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  34 

ABSTRACT  35 

Genome wide association studies provide statistical measures of gene-trait associations that 36 
reveal how genetic variation influences phenotypes. This study develops an unsupervised 37 
dimensionality reduction method called UnTANGLeD (Unsupervised Trait Analysis of 38 
Networks from Gene Level Data) which organises 16,849 genes into discrete gene programs 39 
by measuring the statistical association between genetic variants and 1,393 diverse complex 40 
traits. UnTANGLeD reveals 173 gene clusters enriched for protein-protein interactions and 41 
highly distinct biological processes governing development, signalling, disease, and 42 
homeostasis. We identify diverse gene networks with robust interactions but not associated 43 
with known biological processes. Analysis of independent disease traits shows that 44 
UnTANGLeD gene clusters are conserved across all complex traits, providing a simple and 45 
powerful framework to predict novel gene candidates and programs influencing orthogonal 46 
disease phenotypes. Collectively, this study demonstrates that gene programs co-ordinately 47 
orchestrating cell functions can be identified without reliance on prior knowledge, providing a 48 
method for use in functional annotation, hypothesis generation, machine learning and 49 
prediction algorithms, and the interpretation of diverse genomic data.  50 
 51 
 52 
  53 

 54 
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INTRODUCTION  59 

Generation of consortium-scale data such as ENCODE (1), the Human Cell Atlas (2) and the 60 

UKBiobank (3) coupled with the development of advanced computational methods is enabling 61 

the creation of transformative models that harness the natural diversity of biological systems. 62 

These models draw on the relationships and patterns derived from biological data to establish 63 

quantitative frameworks that can make highly accurate predictions, with implications for nearly 64 

every field of biology. For example, in the field of structural biology, patterns in the sequences 65 

and structures of proteins’ evolutionary homologs reveal how amino acids interact, enabling 66 

prediction of protein structure with atomic accuracy (4). Similarly, patterns of repressive 67 

histone methylation (H3K27me3) across hundreds of human cell types enable identification of 68 

genes governing cell decisions and functions for any cell type and organism (5).   69 

  70 

Genome wide association studies (GWAS) characterise the genomic variation underlying 71 

complex traits and diseases, providing insights into how genes affect biological processes (6). 72 

Despite the wealth of variant-trait association information, GWAS studies predominantly focus 73 

on elucidating the genetic basis of a single trait or a group of highly related traits (6, 7). Here, 74 

we utilize patterns of genomic variation across hundreds of diverse phenotypes as the basis for 75 

an unsupervised method to parse the organisation of gene programs in cells.   76 

  77 

We hypothesised that complex traits are underpinned by conserved gene programs that can be 78 

identified by studying associations between genetic variation and phenotypic variation. To test 79 

this, we developed UnTANGLeD (Unsupervised Trait Analysis of Networks from Gene Level 80 

Data), which identifies patterns of association between genes and hundreds of diverse 81 

phenotypes. UnTANGLeD creates a phenotypic signature to cluster genes with similar 82 

associations across many traits in an unsupervised manner into gene programs controlling cell 83 

biological processes (Figure 1).   84 

  85 

We used a gene-trait association matrix derived from GWAS data for 1,393 complex traits to 86 

infer co-ordinately acting gene programs that represent both known and novel biological 87 

processes. While the scale of associations available from public GWAS data is underpowered 88 

to saturate the accuracy of our model, we demonstrate that UnTANGLeD can be applied to any 89 

orthogonal GWAS data to predict the genetic basis of disease including in underpowered and 90 

transethnic GWAS data. UnTANGLeD provides a powerful analytical framework for studies 91 

in population genetics, cell biology, and genomics, that will improve as more data emerges.  92 
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Collectively, this study provides a statistical framework for defining genes orchestrating 93 

biological processes by evaluating genetic signatures across diverse complex traits.  94 

  95 

MATERIALS AND METHODS  96 

Data Collection  97 

S-MultiXcan results for 1,393 phenotypes with statistically significant SNP-based heritability 98 

(p < 0.05) were downloaded from CTG-VL (http://vl.genoma.io). Phenotypes are listed in 99 

Table S2. SNP-based heritability was estimated using linkage disequilibrium score regression 100 

(LDSR). The significance values reflecting the strength of the association between each gene 101 

and trait across all tissues were compiled into a gene-trait association matrix.   102 

  103 

Dimensionality Reduction Analysis Pipeline  104 
All genes with fewer than 2 significant associations across all phenotypes (p < 10-4) were 105 

removed, leaving 16849 genes. Following this, all values in the gene-trait association matrix 106 

were chi-squared transformed. Infinite values produced when transforming very small p-value 107 

(<1e-300) due to floating point precision were replaced with 1,415, which was 5 greater than 108 

the largest non-infinite value. The data was then normalised by the sum of chi-squared values 109 

per phenotype and scaled by a factor of 10,000. 10 principal components were retained from 110 

the principal component analysis (PCA). Clustering of genes was performed using the native 111 

