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Abstract The function of long-term memory is not just to reminisce about the past, but also to make10

predictions that help us behave appropriately and efficiently in the future. This predictive function of11

memory provides a new perspective on the classic question from memory research of why we remember12

some things but not others. If prediction is a key outcome of memory, then the extent to which an item13

generates a prediction signifies that this information already exists in memory and need not be encoded.14

We tested this principle using human intracranial EEG as a time-resolved method to quantify prediction in15

visual cortex during a statistical learning task and link the strength of these predictions to subsequent16

episodic memory behavior. Epilepsy patients of both sexes viewed rapid streams of scenes, some of17

which contained regularities that allowed the category of the next scene to be predicted. We verified that18

statistical learning occurred using neural frequency tagging and measured category prediction with19

multivariate pattern analysis. Although neural prediction was robust overall, this was driven entirely by20

items that were subsequently forgotten. Such interference provides a mechanism by which prediction can21

regulate memory formation to prioritize encoding of information that could help learn new predictive22

relationships.23

Significance Statement. When faced with a new experience, we are rarely at a loss for what to do.24

Rather, because many aspects of the world are stable over time, we rely upon past experiences to25

generate expectations that guide behavior. Here we show that these expectations during a new26

experience come at the expense of memory for that experience. From intracranial recordings of visual27

cortex, we decoded what humans expected to see next in a series of photographs based on patterns of28

neural activity. Photographs that generated strong neural expectations were more likely to be forgotten in29

a later behavioral memory test. Prioritizing the storage of experiences that currently lead to weak30

expectations could help improve these expectations in future encounters.31

32

Introduction33

Long-termmemory has a limited capacity, and thus a major goal of psychology and neuroscience has been34

to identify factors that determine which memories to store. Well-known factors include attention (Aly and35

Turk-Browne, 2017), emotion (Dolcos et al., 2017), motivation (Dickerson and Adcock, 2018), stress (Gold-36

farb, 2019), and sleep (Cowan et al., 2021). Here we propose a new factor that constrains long-termmemory37

formation.38
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Beyond reliving the past, a key function ofmemory is that it allows us to predict the future (Schacter et al.,39

2012). When faced with a new experience, we draw on related experiences from the past to know what is40

likely to happen when and where (De Brigard, 2014; Biderman et al., 2020). This knowledge is the result41

of statistical learning, which identifies patterns or regularities in the environment that repeat over time42

(Sherman et al., 2020; Endress and Johnson, 2021) and form the basis of predictions (De Lange et al., 2018).43

We hypothesize that the availability of these predictions during encoding affects whether a new memory is44

formed. Namely, if one of themain objectives of long-termmemory is to enable prediction, in the service of45

adaptive behavior, experiences that already generate a predictionmay not need to be encoded. In contrast,46

experiences that yield uncertainty about what will happen next may be more important to store because47

they can help learn over time what should have been expected. Note that this is distinct from whether48

an experience being encoded was itself expected or unexpected, which also affects subsequent memory49

(Greve et al., 2017; Bein et al., 2021); rather, we argue that the process of generating a prediction based on50

the experience impedes its encoding.51

We term this ability of an experience to generate a prediction its predictive value. There is some sugges-52

tive evidence for predictive value as an encoding factor. In a statistical learning study with images presented53

in temporal pairs, subsequent memory for the first item in a pair was impaired relative to unpaired control54

items (Sherman and Turk-Browne, 2020). Because the first item in a pair was always followed by the second55

item, it could have enabled a prediction of the second item and thus had predictive value.56

However, this prior study was not able to link the predictive value of an item during encoding to sub-57

sequent memory for that item for several reasons. One issue is that it was unclear whether the memory58

impairment for the first item originated at the time of encoding or emerged in later stages such as consolida-59

tion or retrieval. For example, the first item might have been encoded well, but when this item was probed60

in the later memory test, its association with the second item interfered with recognition. The behavioral61

experiments in the prior study were equivocal, as prediction was not measured during encoding. An fMRI62

experiment provided some evidence of prediction during encoding— the category of the second item could63

be decoded during the first — but the poor temporal resolution fMRI muddied this interpretation. The de-64

coded neural signals were recorded during or after the second item and shifted backward in time based65

on assumptions about the hemodynamic lag. Methods with better temporal resolution could provide more66

precise linking between neural signals and experimental events, allowing for more direct measurement of67

predictions.68

Another issue with the prior study is that it only examined the relationship between prediction and69

encoding across participants. Average fMRI evidence for the category of second items during first items70

was negatively associated with overall memory performance for first items. However, this could reflect a71

generic individual difference — that participants who make more predictions tend to have worse memory72

— rather than prediction having a mechanistic effect on encoding. According to the latter account, whether73

a participant remembers or forgets a given item should depend on whether that item triggered a prediction74

during its encoding. This requires testing for a relationship between prediction and encoding across items75

within participant.76

The present study addresses these issues to better establish predictive value as an encoding factor. We77

combine intracranial EEG (iEEG) with multivariate pattern analysis, allowing us to measure neural predic-78

tions in a time-resolved manner and link them to subsequent behavioral memory across trials. Epilepsy79

patients viewed a rapid stream of scene photographs across blocks of a statistical learning task. The scenes80

consisted of unique exemplars from various categories (e.g., beaches, mountains, waterfalls) that differed81

by block. In the Random blocks, the order of “control” (condition X) categories from which the exemplars82

were drawn was random. In the Structured blocks, the categories were paired such that exemplars from83

“predictive” (condition A) categories were always followed by exemplars from “predictable” (condition B)84

categories (Figure 1A). Patients were not informed of these conditions or the existence of category pairs,85

which they learned incidentally through exposure (Brady and Oliva, 2008). The items from each category86

were presented in sub-blocks that changed after four presentations (Figure 1B). After both blocks, patients87

completed a recognition memory test for the exemplars from the stream.88

To track statistical learning in the brain, we employed neural frequency tagging (Batterink and Paller,89
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Table 1. Patient Information.
ID Age Sex nElec (vis) Implant Data Collected Notes
1 19 F 203(21) R G/S/D 2S, 2R R2 mem data not usable (D)
2 26 F 163(59) L G/S/D 2S, 2R –
3 43 F 172(10) Bi D 1S, 2R –
4 61 F 136(0) Bi D 1S, 1R neural mem data not usable (T)
5 31 M 152(31) L G/S/D 2S, 2R R1 encoding data not usable (T)
6 69 F 92(7) L D 2S, 2R –
7 33 M 232(22) Bi D 1S, 1R –
8 31 F 192(20) Bi D 2S, 2R no mem data collected (C)
9 56 F 192(36) Bi D 2S, 2R R1 encoding data not usable (T)
10 53 M 148(0) Bi D 2S, 2R –

Description of patient participation. ID: patient participation number. Age: in years. Sex: M = Male, F
= Female. nElec (vis): the total number of electrode contacts, followed by the number of visual electrode
contacts. Implant: R = right-sided implant; L = left-sided implant; Bi = bilateral implant; G = grid; S = strip; D =
depth. Data collected: the number of runs for each condition collected (S = Structured, R = Random). Notes:
which runs (if any) were excluded from given analyses and why. D = patient distraction (e.g., a clinician
coming in and disrupting testing); T = trigger issue (i.e., an error with the equipment such that we could not
align individual trials to our neural signal); C = computer error (e.g., the computer crashed).

