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Abstract The function of long-term memory is not just to reminisce about the past, but also to make
predictions that help us behave appropriately and efficiently in the future. This predictive function of
memory provides a new perspective on the classic question from memory research of why we remember
some things but not others. If prediction is a key outcome of memory, then the extent to which an item
generates a prediction signifies that this information already exists in memory and need not be encoded.
We tested this principle using human intracranial EEG as a time-resolved method to quantify prediction in
visual cortex during a statistical learning task and link the strength of these predictions to subsequent
episodic memory behavior. Epilepsy patients of both sexes viewed rapid streams of scenes, some of
which contained regularities that allowed the category of the next scene to be predicted. We verified that
statistical learning occurred using neural frequency tagging and measured category prediction with
multivariate pattern analysis. Although neural prediction was robust overall, this was driven entirely by
items that were subsequently forgotten. Such interference provides a mechanism by which prediction can
regulate memory formation to prioritize encoding of information that could help learn new predictive
relationships.

Significance Statement. When faced with a new experience, we are rarely at a loss for what to do.
Rather, because many aspects of the world are stable over time, we rely upon past experiences to
generate expectations that guide behavior. Here we show that these expectations during a new
experience come at the expense of memory for that experience. From intracranial recordings of visual
cortex, we decoded what humans expected to see next in a series of photographs based on patterns of
neural activity. Photographs that generated strong neural expectations were more likely to be forgotten in
a later behavioral memory test. Prioritizing the storage of experiences that currently lead to weak
expectations could help improve these expectations in future encounters.

Introduction

Long-term memory has a limited capacity, and thus a major goal of psychology and neuroscience has been
to identify factors that determine which memories to store. Well-known factors include attention (Aly and
Turk-Browne, 2017), emotion (Dolcos et al., 2017), motivation (Dickerson and Adcock, 2018), stress (Gold-
farb, 2019), and sleep (Cowan et al., 2021). Here we propose a new factor that constrains long-term memory
formation.
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30 Beyond reliving the past, a key function of memory is that it allows us to predict the future (Schacter et al.,
a0 2012). When faced with a new experience, we draw on related experiences from the past to know what is
a1 likely to happen when and where (De Brigard, 2014; Biderman et al., 2020). This knowledge is the result
a2 Of statistical learning, which identifies patterns or regularities in the environment that repeat over time
a3 (Sherman et al., 2020; Endress and Johnson, 2021) and form the basis of predictions (De Lange et al., 2018).
a2 We hypothesize that the availability of these predictions during encoding affects whether a new memory is
«s  formed. Namely, if one of the main objectives of long-term memory is to enable prediction, in the service of
46 adaptive behavior, experiences that already generate a prediction may not need to be encoded. In contrast,
«z experiences that yield uncertainty about what will happen next may be more important to store because
s they can help learn over time what should have been expected. Note that this is distinct from whether
s an experience being encoded was itself expected or unexpected, which also affects subsequent memory
so (Greve et al., 2017; Bein et al., 2021); rather, we argue that the process of generating a prediction based on
51 the experience impedes its encoding.

52 We term this ability of an experience to generate a prediction its predictive value. There is some sugges-
s3  tive evidence for predictive value as an encoding factor. In a statistical learning study with images presented
s« intemporal pairs, subsequent memory for the first item in a pair was impaired relative to unpaired control
ss items (Sherman and Turk-Browne, 2020). Because the firstitem in a pair was always followed by the second
se item, it could have enabled a prediction of the second item and thus had predictive value.

57 However, this prior study was not able to link the predictive value of an item during encoding to sub-
ss sequent memory for that item for several reasons. One issue is that it was unclear whether the memory
so impairment for the first item originated at the time of encoding or emerged in later stages such as consolida-
e tion or retrieval. For example, the first item might have been encoded well, but when this item was probed
e1 in the later memory test, its association with the second item interfered with recognition. The behavioral
s2 experiments in the prior study were equivocal, as prediction was not measured during encoding. An fMRI
ez experiment provided some evidence of prediction during encoding — the category of the second item could
ea be decoded during the first — but the poor temporal resolution fMRI muddied this interpretation. The de-
es coded neural signals were recorded during or after the second item and shifted backward in time based
es ON assumptions about the hemodynamic lag. Methods with better temporal resolution could provide more
ez precise linking between neural signals and experimental events, allowing for more direct measurement of
es predictions.

60 Another issue with the prior study is that it only examined the relationship between prediction and
7o encoding across participants. Average fMRI evidence for the category of second items during first items
71 Was negatively associated with overall memory performance for first items. However, this could reflect a
72 generic individual difference — that participants who make more predictions tend to have worse memory
73— rather than prediction having a mechanistic effect on encoding. According to the latter account, whether
7 a participant remembers or forgets a given item should depend on whether that item triggered a prediction
75 during its encoding. This requires testing for a relationship between prediction and encoding across items
7e Within participant.

7 The present study addresses these issues to better establish predictive value as an encoding factor. We
zs combine intracranial EEG (iEEG) with multivariate pattern analysis, allowing us to measure neural predic-
7o tions in a time-resolved manner and link them to subsequent behavioral memory across trials. Epilepsy
so patients viewed a rapid stream of scene photographs across blocks of a statistical learning task. The scenes
e1 consisted of unique exemplars from various categories (e.g., beaches, mountains, waterfalls) that differed
s2 by block. In the Random blocks, the order of “control” (condition X) categories from which the exemplars
es  were drawn was random. In the Structured blocks, the categories were paired such that exemplars from
sa “predictive” (condition A) categories were always followed by exemplars from “predictable” (condition B)
ss Categories (Figure 1A). Patients were not informed of these conditions or the existence of category pairs,
ss  Which they learned incidentally through exposure (Brady and Oliva, 2008). The items from each category
ez were presented in sub-blocks that changed after four presentations (Figure 1B). After both blocks, patients
ss completed a recognition memory test for the exemplars from the stream.

80 To track statistical learning in the brain, we employed neural frequency tagging (Batterink and Paller,
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Table 1. Patient Information.