Seurat shared-nearest neighbour algorithm. Clustering iterations were performed at increasing 112 

resolutions from 0.2 to 20 in increments of 0.2. The resolution is a parameter from Seurat where 113 

increased values lead to a greater number of clusters. Cluster assignments were compiled into 114 

a consensus distance matrix, where each gene pair had a value representing how often they 115 

were grouped together out of 100 potential matches. 100 was then subtracted from the values 116 

and they were made absolute to transform the matrix into a dissimilarity matrix. Agglomerative 117 

clustering using Ward’s minimum variance method, as implemented in the stats package, was 118 

applied to the consensus matrix directly. The average silhouette score (a metric used to 119 

calculate how well a data point relates to its cluster) across all genes was calculated using the 120 

cluster package from 2 to 300 clusters. The inflection package was used to calculate the plateau 121 

point, which was determined to be the optimal number of clusters. Pearson’s correlation was 122 

used to determine the correlation of a gene with the other genes in the same cluster based on 123 

chi-squared association values.  124 

  125 
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Enrichment Analyses  126 

GO, DO, KEGG enrichment, colocalization and tissue specificity enrichment were performed 127 

using ClusterProfiler (8). An FDR corrected significance value of p < 0.01 was used. 128 

Colocalization was determined using ClusterProfiler enrichment for the Molecular Signatures 129 

Database collection 3: positional gene sets (9). The largest proportion of genes within a cluster 130 

belonging to a single genomic region was divided by the total number of genes within the 131 

cluster to identify the maximum degree of colocalization.  STRING enrichment analysis was 132 

performed using the STRINGdb package, with a significance threshold of p < 0.001 and a 133 

confidence threshold of 0.400.  STRING enrichment analysis without the text-mining 134 

component was performed using the online STRING interface (https://string-db.org/) for 135 

clusters found to have PPI enrichment in the prior analysis with a confidence threshold of 0.150 136 

to preserve predicted interactions reinforced by other components.  For the calculation of the 137 

correlation between the loss of enrichment and the degree of colocalization, clusters 111 and 138 

173 were removed due to having well established biological functions despite being highly 139 

colocalised. Broad enrichment analysis for more specialised gene sets was performed using 140 

EnrichR (https://maayanlab.cloud/Enrichr/) across all 192 libraries. Redundant libraries, 141 

including GO, KEGG, chromosomal location and NIH-grant associated libraries were 142 

excluded. The top  significant term from each library for each cluster are reported in Table S9. 143 

A significance value threshold of 0.01, after correction for multiple testing, was used. For 144 

identification of genes possessing the same protein domains or belonging to the same family, 145 

the EnrichR library ‘Pfam_Domains_2019’ was used. A distinct protein family or domain was 146 

defined by collating the family or domain terms together that shared genes until there was no 147 

overlap between them. Protein terms did not need to be significantly enriched, but two or more 148 

members of a protein family had to be present in a single cluster.  149 

  150 

Permutations  151 

Five permutations were generated by re-ordering the values within the gene-trait association 152 

matrix. These permutations were analysed as described above. A one-way ANOVA with FDR 153 

corrected pairwise comparisons was performed to identify significant differences in the number 154 

of enriched clusters, total enriched GO terms and the most significant GO enrichment of any 155 

cluster.   156 

  157 
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Phenotype Associations  158 

The gene-trait association matrix containing p-values was -log10 transformed. All infinite 159 

values generated due to floating point precision were windsorized with 315, which was 5 160 

greater than the maximum finite value. The phenotypic associations for the genes within a 161 

cluster were extracted, averaged, normalised for their average associations across the dataset 162 

and ranked.   163 

  164 

Clustering quality in dimensionality reduction methods  165 

We extracted the UMAP coordinates for all genes as calculated by Seurat. Following this, we 166 

identified the 10 closest neighbours for each gene and calculated the average correlation of chi-167 

squared association values between the gene and its neighbours. The UMAP was re-plotted 168 

representing the average correlation with each point colour. We repeated the process, instead 169 

colouring by the number of significant associations for each gene.   170 

  171 

Prediction of novel genes using an underpowered GWAS of the same trait  172 

Data collection and S-MultiXcan Analysis  173 

We selected 13 phenotypes for which GWAS studies had been performed at differing cohort 174 

sizes or ethnicities for the same, or comparable traits. The specific studies and their respective 175 

details can be found in Table S1. Summary statistics were downloaded from various sources 176 

and harmonised using MetaXcan’s in-built harmonization 177 

(https://github.com/hakyimlab/MetaXcan) to be compatible with the MASHR models. We then 178 

performed S-MultiXcan analysis of each trait using the MASHR models built off the V8 GTEx 179 

release. Associated genes were defined as those found to have a significance of            p < 10-4 180 

by S-MultiXcan. 181 

  182 

Global Clustering Coefficient Calculation  183 

The genes identified for an independent GWAS were projected onto the 173 identified clusters. 184 

Following this, we generated an unweighted adjacency matrix in which genes in the same 185 

cluster were represented by a 1, and genes in different clusters by a 0. A comparison between 186 

the same gene was represented by 0. Finally, the global clustering coefficient (GCC) for the 187 

genes was calculated. To derive a statistical significance, we randomly sampled the same 188 

number of genes as there were significant genes for the phenotype and calculated the GCC one-189 

hundred times. A Z score was calculated from the curve generated by the sampled values.   190 