2017; Choi et al., 2020; Henin et al., 2021). We quantified the phase coherence of oscillations at the fre-90

quency of individual items (present in both Random and Structured blocks) and at half of that frequency91

reflecting groupings of two items (present only in Structured blocks with category pairs). To measure pre-92

diction during encoding, we used multivariate pattern similarity (Kok et al., 2014, 2017; Demarchi et al.,93

2019; Aitken et al., 2020). We first created a template pattern for each scene category based on the neural94

activity it evoked in visual contacts. We then quantified the expression of these categories during statistical95

learning, defining prediction as evidence for the second category in a pair evoked by items from the first cat-96

egory. In sum, by assessing iEEG signals during the rapid presentation of scenes, we measured the neural97

representations underlying statistical learning and prediction, and linked these online learning measures98

to offline memory, revealing how predictive value constrains memory encoding.99

Materials and Methods100

Participants101

We tested 10 participants (7 female; age range: 19-69) who had been surgically implanted with intracranial102

electrodes for seizure monitoring. Decisions on electrode placement were determined solely by the clinical103

care team to optimize localization of seizure foci. Participants were recruited through the Yale Comprehen-104

sive Epilepsy Center. Participants provided informed consent in a manner approved by the Yale University105

Human Subjects Committee.106

A summary of patient demographics, clinical details, and research participation can be found in Table 1.107

Given electrode coverage and usable data, we retained 9 patients in the behavioral analyses, 8 patients in108

the neural frequency tagging analyses, and 7 patients in the neural category evidence analyses.109

iEEG recordings110

EEG data were recorded on a NATUS NeuroWorks EEG recording system. Data were collected at a sampling111

rate of 4096 Hz. Signals were referenced to an electrode chosen by the clinical team to minimize noise in112

the recording. To synchronize EEG signals with the experimental task, a custom-configured DAQ was used113

to convert signals from the research computer to 8-bit “triggers” that were inserted into a separate digital114

channel.115
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Figure 1. Task design. (A) Example scene category pairings for one participant. Three of 12 categories were assigned tocondition A. Each A category was reliably followed by one of three other categories assigned to condition B to createpairs. The remaining six categories assigned to condition X were not paired. Participants viewed the A and B(Structured) and X (Random) categories in separate blocks of the task. (B) Example stimuli from the Structured block.Participants passively viewed a continuous stream of scenes. Each scene was shown for 267 ms, followed by an ISI of267 ms with only a fixation cross on the screen. The stream was segmented into subblocks. The same exemplar of eachcategory was presented four times per subblock, and new exemplars were introduced for the next subblock. For theStructured block, the category pairs remained consistent across subblocks. Category pairs are denoted by a coloredframe, corresponding to the A-B pairs (and colored arrows) in subpanel A.
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iEEG preprocessing116

iEEG preprocessing was carried out in FieldTrip (Oostenveld et al., 2011). A notch filter was applied to117

remove 60-Hz line noise. No re-referencing was applied, except for one patient, whose reference was in118

visual cortex, resulting in a visual-evoked response in all electrodes; for this patient, we re-referenced the119

data to a white matter contact in the left anterior cingulate cortex. Data were downsampled to 256 Hz and120

segmented into trials using the triggers.121

Electrode selection122

Patients’ electrode contact locations were identified using their post-operative CT and MRI scans. Recon-123

structions were completed in BioImage Suite (Papademetris et al., 2006) and were subsequently regis-124

tered to the patient’s pre-operative MRI scan, resulting in contact locations projected into the patient’s pre-125

operative space. The resulting files were converted from the Bioimagesuite format (.MGRID) into native126

space coordinates using FieldTrip functions. The coordinates were then used to create a region of interest127

(ROI) in FSL (Jenkinson et al., 2012), with the coordinates of each contact occupying one voxel in the mask128

(Figure 2).129

For purposes of decoding scene categories, we were specifically interested in examining visually respon-130

sive contacts. We defined visual cortex on the MNI T1 2mm standard brain by combining the Occipital Lobe131

ROI from the MNI Structural Atlas and the following ROIs from the Harvard-Oxford Cortical Structural Atlas:132

Inferior Temporal Gyrus (temporoocipital part), Lateral Occipital Cortex (superior division), Lateral Occipital133

Cortex (inferior division), Intracalcarine Cortex, Cuneal Cortex, Parahippocampal Gyrus (posterior division),134

Lingual Gyrus, Temporal Occipital Fusiform Cortex, Occipital Fusiform Gyrus, Supracalcarine Cortex, Occipi-135

tal Pole. Each ROI was thresholded at 10% and then concatenated together to create a single mask of visual136

cortex.137

To identify which contacts to include in analyses on a per-patient basis, this standard space visual cortex138

mask was transformed into each participant’s native space. We registered each patient’s pre-operative139

anatomical scan to the MNI T1 2mm standard brain template using linear registration (FSL FLIRT (Jenkinson140

and Smith, 2001; Jenkinson et al., 2002)) with 12 degrees of freedom. This registration was then inverted141

and used to bring the visual cortex mask into each participant’s native space.142

In order to ensure that the visual cortex mask captured the anatomical areas we intended, we manually143

assessed its overlap between the electrodes and made a few manual adjustments to the electrode defini-144

tion. For example, due to noise in the registrations between post-operative and pre-operative space, as well145

as from pre-operative space and standard space, some grid and strip contacts appeared slightly outside of146

the brain, despite being on the surface of the patient’s brain. Thus, contacts such as these were included as147

“visual” even if they were slightly outside of the bounds of the mask. Additionally, due to the liberal thresh-148

olds designed to capture broad visual regions, some portions of the parahippocampal gyrus area contained149

the hippocampus. Contacts within mask boundaries but clearly in the hippocampus were excluded.150

Procedure151

Participants completed the experiment on aMacBook Pro laptopwhile seated in their hospital bed. The task152

consisted of up to four runs: two runs of the Structured block and two runs of the Random block. We aimed153

to collect all four runs from each patient, but required a minimum of one run per condition for subject154

inclusion. Given that the order of structured vs. random information can impact learning (Jungé et al.,155

2007; Gebhart et al., 2009), the run order was counterbalanced within and across participants (i.e., some156

participants received Structured-Random-Random-Structured and others Random-Structured-Structured-157

