

) l∑
j=1

θl−jzj

⊤
 . (A30)

The noise term fluctuations z are only correlated if the cells are sisters, which only occurs when the distance we have
(k, l) = (1, 1). So for the summations above, we exclude all terms except where i = j = 1. Doing this and expanding
we get

IE
[
xkx

⊤
l

]
= θkIE

[
x0x

⊤
0

] (
θl
)⊤

+ δk≥1δl≥1θ
k−1IE

[
z1z

⊤
1

] (
θl−1

)⊤
, (A31)

where δk≥1 and δl≥1 are given in Equation M4. We also have that

Cov(x0,x0) = IE
[
x0x

⊤
0

]
. (A32)

The matrix Cov(x0,x0) is equivalent to the covariance matrix for any x, giving Cov(x0,x0) = Σ. This gives

IE
[
x0x

⊤
0

]
= Cov(x0,x0), (A33)

= Σ. (A34)

Similarly we have,

Cov(z2m, z2m+1) = IE
[
z1z

⊤
1

]
. (A35)

As IE(z) = 0, and Cov(z2m, z2m+1) = S2 as stated in Methods A, we obtain,

IE
[
z1z

⊤
1

]
= S2. (A36)

Equation (A31) therefore becomes:

IE
[
xkx

⊤
l

]
= θkΣ

(
θl
)⊤

+ δk≥1δl≥1θ
k−1S2

(
θl−1

)⊤
. (A37)

Substituting (A37) back into (A29) we get

ω(k, l) = θkΣ
(
θl
)⊤

+ δk≥1δl≥1θ
k−1S2

(
θl−1

)⊤
, (A38)

giving us the final equation for ω(k, l). Using the above equation in (A23), we obtain Eq. (M3) of the Methods.

A4. Derivation of the formula for the oscillator periods, Tn

The period of correlation oscillation as observed in the lineage correlation functions is given by (6). We can reveal
the underlying oscillator periods by shifting the inferred period T0 to obtain a smaller period Tn. This means that
shorter periods would produce the same inferred period in the lineage correlation function when sampled at the
original frequency of once per cell cycle (Figure 5a).

The oscillator periods are obtained by adding or subtracting multiples of 2π to the argument of the eigenvalue
which results in the new argument being in the same position in the complex plane. The oscillator period Tn with
shift n in Z is therefore given by

Tn = τ̄
2π

|Arg(λ) + 2πn|
. (A39)

Taking (A39) and substituting in (6), we obtain Tn in terms of T0 as (7).
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A5. Solution of the tree correlation function and parameter identifiability for simple inheritance rules

We consider the limiting case of a single cell cycle factor (N = 1) resulting in simple inheritance rules. This
situation could model a growth factor that can either increase or decrease interdivision times of cells depending on
the monotonicity of f in Eq. 1. The analytical solution (M7) of the inheritance matrix model then reduces to

ρ(k, l) = wθk+l, sτ =
S1

1− θ2
, (A40)

where w = 1 + δk≥1δl≥1
S2

S1

(1−θ2)
θ2 . First, we observe that, given single cell measurements of the mother-daughter

correlation coefficient ρ(0, 1), the daughter-daughter correlation coefficient ρ(1, 1) and the variance sτ , the parameters
θ, S1 and S2 are uniquely identifiable:

θ = ρ(1, 0), S1 = sτ (1− ρ2(1, 0)), S2 =
ρ(1, 1)− ρ2(1, 0)

1− ρ2(1, 0)
. (A41)

Thus measurements of the variance, lineage- and cross-branch correlations fully determine the parameters. The tree
correlation function is, however, independent of f , which means that the interdivision time correlation pattern carries
no information whether the growth factor increases or decreases growth. The reason for this indifference is that cell
cycle factors are identified only by their fluctuation pattern, i.e., for each cell cycle factor whose fluctuations increase
interdivision time x, we could define another cell cycle factor fluctuation that decrease interdivision time −x. We
accounted for this unidentifiability issue trough a similarity transformation using the scaling matrix Γ in (A12) and
(A13) that transforms all cell cycle factor fluctuations to increase interdivision time. Of course, this unidentifiabiliy
could be removed through explicitly measuring the involved cell cycle factors.

A6. Mapping mechanistic cell cycle and cell size control models to the inheritance matrix model

To further investigate the output of the inheritance matrix model, we propose multiple models of known cell cycle
control mechanisms, and map them to our inheritance matrix model framework. All cell size models assume symmetric
division.

