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ABSTRACT

Genome wide association studies provide statistical measures of gene-trait associations that
reveal how genetic variation influences phenotypes. This study develops an unsupervised
dimensionality reduction method called UnTANGLeD (Unsupervised Trait Analysis of
Networks from Gene Level Data) which organises 16,849 genes into discrete gene programs
by measuring the statistical association between genetic variants and 1,393 diverse complex
traits. UnTANGLeD reveals 173 gene clusters enriched for protein-protein interactions and
highly distinct biological processes governing development, signalling, disease, and
homeostasis. We identify diverse gene networks with robust interactions but not associated
with known biological processes. Analysis of independent disease traits shows that
UnTANGLeD gene clusters are conserved across all complex traits, providing a simple and
powerful framework to predict novel gene candidates and programs influencing orthogonal
disease phenotypes. Collectively, this study demonstrates that gene programs co-ordinately
orchestrating cell functions can be identified without reliance on prior knowledge, providing a
method for use in functional annotation, hypothesis generation, machine learning and
prediction algorithms, and the interpretation of diverse genomic data.
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INTRODUCTION

Generation of consortium-scale data such as ENCODE (1), the Human Cell Atlas (2) and the
UKBiobank (3) coupled with the development of advanced computational methods is enabling
the creation of transformative models that harness the natural diversity of biological systems.
These models draw on the relationships and patterns derived from biological data to establish
quantitative frameworks that can make highly accurate predictions, with implications for nearly
every field of biology. For example, in the field of structural biology, patterns in the sequences
and structures of proteins’ evolutionary homologs reveal how amino acids interact, enabling
prediction of protein structure with atomic accuracy (4). Similarly, patterns of repressive
histone methylation (H3K27me3) across hundreds of human cell types enable identification of

genes governing cell decisions and functions for any cell type and organism (5).

Genome wide association studies (GWAS) characterise the genomic variation underlying
complex traits and diseases, providing insights into how genes affect biological processes (6).
Despite the wealth of variant-trait association information, GWAS studies predominantly focus
on elucidating the genetic basis of a single trait or a group of highly related traits (6, 7). Here,
we utilize patterns of genomic variation across hundreds of diverse phenotypes as the basis for

an unsupervised method to parse the organisation of gene programs in cells.

We hypothesised that complex traits are underpinned by conserved gene programs that can be
identified by studying associations between genetic variation and phenotypic variation. To test
this, we developed UnTANGLeD (Unsupervised Trait Analysis of Networks from Gene Level
Data), which identifies patterns of association between genes and hundreds of diverse
phenotypes. UnTANGLeD creates a phenotypic signature to cluster genes with similar
associations across many traits in an unsupervised manner into gene programs controlling cell

biological processes (Figure 1).

We used a gene-trait association matrix derived from GWAS data for 1,393 complex traits to
infer co-ordinately acting gene programs that represent both known and novel biological
processes. While the scale of associations available from public GWAS data is underpowered
to saturate the accuracy of our model, we demonstrate that UnTANGLeD can be applied to any
orthogonal GWAS data to predict the genetic basis of disease including in underpowered and
transethnic GWAS data. UnTANGLeD provides a powerful analytical framework for studies

in population genetics, cell biology, and genomics, that will improve as more data emerges.
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93  Collectively, this study provides a statistical framework for defining genes orchestrating
94  biological processes by evaluating genetic signatures across diverse complex traits.

95

96 MATERIALS AND METHODS

97  Data Collection

98  S-MultiXcan results for 1,393 phenotypes with statistically significant SNP-based heritability
99  (p < 0.05) were downloaded from CTG-VL (http://vl.genoma.io). Phenotypes are listed in

100  Table S2. SNP-based heritability was estimated using linkage disequilibrium score regression
101  (LDSR). The significance values reflecting the strength of the association between each gene
102 and trait across all tissues were compiled into a gene-trait association matrix.

103

104  Dimensionality Reduction Analysis Pipeline

105  All genes with fewer than 2 significant associations across all phenotypes (p < 10"*) were
106  removed, leaving 16849 genes. Following this, all values in the gene-trait association matrix
107  were chi-squared transformed. Infinite values produced when transforming very small p-value
108  (<1e-300) due to floating point precision were replaced with 1,415, which was 5 greater than
109  the largest non-infinite value. The data was then normalised by the sum of chi-squared values
110 per phenotype and scaled by a factor of 10,000. 10 principal components were retained from
111  the principal component analysis (PCA). Clustering of genes was performed using the native
112 Seurat shared-nearest neighbour algorithm. Clustering iterations were performed at increasing
113 resolutions from 0.2 to 20 in increments of 0.2. The resolution is a parameter from Seurat where
114  increased values lead to a greater number of clusters. Cluster assignments were compiled into
115 a consensus distance matrix, where each gene pair had a value representing how often they
116  were grouped together out of 100 potential matches. 100 was then subtracted from the values
117  and they were made absolute to transform the matrix into a dissimilarity matrix. Agglomerative
118  clustering using Ward’s minimum variance method, as implemented in the stats package, was
119  applied to the consensus matrix directly. The average silhouette score (a metric used to
120 calculate how well a data point relates to its cluster) across all genes was calculated using the
121 cluster package from 2 to 300 clusters. The inflection package was used to calculate the plateau
122 point, which was determined to be the optimal number of clusters. Pearson’s correlation was
123 used to determine the correlation of a gene with the other genes in the same cluster based on
124 chi-squared association values.

