

1 **Larval and adult traits coevolve in response to coastal oceanography to shape**
2 **marine dispersal kernels**

3

4

5 James H. Peniston and Scott C. Burgess

6

7 Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee,
8 8 FL, 32306-4296, USA.

9

10 Scott Burgess ORCID: 0000-0002-0348-3453

11 James H. Peniston ORCID: 0000-0003-3577-1035

12

13 Keywords: *dispersal evolution, life history, directional dispersal, marine larvae, integral*
14 *projection model, adaptive dynamics*

15

16

17 **Abstract** (currently 200 words, which is the max)

18 Dispersal emerges as an outcome of organismal traits and external forcings. However, it remains
19 unclear how the emergent dispersal kernel evolves as a by-product of selection on the underlying
20 traits. This question is particularly compelling in coastal marine systems where dispersal is tied
21 to development and reproduction, and where directional currents bias larval dispersal
22 downstream causing selection for retention. We modelled the dynamics of a metapopulation
23 along a finite coastline using an integral projection model and adaptive dynamics to understand
24 how asymmetric coastal currents influence the evolution of larval (pelagic larval duration) and
25 adult (spawning frequency) life history traits, which indirectly shape the evolution of dispersal
26 kernels. Selection induced by unidirectional currents favors the release of larvae over multiple
27 time periods, allowing long pelagic larval durations and long-distance dispersal to be maintained
28 in marine life cycles in situations where they were previously predicted to be selected against.
29 Two evolutionary stable strategies emerged: one with a long pelagic larval duration and many
30 spawning events resulting in a dispersal kernel with a larger mean and variance, and another with
31 a short pelagic larval duration and few spawning events resulting in a dispersal kernel with a
32 smaller mean and variance. Our theory shows how the statistics of coastal ocean flows are
33 important agents of selection that can generate multiple, often co-occurring, evolutionary
34 outcomes for marine life history traits that affect dispersal.

35 **Introduction**

36 Dispersal has fundamentally important consequences for the demographic and genetic
37 structure of populations, and how species respond and adapt to changing conditions (Clobert et
38 al. 2012; Travis et al. 2013). As a result, it is important to understand how dispersal evolves.
39 Decades of work by theoreticians has focused on dispersal propensity or dispersal distance as the
40 evolving trait and shown how kin competition, inbreeding, and spatio-temporal variation can
41 select for dispersal (Starrfelt and Kokko 2012). However, dispersal in nature arises as an
42 outcome of the biological traits of organisms and external forcings (e.g., wind and water
43 currents) that both affect movement, fitness, and the final distribution of dispersal distances
44 (Burgess et al. 2016). Therefore, challenges remain in explaining how dispersal actually evolves
45 in nature, rather than how it can evolve. That is, there is a need to identify which traits cause
46 dispersal outcomes, and what factors cause selection on those traits to influence the pattern of
47 dispersal that emerges and changes through evolutionary processes (Burgess et al. 2016). This
48 challenge is particularly prevalent in marine systems, where dispersal is tied to early
49 development in complex life cycles, and traits that influence dispersal outcomes are also traits
50 that influence development and reproduction.

51 In many marine invertebrates and fishes, adults are sessile or demersal, but their
52 microscopic larval offspring are capable of dispersing great distances in ocean currents
53 (kilometers to 100's of kilometers in some species), mostly during obligate periods of
54 development when larvae feed and are incapable of settling (Kinlan and Gaines 2003; Shanks
55 2009). However, the ease of larval dispersal in ocean currents creates problems. Along many
56 coastlines, the average current is unidirectional over the timescales that dispersal occurs (Davis
57 1985). As a result, passive larvae drift downstream, which results in larvae being constantly

58 washed away from settlement habitat (Gaylord and Gaines 2000; Largier 2003; Siegel et al.
59 2003). If there is not enough upstream retention, downstream dispersal ultimately leads to
60 population extinction (Byers and Pringle 2006). This results in a ‘drift-paradox’, where adult
61 populations persist despite the threat of a net downstream loss of larvae (Müller 1982; Speirs and
62 Gurney 2001; Müller 1982; Speirs and Gurney 2001; Pachepsky et al. 2005; Shanks and Eckert
63 2005; Byers and Pringle 2006). Therefore, the ubiquity of alongshore currents in coastal habitats
64 should select for dispersal traits that increase upstream retention, but may also result in
65 downstream dispersal as a consequence.