1. Cell size control model with correlated growth

Considering the influence of cell size control on interdivision time [11, 14, 31], here we propose a cell size control
model where we have some mother to daughter inheritance of both the added size ∆ and the growth rate κ (Appendix
1 - Figure A5g). The model equations are given by:

sb,2m =
1

2
(asb,m +∆m) , ∆2m = b∆m + ξ2m, κ2m = cκm + ϕ2m,

sb,2m+1 =
1

2
(asb,m +∆m) , ∆2m+1 = b∆m + ξ2m+1, κ2m+1 = cκm + ϕ2m+1.

(A42)

The noise terms ξ and ϕ are independent between sisters such that Cov(ξ2m, ξ2m+1) = Cov(ϕ2m, ϕ2m+1) = 0. Assum-
ing exponential growth the formula for the interdivision time is given by

τp =
ln
∣∣∣a+

∆p

sb,p

∣∣∣
κp

, (A43)

where p represents the index of a given cell. Taking the vector of cell cycle factors for the mother cell to be
ym = (ym,1, ym,2, ym,3)

⊤ = (∆m, sb,m, κm)⊤ and comparing (1a, 1b) with (A42) and (A43), we obtain

f(y) =
ln
∣∣∣a+ y1

y2

∣∣∣
y3

, g(y) = (by1,
1

2
(ay2 + y1), cy3)

⊤
, β = (IE[ξ], 0, IE[ϕ])⊤. (A44)

Then we can calculate the means from (A1),

µ1 =
IE[ξ]

b− 1
, µ2 =

IE[ξ]

(a− 2)(b− 1)
, µ3 = − IE[ϕ]

c− 1
. (A45)
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Then using (A44) in (A5) and (A12), we find

α =

1
1
1

 , θ =

 b 0 0
1
2 (a− 2) a

2 0
0 0 c

 . (A46)

Assuming S̃2 = 0 and using (A13), we find

S1 =


(a− 2)2(b− 1)2(c− 1)2Var[ξ2m]

4IE[ξ]2IE[ϕ]2
0

(a− 2)(b− 1)(c− 1)3 ln |2|Var[ϕ2m]Var[ξ2m]

2IE[ξ]IE[ϕ]3

0 0 0
(a− 2)(b− 1)(c− 1)3 ln |2| Var[ϕ2m]Var[ξ2m]

2IE[ξ]IE[ϕ]3
0

(c− 1)4 ln |2|2 Var[ϕ2
2m]

IE[ϕ]4

 . (A47)

The θ matrix has eigenvalues λ = (a2 , b, c) which give an aperiodic pattern for a, b, c > 0 and an alternator pattern
otherwise (Appendix 1 - Figure A5i,j). These same patterns arise for all real eigenvalues in the 3D model in the same
was as in the two-dimensional system. Only a single negative eigenvalue is needed for the lineage correlation function
to display an alternator pattern. We are restricted to a in (−2, 2) and b, c in (−1, 1) to ensure SR(θ) < 1. The
cousin-mother inequality for this system is too complex to be looked at analytically, so we use numerical methods to
visualise the parameter region in which the cousin-mother inequality can be satisfied (Appendix 1 - Figure A5h).

For the case of the aperiodic pattern, we observe positive same factor mother-daughter correlation and negative
alternate factor mother-daughter correlation (Appendix 1 - Figure A5k). In contrast, for an alternator pattern, the
mother daughter same factor correlation is negative, but the alternate factor correlations vary between positive and
negative values (Appendix 1 - Figure A5l).

2. Simple cell size control model

For the special case of b = Var[ϕ] = 0 and c = 1, the model reduces to a simple cell size control model with fluctuating
added size (Appendix 1 - Figure A5a). The inheritance matrix θ then has eigenvalues λ = (0, a

2 ). Thus depending
on the choice of a, this model can produce both an alternator and aperiodic pattern (Appendix 1 - Figure A5c,d). In
this case, using (M3) the cousin-mother inequality becomes

a2(a− 2) + 4|a− 2| < 0, (A48)

which cannot be satisfied for |a| < 2, which implies SR(θ) = a
2 < 1. Hence the cousin-mother inequality cannot be

satisfied for any reasonable choice of a in this simple model (Appendix 1 - Figure A5b).
For an aperiodic pattern, this simplified model exhibits positive same factor mother-daughter correlation and neg-

ative alternate factor mother-daughter correlation (Appendix 1 - Figure A5e). In the alternator case, this model
exhibits negative same factor mother-daughter correlation and also negative alternate factor mother-daughter corre-
lation (Appendix 1 - Figure A5f).