ID Age Sex nElec(vis) Implant Data Collected Notes

1 19 F 203(21) RG/S/D 2S5, 2R R2 mem data not usable (D)

2 26 F 163(59) LG/S/D 2S,2R -

3 43 F 172(10) BiD 1S, 2R -

4 61 F 136(0) Bi D 1S, 1R neural mem data not usable (T)
5 31 M 152(31) LG/S/D 2S5, 2R R1 encoding data not usable (T)
6 69 F 92(7) LD 2S, 2R -

7 33 M 232(22) BiD 1S, 1R -

8 31 F 192(20) Bi D 2S, 2R no mem data collected (C)

9 56 F 192(36) Bi D 2S, 2R R1 encoding data not usable (T)
10 53 M 148(0) BiD 2S, 2R -

Description of patient participation. ID: patient participation number. Age: in years. Sex: M = Male, F
= Female. nElec (vis): the total number of electrode contacts, followed by the number of visual electrode
contacts. Implant: R =right-sided implant; L = left-sided implant; Bi = bilateral implant; G = grid; S = strip; D =
depth. Data collected: the number of runs for each condition collected (S = Structured, R = Random). Notes:
which runs (if any) were excluded from given analyses and why. D = patient distraction (e.g., a clinician
coming in and disrupting testing); T = trigger issue (i.e., an error with the equipment such that we could not
align individual trials to our neural signal); C = computer error (e.g., the computer crashed).

oo 2017; Choi et al., 2020; Henin et al., 2021). We quantified the phase coherence of oscillations at the fre-
o1 quency of individual items (present in both Random and Structured blocks) and at half of that frequency
o2 reflecting groupings of two items (present only in Structured blocks with category pairs). To measure pre-
o3 diction during encoding, we used multivariate pattern similarity (Kok et al., 2014, 2017, Demarchi et al.,
oa 2019; Aitken et al., 2020). We first created a template pattern for each scene category based on the neural
os activity it evoked in visual contacts. We then quantified the expression of these categories during statistical
o6 learning, defining prediction as evidence for the second category in a pair evoked by items from the first cat-
o7 egory. In sum, by assessing iEEG signals during the rapid presentation of scenes, we measured the neural
0s representations underlying statistical learning and prediction, and linked these online learning measures
oo to offline memory, revealing how predictive value constrains memory encoding.

100 Materials and Methods

11 Participants

102 We tested 10 participants (7 female; age range: 19-69) who had been surgically implanted with intracranial
103 electrodes for seizure monitoring. Decisions on electrode placement were determined solely by the clinical
104 Care team to optimize localization of seizure foci. Participants were recruited through the Yale Comprehen-
105 Sive Epilepsy Center. Participants provided informed consent in a manner approved by the Yale University
106 Human Subjects Committee.

107 A summary of patient demographics, clinical details, and research participation can be found in Table 1.
1ws  Given electrode coverage and usable data, we retained 9 patients in the behavioral analyses, 8 patients in
100 the neural frequency tagging analyses, and 7 patients in the neural category evidence analyses.

10 IEEG recordings

11 EEG data were recorded on a NATUS NeuroWorks EEG recording system. Data were collected at a sampling
112 rate of 4096 Hz. Signals were referenced to an electrode chosen by the clinical team to minimize noise in
1z the recording. To synchronize EEG signals with the experimental task, a custom-configured DAQ was used
1a  to convert signals from the research computer to 8-bit “triggers” that were inserted into a separate digital
us  channel.
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Figure 1. Task design. (A) Example scene category pairings for one participant. Three of 12 categories were assigned to
condition A. Each A category was reliably followed by one of three other categories assigned to condition B to create
pairs. The remaining six categories assigned to condition X were not paired. Participants viewed the A and B
(Structured) and X (Random) categories in separate blocks of the task. (B) Example stimuli from the Structured block.
Participants passively viewed a continuous stream of scenes. Each scene was shown for 267 ms, followed by an ISI of
267 ms with only a fixation cross on the screen. The stream was segmented into subblocks. The same exemplar of each
category was presented four times per subblock, and new exemplars were introduced for the next subblock. For the
Structured block, the category pairs remained consistent across subblocks. Category pairs are denoted by a colored
frame, corresponding to the A-B pairs (and colored arrows) in subpanel A.
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us IEEG preprocessing

17 IEEG preprocessing was carried out in FieldTrip (Oostenveld et al., 2017). A notch filter was applied to
11 remove 60-Hz line noise. No re-referencing was applied, except for one patient, whose reference was in
110 Visual cortex, resulting in a visual-evoked response in all electrodes; for this patient, we re-referenced the
120 data to a white matter contact in the left anterior cingulate cortex. Data were downsampled to 256 Hz and
121 segmented into trials using the triggers.

12z Electrode selection

123 Patients’ electrode contact locations were identified using their post-operative CT and MRI scans. Recon-
124 Structions were completed in Biolmage Suite (Papademetris et al., 2006) and were subsequently regis-
125 tered to the patient’s pre-operative MRI scan, resulting in contact locations projected into the patient's pre-
126 Operative space. The resulting files were converted from the Bioimagesuite format (.MGRID) into native
127 space coordinates using FieldTrip functions. The coordinates were then used to create a region of interest
12s  (ROI) in FSL (Jenkinson et al., 2012), with the coordinates of each contact occupying one voxel in the mask
120 (Figure 2)

130 For purposes of decoding scene categories, we were specifically interested in examining visually respon-
131 Sive contacts. We defined visual cortex on the MNI T1 2mm standard brain by combining the Occipital Lobe
132 ROl from the MNI Structural Atlas and the following ROIs from the Harvard-Oxford Cortical Structural Atlas:
13z Inferior Temporal Gyrus (temporoocipital part), Lateral Occipital Cortex (superior division), Lateral Occipital
13a  Cortex (inferior division), Intracalcarine Cortex, Cuneal Cortex, Parahippocampal Gyrus (posterior division),
135 Lingual Gyrus, Temporal Occipital Fusiform Cortex, Occipital Fusiform Gyrus, Supracalcarine Cortex, Occipi-
136 tal Pole. Each ROl was thresholded at 10% and then concatenated together to create a single mask of visual
137 Ccortex.

138 To identify which contacts to include in analyses on a per-patient basis, this standard space visual cortex
13 mask was transformed into each participant’s native space. We registered each patient's pre-operative
140 anatomical scan to the MNI T1 2mm standard brain template using linear registration (FSL FLIRT (Jenkinson
1ax  and Smith, 2001; Jenkinson et al., 2002)) with 12 degrees of freedom. This registration was then inverted
142 and used to bring the visual cortex mask into each participant's native space.

143 In order to ensure that the visual cortex mask captured the anatomical areas we intended, we manually
1aa  assessed its overlap between the electrodes and made a few manual adjustments to the electrode defini-
s tion. For example, due to noise in the registrations between post-operative and pre-operative space, as well
146 as from pre-operative space and standard space, some grid and strip contacts appeared slightly outside of
1z the brain, despite being on the surface of the patient’s brain. Thus, contacts such as these were included as
s “visual” even if they were slightly outside of the bounds of the mask. Additionally, due to the liberal thresh-
140 Olds designed to capture broad visual regions, some portions of the parahippocampal gyrus area contained
150 the hippocampus. Contacts within mask boundaries but clearly in the hippocampus were excluded.

11 Procedure

12 Participants completed the experiment on a MacBook Pro laptop while seated in their hospital bed. The task
13 consisted of up to four runs: two runs of the Structured block and two runs of the Random block. We aimed
152 to collect all four runs from each patient, but required a minimum of one run per condition for subject
15 inclusion. Given that the order of structured vs. random information can impact learning (Jungé et al.,
156 2007; Gebhart et al., 2009), the run order was counterbalanced within and across participants (i.e., some
157 participants received Structured-Random-Random-Structured and others Random-Structured-Structured-
158 Random). Participants completed the runs across 1-3 testing sessions based on the amount of testing time
1o available between clinical care, family visits, and rest times.

