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Abstract

In bacteria, either chromosome duplication is coupled to cell division with only one
replication round per cell cycle or DNA is replicated faster than the cells divide thus both
processes are uncoupled. Here, we show that the opportunistic pathogen Pseudomonas
aeruginosa switches from fast uncoupled to sustained coupled growth when cultivated under
standard laboratory conditions. The transition was characterized by fast-paced, sequential
changes in transcriptional activity along the ori-ter axis of the chromosome reflecting
adaptation to the metabolic needs during both growth phases. Quorum sensing (QS) activity
was highest at the onset of the coupled growth phase during which only a quarter of the cells
keeps replicating. RNA sequencing of subpopulations of these cultures sorted based on their
DNA content, revealed a strong gene dosage effect as well as specific expression patterns for
replicating and non-replicating cells. Expression of flagella and mexE, involved in multi drug
efflux was restricted to cells that did not replicate, while those that did showed a high activity
of the cell division locus and recombination genes. A possible role of QS in the formation of

these subpopulations upon switching to coupled growth could be a subject of further research.

Significance statement

The coordination of gene expression with the cell cycle has so far been studied only in a
handful of bacteria, the bottleneck being the need for synchronized cultures. Here, we
determined replication-associated effects on transcription by comparing Pseudomonas
aeruginosa cultures that differ in their growth mode and number of replicating chromosomes.
We further show that cell cycle-specific gene regulation can be principally identified by RNA
sequencing of subpopulations from cultures that replicate only once per cell division and that
are sorted according to their DNA content. Our approach opens the possibility to study
asynchronously growing bacteria from a wide phylogenetic range and thereby enhance our

understanding of the evolution of cell-cycle control on the transcriptional level.
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52 Introduction

53  Bacteria differ in the ways replication is coordinated with cell growth and division®. In fast-
54  growing representatives, such as the model organisms Escherichia coli or Bacillus subtilis,
55  the speed of DNA replication exceeds that of cell division. This uncoupling of both processes
56  results in a gene dosage gradient along the origin(ori)-terminus(ter) axis of the chromosome.
57  The higher gene copy number closer to ori can be exploited to maximize expression of traits
58 needed during rapid growth and to control gene expression®>. It has been shown that moving
59 an ori-located Vibrio cholerae gene cluster coding for ribosomal proteins close to ter reduced
60 the growth rate of the culture, while the wild-type growth level could be restored by placing
61  two copies of this cluster at ter®. Furthermore, the timing of spore formation in B. subtilisis
62 anexample for dosage imbalances triggering regulatory events between genes located on

63  opposite ends of the replicating chromosomes®. In slow-growing bacteria the chromosome is
64  duplicated only once per cell division, thus both processes are coupled®. In several bacterial
65 phyla, a differentiation program is triggered during this eukaryote-like cell cycle. The best
66  studied model is the bi-phasic lifestyle of Caulobacter crescentus. In this bacterium a

67 complex gene regulatory network precisely times the development of a flagellated from a
68  stalked cell during replication and cell division’.

69

70  Pseudomonas aeruginosa is a ubiquitous environmental bacterium, but also an opportunistic
71  pathogen frequently causing nosocomial infections of various body sites, such as the lung,
72 bloodstream, urinary tract and burn wounds®. Furthermore, P. aeruginosa poses a particular
73 threat to patients suffering from cystic fibrosis (CF)°. During live-long chronic infections of
74 the CF lung, the bacterium adapts and evolves towards a slow growing phenotype™.

75  Doubling times are estimated to be around 30 min under laboratory conditions in lysogeny
76  broth (LB) medium and 1.9 to 4.6 h in the CF lung™". The cell cycle dynamics of P.

77  aeruginosa has been extensively studied. Its chromosome is oriented with ori close to the
78  center of the cell and ter located at the cell pole where the division plane forms. During

79  replication both ori move to the poles of the elongated pre-divisional cell where another

80  round of replication can be started"***. Despite the huge body of comparative transcriptome

81  data available for this important pathogen*™°

, the effect of replication on gene expression
82  has not explicitly been studied yet.