  191 
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Gene Prediction  192 

We took a simple approach of predicting which clusters were associated with the trait using the 193 

S-MultiXcan associations from the smaller GWAS and then checking whether novel gene 194 

associations identified by the larger GWAS were in those clusters. A chi-squared enrichment 195 

test was used where the minimum expected frequency was greater than 5, and a fisher’s test if 196 

not. Several approaches to predict clusters associated with the trait were trialled. The first was 197 

to identify any of the 173 clusters with a significant gene in it. The second was to integrate the 198 

additional phenotype into the trait-gene association matrix. Next, clusters were identified which 199 

had an overall significance signature > 1.5 times the average or were significantly (p < 0.05) 200 

higher than the average signature. Different values were tested for these thresholds, with these 201 

providing the best performance. The third approach was to predict associated clusters from the 202 

previously established 173 clusters using the thresholds taken in approach two. A one-way 203 

ANOVA was performed with pairwise comparisons to determine the best approach. Approach 204 

three was the most effective, albeit not significantly, while maintaining a low computational 205 

burden.  In instances where transethnic GWAS were compared, the East-Asian GWAS was 206 

used to predict the trait relevant clusters, and the European GWAS was used as the test set.   207 

  208 

Gene Prioritization Analysis  209 

The GWAS with the largest sample size for each of the 13 traits listed in Table S1 was used to 210 

determine the potential of our pipeline for prioritizing genes within a locus. Clumping was 211 

performed on each summary statistic using PLINK (https://www.cog-genomics.org/plink/) and 212 

1000 genomes phase 1 genotype data with an LD threshold of 0.5. This was followed by 213 

clumping for long distance LD, at the same threshold. Next, we identified individual 500kb 214 

regions around the lead SNPs and the genes within that region.   215 

  216 

We took a leave one chromosome out (LOCO) approach, where we removed all potential genes 217 

on one chromosome. With the remaining genes, we identified which clusters were enriched for 218 

genes associated with the trait. To calculate enrichment, we treated all genes associated with 219 

one locus as one positive, so that enrichment was for different loci and not genes at the same 220 

locus. A fisher’s enrichment test was used to determine significance. Finally, we assessed at 221 

what proportion of loci the UnTANGLeD clusters identified a gene when that chromosome 222 

was left out of the analysis.  223 

  224 
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Normalisation  225 

We trialled relative count, centralised-log ratio and logarithmic normalisation on the chi-226 

squared transformed values of the gene-trait matrix across phenotypes. We evaluated their 227 

effects on the following metrics: correlation score, silhouette score, GO and STRING 228 

enrichment, global clustering coefficient, prediction of GWAS. A Kruskal Wallis one-way 229 

analysis of variance was used to evaluate differences.  Relative count was used for the final 230 

pipeline.  231 

 232 

Phenotype Filtering Based on Euclidean Distance 233 

A distance matrix between phenotypes using chi-squared transformed, RC-normalised data was 234 

generated using the Euclidean distance formula from the package wordspace. Phenotypes with 235 

a Euclidean distance below a set threshold, which indicated a high degree of relatedness, were 236 

removed from the data, leaving the phenotype with the highest number of significant 237 

associations. This was performed for thresholds 0 to 62, at which too few phenotypes remained 238 

to cluster the genes using the dimensionality reduction methods. GO enrichment was used to 239 

evaluate the clustering efficacy at each threshold.  240 

  241 

Phenotype Subsampling and Sensitivity Analyses  242 

Phenotype subsampling was performed on two datasets; MultiXcan results for 1393 phenotypes 243 

across 16,849 genes generated in this paper, and another dataset containing MultiXcan results 244 

for 4091 phenotypes across 15,734 genes (phenomexcan.org). For the data containing 1393 245 

phenotypes, subsampling was performed randomly without replacement from 50 to 1393 246 

phenotypes in 20 equal increments across 5 replicates for each number of traits. The full 247 

UnTANGLeD clustering pipeline was applied to each subsampled matrix. Adjusted rand index 248 

(ARI) was calculated for each of the subsampled clustering configurations compared to the full 249 

dataset. This analysis was repeated for the data containing 4091 phenotypes; however, 250 

subsampling was performed from 50 phenotypes to 4091 phenotypes in 50 equal increments.  251 

 252 

Cluster Conservation 253 

To explore the cause for the marked increase in ARI between 1322 phenotypes and 1393 254 

phenotypes, cluster conservation was calculated between them. For each cluster from 1393 255 

phenotypes, the proportion of genes that remained grouped together in each of the clusters from 256 
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1322 phenotypes was calculated. That proportion was used to assign a conservation score to 257 

each gene, depending on how large the proportion of cluster the specific gene remained with 258 

was. The same approach was applied between 4091 phenotypes and 4009 phenotypes.   259 

 260 

RESULTS  261 

  262 

Unsupervised identification of gene groups with shared complex trait associations  263 