125
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126 ~ Enrichment Analyses

127 GO, DO, KEGG enrichment, colocalization and tissue specificity enrichment were performed
128  using ClusterProfiler (8). An FDR corrected significance value of p < 0.01 was used.
129 Colocalization was determined using ClusterProfiler enrichment for the Molecular Signatures
130  Database collection 3: positional gene sets (9). The largest proportion of genes within a cluster
131  belonging to a single genomic region was divided by the total number of genes within the
132 cluster to identify the maximum degree of colocalization. STRING enrichment analysis was
133 performed using the STRINGdb package, with a significance threshold of p < 0.001 and a
134 confidence threshold of 0.400. STRING enrichment analysis without the text-mining
135  component was performed using the online STRING interface (https://string-db.org/) for
136 clusters found to have PPI enrichment in the prior analysis with a confidence threshold of 0.150
137  to preserve predicted interactions reinforced by other components. For the calculation of the
138  correlation between the loss of enrichment and the degree of colocalization, clusters 111 and
139 173 were removed due to having well established biological functions despite being highly
140  colocalised. Broad enrichment analysis for more specialised gene sets was performed using

141  EnrichR (https://maayanlab.cloud/Enrichr/) across all 192 libraries. Redundant libraries,

142  including GO, KEGG, chromosomal location and NIH-grant associated libraries were
143 excluded. The top significant term from each library for each cluster are reported in Table S9.
144 A significance value threshold of 0.01, after correction for multiple testing, was used. For
145  identification of genes possessing the same protein domains or belonging to the same family,
146  the EnrichR library ‘Pfam Domains 2019’ was used. A distinct protein family or domain was
147  defined by collating the family or domain terms together that shared genes until there was no
148  overlap between them. Protein terms did not need to be significantly enriched, but two or more
149  members of a protein family had to be present in a single cluster.

150

151  Permutations

152 Five permutations were generated by re-ordering the values within the gene-trait association
153  matrix. These permutations were analysed as described above. A one-way ANOVA with FDR
154  corrected pairwise comparisons was performed to identify significant differences in the number
155  of enriched clusters, total enriched GO terms and the most significant GO enrichment of any
156  cluster.

157
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158  Phenotype Associations

159  The gene-trait association matrix containing p-values was -logl0 transformed. All infinite
160  values generated due to floating point precision were windsorized with 315, which was 5
161  greater than the maximum finite value. The phenotypic associations for the genes within a
162  cluster were extracted, averaged, normalised for their average associations across the dataset
163  and ranked.

164

165  Clustering quality in dimensionality reduction methods

166  We extracted the UMAP coordinates for all genes as calculated by Seurat. Following this, we
167  1identified the 10 closest neighbours for each gene and calculated the average correlation of chi-
168  squared association values between the gene and its neighbours. The UMAP was re-plotted
169  representing the average correlation with each point colour. We repeated the process, instead
170  colouring by the number of significant associations for each gene.

171

172 Prediction of novel genes using an underpowered GWAS of the same trait

173 Data collection and S-MultiXcan Analysis

174 We selected 13 phenotypes for which GWAS studies had been performed at differing cohort
175  sizes or ethnicities for the same, or comparable traits. The specific studies and their respective
176  details can be found in Table S1. Summary statistics were downloaded from various sources
177  and harmonised using MetaXcan’s in-built harmonization
178  (https://github.com/hakyimlab/MetaXcan) to be compatible with the MASHR models. We then
179  performed S-MultiXcan analysis of each trait using the MASHR models built off the V8 GTEx

180  release. Associated genes were defined as those found to have a significance of p<10*
181 by S-MultiXcan.
182

183  Global Clustering Coefficient Calculation

184  The genes identified for an independent GWAS were projected onto the 173 identified clusters.
185  Following this, we generated an unweighted adjacency matrix in which genes in the same
186  cluster were represented by a 1, and genes in different clusters by a 0. A comparison between
187  the same gene was represented by 0. Finally, the global clustering coefficient (GCC) for the
188  genes was calculated. To derive a statistical significance, we randomly sampled the same
189  number of genes as there were significant genes for the phenotype and calculated the GCC one-
190  hundred times. A Z score was calculated from the curve generated by the sampled values.