3. Abstract cell cycle phase model

We propose a model of two abstract cell cycle phases that have no integrated dependence on cell size (Appendix 1
- Figure A5m). The model equations are given by

y2m,1 = aym,1 + bym,2 + ξ2m,

y2m+1,1 = aym,1 + bym,2 + ξ2m+1,

and

and

y2m,2 = cym,2 + ϕ2m,

y2m+1,2 = cym,2 + ϕ2m+1.
(A49)

The noise terms ξ and ϕ are independent between sister cells such that Cov(ξ2m, ξ2m+1) = Cov(ϕ2m, ϕ2m+1) = 0. In
this case we have that the two factors make up the length of the cell cycle, so we simply have τp = yp,1 + yp,2.
Therefore using (1a), and (1b) we obtain

f(y) = y1 + y2, g(y) = (ay1 + by2, cy2)
⊤, β = (IE[ξ], IE[ϕ])⊤. (A50)

We calculate the means from (A1),

µ1 =
bIE[ϕ] + (1− c)IE[ξ]

(1− a)(1− c)
, and µ2 =

IE[ϕ]

1− c
. (A51)
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Then using (A50) in (A5) and (A12), we find

α =

(
1
1

)
, θ =

(
a b
0 c

)
. (A52)

As the noise terms are independent between sisters we have S̃2 = 0 and using (A13) we obtain

S1 =

(
Var[ξ22m] Var[ξ2m]Var[ϕ2m]

Var[ξ2m]Var[ϕ2m] Var[ϕ2
2m]

)
. (A53)

The inheritance matrix θ has eigenvalues λ = (a, c) which gives an aperiodic pattern for a and c > 0 and an alternator
pattern otherwise (Appendix 1 - Figure A5o,p).
The analytical form of the cousin-mother inequality is complex so we use numerical methods to visualise the

parameter region in which the cousin-mother inequality can be satisfied (Appendix 1 - Figure A5n).
We calculate individual factor mother-daughter correlations and find that for an aperiodic pattern, the model

exhibits a range of correlation patterns (Appendix 1 - Figure A5q). However, for an alternator pattern, we obtain
positive same factor mother-daughter correlation and negative alternate factor mother-daughter correlation (Appendix
1 - Figure A5r)

A7. Models of circadian-clock-driven correlation patterns

1. Kicked cell cycle model

Here we analyse the kicked cell cycle model [36] with our framework (Appendix 1 - Figure A6a). We will propose
an inheritance matrix and then show that it reduces to the kicked cell cycle model for certain parameter choices.
Consider the 3× 3 inheritance matrix θ and noise vector zn given by

θ =


β 1 1

0 D cos
2π

P
D sin

2π

P

0 −D sin
2π

P
D cos

2π

P

 and zn =

ξn,τ
ξn,1
ξn,2

 , (A54)

for n ∈ {2m, 2m + 1}. We have that S1 is given by Cov(z2m, z2m), however we assume that the noise terms ξn are
independent between sisters such that S2 = Cov(z2m, z2m+1) = 0. Assuming α = (1, 0, 0)⊤, the interdivision times
are governed by

τ2m = βτm + x̂m,1 + x̂m,2 + z2m,

τ2m+1 = βτm + x̂m,1 + x̂m,2 + z2m+1. (A55)

The oscillator is represented by the cell cycle factors x̂ that evolve according to

x̂2m = θ̂x̂m + ẑ2m,

x̂2m+1 = θ̂x̂m + ẑ2m+1, (A56)

with oscillator inheritance matrix

θ̂ =

 D cos
2π

P
D sin

2π

P

−D sin
2π

P
D cos

2π

P

 . (A57)

We can solve (A56) along an ancestral lineage of n generations

x̂n = θ̂nx̂0 +
n∑

i=1

θ̂n−iẑi, (A58)

where x̂0 is the state of the ancestral cell. Substituting (A58) into (A55) and assuming ẑi = 0, i.e., the cell cycle
oscillator x̂ is deterministic, the interdivision time of the mother determines the interdivision time of the daughter
cell via

τn = βτn−1 +Dn

(
x̂+
0 cos

2π(n− 1)

P
+ x̂−

0 sin
2π(n− 1)

P

)
+ zn, (A59)
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where x̂+
0 = (x̂0,1 + x̂0,2) and x̂−

0 = (x̂0,1 − x̂0,2) which represent initial conditions. Assuming tn =
∑n

i=1 τn ≈ nτ̄
approximates the time at birth for n ≫ 1, this leads to

τn = βτn−1 +Dn

(
x̂+
0 cos

2πtnτ̄

P
+ x̂−

0 sin
2πtnτ̄

P

)
+ zn, (A60)

Comparing (A60) to Eq. (1) and (2) in [36], we see that our IMM agrees with the kicked cell cycle model when D = 1,
x̂+
0 = 0, ξn,1 = ξn,2 = 0, and large n.