We used MultiXcan results from CTG-VL (10) derived from publicly available GWAS 264 

(primarily from UK Biobank, on ~400,000 individuals) to create a gene-trait association matrix 265 

for 16,849 genes and 1,393 traits (Figure 1, Figure S1, Table S2).  For each gene trait pair, 266 

MultiXcan predicts whether trait-associated variants alter the gene’s expression. The chi-267 

squared transformed significance value for each gene-trait association pair was compiled into 268 

the gene-trait association matrix (Figure 2A). These values were normalised using relative 269 

count normalisation to account for the difference in power between phenotypes. Performance 270 

was not significantly different using other normalisation methods including centralised log ratio 271 

or log normalised data (Figure S2). The data was then clustered using Seurat, a dimensionality 272 

reduction method commonly used to analyse single cell RNA sequencing data to cluster cells 273 

into related groups (11).  Here, we use Seurat to test whether the calculated gene-trait 274 

associations could be simplified into biologically enriched gene clusters. Clustering was 275 

performed across 100 stepwise increases in resolution, a parameter which increases the number 276 

of gene clusters. Repeat iterations provided an opportunity to survey both the broad scope of 277 

biological processes that could be identified, as well as the specificity that could be achieved 278 

with each biological process (Figure 2B).  279 

  280 

To test the biological validity of the derived clusters, we used positive gene sets as defined by 281 

gene ontology (GO) (12) and STRING (13) to show that gene clusters have significant 282 

enrichment for GO biological processes and STRING protein-protein interactions (Figure 2C 283 

and 2D). To demonstrate that the observed enrichment is driven by distinct gene-trait 284 

association signatures rather than chance, we performed permutation analyses in which the 285 

values in the data matrix were randomly re-ordered. Permutations had significantly fewer 286 

enriched clusters, GO terms and a lower strongest significance compared to the real data (p < 287 

4x10-27) (Figure 2C, Figure S3A-B). Furthermore, we validated that GO enriched clusters 288 

were more likely to also have enrichment for protein-protein interactions, suggesting the 289 

enrichment is robust (Figure 2D). This analysis revealed that genes possessing similar 290 
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associations to complex trait phenotypes cluster meaningfully into biologically enriched groups 291 

and the enrichment is not stochastic.   292 

  293 

We next developed an ensemble learning method we call “consensus clustering” that 294 

incorporates a measure of clustering robustness and quality. Across each of 100 stepwise 295 

increases in clustering resolution we evaluated the robustness of clustering by assessing how 296 

often every possible gene combination was clustered together ranging from 100 (always) to 0 297 

(never) and compiled these values into a consensus matrix (Figure 2E). Following this, we 298 

performed agglomerative hierarchical clustering, evaluating the average silhouette score at 299 

each possible number of clusters. The silhouette score quantifies how consistent genes within 300 

the same cluster are across Seurat resolutions. To derive the optimal number of gene clusters, 301 

we calculated the plateau point of the average silhouette score, which informs the number of 302 

clusters at which point further splitting no longer improves the stability of clustering 303 

assignments (Figure S3C). Applying this methodology to gene-trait associations for 16,849 304 

genes, we identified 173 clusters with an average of 97 genes (Figure 2F, G). Across each 305 

cluster, we measured the silhouette score, a metric of cluster robustness and the correlation 306 

score, a metric of relation across phenotypes, thereby providing two metrics to quantify the 307 

quality of clustering (Figure 2H). Collectively, we call this approach UnTANGLeD: 308 

Unsupervised Trait Analysis of Networks from Gene Level Data.  309 

  310 

Consensus clustering identifies robust gene groups enriched for known gene sets  311 

We analysed each cluster by reference to curated annotations of gene programs (GO, disease 312 

ontology (14)), signalling pathways (KEGG (15)), protein-protein interactions (STRING), and 313 

tissue specificity (16) to evaluate the ability of UnTANGLeD to identify distinct, biologically 314 

established gene programs in an unsupervised manner (Figure 3A, Figure S3D, Tables S3-8). 315 

This analysis revealed significant enrichment of cell biological pathways and networks across 316 

gene clusters, with stronger enrichment among clusters with higher silhouette and correlation 317 

scores (Figure 3A). We further performed enrichment analysis of the UnTANGLeD clusters 318 

using the EnrichR database (17) (Figure S4A-C, Table S9), finding considerable enrichment 319 

for disease-associated genes, gene-expression perturbations associated with disease states or 320 

drugs and protein domains and families. We note that although many clusters contain multiple 321 

members of a protein family (18) the proportion of any one protein family in the cluster is 322 

minor (Figure S4D, Table S10).   323 

  324 
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We next investigated the relationship between individual gene clusters and the traits most 325 

strongly influencing the genes within the clusters, using enriched GO processes as a proxy for 326 

the functional profile of a cluster (Figure 3B). Each cluster is defined by a distinct gene-trait 327 

association ‘signature’ indicated by the variation and strength of association across 1,393 328 

diverse complex traits. In some instances, the enriched biological processes for certain gene 329 