83
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Here we monitored growth and cell division and recorded a time-resolved transcriptome of P.
aeruginosa PA14 in LB medium over 10 hours at 1 hour intervals. We show that the culture
switches from fast replication-uncoupled to sustained coupled growth. The transition is
characterized by fast-paced, sequential changes in transcriptional activity along the ori-ter
axis. Furthermore, we identified replication- and non-replication-associated gene expression
in cells showing coupled growth using a newly developed protocol based on fluorescence-
activated cell sorting (FACS).

Results

Growth and replication dynamics of P. aeruginosa in LB medium.

In accordance with previous reports', P. aeruginosa cultures reached an ODggo Of 1.8+0.24
from a starting ODgg 0f 0.05 within 4 h and a maximum doubling time of 341 min when
grown under standard laboratory conditions (Figure 1A). This exponential growth phase was
followed by slower growth to a maximum ODgy Of 3.17£0.11 after 9 h with an OD value
doubling time of 410+£110 min. Cell numbers, too, increased exponentially in the first four
hours from 4.5*%10" to 7.3*10°+1.8*108 cells/ml with a doubling time of 30+9 min, followed
by decreased growth to a maximum count of 3.7*10%+5.8*10" cells/ml after 9 h with a
doubling time of 168+6 min. The notably slower increase of ODgg Values compared to cell
numbers in the last 6 h of cultivation could be explained by a decrease in cell size at later
growth stages that is indicative for reductive cell division (Figure 1B, Supplementary Figure
S1A).

The chromosome content of cells was monitored by stoichiometric staining with SYBR
Green (Figure 1C, Supplementary Figure S1B). In the over-night grown pre-cultures that
were used for inoculation, 80% of the cells contained one chromosome (C1). One hour after
the transfer into fresh medium already 62+7% and 30+2% of the cells contained two (C2) and
three chromosome equivalents, respectively, and a smaller fraction even more. This clearly
indicates that the cultures had moved to a phase of uncoupled growth with replication being
faster than cell division. After 4 to 5 h of growth, the chromosome content shifted back and
two distinct peaks for cells containing one or two chromosomes became visible again. The
presence of cells with a DNA content between the major peaks indicates actively replicating
cells (R). The proportion of C2 and R cells was only slowly reduced from 38+3% to 23+2%

between 6 h and 10 h of growth. The presence of replicating cells after 10 h of cultivation
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was also visible on electron micrographs (Figure 1D). Our data strongly suggest that P.
aeruginosa shifts from fast uncoupled to sustained coupled growth cells during the course of
cultivation in LB medium with a short transition phase in between (Figure 1C). If the
doubling time of the coupled growing culture is converted to the approximately 25% of cells
that actually replicate, the individual division times are around 42 min, thus only slightly

lower than in the uncoupled growth phase.

Transcriptome dynamics of P. aeruginosa during different growth phases.

We monitored transcriptional changes for the full growth period in one-hour intervals. Two
independent experiments with two and three replicates each were carried out. The
transcriptomes clustered according to the growth phases except for the 6 h samples. For these
samples, the transcriptomes of the first experiment were closer to the transition phase, while
the transcriptomes of the second experiment were closer to the coupled growth phase samples
(Supplementary Figure S2A). The 1736 genes, which showed a significant differential
expression during the course of cultivation, could be assigned to eight clusters

(Supplementary Figure S2B and C and Supplementary Table S1).

