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ABSTRACT

European-ancestry populations are recognized as stratified but not as admixed, implying that residual
confounding by locus-specific ancestry can affect studies of association, polygenic adaptation, and
polygenic risk scores. We integrated individual-level genome-wide data from ~19,000 European-ancestry
individuals across 79 European populations and five European American cohorts. We generated a new
reference panel that captures ancestral diversity missed by both the 1000 Genomes and Human Genome
Diversity Projects. Both Europeans and European-Americans are admixed at subcontinental level, with
admixture dates differing among subgroups of European Americans. After adjustment for both genome-
wide and locus-specific ancestry, associations between a highly differentiated variant in LCT (rs4988235)
and height or LDL-cholesterol were confirmed to be false positives whereas the association between LCT
and body mass index was genuine. We provide formal evidence of subcontinental admixture in individuals
with European ancestry, which, if not properly accounted for, can produce spurious results in genetic

epidemiology studies.
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INTRODUCTION

Human genetic studies have primarily considered admixed populations to have resulted from
interbreeding between two or more continentally separated populations'™. However, continental
ancestry is not necessarily a single homogenous component of genetic diversity, but rather can be a
composite of diverse subcontinental ancestries*®. In some instances, differentiation between intra-
continental populations is on par with or higher than differentiation between inter-continental
populations®®. Also, there are examples from pharmacogenetics of variants that are differentiated at the
intra-continental level, such as in the case of abacavir hypersensitivity syndrome, for which the causal
allele (HLA-B*5701) has a prevalence of 13.6% among Maasai in Kenya but a prevalence of ~0% among

Yoruba in Nigeria’.

Despite genetic studies highlighting a clear pattern of North-to-South genetic variation in Europe®?° and
strong evidence of admixture within Europe by ancient DNA analysis!*?, European-ancestry populations
are generally treated in association models as stratified but not as admixed at the subcontinental level.
As a result, genetic epidemiology studies of Europeans or European Americans usually control for
potential confounding effects of population stratification using genome-wide ancestry estimated by
principal components analysis®3, but do not control for locus-specific ancestry, which is inherent to
admixed populations®. Potential consequences are that detection of causal genetic variation is hampered
and estimation of effect sizes can be biased, leading to further negative consequences such as

misestimation of polygenic adaptation®® and poor predictive performance of polygenic risk scores™®.

Recently developed approaches have enabled the use of genome-wide data (either array-based genotype
or whole genome sequence data) to assess admixture at two levels: genome-wide ancestry (also known
as global ancestry)®>'718 which is the individual’s ancestry averaged across the entire genome, and locus-
specific ancestry (also known as local ancestry)?®, which allows for inference of an individual’s ancestry at
each locus. The power, resolution, and specificity of disease or trait mapping studies can be improved by
leveraging both genome-wide and locus-specific ancestries®>?>?, To assess both genome-wide and locus-
specific ancestries in admixed individuals, present-day populations are used as proxies for ancestral
populations that serve as references for ancestry estimation. Considering that ~96% of participants in

genome-wide association studies (GWAS) have European ancestry??, a comprehensive analysis is needed
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to evaluate the adequacy of European reference panels for ancestry analysis using European-ancestry

individuals.

The prevalence of lactase persistence varies widely across Europe and the most strongly associated
variant rs4988235 in the lactase gene (LCT) has been reported to be under positive selection and
associated with height, body mass index (BMI), and low-density lipoprotein (LDL)**-%6. The SNP rs4988235
is one of the most highly differentiated variants in Europe?’, with derived allele (A) frequencies ranging
from 93.1% in Swedes to 2.9% in Sardinians®®. Importantly, rs4988235 and height are well-known to
covary following a north-to-south axis?®, and the association between rs4988235 and height has been
suggested to be spurious based on attenuation following adjustment for genome-wide ancestry?.
Nonetheless, there are no association studies in European-ancestry populations that control for
confounding at both the genome-wide and locus-specific ancestry levels to test the validity of the

association between rs4988235 and reported associated traits.