2. Circadian-clock-driven cell size control model

Here we analyse the model of cell size control driven by the circadian clock proposed in Martins et al. [13] within
the inheritance matrix model framework (Appendix 1 - Figure A6e). The division rate, Γ(s, sb,

∂s
∂t , t) in Eq. (1) of

[13] is given by

Γ(s, sb,
∂s

∂t
, t) = G(t)S(s, sb)

∂s

∂t
(A61)

where s is the cell size with sb being the size at birth. G(t) is a function of time t that couples the size control to the
circadian clock, and S(s, sb) is the division rate per unit volume of the cell. Assuming cells grow exponentially with
growth rate α, we have

s(τ) = sbe
ατ and t(s, tb) = tb +

1

α
ln

s

sb
, (A62)

and the division size follows

P (sd|tb, sb) = G(t(sd, tb))S(sd, sb) exp

[
−
∫ sd

sb

dsG(t(s, tb))S(s, sb)

]
(A63)

where sb is the size at birth and tb is the time at birth.
To map these to our inheritance matrix model, we observe that samples from (A63) follow

sd,m = g̃(tb,m, sb,m) + η̃m(tb,m, sb,m) (A64)

where g̃(tb,m, sb,m) = EP [sd|tb, sb] is a drift term and η̃m is a zero-mean noise term that depends both on time of day
and birth size. Note that both g̃(tb,m) and η̃m(tb,m, sb,m) are periodic functions of time at birth tb,m. Since the latter
is not explicitly modelled in our framework, here, we replace it with the state x0,m of the circadian clock, such that
the update equations in (A64) now appear as

sd,m = g(x0,m, sb,m) + ηm(x0,m, sb,m). (A65)

To gain intuition into the shape of the unknown functions g and h, we linearise the equations around some basal
level x = δ of a clock-less mutant, which gives

sd,m = g(δ, sb,m) + g′(δ, sb,m)x0 + ηm(δ, sb,m) + x0η
′
m(δ, sb,m)), (A66)

For simplicity assume η′m(δ, sb,m)) = 0 and that the clock-less mutant follows a linear cell size control model with
gamma-distributed size increments ϕA,m ∼ Gamma with mean ∆ as in [13]. These assumptions lead to the relations,

g(δ, sb,m) = ∆+ asb,m, ηm(δ, sb,m) = ϕA,m −∆. (A67)

Using sb,2m = sb,2m+1 = sd,m/2, we can obtain the linearised inheritance matrix model equations for the circadian
cell size control model (Appendix 1 - Figure A6e):

sb,2m =
1

2
(asb,m + bx0,m + ξm), ξ2m = ϕA,m,

sb,2m+1 =
1

2
(asb,m + bx0,m + ξm) ξ2m+1 = ϕA,m

(A68)
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where now ξm is the added size and x0,m is the output x0,m = x1,m + x2,m of a circadian oscillator governed by(
x1,n+1

x2,n+1

)
= x0,n+1 = θ̂x0,n + ϕn+1, (A69)

for cell generation n, where ϕ = (ϕ1, ϕ2)
⊤ are noise terms added to the elements of x0 and θ̂ is some complex

eigenvalued 2× 2 inheritance matrix given by

θ̂ =

 D cos
2π

P
D sin

2π

P

−D sin
2π

P
D cos

2π

P

 . (A70)

Following this, we see that the circadian clock is incorporated into this cell size control system in the same way as
the kicked cell cycle model outlined in the previous section (Appendix 1 - SectionA7 1). Using (A62) we can write
the interdivision time of a cell with index p as

τp =

ln

(
asb,p + bx0,p + ξp

sb,p

)
α

. (A71)

Then taking the vector of cell cycle factors for the mother cell to be
ym = (ym,1, ym,2, ym,3, ym,4)

⊤ = (sb,m, x1,m, x2,m, ξm)⊤ and comparing (1a, 1b) with (A68) and (A71) we
obtain

f(y) =
ln
(

ay1+b(y2+y3)+y4

y1

)
α

g(y) = (
1

2
(ay1 + b(y2 + y3) + y4), D cos

2π

P
y2 +D sin

2π

P
y3, −D sin

2π

P
y2 +D cos

2π

P
y3, cy4)

⊤

β = (0, IE[ϕ̂1], IE[ϕ̂2], IE[ϕ̂A])
⊤.

(A72)

Computing the means using (A1) we get

µ1 =
−µϕ

a− 2
, µ2 = 0, µ3 = 0, µ4 = µϕ. (A73)

Then using (A72) in (A5) and (A12), we can solve for the means

α =

1
1
1
1

 and θ =



a

2

1

2
(a− 2)

1

2
(a− 2)

1

2
(a− 2)

0 D cos

(
2π

P

)
D sin

(
2π

P

)
0

0 −D sin

(
2π

P

)
D cos

(
2π

P

)
0

0 0 0 0


. (A74)

Then taking S̃2 = 0 and using (A13), we obtain the following for S1:

S1 =
(a− 2)2

4α2

0 0 0 0
0 b2η21 b2cor12η1η2 bcorA1η1η2
0 b2cor12η1η2 b2η22 bcorA2η2ηA
0 bcorA1η1ηA bcorA2η2ηA η2A

 (A75)

where corij indicates the correlation between a pair of noise terms ϕi and ϕj , and η2i = Var(ϕi)
µ2
ϕ

for i, j ∈ {1, 2, A}.