66 One trait that can influence dispersal and upstream retention is pelagic larval duration
67 (Grantham et al. 2003; Shanks 2009; Treml et al. 2015; Cecino and Treml 2021). Shorter pelagic
68 larval durations decrease the risk that passively dispersing larvae are transported and lost
69 downstream on average (Siegel et al. 2003; Byers and Pringle 2006). Recent analyses
70 considering the role of ubiquitous alongshore currents in coastal habitats have shown that
71 stronger currents should lead to the loss of pelagic larvae from marine life cycles all together
72 (Pringle et al. 2014), suggesting that species with feeding larvae (planktotrophy) should only be
73 found where currents are relatively weak. When mean currents are weak relative to the stochastic
74 variation in currents, there are potential advantages to longer larval durations that relate to
75 greater growth and survival in pelagic versus benthic habitats, but not necessarily for the
76 dispersal they facilitate (Burgess et al. 2016; Meyer et al. 2021a; Iwasa et al. 2022). There is a
77 large literature on the evolution of marine reproductive strategies based on egg size-number
78 trade-offs where egg size affects larval development times depending on whether larvae feed or
79 not (Vance 1973; Strathmann 1985; Emlet et al. 1987; Levitan 2000; Marshall and Keough
80 2007). This theory predicts that longer larval durations evolve when selection favors the

81 production of many small offspring that feed for themselves away from adult habitat, but require
82 longer to feed and develop independently to a size and stage required for settlement back into
83 adult habitats (Vance 1973; Strathmann 1985; Emlet et al. 1987; Levitan 2000). Therefore,
84 because egg size affects development time, which in turn affects the potential for upstream
85 retention, ocean currents should strongly modify how marine egg size-number trade-offs evolve
86 (Reitzel et al. 2004; Shanks and Eckert 2005; Pringle et al. 2014).

87 Despite most analyses on the causes of marine dispersal focusing on the traits of larvae,
88 especially larval behaviors (Leis 2006; Morgan 2014), traits that affect dispersal and upstream
89 retention may also include those of the less mobile adult stages. Parents not only control larval
90 duration via the effects of egg size, but also the timing, frequency, and, in some cases, location in
91 which offspring are released into coastal flow fields (Strathmann 1982; Morgan and Christy
92 1995; Reitzel et al. 2004). In particular, unidirectional alongshore currents often reverse direction
93 on many coastlines due to wind or seasons. Releasing offspring on multiple occasions can
94 increase retention by increasing the variability in advection that batches of larvae encounter
95 among different releases. Accessing greater variability in currents over multiple releases
96 increases the chance that enough of a parent's lifetime reproductive output occasionally moves
97 upstream against the average downstream flow compared to releasing only one batch of larvae
98 (Byers and Pringle 2006). So while larval behaviors can also increase retention (Paris and Cowen
99 2004; Metaxas and Saunders 2009; Bottesch et al. 2016; Burgess et al. 2022), adult traits also
100 control dispersal by when and how often larvae are released into the current. Small dispersing
101 larval stages and marine life histories are therefore not at the whim of strong physical forcing.
102 Instead, the physical forcing itself causes selection on life history traits, and the pattern of
103 dispersal that emerges can evolve (Burgess et al. 2016).