To test for the existence of subcontinental ancestries within Europe, we integrated genome-wide data
from 1,216 individuals across 79 European populations. Then, to examine population structure and
admixture, we integrated genome-wide data from 17,669 European Americans from five genetic
epidemiology cohorts in the US. Finally, to illustrate the potential implications of confounding by
subcontinental ancestry and admixture, we interrogated the association between rs4988235 and height,

LDL-cholesterol, and BMI.

We found that the 1000 Genomes and Human Genome Diversity Projects provided incomplete coverage
of European ancestries, so we generated a new reference panel to capture additional European ancestral
diversity. Our admixture analyses yielded formal evidence that European-ancestry individuals are admixed
at the subcontinental level, with admixture dates differing among European Americans. After adjustment
for both genome-wide and locus-specific ancestry, previously reported associations between rs4988235
and height or LDL were no longer statistically significant, strongly supporting that they are false positives
due to uncorrected stratification. We observed systematically better fits when models were adjusted for
principal components (PCs) derived from projection of European Americans onto our new reference
panel, rather than for PCs derived from study-specific unsupervised analysis. Altogether, this study
indicates that full adjustment for subcontinental European admixture (at both genome-wide and locus-

specific levels) should become best practice in genetic association studies using European-ancestry
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individuals, including the UK Biobank®® in Europe and the All of Us Research Program3! and the Million

Veteran Program32 in the United States.

RESULTS

Reference panels of European diversity

We generated a new reference panel capturing genetic diversity from 79 European populations from five
population genetics studies: the 1000 Genomes Project®3, the Human Genome Diversity Project (HGDP)34,
the Human Origins dataset®, a study of the Caucasus Mountains®®, and a study of the Jewish Diaspora®’
(Fig. 1A and Table S1). After quality control to reduce batch effects, our European panel included 1,216
unrelated individuals and 104,414 genotyped SNPs. Principal component analysis (PCA)* showed that
North Europeans (e.g., Finnish, Lithuanian, and Estonian) vs Southeast Europeans (e.g., Armenian,
Georgian Jew, and Georgian Megrel) represented the extremes along the first principal component (Fig.
1B). Along the second principal component, Southwest Europeans (e.g., Sardinian, Basque, and Spanish)
vs Southeast Europeans (e.g., South Caucasus) represented the extremes. Subsequent principal
components separated population-specific genetic variability (Fig. S1). To compare our panel with
commonly used European reference panels from the Human Genome Diversity Project (HGDP)** and the
1000 Genomes Project®*3*, we calculated convex hull areas®® defined by the first two principal
components (Fig. 1B and 1C). Compared to our panel, the 1000 Genomes Project and the HGDP covered
26.8% and 61.3% of European diversity, respectively, while the combination of the 1000 Genomes Project
and the HGDP covered 77.3% (Fig. 1C). These results indicate that the 1000 Genomes Project and the

HGDP, separately and combined, provide incomplete coverage of European genetic diversity.

Subcontinental stratification in individuals with European ancestry
To expand and refine our understanding of subcontinental stratification and admixture in European-

ancestry populations, we integrated genome-wide genotype data from approximately 19,000 European-
ancestry individuals (Fig. 2). These data included our European panel (1,216 unrelated individuals) and
17,669 European Americans from five genetic epidemiology cohorts in the US: Atherosclerosis Risk in
Communities (ARIC, n = 9,633), Coronary Artery Risk Development in Young Adults (CARDIA, n = 1,675),
Framingham Heart Study (FHS, n = 2,451), Genetic Epidemiology Network of Arteriopathy (GENOA, n =
1,384 ), and Multi-Ethnic Study of Atherosclerosis (MESA, n =2,526). To assess continental-level structure,

we evaluated our European-ancestry dataset with a worldwide reference panel (Fig. S2). Most Europeans
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formed a discrete cluster along the first two principal components, as previously observed3***, Similarly,
by projecting European Americans onto the worldwide reference panel, we observed that >99% of
European Americans clustered with European reference individuals, with few individuals distributed along
the first principal component (European-African gradient) or the second principal component (European-
Asian gradient). These results suggest that the Europeans included in our panel represent a discrete
cluster in relation to worldwide genetic diversity and that European Americans in genetic epidemiology

cohorts in the US have small to negligible population stratification at the inter-continental scale.