3. Model comparison

We notice that the kicked cell cycle model has three cell cycle factors, while the circadian-clock-driven cell size
control model has four cell cycle factors. The eigenvalues of the inheritance matrix θ determining the correlation
patterns are

λ = (β,De+
2πi
P , De−

2πi
P )⊤ (A76)
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for the kicked cell cycle model and

λ = (0,
a

2
, De+

2π
P , De−i 2π

P )⊤ (A77)

and for the cell size control model. In both models, either the complex pair of eigenvalues De±
2πi
P produces oscillatory

behaviour. The overall correlation patterns are of mixed type, depending on the parameters β and a.
To compare the models quantitatively, we match their mother-daughter interdivision time correlation coefficient in

the absence of clock coupling. For the kicked cell cycle model, we notice that ρ(1,0) = β in the absence of clock coupling.
The cell size control model reduces to the model in Appendix 1 - SectionA6 1 in the absence of clock coupling, which
satisfies ρ(1,0) =

a−2
4 . Since realistic cell size control mechanisms [11, 68–70] (a ∈ [0, 2)) ranging from sizers (a = 0)

to adders (a = 1) to timers (a = 2) imply β ≤ 0, we find that the kicked cell cycle obeys a mixed correlation pattern
of the alternator/oscillator type while the cell size control model obeys a aperiodic/oscillator pattern.

Focusing on the common adder size control (a = 1), we find that the regions where the cousin-mother inequality is
satisfied is remarkably similar in both models when β is matched accordingly (Appendix 1 - Figure A6b and f). The
lineage correlation function (red line) oscillates but the cross-branch correlation functions (blue line) alternates for
the kicked cell cycle (Appendix 1 - Figure A6c-d) but not for the cell size control model (Appendix 1 - Figure A6g-h).

A8. Inference validation using simulated data

To validate the inference results discussed in the main text we simulate interdivision time data using the maximum
posterior parameters from the inference on two of the original live imaging datasets, and compare the output and
model fit to our original inference.

We take the maximum posterior parameter sets from the original inference on two datasets (Appendix 1 - Table A2),
cyanobacteria and mouse embryonic fibroblasts, and produce simulated interdivision time lineage data in MATLAB
using custom scripts and Random Trees [67]. We chose to look at these two datasets in order to analyse the posterior
distribution of the inferred underlying period T−1 to compare to the approximately 24h results seen in the main text.
From this simulated data, the correlation coefficients are calculated using the methods outlined in Methods D, and

then we look at the model inference on these new, simulated correlations, to compare to the original. These simula-
tions produce correlation patterns that reproduce the experimentally measured correlations (comparing Appendix 1
- Figure A9a-b with Figure 3a,f).
The posterior distribution of the simulated patterns are the same for the cyanobacteria, exhibiting an 100% oscillator

pattern (Appendix 1 - Figure A9a), matching the fitting to the original dataset (Figure 3a). Mouse embryonic
fibroblasts (Appendix 1 - Figure A9b) loses some of it’s original 100% oscillator pattern (Figure 3f) in favour of an
alternator pattern. However, an oscillator pattern is still dominant.

We see that for cyanobacteria (Appendix 1 - Figure A9c) and mouse embryonic fibroblasts (Appendix 1 - Fig-
ure A9d), the posterior distribution for the inference on the simulated data for the correlation function oscillatory
period, T−1 (Appendix 1 - Figure A9c,d), exhibits a large overlap with the original posterior distribution discussed
in Section IIG 2 (Figure 5e). The difference in the median for these posterior distributions is 0.42h for mouse embry-
onic fibroblasts (Appendix 1 - Figure A9d) and just 0.11h for cyanobacteria (Appendix 1 - Figure A9c). This result
validates our analysis of these posterior distributions showing that the period that we reconstruct from the simulated
correlation patterns is consistent with the original data.
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APPENDIX FIGURES