104 Our goal here was to develop theory that helps us understand how coastal oceanographic
105 processes affect the evolutionary outcome of traits that affect dispersal. Most previous theory has
106 considered reproductive strategies in the absence of oceanography (Vance 1973; Levitan 2000),
107 considered dispersal itself as the evolving trait rather than the underlying traits of the individuals
108 that interact with currents to give rise to dispersal patterns (Shaw et al. 2019), or only focused on
109 larval traits (Pringle et al. 2014). We use an adaptive dynamics framework to present new theory
110 showing how asymmetric coastal currents influence the coevolution of pelagic larval duration
111 and adult spawning frequency in coastal ecosystems. We consider lifetime dispersal kernels as
112 the dispersal kernel of all larvae released over an individual's lifespan. Our model shows how the
113 evolutionary stable combination of pelagic larval duration and spawning frequency changes with
114 oceanographic conditions and indirectly affects the expectation for marine dispersal kernels. We
115 show that for many realistic coastal oceanographic conditions, there are two evolutionarily stable
116 life history strategies: one with a longer pelagic larval duration and higher spawning frequency
117 and another with a shorter pelagic larval duration and lower spawning frequency, leading to
118 different expected dispersal kernels under the same flow regime.

119

120 **Model Description:**

121 We model the dynamics of a metapopulation along a finite coastline using an integral
122 projection model structured by space and age. The integral projection model framework is quite
123 general, however, and can be adapted for different assumptions by replacing any of the functions
124 below with another suitable function.

125 We study the phenotypic evolution of pelagic larval duration (T_{PLD}) and number of
126 spawning events per individual parent (N_{spawn}) by analyzing this model with an adaptive

127 dynamics methodology, which allows for both frequency- and density-dependent dynamics
128 (McGill and Brown 2007; Rees and Ellner 2016). Adaptive dynamics works by introducing a
129 mutant with a small change in either T_{PLD} or N_{spawn} into a stabilized population of residents and
130 calculating the invasion growth rate of its lineage. We determine the evolutionary stable
131 phenotypes by iterating this process and finding the phenotypes that cannot be invaded by
132 mutants with small changes. Trait values that cannot be invaded are referred to as evolutionary
133 stable strategies (ESSs), and can be thought of as the endpoint, or outcome, of evolution.

134 In our results, we first discuss the evolution of T_{PLD} and N_{spawn} separately, that is,
135 assuming one trait evolves while the other trait does not evolve. These analyses provide a useful
136 understanding of how each trait independently affects each other's evolution given the currents.
137 We then consider a model where both traits coevolve (*i.e.*, affect each other simultaneously and
138 reciprocally) and determine the evolutionary stable combinations of trait values.

139 The ratio of mean alongshore flow (U) to short timescale fluctuations in currents (σ , that
140 is, current fluctuations over the timescales captured by U) is a key descriptor of how
141 oceanographic conditions affect dispersal evolution (Pringle et al. 2014). We will refer to this
142 ratio as “scaled alongshore flow” and present results of life history evolution for $0 \leq U/\sigma \leq 2$,
143 which captures a realistic range of oceanographic conditions (Robinson and Brink 2006).

144

145 *Relationship between pelagic larval duration and fecundity*

146 Individuals either produce many small eggs or fewer larger eggs. We model this size-
147 number trade-off by defining the number of eggs released f as the total amount of material
148 contributed to egg production C divided by the egg volume s_{egg} , that is $f = \frac{C}{s_{egg}}$.

149 There is empirical evidence that egg size affects pelagic larval duration depending on
150 whether larvae feed or not. For feeding (planktotrophic) larvae, pelagic larval duration decreases
151 with egg size, especially in echinoderms (Vance 1973; Emlet et al. 1987; Levitan 2000; Marshall
152 and Keough 2007; Marshall et al. 2018). Here, we focus on feeding larvae because we are
153 initially interested in explaining how long-distance dispersal is maintained in marine invertebrate
154 and fish life histories, and to also compare our results to previous models of pelagic larval
155 duration in coastal oceans (e.g., Pringle et al. 2014). However, future studies should consider
156 non-feeding larvae or other traits that affect larval duration.

157 We model the negative relationship between the pelagic larval duration and egg size
158 following Pringle et al. (2014) such that

$$159 T_{PLD} = \frac{1}{g} \ln \left(\frac{s_{crit}}{s_{egg}} \right) \quad (\text{eq. 1}),$$

160 which can be rearranged as

$$161 s_{egg} = \frac{s_{crit}}{\exp(gT_{PLD})} \quad (\text{eq. 2}),$$

162 where T_{PLD} is pelagic larval duration, g is the rate at which larvae gain mass during feeding, and
163 s_{crit} is critical size that the egg must reach to settle. A given increase in egg size for smaller eggs
164 reduces T_{PLD} more than the same increase in egg size for larger eggs.