Next, to evaluate European subcontinental stratification in European American cohorts, we projected
individuals from each European American cohort onto our European reference panel. We calculated that
European American cohorts collectively covered 68.2% of European diversity in our panel (Fig. 2), with
differential coverage by cohort: 55.7% in MESA, 51.2% in ARIC, 44.1% in CARDIA, 28.4% in FHS, and 9.7%
in GENOA. The ARIC, CARDIA, FHS, and MESA individuals formed at least three clusters: one with North
Europeans (e.g., British and Scandinavian), one with Southeast Europeans (e.g., Ashkenazi Jew and
Romanian Jew), and one overlapping Finnish individuals. GENOA individuals mostly overlapped British or
Scandinavian reference individuals, with few individuals overlapping South Europeans. Most FHS samples
overlapped with or were between North and South Europeans, with a large number of individuals

clustering with Italian reference individuals.

Subcontinental admixture in individuals with European ancestry

Unsupervised analysis with ADMIXTUREY using our European reference panel identified the most likely
number of ancestry clusters as three (Fig. 3A), suggesting that Europeans have three-way admixture
among North, Southwest, and Southeast Europeans. The stacked bar plot of mixture proportions showed
that the North European-associated ancestry cluster decreased along the north-to-south geographic
direction (Fig. 3A). Formal correlation tests between population ancestry means and geographic
coordinates revealed that latitude was significantly correlated (p < 2.85x10°%) with North European-
associated ancestry cluster (Spearman’s rho=0.814), and longitude was correlated with Southwest-
(Spearman’s rho=0.859) and Southeast-associated (Spearman’s rho=0.579) European ancestry clusters
(Fig. 3B). We observed similar levels of genetic differentiation (Fsr) between the inferred European
ancestry clusters: Fsr = 0.033 between North and Southwest, Fst= 0.032 between North and Southeast,
and Fsr= 0.028 between Southwest and Southeast. To put these amounts of genetic differentiation into

perspective, Fst estimates between European ancestry clusters are comparable to Fsr between British
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(GBR) and either Mexican (MXL, which have ~50% Native American ancestry, Fsr= 0.031) or Punjabi in
Pakistan (PJL, who have > 70% South Asia Ancestry, Fst = 0.027) samples (Table S2). Additionally, Fsr
estimates between European ancestry clusters are at least three-fold higher than Fsrbetween Mandenka
from Gambia in West Africa and Luhya from Kenya from East Africa (Fsr= 0.011, Table S2). Even when
comparing real-world European populations, Fst estimates between Finnish in North Europe and
Armenians or Georgians in South Europe are ~ two-fold higher (Fst ~ 0.02) than Fsr between Mandenka
and Luhya (Fst= 0.011), i.e., between West and East Africans, and not as high as Fsr between inferred

European ancestry clusters.

Supervised ADMIXTURE?Y analysis of European Americans showed patterns of European ancestry clusters
that differed by cohort (Fig. 4 and Table S3). GENOA had the highest mean proportion of the North
European ancestry cluster (44%, SE = 3.9%) and the lowest proportion of the Southeast European ancestry
cluster (7%, SE = 3%), while FHS had the lowest mean proportion of the North European ancestry cluster
(29.9%, SE = 3.7%). MESA had the highest proportion of Southeast European ancestry cluster (25.4%, SE
=3.1%), followed by FHS (19.7% SE = 3%). The admixture patterns in the European American cohorts were
consistent with the projection analysis (Fig. 2), e.g., the GENOA individuals clustered tightly with British
and Scandinavian individuals on the first principal component. By testing genetic admixture using f;
statistics®®, we obtained formal evidence for admixture in the history of European Americans (Tables S4A-
S4E). Also, we observed positive correlation between Fst (a measurement of North-South European
differentiation) and Fir (a measurement of inbreeding) at SNPs throughout the genome in European
American cohorts, consistent with subcontinental ancestry-related assortative mating (Table S5). Our
results confirm the presence of subcontinental population structure in both Europeans and European
Americans, that this structure reflects mixed ancestry in the vast majority of individuals, and that mixed

ancestry reflects admixture rather than discrete subpopulations in Europe.