191
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192  Gene Prediction

193  We took a simple approach of predicting which clusters were associated with the trait using the
194  S-MultiXcan associations from the smaller GWAS and then checking whether novel gene
195  associations identified by the larger GWAS were in those clusters. A chi-squared enrichment
196  test was used where the minimum expected frequency was greater than 5, and a fisher’s test if
197  not. Several approaches to predict clusters associated with the trait were trialled. The first was
198  to identify any of the 173 clusters with a significant gene in it. The second was to integrate the
199  additional phenotype into the trait-gene association matrix. Next, clusters were identified which
200  had an overall significance signature > 1.5 times the average or were significantly (p < 0.05)
201  higher than the average signature. Different values were tested for these thresholds, with these
202  providing the best performance. The third approach was to predict associated clusters from the
203  previously established 173 clusters using the thresholds taken in approach two. A one-way
204  ANOVA was performed with pairwise comparisons to determine the best approach. Approach
205 three was the most effective, albeit not significantly, while maintaining a low computational
206  burden. In instances where transethnic GWAS were compared, the East-Asian GWAS was
207  used to predict the trait relevant clusters, and the European GWAS was used as the test set.
208

209  Gene Prioritization Analysis

210  The GWAS with the largest sample size for each of the 13 traits listed in Table S1 was used to
211  determine the potential of our pipeline for prioritizing genes within a locus. Clumping was
212 performed on each summary statistic using PLINK (https://www.cog-genomics.org/plink/) and
213 1000 genomes phase 1 genotype data with an LD threshold of 0.5. This was followed by
214 clumping for long distance LD, at the same threshold. Next, we identified individual 500kb
215  regions around the lead SNPs and the genes within that region.

216

217  Wetook a leave one chromosome out (LOCO) approach, where we removed all potential genes
218  onone chromosome. With the remaining genes, we identified which clusters were enriched for
219  genes associated with the trait. To calculate enrichment, we treated all genes associated with
220  one locus as one positive, so that enrichment was for different loci and not genes at the same
221  locus. A fisher’s enrichment test was used to determine significance. Finally, we assessed at
222 what proportion of loci the UnTANGLeD clusters identified a gene when that chromosome
223 was left out of the analysis.

224
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225  Normalisation

226  We trialled relative count, centralised-log ratio and logarithmic normalisation on the chi-
227  squared transformed values of the gene-trait matrix across phenotypes. We evaluated their
228  effects on the following metrics: correlation score, silhouette score, GO and STRING
229  enrichment, global clustering coefficient, prediction of GWAS. A Kruskal Wallis one-way
230 analysis of variance was used to evaluate differences. Relative count was used for the final
231  pipeline.

232

233 Phenotype Filtering Based on Euclidean Distance

234 A distance matrix between phenotypes using chi-squared transformed, RC-normalised data was
235  generated using the Euclidean distance formula from the package wordspace. Phenotypes with
236  a Euclidean distance below a set threshold, which indicated a high degree of relatedness, were
237 removed from the data, leaving the phenotype with the highest number of significant
238  associations. This was performed for thresholds 0 to 62, at which too few phenotypes remained
239  to cluster the genes using the dimensionality reduction methods. GO enrichment was used to
240  evaluate the clustering efficacy at each threshold.

241

242 Phenotype Subsampling and Sensitivity Analyses

243 Phenotype subsampling was performed on two datasets; MultiXcan results for 1393 phenotypes
244 across 16,849 genes generated in this paper, and another dataset containing MultiXcan results
245  for 4091 phenotypes across 15,734 genes (phenomexcan.org). For the data containing 1393
246  phenotypes, subsampling was performed randomly without replacement from 50 to 1393
247  phenotypes in 20 equal increments across 5 replicates for each number of traits. The full
248  UnTANGLeD clustering pipeline was applied to each subsampled matrix. Adjusted rand index
249  (ARI) was calculated for each of the subsampled clustering configurations compared to the full
250  dataset. This analysis was repeated for the data containing 4091 phenotypes; however,

251  subsampling was performed from 50 phenotypes to 4091 phenotypes in 50 equal increments.
252
253 Cluster Conservation

254  To explore the cause for the marked increase in ARI between 1322 phenotypes and 1393
255  phenotypes, cluster conservation was calculated between them. For each cluster from 1393

256  phenotypes, the proportion of genes that remained grouped together in each of the clusters from
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257 1322 phenotypes was calculated. That proportion was used to assign a conservation score to
258  each gene, depending on how large the proportion of cluster the specific gene remained with
259  was. The same approach was applied between 4091 phenotypes and 4009 phenotypes.