Random). Participants completed the runs across 1-3 testing sessions based on the amount of testing time158

available between clinical care, family visits, and rest times.159

Each run consisted of an encoding phase and amemory phase. During the encoding phase, participants160

viewed a rapid stream of scene images, during which they were asked to passively view the scenes. Partici-161

pants were told that their memory for the scenes would be tested in order to encourage them to pay close162

attention. Each scene was presented for 267 ms, followed by a 267 ms inter-stimulus interval (ISI) period163
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Figure 2. Electrode coverage. The contact locations on the grid, strip, and/or depth electrodes for each participant areplotted as circles in standard brain space. Contacts colored in blue were localized to the visual cortex mask.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2022. ; https://doi.org/10.1101/2022.03.14.484293doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.14.484293
http://creativecommons.org/licenses/by-nc-nd/4.0/


duringwhich a fixation cross appeared in the center of the screen. These short presentation timeswere cho-164

sen to optimize the task for the frequency tagging analyses, which involves measuring neural entrainment165

to stimuli.166

Within each run, participants viewed a series of images from a set of six scene categories. There were167

six categories in the Structured block, and six other categories in the Random block. In the Structured block,168

the scenes categories were paired, such that images from one scene category (A) were always followed by169

an image from another scene category (B). Thus, A scenes were predictive of the category of the upcoming170

B scenes, or stated another way, the category of B scenes was predictable given the preceding A scenes.171

No scene pairs were allowed to repeat back-to-back in the sequence. In the Random block, all six scene172

categories (X) could be preceded or followed by any other scene category, making them neither predictive173

nor predictable. No individual scene categories were allowed to repeat back-to-back.174

In total, participants viewed 16 exemplars from each category within each run. To assist patients with175

remembering these briefly presented images, each individual exemplar was shown four times within a run.176

Thus, each run was comprised of 16 “subblocks” during which the same set of six exemplar images was177

repeated four times (384 trials total). Within each subblock, the order of the pairs/images was randomized,178

with the constraints described above of no back-to-back repetitions. The individual exemplars changed after179

each subblock, but the category relations were held constant in the Structured block. Participants were not180

informed of these category pairings, and thus had to acquire them through exposure.181

At the end of each run, participants completed a memory test. Participants were presented with all182

96 unique images from the encoding phase, intermixed with 24 novel foils from the same categories (4183

foils/category). Participants first had to indicate whether the image was old, meaning it was just presented184

in that run’s encoding phase, or new,meaning that they hadnot seen that image at all during the experiment.185

Following their old/new judgment, participants were asked to indicate their confidence in their response, on186

a scale of 1 (very unsure) to 4 (very sure). Participants had up to 6 s to make each old/new and confidence187

judgment.188

Frequency tagging analyses189

We conducted a phase coherence analysis to identify electrode contacts that entrained to image and pair190

frequencies (Henin et al., 2021). For both Structured and Randomblocks, the raw signals were concatenated191

across runs (if more than one per block type) and then segmented into subblocks comprising 24 trials with192

the four repetitions per exemplar. We then converted the raw signals for each subblock into the frequency193

domain via fast Fourier transform and computed the phase coherence across subblocks for each electrode194

using the formula 𝑅2 = [Σ𝑁𝑐𝑜𝑠𝜙]2 + [Σ𝑁𝑠𝑖𝑛𝜙]2. Notably, by computing phase coherence between subblocks,195

we collapsed over the contribution of individual exemplars that repeated within subblock. In other words,196

entrainment in this analysis was driven by phase-locking that generalized across exemplars. Phase coher-197

ence was computed separately for each contact in the visual cortex mask, and we then averaged across198

contacts within participant. We focused on phase coherence at the frequency of image presentation (534199

ms/image; 1.87 Hz) and pair presentation (1.07 s/pair; 0.93 Hz).200

Category evidence analyses201

We employed a multivariate pattern similarity approach to assess the timecourse of category responses.202

We identified patterns of multivariate activity associated with each category across contacts, frequencies,203

and time. These category patterns, or “templates”, were defined during the memory phase of the dataset.204

This was important because the order of categories was random during the memory phase, allowing for205

an independent assessment of each category across condition regardless of any pairings. We then used206

these templates to examine category-specific evoked responses during the encoding phase, to assess the207

presence and timing of category evidence (e.g., for the on-screen category or the upcoming category). The208

following subsections explain this approach in detail.209
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Frequency decomposition210

We employed a Morlet Wavelet approach to decompose raw signals into time-frequency information (Fig-211

ure 3A). We convolved our data with a Complex Morlet Wavelet (cycles = 4) at each of 50 logarithmically212

spaced frequencies between 2 and 100 Hz to extract the power timecourse at each of these 50 frequen-213

cies. This analysis was done separately for each encoding and memory phase of each run, and the data214

were z-scored across time within each frequency and contact. This procedure was applied across the un-215

segemented timecourses; we then subsequently carved into trials using the triggers, yielding a vector of216

frequency and contact information at each timepoint within a trial.217

Subsequent analyses required that each trial have the same number of timepoints. However, memory218

trials were variable lengths, as participants had up to 6 s to respond. There was also slight variability in the219

encoding trials (most trials were 138 samples long, but some were 136 or 137 samples). To account for this,220

we considered only the first 138 samples of each memory trial and treated each encoding trial as having221

138 samples (interpolating missing timepoints by averaging the last sample of the trial with the first sample222

of the next trial).223

Feature selection224

We aimed to identify the set of timepoints that produced the best category discrimination. We reasoned225

that time within a trial would be an important contributor to variance in discriminability, as we would not226

necessarily expect that timepoints very early on in a trial (immediately after image onset) would produce227

high discrimination between categories. We also reasoned that the best timepoint(s) may differ from par-228

ticipant to participant depending on their electrode coverage. Therefore, we devised a participant-specific229

timepoint feature selection process. Importantly, these feature selection steps were conducted within the230

memory phase data (the same data on which the templates were trained), which were independent of the231

test data of interest (encoding phase data).232

We constructed a set of 30 binary classifiers to distinguish among two categories of a given condition233

(Figure 3B): A1-A2, A1-A3, A1-B1, A1-B2, A1-B3, A2-A3, A2-B1, A2-B2, A2-B3, A3-B1, A3-B2, A3-B3, B1-B2, B1-234

B3, B2-B3, X1-X2, X1-X3, X1-X4, X1-X5, X1-X6, X2-X3, X2-X4, X2-X5, X2-X6, X3-X4, X3-X5, X3-X6, X4-X5, X4-X6,235

X5-X6. We employed a linear support vector machine approach using the SVC function in Python’s scikit-236

learn module, with a penalty parameter of 1.00. We split our data into two-thirds training and one-third237

test (all within the memory phase), and iterated over the three train-test splits.238