Admixture dating in European Americans

To date admixture in European Americans, we first applied a clustering approach® to the first two
principal components and inferred that European Americans likely cluster within three subgroups of
individuals (Fig. 5A and Fig. S3). Projection analysis of European Americans onto our European reference
panel revealed that European Americans were widely distributed across a north-south axis, with centroids
of inferred subgroups related to North- (Subgroup N), Southwest- (Subgroup SW), and Southeast-
(Subgroup SE) Europeans (Fig. 5B). The highest proportion of ancestry in Subgroup N individuals was North
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European ancestry (54.5%). Similarly, the highest proportions of ancestry in Subgroup SW and Subgroup
SE individuals were Southwest European ancestry (53.7%) and Southeast European ancestry (71.2%),
respectively. Next, we inferred admixture times for individuals within each of the three subgroups of
European Americans. We observed significant admixture dating for all three subgroups, with subgroup SE
yielding an admixture date ~10 generations more recent (42.00 generations, SE = 6.82) than admixture

dates for subgroup SW (54.28 generations, SE = 10.43) and subgroup N (50.89 generations, SE = 14.26).

Implications of subcontinental admixture for association analysis

To understand the impact of subcontinental admixture in association studies and approaches to correct
potential confounding, we investigated the classical association between LCT (rs4988235) and height,
which has been claimed to be a false positive result due to stratification?. In addition, we evaluated the
associations of rs4988235 with BMI and LDL, which were recently identified in large GWAS meta-analyses
using primarily European-ancestry individuals (up to 500K samples)!*?32%, These studies either adjusted
association models for genome-wide ancestry using the first 10 principal components®* or there was no
evidence of adjustment for European population stratification?. Using our integrated set of European
American cohorts, we replicated the previously reported associations between rs4988235 and height,
LDL, and BMI when models were not adjusted for principal components, i.e., genome-wide ancestry (Fig.
6 and Table S6). Different levels of adjustment for population structure (the genetic relatedness matrix,
genome-wide ancestry [PCs], and/or locus-specific subcontinental European ancestry) reduced the
associations of rs4988235 with height and LDL (Fig. 6A-B and Table S6). Importantly, when models were
fully adjusted for both genome-wide and locus-specific subcontinental European ancestry, the
associations of rs4988235 with height and LDL were completely eliminated, indicating that the unadjusted
associations were false positives. In contrast, the association between rs4988235 and BMI remained
weakly significant after adjustment for both genome-wide and locus-specific ancestry (Fig. 6C and Table

S6).

We also performed cohort-specific association analysis between rs4988235 and height, BMI, and LDL
(Tables S7-S9). When models were not adjusted for population stratification, the association between
rs4988235 and height was significant in ARIC, CARDIA, FHS, and MESA but not in GENOA (Table S7). The
lack of association in GENOA might be explained by a small amount of ancestral heterogeneity and/or by
small sample size. After adjustment for genome-wide ancestry, we observed association between

rs4988235 and height in CARDIA but not in the other four cohorts. After adjustment for genome-wide and
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locus-specific ancestry, we observed no association between rs4988235 and height in all five European
American cohorts (Table S7). Similarly for LDL, we observed some cohort-specific associations when
models were not fully corrected, and that full adjustment reduced or eliminated significance in all cohorts
(Tables S8 and S9). These results imply that full ancestry adjustment (genome-wide and locus-specific
subcontinental ancestry) may facilitate correction for residual stratification and avoidance of false

positives in single studies.

It is common practice in genetic association studies to account for genome-wide ancestry using principal
components derived from study-specific unsupervised analysis (population-specific PCA). Here, we tested
the approach of deriving principal components from projection of target individuals onto an external
reference panel (projection or supervised PCA). To evaluate the similarity between these two approaches
using our European American data, we performed Mantel’s correlation test between individuals’ genetic
distances computed from the top twenty principal components obtained from the unsupervised and
projection approaches. We observed moderate correlation in four studies (Mantel’s rho from 0.46 to 0.53,
p < 0.001), with GENOA not showing a significant correlation (Table S5). Differences between these two
PCA approaches may have led to differences in how well confounding was controlled. During testing of
the association between rs4988235 and height, we observed systematically better model fits (AAIC up to
12.45)" across cohorts when models were adjusted for projection-derived principal components
compared to study-specific principal components (Table S7). For the integrated data set, projection-

derived and study-specific principal components provided similar model fits (Table S6).