The transition between growth-phases was characterized by fast-paced waves of transient
transcriptional activity (Figure 2A). Genes in clusters 1 to 3 showed a comparable high
expression during the first 2 h of uncoupled growth, but with a different timing of maximum
expression and the decline afterwards. During this growth phase, in particular transcription
and translation-related processes were expressed (Figure 2B), including biosynthesis of
tRNAs, RNA polymerase and ribosomes as well as chaperones. A high activity was seen for
oxidative phosphorylation and also for biosynthesis of the vitamins folate (B9) and cobalamin
(B12), in accordance with their respective roles in DNA and methionine synthesis.
Expression of the type 111 secretion system gene clusters psc and per and the exoT effector 1’

peaked at 2 h of cultivation followed by a steep decline.

Cluster 4 to 6 contained genes that were transiently activated at the end of exponential
growth. The high number of sugar and amino acid transporters as well as genes of the
pyruvate metabolism indicated a shift in the metabolic preferences. In particular transporters
for branched-chain amino acids were found to be upregulated in this transition phase, in
accordance with their late utilization as a carbon source observed before™. Activation of the

urea cycle and denitrification, and the glycogen metabolism pathway indicate changes of
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nitrogen and carbon utilization at this stage. Cluster 7 harbored genes, which were activated
late in the transition phase and exhibited a stable expression throughout the coupled growth
phase. Denitrification genes were among them as well as genes encoding subunits of a sulfate
transporter and the MexHIG antibiotic efflux pump®. Finally, expression of the late
responding genes in cluster 8 increased between 5 and 8 h before reaching a stable level. In
particular, activation of the pyoverdine biosynthesis machinery, the heme acquisition protein
HasA and the sulfonate transport and metabolism pathway indicate a response to iron and

sulfur limitation in the medium, respectively.

The three components of the quorum sensing system showed different activation dynamics

consistent with previous data'*#

. While the primary QS activator lasR/rsaL pair was not
among the significantly regulated genes, its expression showed a small but consistent
gradually increase from 2 h cultivation on (Supplementary Table S1). The pqsABCDE-operon
was transiently activated with a peak between 4 and 5 h followed by a decline and therefore
found in cluster 5. The pyocyanin biosynthesis gene clusters showed the same pattern, but
with a much more pronounced peak. The chemotaxis operon was also activated transiently
during in the transition phase (cluster 6), while flagella genes were not differentially
regulated. The QS regulator RhIR was assigned to cluster 7 with an activation delay but
stable expression throughout coupled growth. The QS target genes coding for alkaline

protease, cyanide production and lectin B were found in the same cluster.

I nfluence of gene dosage on the transcriptome during uncoupled growth.

Next, we analyzed the distribution of genes in the determined clusters along the ori-ter-axis
of the chromosome. Genes active during uncoupled growth (clusters 1 to 3) were
predominantly located close to ori while those that were activated during the transition phase
(clusters 4 and 5) were more equally distributed along the chromosome. Genes in cluster 6,
activated at the end of the transition phase, already showed a tendency towards ter, a trend
that became even more pronounced for the genes in clusters 7 and 8 that increased expression
during coupled growth (Figure 3A). Furthermore, the average expression levels of genes in
the ori-proximal half exceeded those in the ter-proximal half of the chromosome during the
first three hours of uncoupled growth. At later time-points a balanced expression of both
halves of the chromosome was observed (Figure 3B). These data are in accordance with the

predicted gene dosage effect in cells with high replication rates.
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185 The gene dosage effect became also visible when a general additive model was fitted to the
186 log, fold-change transcriptome data along the chromosome in order to identify local trends in
187  expression dynamics that go beyond the regulation of single genes or operons. When

188  comparing subsequent time-points, with a gradual change in chromosome content, a slightly
189  lower expression was found around the terminus when transcriptomes from 3 h versus 4 h
190 were compared (and to a lesser extent for 2 h vs. 3 h, Supplementary Figure S3). This

191  comparison marks the beginning of the transition from uncoupled to coupled growth and also
192  showed the strongest shift in chromosome content during cultivation.