In the first step of feature selection, we independently trained classifiers on a single timepoint (each239

of the 138 timepoints within a trial) and tested each classifier on all 138 timepoints at test (Figure 3C). We240

averaged the classification over the 138 test timepoints to assess how well training at every timepoint gen-241

eralized to all other timepoints within a trial. We conducted this analysis for all 30 classifiers and averaged242

performance over classifiers, yielding amean classification performance associated with each training time-243

point. For each participant, we then computed the rank order of timepoints with respect to their classifi-244

cation, such that the first ranked timepoint was the one that yielded the highest classification, and the last245

ranked (138th) timepoint is the one that yielded the lowest classification.246

To identify the set of training timepoints producing the best category classification for a given participant,247

we repeated the pairwise classification procedure above iteratively training on an increasing number of248

timepoints, adding from highest to lowest ranked (Figure 3D). Thus, these classifiers ranged from training249

on the single top timepoint, to all 138 timepoints. We again conducted this analysis for all 30 classifiers and250

averaged performance across them, yielding a mean classification performance associated with the 138251

sets of top-N timepoints. We ranked this classification performance again to determine which number of252

top timepoints produced the highest classification. This number was used to define the templates.253

Template correlations254

Using the set of training timepoints for each participant determined in the feature selection process, we then255

computed a neural template for each category (Figure 3E). We extracted the pattern of activity (i.e., a vector256

containing electrode contact, time, and frequency) for all instances of a given category during the memory257

phase, including both old and new images. We then averaged over the timepoints in that participant’s258
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Figure 3. Category evidence analysis pipeline. (A) Step 1: A Morlet wavelet approach was used to extracttime-frequency information from contacts in visual cortex. This resulted in contact by frequency vectors for everytimepoint of encoding phase and memory phase trials, which served as the neural patterns for subsequent analysissteps. (B) Step 2: To identify the neural patterns that distinguished between categories, we ran a series of binaryclassifiers for every pair of categories from the memory phase trials. These classifiers were trained on the contact byfrequency vectors for a single timepoint (Step 3) or set of timepoints (Step 4). The classifiers were then tested ontimepoints from held-out data. (C) Step 3: As a first feature-selection step, we trained and tested the classifiersdescribed in Step 2 separately for all individual timepoints. We then computed the average classification accuracy(across pairwise classifiers) for each timepoint and participant (each colored line indicates one participant). We thenranked the timepoints by classification accuracy. (D) Step 4: To select the set of timepoints that produced the bestclassification for a given participant, we trained and tested the classifiers in Step 2 on an increasing number oftimepoints, starting with the best-performing timepoint identified in Step 3 and iteratively adding timepoints by rank.We then computed the per-participant average classification accuracy for each set of timepoints. (E) Step 5: We chosethe per-participant top-N timepoint set that produced the best classification accuracy in Step 4, and then averagedcontact by frequency vectors across those timepoints (across all exemplars of a given category) to create a “template” ofneural activity for each category. (F) Step 6: We then correlated the template for each category from the memory phasewith the contact by frequency vector at each timepoint of each trial/exemplar from that category during the(independent) encoding phase, yielding a timecourse of pattern similarity reflecting neural category evidence.
9
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training set. The resulting category pattern vector retained spatial (contact) and frequency information.259

To assess the timecourse of neural evidence for a category during the encoding phase, we extracted260

the pattern of activity (contact and frequency) for each timepoint of every trial of that category (Figure 3F).261

We computed the Pearson correlation between the template and the activity pattern separately for each262

timepoint within a trial, yielding a timecourse of similarity to the template. The resulting Pearson correlation263

values were Fisher transformed into z values.264

Wewere interested in characterizing the timecourse of a category response not only while that category265

was on the screen, but also during the surrounding trials. We may observe evidence for a category before266

it appears, if it can be predicted (as hypothesized for B), or after it disappears, if its representation lingers.267

Thus, we assessed the timecourse over a window comprising the on-screen category’s trial (“Current”) and268

the two neighboring trials (“Pre” and “Post” trials). To quantify the response, we subtracted a baseline of269

average evidence for the other categories of the same condition (e.g., for category A1, how much evidence270

is there for A1 relative to categories A2 and A3?). For the X categories, which could appear in any order, we271

ensured that the categories included in the baseline did not appear during the “Pre” and “Post” trials.272

We quantified how template similarity changed over time within trial by splitting the trials into “ON” and273

“ISI” epochs. The ON epoch refers to the part of the trial when the image was on the screen (the first 69274

samples, or 267ms). The ISI epoch refers to the part of the trial after the image disappeared from the screen275

during the inter-stimulus fixation cross (the second 69 samples, or latter 267 ms).276

Subsequent memory277

To assess how variance in category evidence across trials related to memory outcomes for those trials,278

we examined predictive and on-screen representations separately for subsequently remembered versus279

forgotten trials. We conducted this analysis separately for memory of A (as a function of Perceived evidence280

for A during A and Predicted evidence for B during A) and for memory of B (as a function of Perceived281

evidence for B during B and Predicted evidence for B during A). Because each image was shown four times,282

we first averaged the Perceived and Predicted evidence over these four trials. We considered the ISI epoch283

of each trial, as this was the epoch in which we observed reliable evidence for the Predicted category B284

during A. As a control analysis, we repeated these steps for the X trials from the Random blocks.285

Statistical analysis286

For all analyses (both behavioral and neural), statistical significance was assessed using a random-effects287

bootstrap resampling approach (Efron and Tibshirani, 1986). For each of 10,000 iterations, we randomly288

resampled participants with replacement and recomputed themean across participants, to populate a sam-289

pling distribution of the effect. This sampling distribution was used to obtain 95% confidence intervals and290

perform null hypothesis testing. We calculated the p-value as the proportion of iterations in which the re-291

sampledmean was in the wrong direction (opposite sign) of the truemean; we thenmultiplied these values292

by 2 to obtain a two-tailed p-value. All resampling was done in R (version 3.4.1), and the random number293

seed was set to 12345 before each resampling test. This approach is designed to assess the reliability of294

effects across patients: a significant effect indicates that which patients were resampled on any given itera-295

tion did not affect the result, and thus that the patients were interchangeable and the effect reliable across296

the sample.297

Results298

Memory behavior299

We first assessed overall performance in the recognition memory test to verify that participants were able300

to encode the images into memory. We computed A′, a non-parametric measure of sensitivity, from test301

judgments for items from both Structured and Random blocks. All participants had an A′ above the chance302

level of 0.5 (mean = 0.68; 95% CI = [0.64, 0.70], p <0.001; Figure 4A) indicating reliable memory. This was303

driven by a higher hit rate (mean = 0.51) than false alarm rate (mean = 0.32; difference 95%CI = [0.14, 0.23], p304