260

261 RESULTS

262

263  Unsupervised identification of gene groups with shared complex trait associations

264  We used MultiXcan results from CTG-VL (10) derived from publicly available GWAS
265  (primarily from UK Biobank, on ~400,000 individuals) to create a gene-trait association matrix
266  for 16,849 genes and 1,393 traits (Figure 1, Figure S1, Table S2). For each gene trait pair,
267  MultiXcan predicts whether trait-associated variants alter the gene’s expression. The chi-
268  squared transformed significance value for each gene-trait association pair was compiled into
269  the gene-trait association matrix (Figure 2A). These values were normalised using relative
270  count normalisation to account for the difference in power between phenotypes. Performance
271  was not significantly different using other normalisation methods including centralised log ratio
272  orlog normalised data (Figure S2). The data was then clustered using Seurat, a dimensionality
273 reduction method commonly used to analyse single cell RNA sequencing data to cluster cells
274  into related groups (11). Here, we use Seurat to test whether the calculated gene-trait
275  associations could be simplified into biologically enriched gene clusters. Clustering was
276  performed across 100 stepwise increases in resolution, a parameter which increases the number
277  of gene clusters. Repeat iterations provided an opportunity to survey both the broad scope of
278  biological processes that could be identified, as well as the specificity that could be achieved
279  with each biological process (Figure 2B).

280

281  To test the biological validity of the derived clusters, we used positive gene sets as defined by
282  gene ontology (GO) (12) and STRING (13) to show that gene clusters have significant
283  enrichment for GO biological processes and STRING protein-protein interactions (Figure 2C
284 and 2D). To demonstrate that the observed enrichment is driven by distinct gene-trait
285  association signatures rather than chance, we performed permutation analyses in which the
286  values in the data matrix were randomly re-ordered. Permutations had significantly fewer
287  enriched clusters, GO terms and a lower strongest significance compared to the real data (p <
288  4x10?7) (Figure 2C, Figure S3A-B). Furthermore, we validated that GO enriched clusters
289  were more likely to also have enrichment for protein-protein interactions, suggesting the

290  enrichment is robust (Figure 2D). This analysis revealed that genes possessing similar
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291  associations to complex trait phenotypes cluster meaningfully into biologically enriched groups
292 and the enrichment is not stochastic.

293

294  We next developed an ensemble learning method we call “consensus clustering” that
295 incorporates a measure of clustering robustness and quality. Across each of 100 stepwise
296 increases in clustering resolution we evaluated the robustness of clustering by assessing how
297  often every possible gene combination was clustered together ranging from 100 (always) to 0
298  (never) and compiled these values into a consensus matrix (Figure 2E). Following this, we
299  performed agglomerative hierarchical clustering, evaluating the average silhouette score at
300  each possible number of clusters. The silhouette score quantifies how consistent genes within
301  the same cluster are across Seurat resolutions. To derive the optimal number of gene clusters,
302  we calculated the plateau point of the average silhouette score, which informs the number of
303  clusters at which point further splitting no longer improves the stability of clustering
304  assignments (Figure S3C). Applying this methodology to gene-trait associations for 16,849
305  genes, we identified 173 clusters with an average of 97 genes (Figure 2F, G). Across each
306 cluster, we measured the silhouette score, a metric of cluster robustness and the correlation
307  score, a metric of relation across phenotypes, thereby providing two metrics to quantify the
308 quality of clustering (Figure 2H). Collectively, we call this approach UnTANGLeD:
309  Unsupervised Trait Analysis of Networks from Gene Level Data.

310

311  Consensus clustering identifies robust gene groups enriched for known gene sets

312  We analysed each cluster by reference to curated annotations of gene programs (GO, disease
313  ontology (14)), signalling pathways (KEGG (15)), protein-protein interactions (STRING), and
314  tissue specificity (16) to evaluate the ability of UnTANGLeD to identify distinct, biologically
315  established gene programs in an unsupervised manner (Figure 3A, Figure S3D, Tables S3-8).
316  This analysis revealed significant enrichment of cell biological pathways and networks across
317  gene clusters, with stronger enrichment among clusters with higher silhouette and correlation
318  scores (Figure 3A). We further performed enrichment analysis of the UnTANGLeD clusters
319  using the EnrichR database (17) (Figure S4A-C, Table S9), finding considerable enrichment
320 for disease-associated genes, gene-expression perturbations associated with disease states or
321  drugs and protein domains and families. We note that although many clusters contain multiple
322  members of a protein family (18) the proportion of any one protein family in the cluster is
323  minor (Figure S4D, Table S10).