clusters are clearly related to the cluster’s most significantly associated complex trait 330 

phenotypes (e.g., cluster 119: GO enrichment: Cholesterol Homeostasis; Dominant complex 331 

trait phenotypes: Low-density lipoprotein, Alipoprotein B quantile).  332 

 333 

Since UnTANGLeD draws on associations across diverse phenotypes to inform gene-gene 334 

relationships, the method can identify gene groups with enriched functions that are apparently 335 

biologically independent of the phenotypes most significantly associated with the genes in the 336 

cluster. For example, cluster 80, enriched for embryonic morphogenesis (GO:004859), is most 337 

significantly associated to the phenotype Bone Mineral Density and cluster 111, enriched for 338 

nucleosome organisation (GO:0034728), is most significantly associated to the phenotype 339 

Mean Corpuscular Haemoglobin. These results support the central hypothesis that genes with 340 

shared effects across diverse phenotypes can be clustered into gene groups controlling shared 341 

biological functions and processes in an unsupervised manner (Figure 3B).  342 

  343 

Importantly, we show that the GO enriched gene clusters show no overlap in their strongest 344 

enriched biological functions, and almost no overlap in their top 5 enriched terms, 345 

demonstrating the use of gene-trait association data to parse novel biological gene programs 346 

encoded within the genome (Figure 3C).   347 

  348 

Stratifying clusters by their silhouette and correlation scores reveals a higher level of GO, 349 

STRING, KEGG, DO and tissue specificity enrichment with higher clustering quality, 350 

indicating that the metrics provide an accurate representation of cluster quality (Figure 3A, D). 351 

Furthermore, both the robustness of clustering and the presence and strength of GO and 352 

STRING enrichment are correlated with the number of significant associations to phenotypes 353 

per gene (Pearson’s correlation, r > 0.65), as well as the stability of clustering (Pearson’s 354 

correlation, r > 0.69) (Figure 3E-G, Figure S5A-F).  355 

 356 

Lastly, we note that there is considerable colocalization of genes within clusters, with a stronger 357 

relationship between the correlation score and the degree of colocalization for the genes in a 358 
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cluster (Pearson’s correlation, r = 0.77), than the cluster robustness (Pearson’s correlation, r = 359 

0.34) (Figure 3H, Table S11).  STRING enrichment may also be inflated due to the text-360 

mining component, as findings from GWAS may be incorporated into the database, with genes 361 

in proximity often being reported together. Indeed, we find that the loss of enrichment due to 362 

removal of the text-mining component is correlated with the colocalization of the cluster (r = 363 

0.60) (Figure S6A-B). However, clusters with a high degree of colocalization are not 364 

necessarily artefacts of false-positive associations identified by MultiXcan. For example, 365 

clusters 173 and 111 are strongly enriched for immune processes and chromatin organisation 366 

respectively, despite being highly colocalised (Figure S6C-D).    367 

 368 

Subsampling reveals need for more data to improve accuracy of UnTANGLeD 369 

We next sought to determine how the number and diversity of phenotypes influences the 370 

accuracy and utility of UnTANGLeD clusters. We show that the number of GO enriched 371 

clusters is highly correlated with the number of phenotypes utilised in the analysis (Pearson’s 372 

correlation, r = 0.85), even when phenotypic diversity is preserved (Figure S7A). To further 373 

test this, we performed phenotype subsampling and evaluated clustering accuracy using an 374 

adjusted rand index (ARI) analysis. We found that clustering accuracy compared to the full 375 

data improved with the addition of more phenotypes, however a marked increase in ARI 376 

between 1322 and the full data set suggests that inaccuracy in clustering that isn’t determined 377 

by phenotypic diversity can be attributed to genes which have weak signatures and few 378 

significant associations (Figure S7B). We repeated subsampling in a larger dataset containing 379 

MultiXcan analysis of 4091 phenotypes retrieved from Pividori et al. (2020) which resulted in 380 

the same outcome (Figure S7C).  Comparison of the two data sets revealed that genes already 381 

having many significant associations simply had more associations in the larger dataset with 382 

both datasets possessing an equal proportion of genes with few to no significant associations 383 

(Figure S7D). Further, that genes with higher numbers of significant associations have higher 384 

degrees of conservation (Figure S7E-F). It’s likely that the effective number of traits is similar 385 

between the two datasets, as both mostly draw on the UK Biobank and have many highly 386 

correlated phenotypes  387 

 388 

Cumulatively, these findings indicate that the quality of gene clustering is dependent on the 389 

scale and quality of data needed to derive high silhouette and correlation scores as a basis for 390 

efficient enrichment of functional gene clusters. Accordingly, as more data becomes available, 391 

the quality and accuracy of UnTANGLeD will improve.  However, simply increasing the 392 
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number of phenotypes leads to an increase in redundant associations, and therefore strategies 393 

to increase the number of significant gene-trait associations across the genome should be 394 

employed, such as diversifying phenotypes and increasing cohort size.  395 

 396 

UnTANGLeD clusters are conserved across traits and can predict novel trait associated 397 

genes  398 

GWAS require collections of large cohorts comprising thousands of individual-level genotype 399 

data to characterise the genetic architecture of a trait. Furthermore, collecting enough samples 400 

can prove challenging for many diseases, and as such they are often underrepresented in 401 

biobanks.   402 

  403 

We hypothesised that UnTANGLeD gene clusters would be conserved across complex traits.  404 