<0.001). The proportions of items that were subsequently remembered (hit rate) or forgotten (1-hit rate, or305
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Figure 4. Behavioral results. (A) Overall memory performance collapsed across conditions. A′ (a sensitivity measure forrecognition memory) is depicted for each participant as a circle. All participants were above chance (0.5). (B) Hit rate asa function of condition (A: predictive; B: predictable; X: control). Group means are plotted as bars, with errors barsrepresenting the bootstrapped 95% confidence interval across participants. Individual participant data are overlaid withthe grey circles and lines.

misses) were roughly matched on average, yielding balanced power for within-subject subsequent memory306

analyses.307

We then assessed how statistical learning affected recognition memory. Based on our prior work (Sher-308

man and Turk-Browne, 2020), we hypothesized that the hit rate for items from the predictive A categories309

in the Structured blocks would be lower than the hit rate for items from the control X categories in the310

Random blocks. Indeed, we replicated this key behavioral finding (Figure 4B), with a significantly lower hit311

rate for A (mean = 0.48) than X (mean = 0.52; difference 95% CI = [-0.076, -0.010], p = 0.012). The hit rate for312

B (mean = 0.51) did not differ from A (difference 95% CI = [-0.10, 0.059], p = 0.51) or X (difference 95% CI =313

[-0.094, 0.053], p = 0.66).314

The false alarm rate for X (mean = 0.36) was numerically higher than A (mean = 0.28; difference 95%315

CI = [-0.0023, 0.16], p = 0.064); X was significantly higher than B (mean = 0.29; difference 95% CI = [0.0069,316

0.13], p = 0.028), though A and B did not differ (difference 95% CI = [-0.074, 0.056], p = 0.82). Unlike the317

higher hit rate for X than A, which was specifically hypothesized based on prior work, the marginally higher318

false alarm rate for X than A was not expected or consistent with previous experiments. Nevertheless, this319

complicates interpretation of the hit rate difference as impaired memory for A vs. X. One difference from320

the prior study is the blocking of Structured (A,B) and Random (X) categories, which may have allowed for321

differences in strategy or motivation between conditions. Nevertheless, the main memory hypotheses in322

the current study rest within the A condition (i.e., which A items are remembered vs. forgotten as a function323

of B prediction), rather than on overall condition-wide differences with X (or B).324

Neural frequency tagging325

To provide a neural check of statistical learning of the category pairs in the Structured blocks, we measured326

entrainment of neural oscillations in visual electrode contacts to the frequency of individual images and327

image pairs (Figure 5A). We expected strong entrainment at the image frequency in both the Structured and328

Random blocks, as this reflects the periodicity of the sensory stimulation. Critically, we hypothesized that329

there would be greater entrainment at the pair frequency in Structured compared to Random blocks. This330

provides a measure of statistical learning because the pairs only exist when participants extract regularities331
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Figure 5. Neural frequency tagging analysis. (A) Schematic of analysis and hypothesized neural oscillations. We expectentrainment of visual contacts at the frequency of images in both blocks. In the Structured block, we also expectentrainment at the frequency of category pairs. (B) These hypotheses were confirmed, with reliable peaks in coherenceat the image and pair frequencies in Structured blocks but only at the image frequency in Random blocks. Error bandsindicate the 95% bootstrapped confidence intervals across participants.
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over time in the transition probabilities between categories in the Structured blocks.332

Consistent with our hypotheses and prior work (Henin et al., 2021), there were distinct peaks in phase333

coherence at both the image and pair frequencies in Structured blocks, but only at the image frequency in334

Random blocks (Figure 5B). To confirm the reliability of these peaks, we contrasted the coherence at the335

frequency of interest (image: 1.87 Hz; pair: 0.93 Hz) against a baseline of the coherence at frequencies336

neighboring each of the frequencies of interest (±0.078 Hz). At the image frequency, there were reliable337

peaks in both the Structured (mean difference = 0.46; 95% CI = [0.37, 0.55], p <0.001) and Random blocks338

(mean difference = 0.42; 95% CI = [0.28, 0.52], p <0.001). At the pair frequency, there was a reliable peak339

in Structured blocks (mean difference = 0.059; 95% CI = [0.035, 0.084]), p <0.001), but not Random blocks340

(mean difference = -0.0027; 95% CI = [-0.016, 0.0085], p = 0.68).341

Further, the peak in coherence at the pair frequency in Structured blocks was reliably higher than that in342

Random blocks (mean difference = 0.058; 95% CI = [0.035, 0.083], p <0.001), confirming the pair frequency343

effect was specific to when there was structure in the sequence. There were no differences in coherence at344

the image frequency across conditions (mean difference = 0.018; 95%CI = [-0.010, 0.048], p = 0.25). Together,345

these results provide strong evidence that visual regions represented the paired categories during statistical346

learning.347

Neural category evidence348

The neural frequency tagging for pairs in Structured blocks indicates statistical learning of the pairs. This349

learning should create predictive value for the items from the A categories, which afford a prediction of350

the associated B category. To test for these predictive representations, we employed a multivariate pattern351

similarity approach that extracted neural evidence for visual categories. For each category, we created a352

neural template based on the pattern of time-frequency information evoked by each category across visual353

contacts. We then quantified the expression of these templates in the Structured and Random blocks. As a354

check, we expected clear neural evidence for the category of the item being presented on the screen.355

Critically, we hypothesized that neural evidence for the upcoming B category would manifest before356

its appearance, in response to an A exemplar. We measured these temporal dynamics of neural category357

evidence by creating a window of three trials centered on the current item: the trial preceding a trial in358

which the item appeared (“Pre”), the trial during which the item was on the screen (“Current”), and the trial359

succeeding the trial inwhich the itemappeared (“Post”). For example, if category Pair 1 involved beaches (A1)360

being followed bymountains (B1), neural evidence for themountain category was calculated in response to361

beach exemplars (Pre), mountain exemplars (Current), and exemplars from the categories that could appear362

next in the Structured sequence (A2 or A3 categories). These evidence values were averaged across the363

categories from the same condition (e.g., B1, B2, and B3 for condition B) and plotted over time (Figure 6A).364

For statistical analysis, we averaged the neural category evidence for each category across the timepoints365

within 6 epochs: when Pre, Current, and Post images were on the screen (“ON”) and during the fixation366

period between these trials (“ISI”; Figure 6B). We anticipated the evoked response to each imagewould span367

ON and ISI periods (as neural processing of the image would take longer than 267 ms), but subdividing in368

this way allowed us to test for the emergence of predictive evidence of B during the ISI immediately prior369

to its onset.370

For Current trials (i.e., the trial when the target category was on screen), we found robust (perceptual)371

evidence for both A and B across both the ON epoch (A: mean = 0.0088; 95% CI = [0.0046, 0.013], p <0.001;372

B: mean = 0.012; 95% CI = [0.0066, 0.018], p <0.001) and ISI epoch (A: mean = 0.012; 95% CI = [0.0084,373