324
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325  We next investigated the relationship between individual gene clusters and the traits most
326  strongly influencing the genes within the clusters, using enriched GO processes as a proxy for
327  the functional profile of a cluster (Figure 3B). Each cluster is defined by a distinct gene-trait
328  association ‘signature’ indicated by the variation and strength of association across 1,393
329  diverse complex traits. In some instances, the enriched biological processes for certain gene
330  clusters are clearly related to the cluster’s most significantly associated complex trait
331  phenotypes (e.g., cluster 119: GO enrichment: Cholesterol Homeostasis; Dominant complex
332 trait phenotypes: Low-density lipoprotein, Alipoprotein B quantile).

333

334  Since UnTANGLeD draws on associations across diverse phenotypes to inform gene-gene
335  relationships, the method can identify gene groups with enriched functions that are apparently
336  biologically independent of the phenotypes most significantly associated with the genes in the
337  cluster. For example, cluster 80, enriched for embryonic morphogenesis (GO:004859), is most
338  significantly associated to the phenotype Bone Mineral Density and cluster 111, enriched for
339  nucleosome organisation (GO:0034728), is most significantly associated to the phenotype
340  Mean Corpuscular Haemoglobin. These results support the central hypothesis that genes with
341  shared effects across diverse phenotypes can be clustered into gene groups controlling shared
342  biological functions and processes in an unsupervised manner (Figure 3B).

343

344  Importantly, we show that the GO enriched gene clusters show no overlap in their strongest
345 enriched biological functions, and almost no overlap in their top 5 enriched terms,
346  demonstrating the use of gene-trait association data to parse novel biological gene programs
347  encoded within the genome (Figure 3C).

348

349  Stratifying clusters by their silhouette and correlation scores reveals a higher level of GO,
350 STRING, KEGG, DO and tissue specificity enrichment with higher clustering quality,
351 indicating that the metrics provide an accurate representation of cluster quality (Figure 3A, D).
352 Furthermore, both the robustness of clustering and the presence and strength of GO and
353  STRING enrichment are correlated with the number of significant associations to phenotypes
354  per gene (Pearson’s correlation, r > 0.65), as well as the stability of clustering (Pearson’s
355  correlation, r > 0.69) (Figure 3E-G, Figure S5A-F).

356

357  Lastly, we note that there is considerable colocalization of genes within clusters, with a stronger

358 relationship between the correlation score and the degree of colocalization for the genes in a
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359  cluster (Pearson’s correlation, r = 0.77), than the cluster robustness (Pearson’s correlation, r =
360 0.34) (Figure 3H, Table S11). STRING enrichment may also be inflated due to the text-
361  mining component, as findings from GWAS may be incorporated into the database, with genes
362  in proximity often being reported together. Indeed, we find that the loss of enrichment due to
363  removal of the text-mining component is correlated with the colocalization of the cluster (r =
364 0.60) (Figure S6A-B). However, clusters with a high degree of colocalization are not
365 necessarily artefacts of false-positive associations identified by MultiXcan. For example,
366  clusters 173 and 111 are strongly enriched for immune processes and chromatin organisation
367  respectively, despite being highly colocalised (Figure S6C-D).

368

369  Subsampling reveals need for more data to improve accuracy of UnTANGLeD

370  We next sought to determine how the number and diversity of phenotypes influences the
371  accuracy and utility of UnTANGLeD clusters. We show that the number of GO enriched
372 clusters is highly correlated with the number of phenotypes utilised in the analysis (Pearson’s
373  correlation, r = 0.85), even when phenotypic diversity is preserved (Figure S7A). To further
374  test this, we performed phenotype subsampling and evaluated clustering accuracy using an
375  adjusted rand index (ARI) analysis. We found that clustering accuracy compared to the full
376  data improved with the addition of more phenotypes, however a marked increase in ARI
377  between 1322 and the full data set suggests that inaccuracy in clustering that isn’t determined
378 by phenotypic diversity can be attributed to genes which have weak signatures and few
379  significant associations (Figure S7B). We repeated subsampling in a larger dataset containing
380  MultiXcan analysis of 4091 phenotypes retrieved from Pividori ef al. (2020) which resulted in
381  the same outcome (Figure S7C). Comparison of the two data sets revealed that genes already
382  having many significant associations simply had more associations in the larger dataset with
383  both datasets possessing an equal proportion of genes with few to no significant associations
384  (Figure S7D). Further, that genes with higher numbers of significant associations have higher
385  degrees of conservation (Figure S7TE-F). It’s likely that the effective number of traits is similar
386  between the two datasets, as both mostly draw on the UK Biobank and have many highly
387  correlated phenotypes

388

389  Cumulatively, these findings indicate that the quality of gene clustering is dependent on the
390  scale and quality of data needed to derive high silhouette and correlation scores as a basis for
391 efficient enrichment of functional gene clusters. Accordingly, as more data becomes available,

392 the quality and accuracy of UnTANGLeD will improve. However, simply increasing the
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393 number of phenotypes leads to an increase in redundant associations, and therefore strategies
394  to increase the number of significant gene-trait associations across the genome should be
395 employed, such as diversifying phenotypes and increasing cohort size.