160 Each run consisted of an encoding phase and a memory phase. During the encoding phase, participants
11 viewed a rapid stream of scene images, during which they were asked to passively view the scenes. Partici-
12 pants were told that their memory for the scenes would be tested in order to encourage them to pay close
163 attention. Each scene was presented for 267 ms, followed by a 267 ms inter-stimulus interval (ISI) period
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Participant 6

Figure 2. Electrode coverage. The contact locations on the grid, strip, and/or depth electrodes for each participant are
plotted as circles in standard brain space. Contacts colored in blue were localized to the visual cortex mask.
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1ea  during which a fixation cross appeared in the center of the screen. These short presentation times were cho-
165 Sen to optimize the task for the frequency tagging analyses, which involves measuring neural entrainment
166 to stimuli.

167 Within each run, participants viewed a series of images from a set of six scene categories. There were
s Six categories in the Structured block, and six other categories in the Random block. In the Structured block,
160 the scenes categories were paired, such that images from one scene category (A) were always followed by
170 an image from another scene category (B). Thus, A scenes were predictive of the category of the upcoming
i1 B scenes, or stated another way, the category of B scenes was predictable given the preceding A scenes.
12 No scene pairs were allowed to repeat back-to-back in the sequence. In the Random block, all six scene
173 categories (X) could be preceded or followed by any other scene category, making them neither predictive
1za nor predictable. No individual scene categories were allowed to repeat back-to-back.

175 In total, participants viewed 16 exemplars from each category within each run. To assist patients with
17ze  remembering these briefly presented images, each individual exemplar was shown four times within a run.
17z Thus, each run was comprised of 16 “subblocks” during which the same set of six exemplar images was
17s  repeated four times (384 trials total). Within each subblock, the order of the pairs/images was randomized,
1o With the constraints described above of no back-to-back repetitions. The individual exemplars changed after
1s0 each subblock, but the category relations were held constant in the Structured block. Participants were not
12 informed of these category pairings, and thus had to acquire them through exposure.

182 At the end of each run, participants completed a memory test. Participants were presented with all
13 96 unique images from the encoding phase, intermixed with 24 novel foils from the same categories (4
1sa  foils/category). Participants first had to indicate whether the image was old, meaning it was just presented
s inthatrun’s encoding phase, or new, meaning that they had not seen thatimage at all during the experiment.
1ss  Following their old/new judgment, participants were asked to indicate their confidence in their response, on
17 a scale of 1 (very unsure) to 4 (very sure). Participants had up to 6 s to make each old/new and confidence
18s judgment.

10 Frequency tagging analyses

10 We conducted a phase coherence analysis to identify electrode contacts that entrained to image and pair
101 frequencies (Henin et al., 2021). For both Structured and Random blocks, the raw signals were concatenated
102 across runs (if more than one per block type) and then segmented into subblocks comprising 24 trials with
103 the four repetitions per exemplar. We then converted the raw signals for each subblock into the frequency
10 domain via fast Fourier transform and computed the phase coherence across subblocks for each electrode
105 Using the formula R? = [ZNcosg]* + [V sing]>. Notably, by computing phase coherence between subblocks,
106 We collapsed over the contribution of individual exemplars that repeated within subblock. In other words,
107 entrainment in this analysis was driven by phase-locking that generalized across exemplars. Phase coher-
108 €nce was computed separately for each contact in the visual cortex mask, and we then averaged across
100 CoONtacts within participant. We focused on phase coherence at the frequency of image presentation (534
200 Ms/image; 1.87 Hz) and pair presentation (1.07 s/pair; 0.93 Hz).

201 Category evidence analyses

202 We employed a multivariate pattern similarity approach to assess the timecourse of category responses.
203 We identified patterns of multivariate activity associated with each category across contacts, frequencies,
20« and time. These category patterns, or “templates”, were defined during the memory phase of the dataset.
205 This was important because the order of categories was random during the memory phase, allowing for
206 an independent assessment of each category across condition regardless of any pairings. We then used
207 these templates to examine category-specific evoked responses during the encoding phase, to assess the
208 presence and timing of category evidence (e.g., for the on-screen category or the upcoming category). The
200 following subsections explain this approach in detail.
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a0 Frequency decomposition

21 We employed a Morlet Wavelet approach to decompose raw signals into time-frequency information (Fig-
212 ure 3A). We convolved our data with a Complex Morlet Wavelet (cycles = 4) at each of 50 logarithmically
213 spaced frequencies between 2 and 100 Hz to extract the power timecourse at each of these 50 frequen-
214 Cies. This analysis was done separately for each encoding and memory phase of each run, and the data
215 were z-scored across time within each frequency and contact. This procedure was applied across the un-
216 segemented timecourses; we then subsequently carved into trials using the triggers, yielding a vector of
217 frequency and contact information at each timepoint within a trial.

218 Subsequent analyses required that each trial have the same number of timepoints. However, memory
210 trials were variable lengths, as participants had up to 6 s to respond. There was also slight variability in the
220 encoding trials (most trials were 138 samples long, but some were 136 or 137 samples). To account for this,
221 we considered only the first 138 samples of each memory trial and treated each encoding trial as having
222 138 samples (interpolating missing timepoints by averaging the last sample of the trial with the first sample
223 Of the next trial).

24 Feature selection

225 We aimed to identify the set of timepoints that produced the best category discrimination. We reasoned
226 that time within a trial would be an important contributor to variance in discriminability, as we would not
227 necessarily expect that timepoints very early on in a trial (immediately after image onset) would produce
228 high discrimination between categories. We also reasoned that the best timepoint(s) may differ from par-
220 ticipant to participant depending on their electrode coverage. Therefore, we devised a participant-specific
230 timepoint feature selection process. Importantly, these feature selection steps were conducted within the
231 memory phase data (the same data on which the templates were trained), which were independent of the
232 test data of interest (encoding phase data).

233 We constructed a set of 30 binary classifiers to distinguish among two categories of a given condition
234 (Figure 3B): A1-A2, A1-A3, A1-B1, A1-B2, A1-B3, A2-A3, A2-B1, A2-B2, A2-B3, A3-B1, A3-B2, A3-B3, B1-B2, B1-
235 B3, B2-B3, X1-X2, X1-X3, X1-X4, X1-X5, X1-X6, X2-X3, X2-X4, X2-X5, X2-X6, X3-X4, X3-X5, X3-X6, X4-X5, X4-X6,
236 X5-X6. We employed a linear support vector machine approach using the SVC function in Python's scikit-
237 learn module, with a penalty parameter of 1.00. We split our data into two-thirds training and one-third
238 test (all within the memory phase), and iterated over the three train-test splits.

230 In the first step of feature selection, we independently trained classifiers on a single timepoint (each
220 Of the 138 timepoints within a trial) and tested each classifier on all 138 timepoints at test (Figure 3C). We
221 averaged the classification over the 138 test timepoints to assess how well training at every timepoint gen-
222 eralized to all other timepoints within a trial. We conducted this analysis for all 30 classifiers and averaged
223 performance over classifiers, yielding a mean classification performance associated with each training time-
2aa point. For each participant, we then computed the rank order of timepoints with respect to their classifi-
2a5  cation, such that the first ranked timepoint was the one that yielded the highest classification, and the last
2a6  ranked (138th) timepoint is the one that yielded the lowest classification.