0.015], p <0.001; B: mean = 0.014; 95% CI = [0.0083, 0.019], p <0.001). Neural evidence for X categories374

from Random blocks was not reliable during the ON epoch (mean = 0.0046, 95% CI = [-0.00075, 0.012], p375

= 0.13) but became robust later in the trial during the ISI epoch (mean = 0.0074; 95% CI = [0.0030, 0.013],376

p <0.001). There was greater evidence for B than X categories during both ON (mean difference = 0.0077;377

95% CI = [0.00058, 0.015], p = 0.031) and ISI epochs (mean difference = 0.0065; 95% CI = [0.00061, 0.012], p378

= 0.031). Considering X as a baseline, this difference shows enhanced perceptual processing of predictable379

categories. Neural evidence did not differ between A and B categories (ps >0.38) or A and X categories (ps380

>0.28).381
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Figure 6. Neural category evidence. (A) Time course of similarity between patterns of neural activity in visual contactsevoked by exemplars from A (predictive), B (predictable), and X (control) categories and category template patterns forA, B, and X. Current refers to the trial when the item was presented, Pre refers to the trial before the item was presented,and Post refers to the trial after the item was presented. For each row/condition, the Pre, Current, and Post trials arecompared to the same category template (Current). Error bands reflect the bootstrapped 95% confidence intervalsacross participants (i.e., any timepoint whose band excludes 0, p <0.05). (B) Average pattern similarity collapsed acrosstimepoints within ON (stimulus on screen) and ISI (fixation between stimuli) epochs. Bars represent the means acrossparticipants and error bars indicate the bootstrapped 95% confidence intervals. *p <0.05; **p <0.01; ***p <0.001
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For Pre trials (i.e., the trial before the target category appeared), we found the hypothesized predictive382

neural evidence for the B categories during the ISI epoch (just after its paired A category appeared; mean =383

0.0037; 95% CI = [0.00054, 0.0071], p = 0.019). B evidencewas not present during theON epoch earlier in the384

Pre trials (while its paired A category was on screen; mean = 0.00063; 95% CI = [-0.0030, 0.0046], p = 0.78);385

this may reflect the time needed for associative reactivation of the B category after perceptual processing of386

the A item, or anticipation of the timing when B will appear (at the end of the Pre trial). Further supporting387

our interpretation that Pre evidence of the B categories reflects prediction, no such evidence was observed388

for X during ON (mean = -0.0015; 95% CI = [-0.0039, 0.0012], p = 0.26) or ISI epochs (mean = -0.00031; 95%389

CI = [-0.0021, 0.0015], p = 0.73) or for A during the ISI epoch (mean = -0.0012; 95% CI = [-0.0048, 0.0025], p =390

0.53). There was negative evidence for the upcoming A category during the ON epoch of the Pre trial (mean391

= -0.0043; 95% CI = [-0.0072, -0.0013], p = 0.0052), but this may have been artifactual (see below). When392

contrasting prediction-related signals across conditions, Pre neural evidence for the B categories during393

the ISI epoch was reliably greater than X categories (mean difference = 0.0040; 95% CI = [0.00016, 0.0075],394

p = 0.042) and marginally greater than A categories (mean difference = 0.0049; 95% CI = [-0.00051, 0.010],395

p = 0.075).396

For Post trials (i.e., the trial after the target category appeared), we found reliable neural evidence for397

the A categories during the ON epoch (i.e., while its paired B category was on screen; mean = 0.0055; 95%398

CI = [0.0017, 0.0091], p = 0.0018); this effect was not significant during the ISI epoch (mean = 0.0041; 95%399

CI = [-0.0011, 0.0098], p = 0.13). We did not find Post evidence of B or X categories during either ON or ISI400

epochs (ps >0.80), nor was Post evidence for A reliably stronger than B or X (ps >0.16). Positive evidence of A401

during the Post trial may be related to the negative evidence of A during the Pre trial noted above. Because402

no back-to-back pair repetitions were allowed, in an A1-B1-A2-B2 trial sequence, A1 and A2 were different403

categories. A1 evidence during B1 was considered a Post trial for the A condition, whereas A2 evidence404

during B1 was considered a Pre trial for the A condition. Because A1 was one of two baseline categories for405

A2 (along with the third A category, A3), Post evidence for A1 during B1 would have been subtracted from406

Pre evidence for A2, leading to a negative effect. We tested this by comparing evidence for A2 (Pre) and A1407

(Post) during B1 to the neutral A3 only. This weakened the negative Pre evidence for A, during ON (mean =408

-0.0027; 95% CI = [-0.0054, 0.00], p = 0.058) and ISI epochs (mean = 0.00048; 95% CI = [-0.0022, 0.0038], p =409

0.82). However, the positive Post evidence for A during the ON epoch remained significant (mean = 0.0081;410

95% CI = [0.0036, 0.014], p <0.001).411

Taken together, these results show that statistical learning of the category pairs in Structured blocks412

affected neural representations in the task. Not only did visual contacts represent the category of the first413

and second items in a pair while they were being perceived (A and B evidence during ON and ISI epochs of414

A and B, respectively), but also the first category during the second (A evidence during ON epoch of B) and415

the second category during the first (B evidence during ISI epoch after A). This latter effect indicates that416

the first item in a pair (from A category) had predictive value on average.417

Subsequent memory analysis418

We theorized that items with predictive value are a lower priority for new encoding into episodic memory.419

Here we test this relationship by comparing neural category evidence for remembered vs. forgotten items420

within participants. That is, although A items had reliable predictive value on average, variability across421

items may relate to subsequent memory. To the extent that prediction interferes with encoding, we hy-422

pothesized that subsequently forgotten A items would elicit evidence for the upcoming B category during423

their encoding.424

Consistent with our hypothesis, B evidence during the ISI epoch after A (i.e., Predicted category) was425

negatively related to subsequent Amemory (Figure 7A): forgotten A items yielded reliable B evidence (mean426

= 0.0092; 95% CI = [0.0023, 0.017], p = 0.0030), whereas remembered A items did not (mean = 0.0017; 95%427

CI = [-0.0016, 0.0049], p = 0.31). In contrast, A evidence during the ISI epoch after A (i.e., Perceived category)428

was reliable for both remembered (mean = 0.012; 95% CI = [0.0091, 0.015], p <0.001) and forgotten (mean =429