193

194  The position-specific differences in gene expression became more pronounced when we

195 compared transcriptomes of time-points with a higher difference in chromosome content
196  (Figure 3C). A clearly lower transcription of genes in the region surrounding the terminus of
197  replication was visible when the different growth phases were compared, in particular seen
198  for uncoupled versus coupled growth. To a lesser extent this trend was also seen for the

199  comparison of uncoupled growth to transition and transition to coupled growth phase. In

200 accordance with the analysis above, this specific reduction of gene expression proximal to,
201 and also increasing towards ter, can be parsimoniously explained by a change in MRNA

202  composition as a result of a higher transcriptional activity of ori-proximal genes, thus a gene-
203  dosage effect (indicated by the orange line in Figure 3C).

204

205 Replication-associated tr anscriptome changes during coupled growth.

206  The coupled growth with only one replication per cell division in the last 6 hours of

207  cultivation should allow to discriminate the transcriptomes of non-replicating, replicating and
208  pre-divisional P. aeruginosa cells. To this end, we developed a protocol employing FACS to
209  separate cells based on their chromosome content (Supplementary Text S1). In order to

210  determine the influence of fixation with formaldehyde (FA), and FACS on RNA

211 composition, we compared samples obtained during different steps of the protocol to a

212  sample fixed with RNAprotect (RP) (Figure 4A). Across the three replicates, the different
213  samples showed a consistently high correlation (Figure 4B, Supplementary Figure 4A). We
214  only found 15 genes as well as the chromosomal region of 32 phage-related genes, which
215  were higher expressed in the RP- than in the FA-treated samples (Supplementary Table S2).
216  Only two genes found to be regulated during the cell cycle were also influenced by the

217  fixation method, thus rendering the protocol suitable for the intended purpose.

218
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Next we compared the transcriptomes of the cell populations with one (C1) or two (C2)
chromosomes and those replicating (R). The R and C2 fractions differed from the C1
fraction, but were highly similar to each other (Figure 4C). Only eleven genes were found to
be differentially expressed exclusively when these two fractions were compared. This
included the gnyDBHAL gene cluster coding for enzymes of the acyclic isoprenoid
degradation pathway?', which showed the strongest downregulation in the R versus C2
fraction. The nrdAB genes coding for both subunits of the ribonucleotide-diphosphate
reductase were downregulated in the C2 fraction compared to C1 and R. This enzyme
catalyzes the last step in the formation of deoxyribonucleotides. In E. coli, it is activity has
been linked to controlling the rate of DNA synthesis*. Furthermore, it has been shown that
gene expression peaks at initiation and declines towards the end of replication which is in

accordance with our data for P. aeruginosa.

Between the actively replicating R and the C1 fraction, a clear dosage effect was visible with
gene expression decreasing from ori to ter (Figure 4D). The same was seen for the
comparison of R and C2, but not when the fractions with only completely replicated
chromosomes, C1 and C2 were compared (Supplementary Figure S4B). The differential
expression of several chromosomal loci exceeded this trend dependent on the chromosomal
position. In the R (and C2) fraction, the genes encoding the divisome showed the strongest
activation compared to C1. These comprise of the mur and mra operons, encoding the
enzymes for remodeling the peptidoglycan layer at the division plane and the fts genes,
encoding the components responsible for septum formation®. The recombination genes lexA
and recG were upregulated, too. Of note was also the transcriptional activation of one
genomic island, the region of genomic plasticity RGP41%*, consisting of only uncharacterized
genes. In the C1 fraction, the flagella gene clusters and chemotaxis operons, as well as the glg
genes encoding the enzymes of the glycogen metabolic pathway showed the strongest
activation compared to R and C2. Notably, the mexE gene, completely inactive in the other
fractions, also showed a more than 64-fold higher expression in the C1 population, by far the
strongest regulation in the dataset (Supplementary Table S2). It encodes the transmembrane

protein part of an efflux-transporter for norfloxacin and imipenem®®.
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Discussion