247 To identify the set of training timepoints producing the best category classification for a given participant,
2a8  We repeated the pairwise classification procedure above iteratively training on an increasing number of
220 timepoints, adding from highest to lowest ranked (Figure 3D). Thus, these classifiers ranged from training
250 0N the single top timepoint, to all 138 timepoints. We again conducted this analysis for all 30 classifiers and
251 averaged performance across them, yielding a mean classification performance associated with the 138
252 sets of top-N timepoints. We ranked this classification performance again to determine which number of
253 top timepoints produced the highest classification. This number was used to define the templates.

=sa  Template correlations

25 Using the set of training timepoints for each participant determined in the feature selection process, we then
256 cOmputed a neural template for each category (Figure 3E). We extracted the pattern of activity (i.e., a vector
257 containing electrode contact, time, and frequency) for all instances of a given category during the memory
28 phase, including both old and new images. We then averaged over the timepoints in that participant's
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Figure 3. Category evidence analysis pipeline. (A) Step 1: A Morlet wavelet approach was used to extract
time-frequency information from contacts in visual cortex. This resulted in contact by frequency vectors for every
timepoint of encoding phase and memory phase trials, which served as the neural patterns for subsequent analysis
steps. (B) Step 2: To identify the neural patterns that distinguished between categories, we ran a series of binary
classifiers for every pair of categories from the memory phase trials. These classifiers were trained on the contact by
frequency vectors for a single timepoint (Step 3) or set of timepoints (Step 4). The classifiers were then tested on
timepoints from held-out data. (C) Step 3: As a first feature-selection step, we trained and tested the classifiers
described in Step 2 separately for all individual timepoints. We then computed the average classification accuracy
(across pairwise classifiers) for each timepoint and participant (each colored line indicates one participant). We then
ranked the timepoints by classification accuracy. (D) Step 4: To select the set of timepoints that produced the best
classification for a given participant, we trained and tested the classifiers in Step 2 on an increasing number of
timepoints, starting with the best-performing timepoint identified in Step 3 and iteratively adding timepoints by rank.
We then computed the per-participant average classification accuracy for each set of timepoints. (E) Step 5: We chose
the per-participant top-N timepoint set that produced the best classification accuracy in Step 4, and then averaged
contact by frequency vectors across those timepoints (across all exemplars of a given category) to create a “template” of
neural activity for each category. (F) Step 6: We then correldted the template for each category from the memory phase
with the contact by frequency vector at each timepoint of each trial/exemplar from that category during the
(independent) encoding phase, yielding a timecourse of pattern similarity reflecting neural category evidence.
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250 training set. The resulting category pattern vector retained spatial (contact) and frequency information.

260 To assess the timecourse of neural evidence for a category during the encoding phase, we extracted
261 the pattern of activity (contact and frequency) for each timepoint of every trial of that category (Figure 3F).
262 We computed the Pearson correlation between the template and the activity pattern separately for each
23 timepoint within a trial, yielding a timecourse of similarity to the template. The resulting Pearson correlation
26a Values were Fisher transformed into z values.

265 We were interested in characterizing the timecourse of a category response not only while that category
266 Was on the screen, but also during the surrounding trials. We may observe evidence for a category before
267 it appears, if it can be predicted (as hypothesized for B), or after it disappears, if its representation lingers.
26 Thus, we assessed the timecourse over a window comprising the on-screen category’s trial (“Current”) and
260 the two neighboring trials (“Pre” and “Post” trials). To quantify the response, we subtracted a baseline of
270 average evidence for the other categories of the same condition (e.g., for category A1, how much evidence
211 is there for A1 relative to categories A2 and A3?). For the X categories, which could appear in any order, we
272 ensured that the categories included in the baseline did not appear during the “Pre” and “Post” trials.

273 We quantified how template similarity changed over time within trial by splitting the trials into “ON" and
272 “ISI" epochs. The ON epoch refers to the part of the trial when the image was on the screen (the first 69
275 samples, or 267 ms). The ISl epoch refers to the part of the trial after the image disappeared from the screen
276 during the inter-stimulus fixation cross (the second 69 samples, or latter 267 ms).

2z Subsequent memory

276 TO assess how variance in category evidence across trials related to memory outcomes for those trials,
270 We examined predictive and on-screen representations separately for subsequently remembered versus
280 forgotten trials. We conducted this analysis separately for memory of A (as a function of Perceived evidence
2s1  for A during A and Predicted evidence for B during A) and for memory of B (as a function of Perceived
282 evidence for B during B and Predicted evidence for B during A). Because each image was shown four times,
2s3 We first averaged the Perceived and Predicted evidence over these four trials. We considered the ISl epoch
2sa  Of each trial, as this was the epoch in which we observed reliable evidence for the Predicted category B
2ss  during A. As a control analysis, we repeated these steps for the X trials from the Random blocks.

s Statistical analysis

287 For all analyses (both behavioral and neural), statistical significance was assessed using a random-effects
28 bootstrap resampling approach (Efron and Tibshirani, 1986). For each of 10,000 iterations, we randomly
280 resampled participants with replacement and recomputed the mean across participants, to populate a sam-
200 pling distribution of the effect. This sampling distribution was used to obtain 95% confidence intervals and
201 perform null hypothesis testing. We calculated the p-value as the proportion of iterations in which the re-
202 sampled mean was in the wrong direction (opposite sign) of the true mean; we then multiplied these values
203 by 2 to obtain a two-tailed p-value. All resampling was done in R (version 3.4.1), and the random number
20 Seed was set to 12345 before each resampling test. This approach is designed to assess the reliability of
205 effects across patients: a significant effect indicates that which patients were resampled on any given itera-
206 tion did not affect the result, and thus that the patients were interchangeable and the effect reliable across
207 the sample.

20s  Results

200  Memory behavior

300  We first assessed overall performance in the recognition memory test to verify that participants were able
301 to encode the images into memory. We computed A’, a non-parametric measure of sensitivity, from test
302 judgments for items from both Structured and Random blocks. All participants had an A’ above the chance
303 level of 0.5 (mean = 0.68; 95% Cl = [0.64, 0.70], p <0.001; Figure 4A) indicating reliable memory. This was
302 driven by a higher hit rate (mean =0.51) than false alarm rate (mean = 0.32; difference 95% CI =[0.14, 0.23], p
305 <0.001). The proportions of items that were subsequently remembered (hit rate) or forgotten (1-hit rate, or
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Figure 4. Behavioral results. (A) Overall memory performance collapsed across conditions. A’ (a sensitivity measure for
recognition memory) is depicted for each participant as a circle. All participants were above chance (0.5). (B) Hit rate as
a function of condition (A: predictive; B: predictable; X: control). Group means are plotted as bars, with errors bars
representing the bootstrapped 95% confidence interval across participants. Individual participant data are overlaid with
the grey circles and lines.