Appendix Figure A1. One-dimensional model with simple inheritance rules results in a poor fit for datasets
displaying the cousin-mother inequality. (a-f) Plots showing data (open markers) against model predictions (solid
black) for the one-dimensional model [28] for (a) cyanobacteria, (b) clock-deleted cyanobacteria, (c) mycobacteria, (d) human
colorectal cancer, (e) neuroblastoma and (f) mouse embryonic fibroblasts. We fit the model using the same likelihood function
(M10) and methods (Methods D) as in the main text. Points (black) give the median model output for each correlation and
error bars give the 95% bootstrapped confidence intervals from 10,000 re-samplings with replacement. Circular points show
the model fitted correlations (mother-daughter, grandmother-granddaughter, sister-sister and cousin-cousin) whereas triangular
points demonstrate model predictions. For this fitting we used 100,000 samples (in contrast to 10 million used in the main
text).
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Appendix Figure A2. Bayesian inference demonstrates that multiple correlation patterns can explain the exper-
imental data (a-f.i) Plots of model fits and predictions (solid markers) against the data (open markers) for the family pair
correlation coefficients for (a) cyanobacteria, (b) clock-deleted cyanobacteria, (c) mycobacteria, (d) human colorectal cancer,
(e) neuroblastoma and (f) mouse embryonic fibroblasts. Colours of the solid markers represent the fits and predictions for
parameter samples clustered by correlation pattern. Inset for each panel is a bar chart giving the distribution of the three
patterns for each dataset. (a-f.ii) Plots of model output against the data for the interdivision time covariance. In this figure,
the error bars for the data (unfilled black points) are calculated via bootstrapping of 10,000 samples with replacement to give
the 95% confidence interval. For the model, error bars represent the 95% credible interval, computed by taking the 2.5th and
97.5th percentile of the sampled values. For all plots, circles indicate fitted correlations and triangles show predicted correla-
tions. We can see that the model fit is good for all datasets as the error bars overlap with that of the data, and this is reflected
in the low AIC given in Appendix 1 - Table A1.

Appendix Figure A3. The log-likelihood converges during the parameter inference (a) Trace of the log-likelihood
from four initialisations of the inference on the clock-deleted cyanobacteria dataset (different colours.) (b) Histogram of the
posterior distribution of the log-likelihood for the inference samples on the clock-deleted cyanobacteria dataset. The histogram
for each average aligns demonstrating convergence of the log-likelihood.
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Appendix Figure A4. Two-dimensional inheritance matrix model gives a good fit for α = (1, 0)⊤. Same panels
as in Figure 3 but with α = (1, 0)⊤ and showing only one sample. We show the calculated family correlations with 95%
bootstrapped confidence intervals (open markers) and a single sample of the model fit for (a) cyanobacteria, (b) clock-deleted
cyanobacteria, (c) mycobacteria, (d) human colorectal cancer, (e) neuroblastoma and (f). Posterior parameter sets are
clustered by correlation patterns (bar charts.) For this fitting we used 100,000 samples (in contrast to 10 million used in the
main text). We see a similar fit and pattern distributions for all cell types except for mycobacteria (c), which here displays a
dominant oscillator pattern
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Appendix Figure A5. Mapping mechanistic models to the inheritance matrix model framework. (a-f) Simple cell
size control model. (a) Model schematic. (b) The cousin-mother inequality cannot be satisfied for any choice of parameter a.
(c-d) Generalised tree correlation function plots (c) for a = 1 and (d) a = −1.5 resulting in aperiodic and an alternator pattern
respectively. (e-f) Same vs alternate factor mother-daughter correlation plots for (e) a = 1 and (f) a = −1.5 . In panels
(b-f) we fix IE[ξ] = 1,Var(ξ) = 0.1, κ = 1. (g-l) Cell size control model with correlated growth rate. (g) Model schematic.
(h) Region plot with fixed parameter a = 1 showing the parameter space b, c in (−1, 1) that satisfies the cousin-mother
inequality (blue). Example parameter choices are also plotted for an aperiodic (yellow) and an alternator (red) pattern. (i-j)
Generalised tree correlation function plots for (i) (b, c) = (0.2, 0.7) and (j) (b, c) = (−0.81, 0.88) resulting in aperiodic and an
alternator pattern respectively. (k,l) Same vs alternate factor mother-daughter correlation plots for (k) (b, c) = (0.2, 0.7) and
(l) (b, c) = (−0.81, 0.88). In panels (h-l) we fix IE[ξ] = IE[ϕ] = 1,Var(ξ) = Var(ϕ) = 1, κ = 1. (m-r) Two cell cycle phase model
(m) Model schematic. (n) Region plot with fixed parameter b = −0.75 showing the parameter space a, c in (−1, 1) that satisfies
the cousin-mother inequality (blue). Example parameter choices are also plotted for an aperiodic (yellow) and an alternator
(red) pattern. (o-p) Generalised tree correlation function plots (o) for (a, c) = (0.3, 0.4) and (p) (a, c) = (−0.25, 0.9) resulting
in aperiodic and an alternator pattern respectively. (q-r) Same vs alternate factor mother-daughter correlation plots for (q)
(a, c) = (0.3, 0.4) and (r) (a, c) = (−0.25, 0.9). In panels (n-r) we fix Var(ξ) = Var(ϕ) = 1.
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Appendix Figure A6. Models of circadian-clock-driven correlation patterns (a-d) Kicked cell cycle model. (a)