To test this, we investigated an independent GWAS of ulcerative colitis (UC) (19) (Figure 4A). 405 

We show that the 278 genes associated with UC (p < 10-4) (Figure 4B) were significantly more 406 

clustered within the UnTANGLeD clusters than expected by chance (p = 2x10-9) (Figure 4C). 407 

The result shows that despite not being used to construct the clusters, UC associated genes 408 

nevertheless group within the UnTANGLeD clusters, demonstrating that the defined gene 409 

programs are conserved. We replicate our findings in 6 additional independent GWAS 410 

phenotypes, highlighting that the UnTANGLeD clusters are conserved across a broad 411 

phenotypic space (3, 20–28) (Figure 4G).  412 

  413 

We next tested whether the gene clusters can be used to predict novel genes and cellular 414 

processes underpinning independent complex trait data. To test this hypothesis, we examined 415 

two GWAS for UC. The first was performed in 2013 with 6,687 cases and 19,718 controls (29), 416 

and the latter in 2017 with 12,366 cases and 33,609 controls (19) (Figure 4A). MultiXcan 417 

analysis of the summary statistics identified 153 and 278 genes respectively, with an overlap 418 

of 53 genes (Figure 4B). We projected the MultiXcan associations for the 2013 GWAS onto 419 

the 173 clusters, identifying clusters were statistically associated with UC (Figure S8). Finally, 420 

we tested whether the clusters predicted from the 2013 GWAS contained novel genes identified 421 

by the 2017 GWAS. Of the 225 novel genes identified by the 2017 GWAS, our approach was 422 

able to use the 2013 GWAS to predict 120 with a significant enrichment for predicting UC 423 

associated genes compared to other genes (p < 3x10-121, chi-squared test) (Figure 4D).   424 

  425 
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GWAS of the same complex trait conducted in populations of differing ancestries may 426 

implicate both shared and distinct loci. We tested whether UnTANGLeD clusters are conserved 427 

for genes specific to non-European ancestries, given that the UnTANGLeD gene clusters are 428 

built from a European cohort.  To test this, we examined a GWAS for triglyceride levels in an 429 

East Asian population, which identified 34 genes (30) (Figure S9A-B). Mirroring our findings 430 

in a GWAS conducted on a European population, we found that the genes associated with 431 

triglyceride levels in an East Asian population are significantly more clustered than expected 432 

(p = 1x10-9) and replicate this finding in 4 other GWAS conducted in populations of non-433 

European ancestry (30–32). We further tested whether the GWAS conducted in the East Asian 434 

cohort could be used to predict novel genes identified in a European cohort. We found that 435 

clusters implicated in triglyceride levels using the East Asian GWAS were highly enriched for 436 

genes identified by the European GWAS (p = 6x10-109) (Figure 4F).   437 

  438 

All together, we show significant enrichment for prediction of novel genes across GWAS 439 

performed for 7 traits in differing cohort sizes in a European population, and 4 traits for which 440 

GWAS were performed in different ancestries (3, 20-28, 30–33) (Figure 4G, Figure S9C).  441 

  442 

We further tested whether the UnTANGLeD clusters could be used to prioritize causal genes 443 

at any given locus. It is difficult to accurately identify the causal genes from GWAS identified 444 

variants due to linkage disequilibrium and complex regulatory effects of intergenic variants. 445 

For each independent trait, we identified potential gene candidates within 500kb of each 446 

independent significant SNP then took a leave one chromosome out approach (LOCO) to 447 

investigate whether genes on the removed chromosome would be implicated in the clusters 448 

associated with the remaining genes. (Figure 4H). We are able to identify a major proportion 449 

of loci independently across all traits and reduce the potential candidates at each locus 450 

considerably, further highlighting the utility of UnTANGLeD (Figure 4I).   451 

452 
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DISCUSSION  453 

This study demonstrates that gene programs governing biological processes can be identified 454 

without reliance on prior knowledge, by analysing the association between genetic variation 455 

and a large range of diverse complex traits. Several prior studies have constructed small gene 456 

networks using a limited number of disease phenotypes and their associated genes from curated 457 

GWAS databases and restricted sources of rare genetic variants.  Other studies, like PheWAS 458 

(34, 35) and PhenomeXcan (36) have collated genomic associations across numerous 459 

phenotypes to create resources of variant-trait and gene-trait associations.   460 