DISCUSSION

The existence of subcontinental-level ancestries has been documented within Africa and Asia**?™, yet
the presence of European subcontinental ancestries within Europe is not well appreciated. We compiled
genome-wide genotype and sequence data from geographically diverse Europeans and European
Americans to investigate subcontinental-level ancestries and admixture in European-ancestry individuals.
We also explore the consequences of different strategies for addressing ancestry in genetic epidemiology

studies. Our study has four major results, described below.

First, we created a new reference panel of European genetic diversity by combining five genome-wide

data sets®%7. We showed that panels based on the 1000 Genomes Project and the Human Genome
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Diversity Project, separate or combined, provided incomplete coverage of genetic diversity among
Europeans or the European component of European Americans compared to our new reference panel. To
facilitate genome-wide ancestry estimates, we provide as a research resource a reference SNP matrix of
subcontinental ancestry-specific allele frequencies (https://github.com/mateushgl/CRGGH/). This
resource allows for estimation of subcontinental ancestry proportions by projection analysis based on
publicly available, aggregated, and non-identifiable data. The end-user does not need to access, clean,

integrate, or analyze individual-level reference data.

Second, our admixture analyses yielded formal evidence that European-ancestry individuals are admixed
at the subcontinental level. Using multiple approaches to infer admixture, we showed that European-
ancestry individuals are three-way admixed with wide variation in ancestry proportions. The
demonstration that European Americans are ancestrally heterogeneous has implications for calibrating
locus-specific ancestry analysis®® with respect to the number of generations since admixture began.
Admixture dates estimated for European Americans corresponded to the large-scale Migration Period in
Europe (300-800 AD)*, and were consistent with gene flow after the end of Roman Empire described in
ancient DNA studies of the Viking Age!! and Anglo-Saxon migrations?. Moreover, our results support the
occurrence of subcontinental ancestry-related assortative mating as a social factor that shaped the

genetic structure of European Americans in the US?®.

Third, studies of European-ancestry individuals have reported that genetic variants, principally rs4988235,
in the lactase gene (LCT) are associated with height, BMI, and LDL?*?**’, However, the association
between rs4988235 and height has been suggested to be spurious due to uncorrected genome-wide
ancestry®®. Adjustment for genome-wide ancestry may not be sufficient to avoid false positive results and
can mask true associations if ancestry is associated with the outcome*®. Consistent with known potential
confounding effects of ancestry®*°, we demonstrated that the lack of adjustment for both genome-wide
and locus-specific ancestry can produce false positives in association studies using European-ancestry
individuals. By adjusting our models for locus-specific ancestry in addition to genome-wide ancestry,
associations of rs4988235 with height and LDL were eliminated. In contrast, the association between
rs4988235 and BMI remained after correcting for both genome-wide and locus-specific ancestry,
suggesting an effect on weight but not on height. These results suggest that residual confounding by
subcontinental European ancestry can produce spurious associations in genetic association studies, with

consequences for polygenic adaptation®®, polygenic risk scores!, and fine-mapping of genetic
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associations. Importantly, our results indicate that adjustment for subcontinental European ancestry at
both genome-wide and locus-specific levels should be considered in genetic association studies using
European-ancestry individuals, including large biobanks such as the UK Biobank®® in Europe and the All of

Us Research Program3! and the Million Veteran Program?? in the United States.

Fourth, we observed better model fit with adjustment for principal components derived from supervised
analysis based on a common reference panel rather than for principal components derived from study-
specific unsupervised analyses. However, the performance of unsupervised analysis approached the
performance of supervised analysis as the genetic diversity covered by the sample data approached the
genetic diversity covered by the external reference panel. European genetic diversity in our full panel
covered by European American cohorts ranged from 9.7% to 55.7% whereas coverage reached 68.2%
when all cohorts were combined. This result indicates that GWAS meta-analyses in which individual-level
data cannot be or are not shared across studies should rely on supervised analysis given a common
reference. This recommendation does not depend on sample size, as even data sets on the scale of large

biobanks do not necessarily cover a large proportion of ancestral diversity.