306 Misses) were roughly matched on average, yielding balanced power for within-subject subsequent memory
307 analyses.

308 We then assessed how statistical learning affected recognition memory. Based on our prior work (Sher-
300 man and Turk-Browne, 2020), we hypothesized that the hit rate for items from the predictive A categories
310 in the Structured blocks would be lower than the hit rate for items from the control X categories in the
311 Random blocks. Indeed, we replicated this key behavioral finding (Figure 4B), with a significantly lower hit
;12 rate for A (mean = 0.48) than X (mean = 0.52; difference 95% Cl = [-0.076, -0.010], p = 0.012). The hit rate for
313 B (mean = 0.51) did not differ from A (difference 95% Cl = [-0.10, 0.059], p = 0.51) or X (difference 95% Cl| =
s1a [-0.094, 0.053], p = 0.66).

315 The false alarm rate for X (mean = 0.36) was numerically higher than A (mean = 0.28; difference 95%
s1e  Cl =[-0.0023, 0.16], p = 0.064); X was significantly higher than B (mean = 0.29; difference 95% Cl = [0.0069,
a1z 0.13], p = 0.028), though A and B did not differ (difference 95% CI = [-0.074, 0.056], p = 0.82). Unlike the
s1e  higher hit rate for X than A, which was specifically hypothesized based on prior work, the marginally higher
310 false alarm rate for X than A was not expected or consistent with previous experiments. Nevertheless, this
320 complicates interpretation of the hit rate difference as impaired memory for A vs. X. One difference from
321 the prior study is the blocking of Structured (A,B) and Random (X) categories, which may have allowed for
322 differences in strategy or motivation between conditions. Nevertheless, the main memory hypotheses in
323 the current study rest within the A condition (i.e., which A items are remembered vs. forgotten as a function
324 Of B prediction), rather than on overall condition-wide differences with X (or B).

;s Neural frequency tagging

326 T0 provide a neural check of statistical learning of the category pairs in the Structured blocks, we measured
327 entrainment of neural oscillations in visual electrode contacts to the frequency of individual images and
328 image pairs (Figure 5A). We expected strong entrainment at the image frequency in both the Structured and
320 Random blocks, as this reflects the periodicity of the sensory stimulation. Critically, we hypothesized that
330 there would be greater entrainment at the pair frequency in Structured compared to Random blocks. This
s provides a measure of statistical learning because the pairs only exist when participants extract regularities
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Figure 5. Neural frequency tagging analysis. (A) Schematic of analysis and hypothesized neural oscillations. We expect
entrainment of visual contacts at the frequency of images in both blocks. In the Structured block, we also expect
entrainment at the frequency of category pairs. (B) These hypotheses were confirmed, with reliable peaks in coherence
at the image and pair frequencies in Structured blocks but only at the image frequency in Random blocks. Error bands
indicate the 95% bootstrapped confidence intervals across participants.
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332 over time in the transition probabilities between categories in the Structured blocks.

333 Consistent with our hypotheses and prior work (Henin et al., 2021), there were distinct peaks in phase
s3a  coherence at both the image and pair frequencies in Structured blocks, but only at the image frequency in
335 Random blocks (Figure 5B). To confirm the reliability of these peaks, we contrasted the coherence at the
336 frequency of interest (image: 1.87 Hz; pair: 0.93 Hz) against a baseline of the coherence at frequencies
337 neighboring each of the frequencies of interest (+0.078 Hz). At the image frequency, there were reliable
338 peaks in both the Structured (mean difference = 0.46; 95% Cl = [0.37, 0.55], p <0.001) and Random blocks
330 (mean difference = 0.42; 95% Cl = [0.28, 0.52], p <0.001). At the pair frequency, there was a reliable peak
a0 in Structured blocks (mean difference = 0.059; 95% Cl = [0.035, 0.084]), p <0.001), but not Random blocks
sa1 (mean difference =-0.0027; 95% Cl =[-0.016, 0.0085], p = 0.68).

342 Further, the peak in coherence at the pair frequency in Structured blocks was reliably higher than thatin
a3 Random blocks (mean difference = 0.058; 95% Cl = [0.035, 0.083], p <0.001), confirming the pair frequency
s effect was specific to when there was structure in the sequence. There were no differences in coherence at
s theimage frequency across conditions (mean difference =0.018; 95% CI =[-0.010, 0.048], p = 0.25). Together,
a6 theseresults provide strong evidence that visual regions represented the paired categories during statistical
a7 learning.

s Neural category evidence

a0 The neural frequency tagging for pairs in Structured blocks indicates statistical learning of the pairs. This
ss0 learning should create predictive value for the items from the A categories, which afford a prediction of
;1 the associated B category. To test for these predictive representations, we employed a multivariate pattern
2 similarity approach that extracted neural evidence for visual categories. For each category, we created a
353 neural template based on the pattern of time-frequency information evoked by each category across visual
sa contacts. We then quantified the expression of these templates in the Structured and Random blocks. As a
sss  Check, we expected clear neural evidence for the category of the item being presented on the screen.

386 Critically, we hypothesized that neural evidence for the upcoming B category would manifest before
3s7 ItS appearance, in response to an A exemplar. We measured these temporal dynamics of neural category
s evidence by creating a window of three trials centered on the current item: the trial preceding a trial in
sso  Which the item appeared (“Pre”), the trial during which the item was on the screen (“Current”), and the trial
30 succeeding the trial in which the item appeared (“Post”). For example, if category Pair 1 involved beaches (A1)
e being followed by mountains (B1), neural evidence for the mountain category was calculated in response to
3s2 beach exemplars (Pre), mountain exemplars (Current), and exemplars from the categories that could appear
3e3  next in the Structured sequence (A2 or A3 categories). These evidence values were averaged across the
3ea Categories from the same condition (e.g., B1, B2, and B3 for condition B) and plotted over time (Figure 6A).
ses  For statistical analysis, we averaged the neural category evidence for each category across the timepoints
ses  Within 6 epochs: when Pre, Current, and Post images were on the screen (“ON") and during the fixation
ez period between these trials (“ISI"; Figure 6B). We anticipated the evoked response to each image would span
see  ON and ISI periods (as neural processing of the image would take longer than 267 ms), but subdividing in
30 this way allowed us to test for the emergence of predictive evidence of B during the ISI immediately prior
370 to its onset.