  461 

Here, we construct a gene-trait association matrix for 16,849 genes across 1,393 complex traits 462 

similarly to PhenomeXcan, and further the concept by using UnTANGLeD to identify gene 463 

programs. We apply dimensionality reduction methods, which can harness the high 464 

dimensional, complex gene-trait association data, allowing us to greatly expand on the scale of 465 

studies previously attempting to build gene networks. By increasing the scale of data, we not 466 

only identify gene programs enriched for biological processes specific to associated phenotypes 467 

but also reveal gene programs enriched for central processes governing diverse mechanisms of 468 

cellular development and homeostasis.    469 

  470 

The UnTANGLeD framework is a powerful approach to identify gene programs orchestrating 471 

key biological processes. We implicate novel genes in clusters enriched for known processes 472 

and identify numerous novel gene programs with enrichment for protein-protein interactions 473 

and no known function. We further highlight the utility of UnTANGLeD for hypothesis 474 

generation and functional annotation of genes, which may be particularly valuable for non-475 

coding genes, as they are notoriously difficult to annotate in silico (37).  Finally, the 476 

UnTANGLeD framework reveals relationships between complex traits, linking phenotypes by 477 

the gene programs that underpin them.   478 

  479 

We demonstrate the utility of UnTANGLeD for predicting genes associated with complex traits 480 

and diseases using a low-powered GWAS of the same trait. Currently, standard methods use 481 

gene-set analysis to improve power to identify genes and pathways involved in a phenotype, 482 

such as MAGMA, or GIGSEA (38–41). Our method eliminates the need to define gene-sets 483 

and instead uses gene-trait association data to learn gene sets governing complex traits (39), 484 

enabling us to implicate novel trait associated genes and loci from a much smaller cohort size.   485 

  486 
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We further highlight the use of the UnTANGLeD clusters for gene prioritization, showing that 487 

they effectively select gene candidates at different loci related to the same phenotype. Current 488 

gene prioritisation approaches use either distance-based metrics or mapping to eQTLs to predict 489 

changes in gene expression (42). However, these also suffer from a considerable false positive 490 

rate and may not always distinguish between two genes in proximity, as noted in our data (42). 491 

Some recent methods have integrated biological data, such as gene sets, RNA sequencing and 492 

protein-protein interaction databases to further prioritise genes at a locus (43). Our framework 493 

can be used independently or integrated with any of these approaches to advance understanding 494 

of complex trait biology.    495 

  496 

Outside of its utility in GWAS analyses, UnTANGLeD may provide key mechanisms for data 497 

analysis in medical and industry pipelines including genetic testing and drug discovery. For 498 

example, polygenic risk scores (PRS) are an emerging method that evaluate an individual’s 499 

disease risk from genetic variants (44). Methods such as UnTANGLeD may help reveal genes 500 

and hence genetic variants governing cell programs underlying disease risk and hence improve 501 

prediction accuracy. In the context of pharmacogenomics, studies have shown that drug targets 502 

with genetic support from either rare or common diseases are more than twice as likely to pass 503 

through clinical trials (45, 46). Since UnTANGLeD captures gene programs associated with all 504 

complex traits and diseases, its predictive power may help de-risk candidates and thereby 505 

decrease cost associated with the drug discovery pipeline. Overall, UnTANGLeD represents a 506 

powerful and versatile framework for studying cellular gene programs to interpret diverse 507 

sources of orthogonal genetic data.    508 

  509 

We note several limitations in our method. Primarily, that the current GWAS data does not 510 

represent the whole phenome. Furthermore, many traits are highly correlated, and disease traits 511 

are underrepresented in the UK Biobank, the main source of data in this study. Secondly, 512 

UnTANGLeD relies on S-MultiXcan to construct the gene-trait association matrix. While S-513 

MultiXcan is powered to detect associations across all tissues, it suffers from a high false 514 

discovery rate and may perform poorly in tissues with small sample sizes. Moreover, S-515 

MultiXcan can identify genes colocalised with a causal gene as significant, which can obscure 516 

biological signatures. Other approaches such as SMR MR-JTI may remedy this issue (47). 517 

Additionally, UnTANGLeD does not account for the predicted directionality of effect or tissue-518 

specific effects, which may help to further increase the quality and biological specificity of the 519 

clusters. Biological validation of the method using established gene sets may be inflated due to 520 
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GWAS data being included in the definition of the gene sets. Finally, we note that although 521 

UnTANGLeD is a powerful tool for identifying clusters in an unsupervised manner, the overall 522 

function of the cluster may be difficult to determine. The development of improved gene-based 523 

tests and emergence of larger GWAS data spanning the whole phenome will improve the 524 

accuracy and utility of UnTANGLeD.   525 

  526 

This study provides a powerful framework for the identification of gene programs governing 527 

biological processes conserved across all complex traits and diseases, with important 528 

applications for functional annotation, hypothesis generation, machine learning and prediction 529 

algorithms and interpretation of GWAS and diverse other genomic data types.  Our approach 530 

can be applied to any collection of gene-trait information, harnessing the power of biological 531 

patterns in a diverse landscape of phenotypic variation.   532 

  533 

  534 

  535 

  536 

    537 
  538 

  539 
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FIGURES  709 

  710 
Figure 1. Schematic of central model design.  Complex trait genetic data provide a unique 711 

association signature for each gene which can be used to parse the genome into functionally 712 

related gene sets.  713 

  714 

  715 

  716 
 717 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2022. ; https://doi.org/10.1101/2022.04.07.487559doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.487559
http://creativecommons.org/licenses/by-nc-nd/4.0/