396

397 UnTANGLeD clusters are conserved across traits and can predict novel trait associated
398  genes

399  GWAS require collections of large cohorts comprising thousands of individual-level genotype
400  data to characterise the genetic architecture of a trait. Furthermore, collecting enough samples
401  can prove challenging for many diseases, and as such they are often underrepresented in
402  biobanks.

403

404  We hypothesised that UnTANGLeD gene clusters would be conserved across complex traits.
405  To test this, we investigated an independent GWAS of ulcerative colitis (UC) (19) (Figure 4A).
406  We show that the 278 genes associated with UC (p < 10) (Figure 4B) were significantly more
407  clustered within the UnTANGLeD clusters than expected by chance (p = 2x10”) (Figure 4C).
408  The result shows that despite not being used to construct the clusters, UC associated genes
409  nevertheless group within the UnTANGLeD clusters, demonstrating that the defined gene
410 programs are conserved. We replicate our findings in 6 additional independent GWAS
411  phenotypes, highlighting that the UnTANGLeD clusters are conserved across a broad
412 phenotypic space (3, 20-28) (Figure 4G).

413

414  We next tested whether the gene clusters can be used to predict novel genes and cellular
415  processes underpinning independent complex trait data. To test this hypothesis, we examined
416  two GWAS for UC. The first was performed in 2013 with 6,687 cases and 19,718 controls (29),
417  and the latter in 2017 with 12,366 cases and 33,609 controls (19) (Figure 4A). MultiXcan
418  analysis of the summary statistics identified 153 and 278 genes respectively, with an overlap
419  of 53 genes (Figure 4B). We projected the MultiXcan associations for the 2013 GWAS onto
420  the 173 clusters, identifying clusters were statistically associated with UC (Figure S8). Finally,
421  we tested whether the clusters predicted from the 2013 GWAS contained novel genes identified
422 by the 2017 GWAS. Of the 225 novel genes identified by the 2017 GWAS, our approach was
423  able to use the 2013 GWAS to predict 120 with a significant enrichment for predicting UC
424  associated genes compared to other genes (p < 3x107!2!, chi-squared test) (Figure 4D).

425
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426 GWAS of the same complex trait conducted in populations of differing ancestries may
427  implicate both shared and distinct loci. We tested whether UnTANGLeD clusters are conserved
428  for genes specific to non-European ancestries, given that the UnTANGLeD gene clusters are
429  built from a European cohort. To test this, we examined a GWAS for triglyceride levels in an
430  East Asian population, which identified 34 genes (30) (Figure S9A-B). Mirroring our findings
431 in a GWAS conducted on a European population, we found that the genes associated with
432  triglyceride levels in an East Asian population are significantly more clustered than expected
433 (p = 1x10?) and replicate this finding in 4 other GWAS conducted in populations of non-
434  European ancestry (30-32). We further tested whether the GWAS conducted in the East Asian
435  cohort could be used to predict novel genes identified in a European cohort. We found that
436  clusters implicated in triglyceride levels using the East Asian GWAS were highly enriched for
437  genes identified by the European GWAS (p = 6x10°'?°) (Figure 4F).

438

439  All together, we show significant enrichment for prediction of novel genes across GWAS
440  performed for 7 traits in differing cohort sizes in a European population, and 4 traits for which
441  GWAS were performed in different ancestries (3, 20-28, 30-33) (Figure 4G, Figure S9C).
442

443  We further tested whether the UnTANGLeD clusters could be used to prioritize causal genes
444  at any given locus. It is difficult to accurately identify the causal genes from GWAS identified
445  variants due to linkage disequilibrium and complex regulatory effects of intergenic variants.
446  For each independent trait, we identified potential gene candidates within 500kb of each
447  independent significant SNP then took a leave one chromosome out approach (LOCO) to
448  investigate whether genes on the removed chromosome would be implicated in the clusters
449  associated with the remaining genes. (Figure 4H). We are able to identify a major proportion
450  of loci independently across all traits and reduce the potential candidates at each locus
451  considerably, further highlighting the utility of UnTANGLeD (Figure 41).

452
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453  DISCUSSION

454  This study demonstrates that gene programs governing biological processes can be identified
455  without reliance on prior knowledge, by analysing the association between genetic variation
456  and a large range of diverse complex traits. Several prior studies have constructed small gene
457  networks using a limited number of disease phenotypes and their associated genes from curated
458  GWAS databases and restricted sources of rare genetic variants. Other studies, like PheWAS
459 (34, 35) and PhenomeXcan (36) have collated genomic associations across numerous
460  phenotypes to create resources of variant-trait and gene-trait associations.