Here we showed that P. aeruginosa switches from replication-uncoupled to -coupled growth
when cultivated in LB medium, thus allowing to study the effect of replication on the
transcriptome. Hereby, the chromosomal gene order reflects the expression maxima during
both growth-phases with the genes important for fast uncoupled growth being located closer
to ori and the stationary phase genes located closer to ter. It has been demonstrated before
that the E. coli sigma 70 factor and its targets, which are mostly active in the exponential
phase, are located closer to ori, while the sigma S factor and its mostly stationary phase
active targets are located closer to ter”®. Thus, while the sigma factors transcriptionally
regulate downstream genes, regulon expression is additionally enhanced by a gene dosage
effect acting on the regulators and their target genes. Our data show the potential of
combining identification of different growth phases by flow cytometry with the comparison
of the respective transcriptomes. The gained knowledge could generally be used to identify
replication-associated effects on gene expression for the vast number of strains with existing

14,16,26

transcriptome data , and integrated into existing gene regulatory models*>?’. It could

further help to better understand chromosomal architecture and to explain gene order

evolution??>28:29,

In the coupled growth phase, P. aeruginosa displays a distinct transcriptome between the
approx. 25% dividing and 75% non-dividing cells. Expression of flagella genes is restricted
to cells that are not replicating, while those that replicate differ mainly in the activity of a cell
division locus. Furthermore, we found that expression of mexE, involved in the expression of
an important antibiotic resistance trait is restricted to the non-dividing cells. This induction of
subpopulations during the switch in growth phases is coincidental with the activation of the
rhl QS system. Cell communication induced population heterogeneity has been shown for P.
aeruginosa before® and is also common in other bacteria® . It might also be the trigger
switching the replication mode and restricting activity of the flagella gene clusters to the non-
dividing cells. In contrast to chemotaxis, flagella gene expression has not been described to
be controlled directly by QS before™®?°. However, we also did not find them differentially
expressed in the culture as a whole, but only in a subpopulation. Thus, a possible connection
between communication and development of motility in a fraction of cells might have been
overlooked and is worth a closer investigation. Furthermore, slow-growing QS-defective

mutants frequently evolve during CF infections®* It would be interesting to determine if
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these strains reproduce by coupled growth only and how the transcriptome is affected by this

change.

The highly similar transcriptomes of replicating and pre-divisional cells indicate that in P.
aeruginosa no distinct phases of a differentiation program are coupled to progressing
replication. This is in stark contrast to the precisely timed cell cycle of C. crescentus with a
defined order of gene activity as cells replicate®. Transcriptome dynamics during replication
has so far only be determined for a couple of model bacteria®*~>°. Key to these studies was the
ability to synchronize the cell cycle within the cultures. Our newly developed method based
on cell sorting according to DNA content allows for identification of replication-specific gene
expression without the need for synchronization, as long as the cells grow slowly with
coupled replication and cell division. Not only cell sorting, but also complementary recent
advances in single cell sequencing®® open up the path to comparative analysis of larger
groups of bacteria, thus contributing to a better understanding of the evolution of cell-cycle

control at the transcriptional level*.

Material and Methods

Strains and growth conditions.

Pseudomonas aeruginosa PA14* was grown in Lysogeny Broth (10 g/L tryptone, 5 g/L yeast
extract, 10 g/L NaCl) at 37°C and 160 rpm shaking. The growth of cultures inoculated to a
starting ODggo Of 0.05 was followed for 10h and samples for determination of ODggo, cell
count, DNA content, and RNAseq were withdrawn every hour. For FACS-based sorting,
cultures were inoculated to a starting ODggo 0f 0.2 and samples were prepared after 5 h when

the coupled-growth mode was stably reached.

Flow cytometric determination of cell number and chromaosome content.