0.014; 95% CI = [0.0077, 0.021], p <0.001) A items. This differential effect of subsequent memory on neural430

evidence for Perceived vs. Predicted categories during the ISI after Awas reflected in a significant 2 (evidence431
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Figure 7. Subsequent memory analysis. A) Left: Timecourse of pattern similarity in visual contacts between A itemsbeing encoded and the Perceived A (A during A) and Predicted B (B during A) category templates, as a function ofwhether A items were subsequently remembered or forgotten. Right: Pattern similarity averaged within the ISI period,the epoch in which we observed overall evidence of prediction, as a function of subsequent memory for A items (filledbars = remembered; empty bars = forgotten). B) Left: Timecourse of pattern similarity in visual contacts between Bitems being encoded and the Predicted B (B during A) and Perceived B (B during B) category templates, as a function ofwhether B items were subsequently remembered for forgotten. Right: Pattern similarity averaged within the ISI period,as a function of subsequent memory for B items. Error shading/bars reflect the bootstrapped 95% confidence intervalacross participants. *p <0.05; **p <0.01; ***p <0.001
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category: A, B) by 2 (subsequent memory: remembered, forgotten) interaction (p <0.001). This interaction432

was driven by a marginal difference in neural evidence for the Predicted B category during encoding of433

subsequently forgotten vs. remembered A items (mean difference = 0.0075; 95% CI = [-0.00046, 0.016], p434

= 0.065), but no reliable difference in neural evidence for the Perceived A category by subsequent memory435

(mean difference = 0.0022; 95% CI = [-0.0050, 0.0094], p = 0.57).436

As a control analysis, we performed the key steps above in the Random blocks. These blocks did not437

contain pairs, and so we dummy-coded pairs of X items (X1-X2 instead of A-B). In contrast to Structured438

blocks, we did not expect that neural evidence of the “Predicted” X2 category during the X1 ISI would relate439

to subsequent memory for X1. Indeed, there was no reliable evidence for the X2 category for either remem-440

bered (mean = -0.0029; 95% CI = [-0.0069, 0.00084], p = 0.14) or forgotten (mean = 0.0011; 95% CI = [-0.0027,441

0.0054], p = 0.57) X1 items. In contrast, neural evidence for the Perceived X1 category during the X1 ISI was442

reliable for both remembered X1 items (mean = 0.010; 95% CI = [0.0039, 0.019], p <0.001) and forgotten X1443

items (mean = 0.0065; 95% CI = [0.0022, 0.012], p <0.001).444

We so far focused on the effects of prediction for memory of the item generating the prediction (A), but445

what is the mnemonic fate of the item being predicted (B), which in this task with deterministic pairs always446

appeared as expected? Whereas neural category evidence for B during the A ISI (Predicted) was negatively447

related to subsequent memory for A items, the opposite was true for memory of B items (Figure 7B): re-448

membered B items were associated with reliable prediction of B (mean = 0.0082; 95% CI = [0.0036, 0.012], p449

<0.001), but forgotten B items were not (mean = -0.0028; 95% CI = [-0.011, 0.0041], p = 0.49). In contrast, and450

similar to A memory, evidence for B during the B ISI (Perceived) was reliable for both remembered (mean =451

0.013; 95% CI = [0.0082, 0.018], p <0.001) and forgotten (mean = 0.014; 95% CI = [0.00096, 0.026], p = 0.034)452

B items. We did not find an interaction between category and memory (p = 0.22). However, there was a453

reliable difference in Predicted B evidence for remembered vs. forgotten B items (mean difference = 0.011;454

95% CI = [0.00060, 0.021], p = 0.039); Perceived B evidence did not differ as a function of memory (mean455

difference = 0.00064; 95% CI = [-0.014, 0.016], p = 0.89).456

We repeated the same control analysis of Random blocks, but now focused on subsequent memory for457

X2 items (equivalent to B, rather than X1 memory for A). Neural evidence for the “Predicted” X2 category458

during the ISI after X1 was not reliable for either remembered (mean = 0.0013; 95% CI = [-0.0020, 0.0043], p459

= 0.44) or forgotten (mean = -0.00048; 95% CI = [-0.0030, 0.0017], p = 0.75) X2 items.460

Together, these results highlight the opposing influence of predictive value on memory for predictive461

versus predicted items. Namely, prediction of B (during A) is associated with worse memory for predictive462

A items (suggesting interference between the generation of a prediction and encoding of the current item)463

but better memory for predicted B items (suggesting that this prediction may potentiate encoding of an464

upcoming item).465

Discussion466

This study demonstrates a trade-off between how well an item is encoded into episodic memory and how467

strong of a future prediction it generates based on statistical learning. We first used frequency tagging468

to provide neural verification of statistical learning. During a sequence of scene photographs, electrodes469

in visual cortex represented pairs of scene categories that reliably followed each other, synchronizing not470

only to the individual scenes but also to the boundaries between pairs. Next, we used multivariate pattern471

analysis to assess how the paired categories were represented over time. Items from the first category in a472

pair elicited a representation of the second category, which grew in strength in advance of the onset of items473

from the second category. We refer to the ability of an item to generate this predictive representation as its474

“predictive value”. Critically, by relating these representational dynamics to subsequent memory behavior,475

we found that forgotten items from the first category triggered reliable predictions during encodingwhereas476

remembered first items had not.477

Our work builds upon suggestive evidence from a prior study that predictive value may influence sub-478

sequent memory (Sherman and Turk-Browne, 2020). This prior study included behavioral and fMRI experi-479

ments, whereas the current study employed iEEG. Neural measures are an important advance over behav-480

ior alone because they can assay predictive representations during passive viewing at encoding. iEEG is481
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superior to fMRI for this purpose because neural activity is sampled at much greater temporal resolution482

and activity reflects instantaneous electrical potentials rather than hemodynamic responses smoothed and483

delayed in time. This provides much greater confidence that the upcoming category was being represented484

prior to its appearance and thus was truly predictive. Moreover, the prior study showed a negative rela-485

tionship between prediction and memory across participants, whereas the current study established this486

relationship within participant. This is also an important advance because an across-participant relation-487

ship does not provide strong evidence for the claim that prediction during encoding impairs memory. Such488

a relationship could reflect generic individual differences such that, for example, a participant with better489

overall memory generates the same weak prediction on both remembered and forgotten trials. In contrast,490

in this study we were able to link prediction to successful vs. unsuccessful memory formation across items.491

This more sensitive approach yielded other findings not observed in the prior study, including that memory492

for B items had an opposite, positive relationship with prediction of B. Taken together, these results pro-493

videmechanistic insight into the interaction between predictive value andmemory, and speak to theoretical494

questions about the representations underlying statistical learning and episodic memory.495

Nature of representational changes496

Several fMRI studies have shown that statistical and related forms of learning can change neural represen-497

tations of associated items throughout the human brain (Schapiro et al., 2012, 2013; Schlichting et al., 2015;498