461

462  Here, we construct a gene-trait association matrix for 16,849 genes across 1,393 complex traits
463  similarly to PhenomeXcan, and further the concept by using UnTANGLeD to identify gene
464  programs. We apply dimensionality reduction methods, which can harness the high
465  dimensional, complex gene-trait association data, allowing us to greatly expand on the scale of
466  studies previously attempting to build gene networks. By increasing the scale of data, we not
467  only identify gene programs enriched for biological processes specific to associated phenotypes
468  but also reveal gene programs enriched for central processes governing diverse mechanisms of
469  cellular development and homeostasis.

470

471  The UnTANGLeD framework is a powerful approach to identify gene programs orchestrating
472  key biological processes. We implicate novel genes in clusters enriched for known processes
473  and identify numerous novel gene programs with enrichment for protein-protein interactions
474  and no known function. We further highlight the utility of UnTANGLeD for hypothesis
475  generation and functional annotation of genes, which may be particularly valuable for non-
476  coding genes, as they are notoriously difficult to annotate in silico (37). Finally, the
477  UnTANGLeD framework reveals relationships between complex traits, linking phenotypes by
478  the gene programs that underpin them.

479

480  We demonstrate the utility of UnTANGLeD for predicting genes associated with complex traits
481  and diseases using a low-powered GWAS of the same trait. Currently, standard methods use
482  gene-set analysis to improve power to identify genes and pathways involved in a phenotype,
483  such as MAGMA, or GIGSEA (38—41). Our method eliminates the need to define gene-sets
484  and instead uses gene-trait association data to learn gene sets governing complex traits (39),
485  enabling us to implicate novel trait associated genes and loci from a much smaller cohort size.
486
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487  We further highlight the use of the UnTANGLeD clusters for gene prioritization, showing that
488  they effectively select gene candidates at different loci related to the same phenotype. Current
489  gene prioritisation approaches use either distance-based metrics or mapping to eQTLs to predict
490  changes in gene expression (42). However, these also suffer from a considerable false positive
491  rate and may not always distinguish between two genes in proximity, as noted in our data (42).
492  Some recent methods have integrated biological data, such as gene sets, RNA sequencing and
493  protein-protein interaction databases to further prioritise genes at a locus (43). Our framework
494  can be used independently or integrated with any of these approaches to advance understanding
495  of complex trait biology.

496

497  Outside of its utility in GWAS analyses, U"'TANGLeD may provide key mechanisms for data
498  analysis in medical and industry pipelines including genetic testing and drug discovery. For
499  example, polygenic risk scores (PRS) are an emerging method that evaluate an individual’s
500  disease risk from genetic variants (44). Methods such as UnTANGLeD may help reveal genes
501  and hence genetic variants governing cell programs underlying disease risk and hence improve
502  prediction accuracy. In the context of pharmacogenomics, studies have shown that drug targets
503  with genetic support from either rare or common diseases are more than twice as likely to pass
504  through clinical trials (45, 46). Since UnTANGLeD captures gene programs associated with all
505 complex traits and diseases, its predictive power may help de-risk candidates and thereby
506  decrease cost associated with the drug discovery pipeline. Overall, UnTANGLeD represents a
507 powerful and versatile framework for studying cellular gene programs to interpret diverse
508  sources of orthogonal genetic data.

509

510  We note several limitations in our method. Primarily, that the current GWAS data does not
511  represent the whole phenome. Furthermore, many traits are highly correlated, and disease traits
512 are underrepresented in the UK Biobank, the main source of data in this study. Secondly,
513 UnTANGLeD relies on S-MultiXcan to construct the gene-trait association matrix. While S-
514  MultiXcan is powered to detect associations across all tissues, it suffers from a high false
515  discovery rate and may perform poorly in tissues with small sample sizes. Moreover, S-
516  MultiXcan can identify genes colocalised with a causal gene as significant, which can obscure
517  biological signatures. Other approaches such as SMR MR-JTI may remedy this issue (47).
518  Additionally, UnTANGLeD does not account for the predicted directionality of effect or tissue-
519  specific effects, which may help to further increase the quality and biological specificity of the

520  clusters. Biological validation of the method using established gene sets may be inflated due to
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GWAS data being included in the definition of the gene sets. Finally, we note that although
UnTANGLeD is a powerful tool for identifying clusters in an unsupervised manner, the overall
function of the cluster may be difficult to determine. The development of improved gene-based
tests and emergence of larger GWAS data spanning the whole phenome will improve the

accuracy and utility of UnTANGLeD.