371 For Current trials (i.e., the trial when the target category was on screen), we found robust (perceptual)
372 evidence for both A and B across both the ON epoch (A: mean = 0.0088; 95% CI = [0.0046, 0.013], p <0.001;
373 B: mean = 0.012; 95% CI = [0.0066, 0.018], p <0.001) and ISI epoch (A: mean = 0.012; 95% CI = [0.0084,
72 0.015], p <0.001; B: mean = 0.014; 95% Cl = [0.0083, 0.019], p <0.001). Neural evidence for X categories
375 from Random blocks was not reliable during the ON epoch (mean = 0.0046, 95% Cl = [-0.00075, 0.012], p
376 = 0.13) but became robust later in the trial during the ISI epoch (mean = 0.0074; 95% Cl = [0.0030, 0.013],
377 p <0.001). There was greater evidence for B than X categories during both ON (mean difference = 0.0077;
sz 95% Cl = [0.00058, 0.015], p = 0.031) and ISI epochs (mean difference = 0.0065; 95% C| = [0.00061, 0.012], p
370 =0.031). Considering X as a baseline, this difference shows enhanced perceptual processing of predictable
o Categories. Neural evidence did not differ between A and B categories (ps >0.38) or A and X categories (ps
a1 >0.28).
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Figure 6. Neural category evidence. (A) Time course of similarity between patterns of neural activity in visual contacts
evoked by exemplars from A (predictive), B (predictable), and X (control) categories and category template patterns for
A, B, and X. Current refers to the trial when the item was presented, Pre refers to the trial before the item was presented,
and Post refers to the trial after the item was presented. For each row/condition, the Pre, Current, and Post trials are
compared to the same category template (Current). Error bands reflect the bootstrapped 95% confidence intervals
across participants (i.e., any timepoint whose band excludes 0, p <0.05). (B) Average pattern similarity collapsed across
timepoints within ON (stimulus on screen) and ISl (fixation between stimuli) epochs. Bars represent the means across
participants and error bars indicate the bootstrapped 95% confidence intervals. *p <0.05; **p <0.01; ***p <0.001
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382 For Pre trials (i.e., the trial before the target category appeared), we found the hypothesized predictive
sz neural evidence for the B categories during the ISI epoch (just after its paired A category appeared; mean =
ssa  0.0037; 95% Cl =[0.00054, 0.0071], p =0.019). B evidence was not present during the ON epoch earlier in the
s Pre trials (while its paired A category was on screen; mean = 0.00063; 95% Cl = [-0.0030, 0.0046], p = 0.78);
sss  this may reflect the time needed for associative reactivation of the B category after perceptual processing of
sz the Aitem, or anticipation of the timing when B will appear (at the end of the Pre trial). Further supporting
s OUr interpretation that Pre evidence of the B categories reflects prediction, no such evidence was observed
380 for X during ON (mean =-0.0015; 95% CI = [-0.0039, 0.0012], p = 0.26) or ISI epochs (mean =-0.00031; 95%
300 Cl=[-0.0021, 0.0015], p = 0.73) or for A during the ISI epoch (mean =-0.0012; 95% Cl = [-0.0048, 0.0025], p =
se1  0.53). There was negative evidence for the upcoming A category during the ON epoch of the Pre trial (mean
32 =-0.0043; 95% Cl = [-0.0072, -0.0013], p = 0.0052), but this may have been artifactual (see below). When
303 contrasting prediction-related signals across conditions, Pre neural evidence for the B categories during
3ea  the ISI epoch was reliably greater than X categories (mean difference = 0.0040; 95% Cl = [0.00016, 0.0075],
ses  p = 0.042) and marginally greater than A categories (mean difference = 0.0049; 95% Cl = [-0.00051, 0.010],
306 P = 0075)

307 For Post trials (i.e., the trial after the target category appeared), we found reliable neural evidence for
308 the A categories during the ON epoch (i.e., while its paired B category was on screen; mean = 0.0055; 95%
300 Cl =[0.0017, 0.0091], p = 0.0018); this effect was not significant during the ISI epoch (mean = 0.0041; 95%
a0 Cl=[-0.0011, 0.0098], p = 0.13). We did not find Post evidence of B or X categories during either ON or ISI
201 epochs (ps >0.80), nor was Post evidence for A reliably stronger than B or X (ps >0.16). Positive evidence of A
202 during the Post trial may be related to the negative evidence of A during the Pre trial noted above. Because
203 NO back-to-back pair repetitions were allowed, in an A1-B1-A2-B2 trial sequence, A1 and A2 were different
20a cCategories. A1 evidence during B1 was considered a Post trial for the A condition, whereas A2 evidence
s0s during B1 was considered a Pre trial for the A condition. Because A1 was one of two baseline categories for
206 A2 (along with the third A category, A3), Post evidence for A1 during B1 would have been subtracted from
207 Pre evidence for A2, leading to a negative effect. We tested this by comparing evidence for A2 (Pre) and A1
208 (Post) during B1 to the neutral A3 only. This weakened the negative Pre evidence for A, during ON (mean =
a0 -0.0027; 95% Cl = [-0.0054, 0.00], p = 0.058) and ISI epochs (mean = 0.00048; 95% Cl = [-0.0022, 0.0038], p =
a0 0.82). However, the positive Post evidence for A during the ON epoch remained significant (mean = 0.0081;
a1 95% Cl =[0.0036, 0.014], p <0.001).

a12 Taken together, these results show that statistical learning of the category pairs in Structured blocks
a1z affected neural representations in the task. Not only did visual contacts represent the category of the first
a1 and second items in a pair while they were being perceived (A and B evidence during ON and ISl epochs of
a1s A and B, respectively), but also the first category during the second (A evidence during ON epoch of B) and
a6 the second category during the first (B evidence during ISI epoch after A). This latter effect indicates that
a1z the firstitem in a pair (from A category) had predictive value on average.

as  Subsequent memory analysis

a1 We theorized that items with predictive value are a lower priority for new encoding into episodic memory.
a20 Here we test this relationship by comparing neural category evidence for remembered vs. forgotten items
a1 Within participants. That is, although A items had reliable predictive value on average, variability across
«22 items may relate to subsequent memory. To the extent that prediction interferes with encoding, we hy-
a23  pothesized that subsequently forgotten A items would elicit evidence for the upcoming B category during
«2a their encoding.

425 Consistent with our hypothesis, B evidence during the ISI epoch after A (i.e., Predicted category) was
a26 Negatively related to subsequent A memory (Figure 7A): forgotten A items yielded reliable B evidence (mean
a2z =0.0092; 95% Cl =[0.0023, 0.017], p = 0.0030), whereas remembered A items did not (mean = 0.0017; 95%
28 CI=[-0.0016, 0.0049], p = 0.31). In contrast, A evidence during the ISl epoch after A (i.e., Perceived category)
420 Was reliable for both remembered (mean = 0.012; 95% Cl =[0.0091, 0.015], p <0.001) and forgotten (mean =
a0 0.014; 95% Cl =[0.0077, 0.021], p <0.001) A items. This differential effect of subsequent memory on neural
an1 evidence for Perceived vs. Predicted categories during the ISI after Awas reflected in a significant 2 (evidence
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Figure 7. Subsequent memory analysis. A) Left: Timecourse of pattern similarity in visual contacts between A items
being encoded and the Perceived A (A during A) and Predicted B (B during A) category templates, as a function of
whether A items were subsequently remembered or forgotten. Right: Pattern similarity averaged within the ISI period,
the epoch in which we observed overall evidence of prediction, as a function of subsequent memory for A items (filled
bars = remembered; empty bars = forgotten). B) Left: Timecourse of pattern similarity in visual contacts between B
items being encoded and the Predicted B (B during A) and Perceived B (B during B) category templates, as a function of
whether B items were subsequently remembered for forgotten. Right: Pattern similarity averaged within the ISI period,
as a function of subsequent memory for B items. Error shading/bars reflect the bootstrapped 95% confidence interval
across participants. *p <0.05; **p <0.01; ***p <0.001
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a2 category: A, B) by 2 (subsequent memory: remembered, forgotten) interaction (p <0.001). This interaction
433 Was driven by a marginal difference in neural evidence for the Predicted B category during encoding of
a2 subsequently forgotten vs. remembered A items (mean difference = 0.0075; 95% ClI = [-0.00046, 0.016], p
a3s = 0.065), but no reliable difference in neural evidence for the Perceived A category by subsequent memory
a3 (mean difference = 0.0022; 95% CI = [-0.0050, 0.0094], p = 0.57).