In conclusion, we demonstrated that European-ancestry individuals are admixed at the subcontinental
level. Subcontinental admixture in Europeans and European Americans, if not properly accounted for, can
produce false positive associations in genetic epidemiology studies due to incomplete correction for
confounding by ancestry. Our study highlights the need for full control, at both genome-wide and locus-
specific ancestry levels, for confounding in Europeans and European Americans. Potential consequences
of residual confounding by subcontinental ancestry include the misestimation of polygenic adaptation and

poor performance of genetic or polygenic risk scores.

METHODS

Samples
We compiled genome-wide data from five different studies: the 1000 Genomes Project®?, the Human
Genome Diversity Project (HGDP)**, the Human Origins dataset®®, a study of the Caucasus Mountains®¢,

and a study of the Jewish Diaspora® (Fig. 1A and Table S1). Using these data, we created a data set that
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included 4,796 individuals (worldwide reference panel), from which we extracted 1,216 individuals from
79 European populations (European reference panel). We analyzed genome-wide array and phenotypic
data from 17,684 European Americans from five genetic epidemiology cohorts, for which access was
granted through dbGaP>%: ARIC (phs000090.v1.p1), CARDIA (phs000285.v3.p2), FHS (phs000007.v32.p13),
GENOA (phs000379.v1.p1), and MESA (phs000209.v13.p3).

Data curation

To reduce batch effects due to the integration of array-based genotype data and whole genome sequence
data, we performed quality control analysis within and between datasets using PLINK 1.9, filtering by
minor allele frequency (--maf 0.01), per genotype missingness (--geno 0.05), per individual missingness (-
-mind 0.05), and deviation from Hardy Weinberg equilibrium (--hwe 1x10°). We also pruned strand-

ambiguous SNPs and SNPs in high linkage disequilibrium (--indep-pairwise 50 10 0.8).

Population structure and relatedness

We used PLINK 1.9 to estimate the probability that individuals i and j share 0, 1, or 2 alleles identical by
descent (IBD) (8%, &', and &%, respectively)>’. Based on these IBD probabilities, we calculated the
pairwise kinship coefficient (®;) as a function of IBD-sharing, ®@; = 1/26%; + 1/46";. We modeled the
genetic relationships among individuals as networks®?, in which pairs of individuals were linked if they had
a @ij threshold > 0.0884 (i.e., first- and second-degree relatives®®). Then, we excluded related individuals
using the maximum clique graph approach to minimize sample loss®’.. We performed unsupervised
principal components analysis*® and unsupervised ADMIXTURE analysis*’ on the European reference data.
We performed unsupervised and supervised PCA and ADMIXTURE analyses using the reference data
combined with the European American data. For supervised analysis in ADMIXTURE, we used as the
ancestral references the European individuals with 290% of one of three ancestries based on unsupervised
ADMIXTURE analysis. To evaluate the coverage of European diversity, we used the first two principal
components to calculate convex hull areas®®. We calculated f; statistics as implemented in ADMIXTOOLS*
to formally test admixture. We tested all possible combinations of two European sources and a target
European American cohort, following the form f;3(EUR_POP_X , EUR_POP_Y; EA_Cohort). All f; statistics

with z < -3 were considered significant evidence of admixture.
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Admixture dating

We first combined all European American cohorts and performed supervised PCA by projecting the
European Americans onto the European reference panel. We then used gap and elbow statistics*®® to
calculate the most likely number of clusters. To estimate the origin dates of admixture events, we
calculated weighted LD decay statistics using MALDER>* within each cluster of European Americans. Given
that background LD can have a confounding effect on the weighted LD curves, we used as reference
populations North European (Lithuanian and Estonian) and South European (Cyprus, Azerbaijani Jew, and

Georgian Jew) populations that did not show high LD correlation with the tested target populations.

Phasing and imputation

To generate valid VCF files before phasing, imputation, and association tests, we checked and corrected
for monomorphic sites, consistency of reference alleles with the reference genome, variants with invalid
genotypes, and non-SNP sites using the checkVCF.py Python script
(https://github.com/zhanxw/checkVCF). We phased and imputed the genotype data using EAGLE2.4°° and

Minimac®®, respectively, using the TOPMed panel available through the TOPMed imputation server®’.
After imputation, we retained SNPs with minor allele frequency >0.01 and with either high imputation

quality (info 2 0.95) or empirically determined genotype data.