This study provides a powerful framework for the identification of gene programs governing
biological processes conserved across all complex traits and diseases, with important
applications for functional annotation, hypothesis generation, machine learning and prediction
algorithms and interpretation of GWAS and diverse other genomic data types. Our approach
can be applied to any collection of gene-trait information, harnessing the power of biological

patterns in a diverse landscape of phenotypic variation.
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711  Figure 1. Schematic of central model design. Complex trait genetic data provide a unique
712 association signature for each gene which can be used to parse the genome into functionally
713 related gene sets.
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719  Figure 2. Consensus clustering method identifies biologically enriched gene clusters.

720  (A) MultiXcan analysis links genetic variants to genes by predicting changes in gene
721  expression using eQTLs. The chi-squared values of the associations between each of 1393 traits
722 and 25851 genes were compiled into a gene-trait matrix.

723 (B) Dimensionality reduction clustering of genes based on their phenotypic associations was

724 performed using Seurat across resolutions 0.2 to 20 in 0.2 increments.
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725  (C) Five permutations of the dataset were compared to the real data by the number of enriched

726 gene ontology terms per resolution. Enrichment was performed using ClusterProfiler, FDR
727 corrected p-value < 0.01. Pairwise comparisons between permutations were performed
728 with Wilcoxon signed rank test.

729 (D) Validation of gene ontology enriched clusters with STRING protein-protein interaction
730 enrichment. Wilcoxon signed rank test was used to compare STRING enrichment in gene
731 ontology enriched and non-enriched clusters.

732 (E) Each gene pair is given a similarity score based on how often they were clustered together

733 across 100 resolutions and these values are compiled into a consensus matrix.
734 Agglomerative hierarchical clustering is applied to the matrix, with the plateau in the
735 average silhouette score defining the optimal number of clusters.

736  (F) Heatmap of consensus matrix as clustered using agglomerative hierarchical clustering for
737 173 clusters.

738  (G) Histogram of the number of genes in each of the 173 clusters.

739  (H) Silhouette scores and correlation scores calculated for each gene to evaluate the clustering
740 robustness and quality respectively. Data generated for 450 genes selected from 12 random

741 clusters.
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743 Figure 3. Enrichment of identified clusters for known gene sets is dependent on data

744  quality.

745 (A)  Broad enrichment profile of 173 clusters stratified by average silhouette and correlation
746  scores.

747 (B)  Heatmap showing the relationship between the biological profile of five clusters, as
748  proxied by their top gene ontology term, and the unique phenotypic signature. The top 10
749  phenotypes per cluster were selected. Association strength was calculated using negative log
750  transformed significance values, which were then normalised across phenotypes and then per
751  cluster. (C) Top enriched gene ontology biological processes for each cluster have no overlap.
752 Clusters ranked by strength of top enriched term. Specificity of top 5 terms per cluster is also
753  provided. (D) 173 clusters stratified by their average correlation and silhouette scores with
754  their gene ontology and STRING enrichment indicated. The P-value represented is specific to
755  the enriched category, and in the case of both represents the more significant of the two.

756  (E-G) Correlation between the average number of significant gene-trait associations per cluster
757  and E) the average correlation score of each cluster (F), strength of GO enrichment and strength
758  of STRING enrichment per cluster (Pearson’s correlation) (G).

759  (H) Presence and degree of colocalization within clusters as stratified by their silhouette and
760  correlation scores (Pearson’s correlation).

761

762
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764  Figure 4. Identified clusters are conserved across all phenotypes and can be used for
765  prediction of genes involved in complex trait biology and prioritization of GWAS genes at
766  implicated loci.
767  (A) Manhattan plot of loci identified by a 2017 and 2013 GWAS of ulcerative colitis (UC). (B)
768  Manhattan plot of S-MultiXcan genes for the two GWAS respectively, genes are ordered
769  according to their genomic positions.
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770  (C) Distribution of 278 significant genes from the 2017 UC GWAS across 173 clusters.
771  Global clustering coefficient was calculated for the 278 genes. Significance was calculated
772 using 100 bootstrap replicates to establish a distribution from which a Z score was calculated.
773 (D)  Prediction of 2017 UC GWAS genes using 2013 UC GWAS. Chi-squared enrichment
774  test was used to determine enrichment for prediction of novel genes compared to non-trait
775  associated genes.

776  (E)  Distribution and global clustering coefficient of 34 significant genes from East Asian
777  GWAS of Triglyceride levels. Significance was calculated using bootstrapping.

778  (F)  Prediction of 137 novel genes from 2013 European GWAS of triglycerides using 2017
779  East Asian GWAS. Enrichment was calculated using chi-squared test.

780 (G) Increase in observed global clustering coefficient compared to expected and prediction
781  enrichment across four additional traits.

782 (H)  Schematic of gene prioritization strategy using the leave one chromosome out approach.
783  Potential genes at a significant locus were refined using clusters enriched for the trait.

784 (D The proportion of loci at which a gene was successfully identified independently of all
785  genes on the same chromosome.
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