437 As a control analysis, we performed the key steps above in the Random blocks. These blocks did not
438 contain pairs, and so we dummy-coded pairs of X items (X,-X, instead of A-B). In contrast to Structured
a30  blocks, we did not expect that neural evidence of the “Predicted” X, category during the X, ISl would relate
a0 to subsequent memory for X,. Indeed, there was no reliable evidence for the X, category for either remem-
a1 bered (mean =-0.0029; 95% Cl = [-0.0069, 0.00084], p = 0.14) or forgotten (mean = 0.0011; 95% CI = [-0.0027,
a2 0.0054], p = 0.57) X, items. In contrast, neural evidence for the Perceived X, category during the X, ISI was
aa3  reliable for both remembered X, items (mean = 0.010; 95% CI = [0.0039, 0.019], p <0.001) and forgotten X,
aaa  items (mean = 0.0065; 95% Cl = [0.0022, 0.012], p <0.001).

ass We so far focused on the effects of prediction for memory of the item generating the prediction (A), but
ass  What is the mnemonic fate of the item being predicted (B), which in this task with deterministic pairs always
w27 appeared as expected? Whereas neural category evidence for B during the A ISI (Predicted) was negatively
aag  related to subsequent memory for A items, the opposite was true for memory of B items (Figure 7B): re-
220 membered B items were associated with reliable prediction of B (mean = 0.0082; 95% Cl = [0.0036, 0.012], p
a0 <0.001), but forgotten B items were not (mean =-0.0028; 95% Cl =[-0.011, 0.0041], p = 0.49). In contrast, and
«s1 similar to A memory, evidence for B during the B ISI (Perceived) was reliable for both remembered (mean =
a2 0.013; 95% Cl =[0.0082, 0.018], p <0.001) and forgotten (mean = 0.014; 95% ClI = [0.00096, 0.026], p = 0.034)
ss3 B items. We did not find an interaction between category and memory (p = 0.22). However, there was a
«sa  reliable difference in Predicted B evidence for remembered vs. forgotten B items (mean difference =0.011;
a5 95% Cl = [0.00060, 0.021], p = 0.039); Perceived B evidence did not differ as a function of memory (mean
ass  difference = 0.00064; 95% Cl = [-0.014, 0.016], p = 0.89).

457 We repeated the same control analysis of Random blocks, but now focused on subsequent memory for
s X, items (equivalent to B, rather than X, memory for A). Neural evidence for the “Predicted” X, category
a0 during the ISI after X, was not reliable for either remembered (mean = 0.0013; 95% Cl =[-0.0020, 0.0043], p
a0 = 0.44) or forgotten (mean = -0.00048; 95% CI = [-0.0030, 0.0017], p = 0.75) X, items.

461 Together, these results highlight the opposing influence of predictive value on memory for predictive
a2 versus predicted items. Namely, prediction of B (during A) is associated with worse memory for predictive
w3 A items (suggesting interference between the generation of a prediction and encoding of the current item)
sa but better memory for predicted B items (suggesting that this prediction may potentiate encoding of an
a5 Upcoming item).

ws Discussion

sz This study demonstrates a trade-off between how well an item is encoded into episodic memory and how
ss Strong of a future prediction it generates based on statistical learning. We first used frequency tagging
a0 to provide neural verification of statistical learning. During a sequence of scene photographs, electrodes
470 in visual cortex represented pairs of scene categories that reliably followed each other, synchronizing not
az1 only to the individual scenes but also to the boundaries between pairs. Next, we used multivariate pattern
a7z analysis to assess how the paired categories were represented over time. Items from the first category in a
473 pair elicited a representation of the second category, which grew in strength in advance of the onset of items
«7a  from the second category. We refer to the ability of an item to generate this predictive representation as its
475 “predictive value”. Critically, by relating these representational dynamics to subsequent memory behavior,
a7 we found that forgotten items from the first category triggered reliable predictions during encoding whereas
a7z remembered first items had not.

a78 Our work builds upon suggestive evidence from a prior study that predictive value may influence sub-
470 Sequent memory (Sherman and Turk-Browne, 2020). This prior study included behavioral and fMRI experi-
as0 Mments, whereas the current study employed iEEG. Neural measures are an important advance over behav-
a1 ior alone because they can assay predictive representations during passive viewing at encoding. iEEG is

17


https://doi.org/10.1101/2022.03.14.484293
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.14.484293; this version posted April 20, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ss2  superior to fMRI for this purpose because neural activity is sampled at much greater temporal resolution
a3 and activity reflects instantaneous electrical potentials rather than hemodynamic responses smoothed and
«sa delayedintime. This provides much greater confidence that the upcoming category was being represented
ass  prior to its appearance and thus was truly predictive. Moreover, the prior study showed a negative rela-
as6  tionship between prediction and memory across participants, whereas the current study established this
as7  relationship within participant. This is also an important advance because an across-participant relation-
«ss  ship does not provide strong evidence for the claim that prediction during encoding impairs memory. Such
ss0  a relationship could reflect generic individual differences such that, for example, a participant with better
a0 overall memory generates the same weak prediction on both remembered and forgotten trials. In contrast,
201 in this study we were able to link prediction to successful vs. unsuccessful memory formation across items.
a2 This more sensitive approach yielded other findings not observed in the prior study, including that memory
203 for B items had an opposite, positive relationship with prediction of B. Taken together, these results pro-
a4 vide mechanisticinsightinto the interaction between predictive value and memory, and speak to theoretical
205 questions about the representations underlying statistical learning and episodic memory.

s Nature of representational changes

sz Several fMRI studies have shown that statistical and related forms of learning can change neural represen-
208 tations of associated items throughout the human brain (Schapiro et al., 2012, 2013; Schlichting et al., 2015;
a0 Deuker et al., 2016; Tompary and Davachi, 2017). For example, if exposed to sequential pairs embedded
so0 iN @ continuous stream of objects (akin to the category pairs in the current study), the two objects in a pair
so1 come to elicit more similar patterns of fMRI activity from before to after learning, when presented on their
so2  Oown, in the medial temporal lobe cortex and hippocampus (Schapiro et al., 2012). Such integration could
s03 be interpreted as evidence that the representations of the paired items merged into a single “unitized” rep-
soa resentation of the pair that can be evoked by either item (Fujimichi et al., 2010). Alternatively, the paired
sos items may remain distinct but become associated, such that either can be reactivated by the other through
sos Spreading activation (Schapiro et al., 2017). A key difference between these accounts is the timing of how
so7 |learned representations emerge when one of the items is presented: the merging account predicts that
sos the (same) unitized representation is evoked immediately by either paired item, whereas the associative
soo account predicts that the presented item is represented immediately while the paired item is represented
s10  gradually over time through reactivation. These dynamics cannot be distinguished by fMRI because of its
s11 slow temporal resolution, but our iEEG approach may shed light.