100 uL of culture were mixed with 80 uL of 25% glutaraldehyde in H20 and incubated for 5
min. 820 uL of PBS were added and a dilution series up to 1:1000 was prepared. 10 uL of
SYBR Green (100x) was added to 1 mL of diluted culture. After an incubation time of 20
min, the sample was measured on a BD FACS Canto flow cytometer (BD Biosciences,
Heidelberg, Germany). After gating based on centered forward and sideward scatter, cells

were identified and chromosome content quantified by fluorescence detection in the FITC

10
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channel (excitation 488 and emission 535 nm). Data processing and analysis were performed

with the R package ggcyto®.

Electron microscopy.

Bacteria were fixed by addition of glutaraldehyde (final concentration 2%) for 30 minutes,
and addition of formaldehyde (final concentration 5%) into the culture medium. EM sample
preparation was performed as previously described** with slight modifications. In brief,
samples were washed twice with TE-buffer and fixed to poly-I-lysine coated round cover
slips. After additional washing steps, the samples were dehydrated in a gradient series of
acetone (10%, 30%, 50%, 70%, 90%) on ice and two steps with 100% acetone at room
temperature (each step for 10 minutes). Afterwards, samples were critically point dried with
the CPD300 (Leica Microsystems, Wetzlar, Germany), mounted to aluminum pads and
sputter coated with gold-palladium. Images were acquired with a field emission scanning
electron microscope Merlin (Zeiss, Jena, Germany) equipped with an Everhart Thornley and

an inlens detector and operating at an acceleration voltage of 5kV.

RNAseq library preparation from whole cultures.

Depending on the density, 1 to 2 mL of culture were mixed with the same volume
RNAprotect™ Bacteria Reagent (Qiagen, Hilden, Germany) incubated for 10 min and
centrifuged. The pellets were flash-frozen and stored at -70°C. RNA extraction was carried
out with the RNeasy Plus Kit in combination with QIAshredder™ columns (Qiagen, Hilden,
Germany). Treatment with DNase | was performed in solution. Multiplexed libraries were
generated from directly barcoded fragmented RNA according to a previously published
custom protocol®, including rRNA removal with the RiboZero Kit (Illumina, San Diego,
USA).

Fluor escence-activated cell sorting for RNAseq of subpopulations.

The method was developed based on a previously published study*. A step-by-step protocol
for sample preparation, sorting and RNA isolation is provided in Supplementary Text S1.
Key to successful RNA recovery is the gentle formaldehyde fixation at 4°C. Aliquots of fixed
samples were adjusted to approx. 1.8*10’ cells/mL in 30 ml volume each and stained with
SYBR Green. Sorting of 5.4*10° cells based on the FITC-signal (see above) directly into
RNAprotect was performed with the BD FACSAria Fusion (BD Biosciences, Heidelberg,

Germany). The sorted cells were collected on a filter from which RNA was extracted using a

11
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combination of Lysozyme and Proteinase K digestion with bead beating, and purified with
NucleoZOL (Takara Bio, Goteborg, Sweden). Ribosomal RNA depletion was performed with
the NEBNext Bacteria kit (NEB, Frankfurt, Germany). The libraries were prepared with the
TruSeq kit (Illumina, San Diego USA).

Transcriptome analysis
Sequencing of all libraries was performed on a NovaSeq 6000 (Illumina, San Diego, USA) in
paired-end mode with 100 cycles in total. Reads were filtered with fastQC-mcf

(https://github.com/ExpressionAnalysis/ea-utils) and mapped to the P. aeruginosa PA14

genome (RefSeq accession GCF_000404265.1) using bowtie2*”. FeatureCounts was used to
assess the number of reads per gene®. Normalization and identification of significantly
differentially regulated genes (FDR < 0.05, absolute log; fold change (FC) > 1) was
performed in R using the glmTreat-function of edgeR*’. Cluster assignment of differentially

expressed genes was performed with the package mfuzz™.