Model schematic. The mother to daughter IDT inheritance is given by β = (a−2)
4

where a is the size control parameter. The
‘kick’ to the cell cycle us produced by a two-dimensional complex eigenvalued inheritance matrix model system with oscillator
behaviour. (b) Region plot for β = −0.25 (blue) and β = 0.25 (grey), demonstrating the region for this model where the cousin
inequality is satisfied. Here we fix the variances of the noise terms ξ1, ξ2 and ξτ all equal to 0.1. (c-d) Plot of the generalised
tree correlation function for (c) (D,P ) = (0.85, 2.5) and (d) (D,P ) = (0.85, 5). In both these plots we take β = −0.25,
meaning the model has a mixture of alternator and oscillator behaviours. The cousin inequality is satisfied for both these
parameter choices. (e-h) Circadian cell size control model (e) Model schematic. The parameter a gives how the daughter’s
birth size depends on the mother’s birth size; and b gives the coupling of the circadian oscillator to the size control. (f) Region
plot demonstrating where the cousin inequality is satisfied. We fix a = 1, b = 1. Correlations between noise terms are fixed
equal to 0 and we set ηi = 0.1 for i ∈ {1, 2, A}. (g-h) Plots of the generalised tree correlation function for the same fixed
parameters specified in panel (f), with (g) (D,P ) = (0.85, 2.5), and (h) (D,P ) = (0.85, 5). As we fix a = 1, these plots show a
combination of aperiodic and oscillator behaviour. We note that for (D,P ) = (0.85, 2.5), the cousin inequality is not satisfied.
This demonstrate that oscillatory behaviour is not a necessary condition for the cousin inequality to be satisfied.
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Appendix Figure A7. A range of oscillator periods can explain oscillatory interdivision time patterns. Histogram
of the posteriors of the possible periods underlying the lineage correlation function for (a) cyanobacteria, (b) mouse embryonic
fibroblasts and (c) human colorectal cancer, calculated using Equation 7. Numerical values give medians of the posterior
distributions for each Tn. For (c) human colorectal cancer, we take the median period of each cluster where the clusters are
allocated through the sign of the real part of the eigenvalue (see Figure 5). For all panels the correlation oscillation period T0 is
given in green and the oscillator periods in different colours. The period analysed in Section II F corresponds to the histograms
of T−1 (blue).
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Appendix Figure A8. Observed period T0 against chosen period parameter P for a forced oscillator pattern. Plot
of the function for P against the observed lineage correlation function period T0 given in Equation (M9) (blue line), for an
oscillator pattern given in Section II B. We see that T0 = P for P > 2. For chosen T0 = 3 with τ = 1 and various n we see how
the parameters P that produce the corresponding T0s are directly equal to the possible Tn we can derive from the chosen T0

(black points), using Equation (7).
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Appendix Figure A9. Validation of the Bayesian inference method using simulated data. Model fits and distribution
of patterns for data simulated using the maximum posterior parameter set (Appendix 1 - Table A2) for (a) cyanobacteria, and
(b) mouse embryonic fibroblasts. To simulate interdivision time lineage trees, we take the maximum posterior parameter sets
from the original inference on the two datasets. These trees are simulated using Eqs. (2) in MATLAB using custom scripts
which utilise ‘Random trees’ branching process [67]. For each dataset, we first simulate a complete tree of 11 generations (2047
cells) and take the last 1000 cells to sample stationary initial conditions. For the final simulated data, we simulated a number of
smaller trees of 6 generations (63 cells each) to better represent live imaging experiments. We divide the number of cells in the
original dataset by 63 and simulate this number of trees, with each tree having initial condition sampled from the last 1000 cells
of the original large tree. We then randomly sample 85% of the simulated cells without replacement to imitate loss of cells from
imaging mid experiment. The calculation of the family interdivision time correlation coefficients and the parameter inference
was done in the same way as with the original datasets as outlined in Methods D. Pearson correlation coefficients (white dots)
and 95% bootstrapped confidence intervals (error bars) were obtained through re-sampling with replacement (10,000 samples)
of the simulated data. Posterior samples were clustered into aperiodic, alternator, and oscillator patterns (bar charts). We
show several representative samples (solid and shaded lines) of the model fit drawn from the posterior distribution. We assume
α = (1, 1)⊤. (c-d) Histograms of the inferred oscillator period T−1 for the original inference (blue) and inference on the
simulated data (orange) for cyanobacteria (c) and mouse embryonic fibroblasts (d), demonstrating significant overlap of the
oscillator period of the simulated parameter set (black dashed line) and the posterior distribution from Bayesian inference.
Note that the posterior distributions of the real (red) and simulated datasets (blue) also overlap. Dashed lines give the median
period of these posterior distributions for original inference (blue) and inference on simulated data (orange). Maximum posterior
parameters used in the simulations are given in Appendix 1 - Table A2.
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APPENDIX TABLES