512 On the surface, the results of our frequency tagging analysis may seem to suggest a merged represen-
s13 tation of the category pairs. The reliable peak in coherence at the frequency of two consecutive stimuli may
s14  suggest that electrodes in visual cortex represented the paired categories as a single unit (Batterink and
s1s  Paller, 2017). However, the results of our pattern similarity analysis are more consistent with an association
s16  between the paired categories. Although we found that both categories in a pair could be represented at
s17 the same time (i.e., predictive B evidence during the A Pre trial and lingering A evidence during the B Post
s1e  trial, relative to no such evidence on X trials), these representations were offset in time. The representation
s10  Of the A category was robust during both the ON and ISI epochs of the A trial, whereas the representa-
s20  tion of the B category was not reliable during the ON epoch and only emerged during the ISI epoch. Thus,
s21 OUr results are more consistent with an associative account in visual cortex. It remains possible that the
s22 hippocampus or other brain structures represent statistical regularities through unitized representations.
s23  Moreover, one limitation of our study is that we did not measure representations of individual categories
s2a before and after learning to directly assess representational change. Though note that this is more impor-
s2s  tant for fMRI where, unlike with iEEG, the coarse temporal resolution makes it difficult to separate neural
s26  responses of paired stimuli during statistical learning.

sz Predictive interference on memory encoding

s2s  The timecourse of predictive representations also sheds light on the temporal dynamics of the interaction
s20 between episodic memory and statistical learning. When examining the overall effect of prediction, we
s30 found reliable B evidence during the ISI epoch of A, immediately preceding the appearance of B. However,
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sa1  this result was obtained by averaging across all trials, both remembered and forgotten. Thus, it was possible
532 thatwhen separated out by subsequent memory, a different pattern would emerge. One possibility is that B
s33  evidence would come online earlier for forgotten items, which might suggest that the observed impairment
s3a  in A memory resulted from interference with perceptual processing of A. To the contrary, the difference
s3s  in B evidence for remembered vs. forgotten A items was clearest during the ISI after A was removed from
s3s  the screen, which suggests that prediction may interfere with later, post-perceptual stages of processing to
s37  impair encoding.

538 Interestingly, evidence for the current A category was comparable across remembered and forgotten
s30 A items. Thus, in this paradigm, variance in memory was explained solely by prediction of the upcoming
ss0  Category, not the strength of perceptual processing of the category being encoded (Kuhl et al., 2012) nor
sa1  modulation of this processing by prediction (both of which would have affected A evidence). The lack of a
sz relationship between A evidence and A memory may reflect a tradeoff: category evidence may reflect rep-
sa3 resentation of the most diagnostic features of a category, which would enhance memory for these features
saa  While impairing memory for idiosyncratic features of particular exemplars. A related account may explain
sas  Why predictive B evidence was positively linked to B memory (Smith et al., 2013; Thavabalasingam et al.,
sas  20176): B evidence during the A ISI may potentiate the diagnostic features of the B category, enhancing the
saz  Salience of idiosyncratic features of B when it appears to strengthen episodic memory for B. Future studies
sas  could test these possibilities by using a more continuous measure of memory precision and by testing on
sao modified items that retain category-diagnostic vs. idiosyncratic features.

550 This work builds on existing theories considering the complex interplay between memory encoding and
ss1  memory retrieval. To the extent that prediction from statistical learning can be considered as “retrieval”
ss2  Of an associated memory (Kok and Turk-Browne, 2018; Hindy et al., 2016), our findings converge with the
ss3  notion that the brain cycles between mutually exclusive encoding and retrieval states (Hasselmo et al., 2002;
ssa  Duncan et al., 2012; Long and Kuhl, 2019; Bein et al., 2020). Further, a recent computational model suggests
sss  that predictive uncertainty determines when memories should be encoded or retrieved (Lu et al., 2022). The
sss model accounts for findings that familiar experiences are more likely to evoke retrieval (Patil and Duncan,
ss7  2018), and thus may help to explain why predictions from statistical learning are prioritized over episodic
sss  encoding.

sse  Neural source of predictions

seo The current study sought to decode evidence of visual categories and so focused on electrode contacts in
se1 Visual cortex. This adds to a growing literature on predictive signals in visual cortex (De Lange et al., 2018;
se2  Kim et al., 2020). However, these signals may originate elsewhere in the brain. A strong candidate is the
ses hippocampus and surrounding medial temporal lobe cortex. In addition to representing predictions (Kok
sea and Turk-Browne, 2018; Sherman and Turk-Browne, 2020), the hippocampus interfaces between perception
ses and memory (Treder et al., 2027) and has been shown to drive reinstatement of predicted information in
ses Visual cortex (Bosch et al., 2014; Tanaka et al., 2014; Danker et al., 2017; Hindy et al., 2016).

567 Beyond generating predictions, the hippocampus may also be the nexus of the interaction between
ses episodic memory and statistical learning, given its fundamental role in both functions (Schapiro et al., 2017).
seo INndeed, given the necessity of the hippocampus for episodic memory, our study raises questions about how
s7o  the representations of perceived and predicted categories in visual cortex are routed into the hippocam-
s71 - pus for encoding. One intriguing possibility is that these representations are prioritized according to biased
s72  competition (Desimone, 1998; Hutchinson et al., 2016), leading to preferential routing and subsequent en-
s73 coding of predicted, but not perceived, information in the hippocampus. Relatedly, recent work had found
s7a  that encoding vs. retrieval states are associated with distinct patterns of activity in visual cortex (Long and
s7s  Kuhl, 2021), suggesting that representations in visual regions may be fundamentally shaped by memory
s76  State in the hippocampus.

577 The patients in the current study had relatively few contacts in the hippocampus and medial temporal
s7s  lobe cortex, precluding careful analysis of prediction in these regions and how it relates to visual cortex.
s7o  Future studies with a larger cohort of patients and/or high-density hippocampal recordings would be useful
sso  for this purpose. Likewise, future studies could disrupt the hippocampus through stimulation to establish
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ss1  its causal role in predictive representations in visual cortex.

ss2  Conclusion

ss3 [N examining the trade-off between prediction and memory encoding, our work suggests a novel theoreti-
ssa Cal perspective on why predictive value shapes memory. We argue that because memory is capacity- and
sss resource-limited, memory systems must prioritize which information to encode. When prior statistical learn-
sss  iNg enables useful prediction of an upcoming experience, that prediction takes precedence over encoding.
ss7  In this way, encoding is focused adaptively on experiences for which there is room to develop stronger
sss  predictions.
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