Data availability

RNAseq raw data have been deposited at the NCBI gene expression omnibus database under
accessions GSE159698 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159698)
and GSE217100 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217100).
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Figure Legends

Figure 1. Growth and Replication dynamics of P. aeruginosa in LB medium. (A) Optical density
and cell numbers followed for 10 h of growth in LB medium. (B) Distribution of cell area as determined
from EM micrographs. (C) Distribution of chromosome content revealed by flow cytometric analysis of
SybrGreen fluorescence (One to four chromosome equivalents indicated by color). The lower panel
shows representative distributions of fluorescence intensity for up to 7 h. R indicates replicating cells
during coupled growth. (D) Representative EM micrographs of cells during uncoupled (3 h) and

coupled (10 h) growth. Visible division planes are marked by a white arrow.

Figure 2. Transcriptome dynamics during growth in LB medium. (A) Expression dynamics of the
eight clusters determined with mfuzz. Shown are the changes of the average expression in the

according clusters during the course of a 10h-cultivation. (B) Significantly (p < 0.05) enriched KEGG-
categories in the eight clusters. Size indicates the number of enriched genes in the category, color is

according to p-value.

Figure 3. Global chromosomal gene expression changes between different growth phases. (A)
Distribution of genes on the chromosomes that show the highest expression during uncoupled
(clusters 1-3), transition (clusters 4-6) and coupled (clusters 7-8) growth phases. (B) Expression of
genes located in the ori and ter proximal during uncouples (1-3 h), transition (4-5 h) and coupled (6-10
h) growth phases. (C) log, FCs between time points from different growth phases. Red lines show the
fitted general additive models; orange lines show the models shifted up with the conserved region at
the terminus set to log, FC of zero. Representative chromosome content indicative for the different

growth phases is shown on the right.

Figure 4. Transcriptomes of replicating and non-replicating cells during coupled growth. (A)
Sampling scheme for method evaluation. (B) Correlation between transcriptomes of differently treated
RNAs. Data for two additional replicates are shown in Supplementary Figure S4A. (C) Differential
expression between replicating (R) and non-replicating (C1, C2) cells. Number of significantly up- and
down-regulated genes between fractions (dark red) are shown in the left and right corner at the
bottom of each panel, respectively. (D) Chromosome-wide differential gene expression in replicating
(R) versus non-replicating (C1) cells. Genes that change significantly in expression are marked in
dark red. Operons discussed in the text are marked in yellow. The cell-division gene cluster is shown
above the plot. The red line shows a fitted general additive model. Data for the comparisons R vs. C2
and C2 vs. C1 is shown in Supplementary Figure S4B.
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Supplementary Figure L egends

Supplementary Figure S1. Flow cytometric determination of relative cell size and chromosome
content during growth in LB medium. (A) Changes of the side scatter (SSC) indicates reductive
cell division from 3 h to 7 h cultivation time. (B) Changes in the distribution of chromosome content for

three biological replicates in the course of 10 h cultivation.

Supplementary Figure S2. Transcriptome dynamics during growth in LB medium. (A)
Multidimensional scaling (MDS) plot of samples taken during 10 h cultivation. Note the different timing
during the shift to coupled growth (6 h sample) for the two independent experiments. (B)
Determination of ideal number of clusters based on the minimum centroid distance within the clusters.
Increasing the number of clusters above 8 does not lead to further reduction of centroid distance. (C)
Expression profiles of genes in the 8 clusters determined with the mfuzz-package. The number of
genes within the cluster is shown below the cluster number. Cluster affiliation alongside expression

data is also documented in Supplementary Table S1.

Supplementary Figure S3. Time-resolved chromosomal gene expression changes during
growth in LB medium. log; fold changes between subsequent time points are shown. Red lines

show the fitted general additive models.

Supplementary Figure S4. Transcriptomes of replicating and non-replicating cells during
coupled growth. (A) Correlation between transcriptomes of differently treated RNAs (see Figure 4A).
(B) Chromosome-wide differential gene expression in replicating pre-divisonal (C2) versus non-
replicating (C1) and replicating (R) versus non-replicating cells. Genes that change significantly in

expression are marked in dark red. The red line shows a fitted general additive model.
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