Cell type Mean τ̄ (hours) Variance ŝτ (hours2) CV ρ̂md ρ̂gg ρ̂ss ρ̂cc 1D AIC 2D AIC ref.
Cyanobacteria (S. elongatus) 15.47± 3.27 10.67± 0.36 0.21± 0.004 −0.25± 0.024 −0.16± 0.028 0.63± 0.028 0.40± 0.019 408.13 14.01 [13]

Clock deleted cyanobacteria (S. elongatus ∆kaiBC) 14.43± 1.89 3.57± 0.15 0.13± 0.003 −0.02± 0.027 0.12± 0.032 0.48± 0.025 0.26± 0.021 172.47 14.00 [13]
Mycobacteria (M. smegmatis) 2.52± 0.65 0.42± 0.03 0.26± 0.010 −0.16± 0.041 −0.05± 0.051 0.55± 0.033 0.05± 0.040 8.69 14.01 [22]

Human colorectal cancer (HCT116) 16.39± 2.55 6.49± 1.10 0.15± 0.012 0.07± 0.141 −0.08± 0.227 0.73± 0.047 0.34± 0.070 22.20 14.23 [23]
Neuroblastoma (TET21N) 17.12± 3.13 9.79± 0.68 0.18± 0.006 0.35± 0.027 0.15± 0.022 0.69± 0.021 0.40± 0.018 196.79 14.00 [24]

Mouse embryonic fibroblasts (NIH3T3) 20.40± 6.09 37.03± 4.31 0.30± 0.015 0.39± 0.040 −0.01± 0.057 0.59± 0.029 0.22± 0.047 21.64 14.01 [25]

Appendix Table A1. Lineage tree statistics obtained from each dataset used in this work. Mean interdivision time τ , tree
variance ŝτ , CVs and all correlation coefficients ± standard deviation of the bootstrap distributions from 10,000 re-samplings
with replacement. Statistics were calculated on all available cells that could be put in the required family pair (Methods D).
Shaded datasets exhibit the cousin-mother inequality.

Matrix
Cyanobacteria
(S. elongatus)

Mouse embryonic
fibroblasts (NIH3T3)

θ

(
−0.561848009 −0.144058395
1.534655933 −0.255834609

) (
−0.417019954 −1.401854729
0.544365633 1.127838871

)
S1

(
2.373007424 0.097863327
0.097863327 1.410419383

) (
103.123125667 −83.980021238
−83.980021238 80.112064942

)
S2

(
0 0
0 0

) (
0 0
0 0

)
α

(
1
1

) (
1
1

)
Appendix Table A2. Maximum posterior matrices from the original inference, used to simulate interdivision time trees used
for analysis in Appendix 1 - SectionA8 Appendix 1 - Figure A9

Cell type Bare variance (hours2) Lineage variance (hours2) Censored variance (hours2)
Cyanobacteria (S. elongatus) 10.674 [9.966, 11.396] 11.543 [10.420, 12.776] 10.612 [9.850, 11.391]

Clock deleted cyanobacteria (S. elongatus ∆kaiBC ) 3.573 [3.288, 3.865] 4.015 [3.529, 4.512] 3.485 [3.176, 3.805]
Mycobacteria (M. smegmatis) 0.427 [0.366, 0.494] 0.601 [0.490, 0.716] 0.609 [0.492, 0.738]

Human colorectal cancer (HCT116) 6.489 [4.540, 8.809] 7.357 [4.898, 10.262] 6.741 [4.695, 9.124]
Neuroblastoma (TET21N) 9.794 [8.539, 11.213] 13.986 [10.735, 17.775] 10.502 [8.554, 12.621]

Mouse embryonic fibroblasts (NIH3T3) 37.032 [29.260, 46.162] 46.378 [34.494, 60.090] 39.418 [29.947, 50.219]

Appendix Table A3. Comparison of different variance estimators. Mean and 95% confidence intervals calculated from bootstrap
distributions of 10,000 re-samplings with replacement for each dataset used in this work. The estimators are obtained as follows:
bare variance is computed using all available cells that could be put in the required family pair (Methods D). The lineage
variance is calculated through the weighted variance with weights wi = 2−Di/Ntrees following arguments similar to [22, 66].
Here Di is the number of divisions in the lineage that came before cell i and Ntrees is the total number of trees in the whole
dataset. The censored variance is calculated after pruning trees such that each tree contains lineages of the same length as in
[24, 27].
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