Deuker et al., 2016; Tompary and Davachi, 2017). For example, if exposed to sequential pairs embedded499

in a continuous stream of objects (akin to the category pairs in the current study), the two objects in a pair500

come to elicit more similar patterns of fMRI activity from before to after learning, when presented on their501

own, in the medial temporal lobe cortex and hippocampus (Schapiro et al., 2012). Such integration could502

be interpreted as evidence that the representations of the paired items merged into a single “unitized” rep-503

resentation of the pair that can be evoked by either item (Fujimichi et al., 2010). Alternatively, the paired504

items may remain distinct but become associated, such that either can be reactivated by the other through505

spreading activation (Schapiro et al., 2017). A key difference between these accounts is the timing of how506

learned representations emerge when one of the items is presented: the merging account predicts that507

the (same) unitized representation is evoked immediately by either paired item, whereas the associative508

account predicts that the presented item is represented immediately while the paired item is represented509

gradually over time through reactivation. These dynamics cannot be distinguished by fMRI because of its510

slow temporal resolution, but our iEEG approach may shed light.511

On the surface, the results of our frequency tagging analysis may seem to suggest a merged represen-512

tation of the category pairs. The reliable peak in coherence at the frequency of two consecutive stimuli may513

suggest that electrodes in visual cortex represented the paired categories as a single unit (Batterink and514

Paller, 2017). However, the results of our pattern similarity analysis aremore consistent with an association515

between the paired categories. Although we found that both categories in a pair could be represented at516

the same time (i.e., predictive B evidence during the A Pre trial and lingering A evidence during the B Post517

trial, relative to no such evidence on X trials), these representations were offset in time. The representation518

of the A category was robust during both the ON and ISI epochs of the A trial, whereas the representa-519

tion of the B category was not reliable during the ON epoch and only emerged during the ISI epoch. Thus,520

our results are more consistent with an associative account in visual cortex. It remains possible that the521

hippocampus or other brain structures represent statistical regularities through unitized representations.522

Moreover, one limitation of our study is that we did not measure representations of individual categories523

before and after learning to directly assess representational change. Though note that this is more impor-524

tant for fMRI where, unlike with iEEG, the coarse temporal resolution makes it difficult to separate neural525

responses of paired stimuli during statistical learning.526

Predictive interference on memory encoding527

The timecourse of predictive representations also sheds light on the temporal dynamics of the interaction528

between episodic memory and statistical learning. When examining the overall effect of prediction, we529

found reliable B evidence during the ISI epoch of A, immediately preceding the appearance of B. However,530
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this result was obtained by averaging across all trials, both remembered and forgotten. Thus, it was possible531

that when separated out by subsequentmemory, a different patternwould emerge. One possibility is that B532

evidence would come online earlier for forgotten items, whichmight suggest that the observed impairment533

in A memory resulted from interference with perceptual processing of A. To the contrary, the difference534

in B evidence for remembered vs. forgotten A items was clearest during the ISI after A was removed from535

the screen, which suggests that prediction may interfere with later, post-perceptual stages of processing to536

impair encoding.537

Interestingly, evidence for the current A category was comparable across remembered and forgotten538

A items. Thus, in this paradigm, variance in memory was explained solely by prediction of the upcoming539

category, not the strength of perceptual processing of the category being encoded (Kuhl et al., 2012) nor540

modulation of this processing by prediction (both of which would have affected A evidence). The lack of a541

relationship between A evidence and A memory may reflect a tradeoff: category evidence may reflect rep-542

resentation of the most diagnostic features of a category, which would enhance memory for these features543

while impairing memory for idiosyncratic features of particular exemplars. A related account may explain544

why predictive B evidence was positively linked to B memory (Smith et al., 2013; Thavabalasingam et al.,545

2016): B evidence during the A ISI may potentiate the diagnostic features of the B category, enhancing the546

salience of idiosyncratic features of B when it appears to strengthen episodic memory for B. Future studies547

could test these possibilities by using a more continuous measure of memory precision and by testing on548

modified items that retain category-diagnostic vs. idiosyncratic features.549

This work builds on existing theories considering the complex interplay between memory encoding and550

memory retrieval. To the extent that prediction from statistical learning can be considered as “retrieval”551

of an associated memory (Kok and Turk-Browne, 2018; Hindy et al., 2016), our findings converge with the552

notion that the brain cycles betweenmutually exclusive encoding and retrieval states (Hasselmo et al., 2002;553

Duncan et al., 2012; Long and Kuhl, 2019; Bein et al., 2020). Further, a recent computational model suggests554

that predictive uncertainty determineswhenmemories should be encoded or retrieved (Lu et al., 2022). The555

model accounts for findings that familiar experiences are more likely to evoke retrieval (Patil and Duncan,556

2018), and thus may help to explain why predictions from statistical learning are prioritized over episodic557

encoding.558

Neural source of predictions559

The current study sought to decode evidence of visual categories and so focused on electrode contacts in560

visual cortex. This adds to a growing literature on predictive signals in visual cortex (De Lange et al., 2018;561

Kim et al., 2020). However, these signals may originate elsewhere in the brain. A strong candidate is the562

hippocampus and surrounding medial temporal lobe cortex. In addition to representing predictions (Kok563

and Turk-Browne, 2018; Sherman and Turk-Browne, 2020), the hippocampus interfaces between perception564

and memory (Treder et al., 2021) and has been shown to drive reinstatement of predicted information in565

visual cortex (Bosch et al., 2014; Tanaka et al., 2014; Danker et al., 2017; Hindy et al., 2016).566

Beyond generating predictions, the hippocampus may also be the nexus of the interaction between567

episodic memory and statistical learning, given its fundamental role in both functions (Schapiro et al., 2017).568

Indeed, given the necessity of the hippocampus for episodic memory, our study raises questions about how569

the representations of perceived and predicted categories in visual cortex are routed into the hippocam-570

pus for encoding. One intriguing possibility is that these representations are prioritized according to biased571

competition (Desimone, 1998; Hutchinson et al., 2016), leading to preferential routing and subsequent en-572

coding of predicted, but not perceived, information in the hippocampus. Relatedly, recent work had found573

that encoding vs. retrieval states are associated with distinct patterns of activity in visual cortex (Long and574

Kuhl, 2021), suggesting that representations in visual regions may be fundamentally shaped by memory575

state in the hippocampus.576

The patients in the current study had relatively few contacts in the hippocampus and medial temporal577

lobe cortex, precluding careful analysis of prediction in these regions and how it relates to visual cortex.578

Future studies with a larger cohort of patients and/or high-density hippocampal recordings would be useful579

for this purpose. Likewise, future studies could disrupt the hippocampus through stimulation to establish580
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its causal role in predictive representations in visual cortex.581

Conclusion582

In examining the trade-off between prediction and memory encoding, our work suggests a novel theoreti-583

cal perspective on why predictive value shapes memory. We argue that because memory is capacity- and584

resource-limited,memory systemsmust prioritizewhich information to encode. Whenprior statistical learn-585

ing enables useful prediction of an upcoming experience, that prediction takes precedence over encoding.586

In this way, encoding is focused adaptively on experiences for which there is room to develop stronger587

predictions.588
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