25  
  

  718 

Figure 2. Consensus clustering method identifies biologically enriched gene clusters.  719 

 (A) MultiXcan analysis links genetic variants to genes by predicting changes in gene 720 

expression using eQTLs. The chi-squared values of the associations between each of 1393 traits 721 

and 25851 genes were compiled into a gene-trait matrix.   722 

(B) Dimensionality reduction clustering of genes based on their phenotypic associations was 723 

performed using Seurat across resolutions 0.2 to 20 in 0.2 increments.   724 
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(C) Five permutations of the dataset were compared to the real data by the number of enriched 725 

gene ontology terms per resolution. Enrichment was performed using ClusterProfiler, FDR 726 

corrected p-value < 0.01.  Pairwise comparisons between permutations were performed 727 

with Wilcoxon signed rank test.   728 

(D) Validation of gene ontology enriched clusters with STRING protein-protein interaction 729 

enrichment. Wilcoxon signed rank test was used to compare STRING enrichment in gene 730 

ontology enriched and non-enriched clusters.  731 

(E) Each gene pair is given a similarity score based on how often they were clustered together 732 

across 100 resolutions and these values are compiled into a consensus matrix. 733 

Agglomerative hierarchical clustering is applied to the matrix, with the plateau in the 734 

average silhouette score defining the optimal number of clusters.   735 

(F) Heatmap of consensus matrix as clustered using agglomerative hierarchical clustering for 736 

173 clusters.   737 

(G) Histogram of the number of genes in each of the 173 clusters.   738 

(H) Silhouette scores and correlation scores calculated for each gene to evaluate the clustering 739 

robustness and quality respectively. Data generated for 450 genes selected from 12 random 740 

clusters. 741 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2022. ; https://doi.org/10.1101/2022.04.07.487559doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.487559
http://creativecommons.org/licenses/by-nc-nd/4.0/


27  
  

   742 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2022. ; https://doi.org/10.1101/2022.04.07.487559doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.487559
http://creativecommons.org/licenses/by-nc-nd/4.0/


28  
  

Figure 3. Enrichment of identified clusters for known gene sets is dependent on data 743 

quality.   744 

(A) Broad enrichment profile of 173 clusters stratified by average silhouette and correlation 745 

scores.   746 

(B) Heatmap showing the relationship between the biological profile of five clusters, as 747 

proxied by their top gene ontology term, and the unique phenotypic signature. The top 10 748 

phenotypes per cluster were selected. Association strength was calculated using negative log 749 

transformed significance values, which were then normalised across phenotypes and then per 750 

cluster.   (C) Top enriched gene ontology biological processes for each cluster have no overlap. 751 

Clusters ranked by strength of top enriched term.  Specificity of top 5 terms per cluster is also 752 

provided.  (D) 173 clusters stratified by their average correlation and silhouette scores with 753 

their gene ontology and STRING enrichment indicated. The P-value represented is specific to 754 

the enriched category, and in the case of both represents the more significant of the two.   755 

(E-G) Correlation between the average number of significant gene-trait associations per cluster 756 

and E) the average correlation score of each cluster (F), strength of GO enrichment and strength 757 

of STRING enrichment per cluster (Pearson’s correlation) (G).   758 

(H) Presence and degree of colocalization within clusters as stratified by their silhouette and 759 

correlation scores (Pearson’s correlation).  760 
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  763 
Figure 4. Identified clusters are conserved across all phenotypes and can be used for 764 
prediction of genes involved in complex trait biology and prioritization of GWAS genes at 765 
implicated loci.   766 

(A) Manhattan plot of loci identified by a 2017 and 2013 GWAS of ulcerative colitis (UC).  (B) 767 

Manhattan plot of S-MultiXcan genes for the two GWAS respectively, genes are ordered 768 

according to their genomic positions.   769 
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(C) Distribution of 278 significant genes from the 2017 UC GWAS across 173 clusters. 770 

Global clustering coefficient was calculated for the 278 genes. Significance was calculated 771 

using 100 bootstrap replicates to establish a distribution from which a Z score was calculated.   772 

(D) Prediction of 2017 UC GWAS genes using 2013 UC GWAS. Chi-squared enrichment 773 

test was used to determine enrichment for prediction of novel genes compared to non-trait 774 

associated genes.   775 

(E) Distribution and global clustering coefficient of 34 significant genes from East Asian 776 

GWAS of Triglyceride levels. Significance was calculated using bootstrapping.   777 

(F) Prediction of 137 novel genes from 2013 European GWAS of triglycerides using 2017 778 

East Asian GWAS. Enrichment was calculated using chi-squared test.   779 

(G) Increase in observed global clustering coefficient compared to expected and prediction 780 

enrichment across four additional traits.   781 

(H) Schematic of gene prioritization strategy using the leave one chromosome out approach. 782 

Potential genes at a significant locus were refined using clusters enriched for the trait.   783 

(I) The proportion of loci at which a gene was successfully identified independently of all 784 

genes on the same chromosome.    785 
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