Locus-specific ancestry analysis

Given that rs4988235 is highly differentiated between North and South European populations?® and varies
following a north-to-south gradient?, we inferred two-way locus-specific ancestry using RFMix (version
1.5.4)%. For ancestral references, we selected individuals with 290% North or South European ancestry as
estimated in the unsupervised ADMIXTURE analysis. We performed inference in the PopPhased mode to
correct possible phase errors. We set the number of generations since the admixture event (argument -
G) at 50, the number of expectation maximization (EM) iterations (argument -e) at 2, and the window size

(argument -w) at 0.2 cM. All other arguments were set at default values.

Association analysis

We performed association analysis using linear mixed models implemented in GENESIS®8. Our analyses
were focused on unrelated European Americans, with relatedness determined by the maximum clique
graph approach®2. Models were adjusted for the genetic relationship matrix as a random effect to account

for variance components and the four first principal components (significantly associated with the
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outcome) and/or locus-specific ancestry as fixed effects. genome-wide ancestry was accounted for using
principal components derived from one of two approaches: study-specific unsupervised analysis or
supervised (projection) analysis of individuals onto an external reference panel. To account for the
uncertainty of locus-specific ancestry estimates, models were adjusted for locus-specific ancestry dosages
calculated from the posterior probabilities of locus-specific ancestry. Similarly, we used genotype dosages

to account for imputation uncertainty.
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Fig. 1. European reference panels and coverage of European genetic diversity. (A) Map of Europe
showing the geographic location of samples from 79 European populations. (B) The first two principal
components (PC1 and PC2) of genetic diversity and the percent variance explained. C) Coverage of genetic
diversity over the first two principal components (convex hull area).
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Fig. 2. Projection analysis of European Americans onto our European reference panel. We
plotted the convex hull area for all cohorts combined and for each European American cohort. The full
legend as well as the geographic location of samples from 79 European populations can be found in Fig.
1. Convex hull area = Coverage of genetic diversity over the first two principal components.
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Fig. 3. Subcontinental ancestries in Europe and correlation of ancestry with geography.
(A) Bar plot showing ancestry proportions in the European populations and a cross-validation plot
supporting K=3 as the most likely number of ancestry clusters. Purple, magenta, and cyan colors
represent ancestry clusters associated with North, Southwest, and Southeast European populations,
respectively. Individual Bar plots were sorted in descending order of the amount of North European
ancestry (Purple), and populations are sorted in descending order of the average of North
European ancestry. (B) Correlation plots depicting Spearman’s rho between ancestry proportions
and geographic coordinates. Colored lines represent fitted linear regressions.
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Fig. 4. Ancestry proportions in European Americans. Bar plot representation of individual ancestry
proportions inferred from supervised analysis. Purple, magenta, and cyan colors represent ancestry
clusters associated with North, Southwest, and Southeast European populations, respectively. Individual
Bar plots were sorted in descending order of the amount of North ancestry cluster (Purple).
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Fig. 5. Substructure and admixture dating in European Americans. (A) The number of clusters (k) was
estimated using gap statistics, based on the first two principal components (PCs) derived from the (B)
projection analysis of European Americans (15,917 unrelated individuals). We estimated that
European Americans are distributed across three clusters representing North (N), Southwest (SW), and
Southeast (SE) Europeans. (C) Bar plot representing ancestry profiles within each estimated cluster of
European Americans. D) Admixture dating across clusters of European Americans. Point estimates and

standard errors of statistically significant admixture dates are shown on the horizontal axis.
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Fig. 6. Forest plots showing the association between rs4988235 and height, LDL, and BMI,
accounting for different levels of control of population stratification. Forest plots show (3
values (95% confidence intervals) and p-values from linear mixed models. GRM = genetic
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relatedness matrix; Ref_PCs = PCs derived from a projection of individuals onto an ancestral
reference panel; Pop_PCs = PCs derived from within-population unsupervised PCA analysis.
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