165

166 *Larval mortality*

167 We assume that the probability of larvae surviving through the pelagic stage decreases
168 with pelagic larval duration and increases with egg size such that is given by

$$169 \exp \left[-\frac{mT_{PLD}}{s_{egg}} \right], \quad (\text{eq. 3})$$

170 where m is the baseline daily larval mortality rate. The survival benefits of larger larvae can arise
171 from larger larvae acquiring more energy, using proportionally less energy, or being less
172 susceptible to predation (Marshall et al. 2018). More generally, equation (3) can be treated as a
173 heuristic assumption that leads to a hump-shaped relationship between egg size and number of
174 larvae that survive the pelagic phase. Such a relationship is an important concept in the marine
175 life history literature because it allows for an optimal intermediate egg size, depending on the
176 parameter values (Smith and Fretwell 1974; Levitan 2000).

177 Given equation 3 and the egg size-number tradeoff above, the number of larvae that
178 survive the pelagic phase is

$$179 f = \frac{C}{s_{\text{egg}}} \exp\left[-\frac{mT_{\text{PLD}}}{s_{\text{egg}}}\right] \quad (\text{eq. 4}).$$

180 We only consider scenarios where larval growth rate is greater than the larval mortality rate ($g-m$
181 > 0), because otherwise there is always selection for no pelagic larval stage and this has been
182 explored previously (Pringle et al. 2014; Iwasa et al. 2022).

183

184 *Relationship between pelagic larval duration and the dispersal kernel*

185 Dispersal is dependent on mean alongshore flow (U), the standard deviation in
186 alongshore flow (σ), the Lagrangian decorrelation timescale (τ), and pelagic larval duration
187 (T_{PLD}). Siegel et al. (2003) show the mean dispersal distance (advection) is

$$188 L_{\text{adv}} = UT_{\text{PLD}},$$

189 and the standard deviation in dispersal distance (diffusion) is

$$190 L_{\text{diff}} = (\sigma^2 \tau T_{\text{PLD}})^{0.5}.$$

191 Based on basic oceanographic principles, a Gaussian dispersal kernel is used for passively
192 dispersed larvae (Largier 2003). Thus, the probability of dispersing from location x to y is given
193 by

$$194 k(x, y) = \left(\frac{1}{L_{\text{diff}} \sqrt{2\pi}} \right) \exp \left(\frac{(y - (x + L_{\text{adv}}))^2}{L_{\text{diff}}^2} \right). \quad (\text{eq. 5})$$

195 For a discussion of the sensitivity of upstream retention and selection on long pelagic larval
196 durations to non-Gaussian dispersal kernels see (Pringle et al. 2009, 2014).

197

198 *Recruitment competition*

199 We assume that larvae can only settle at a site if there is an available microsite (e.g.,
200 space on a rock) and that there are only K microsites available at each site. Larvae have lottery
201 competition for microsites (Chesson and Warner 1981; Warner and Chesson 1985). That is, the
202 number of lineage i (mutant or resident) larvae that successfully settle is proportional to the
203 relative frequency of that lineage among larvae arriving at the site. Therefore, the expected
204 number of lineage i individuals that establish themselves at site x is given by

$$205 r(n_{ix}) = \mu \frac{n_{ix}}{n_{ix} + n_{jx}}, \quad (\text{eq. 6})$$

206 where n_{ix} is number of lineage i larvae arriving at site x and μ is the number of unoccupied
207 microsites, which is given by K minus the total number of adults that died the previous time step.

208

209 *Post-settlement dynamics*

210 After settlement, individuals live for up to N_{spawn} time steps and release larvae each time
211 step. The probability of post-settlement individuals surviving to the next time step is given by the
212 function $s(a)$, where a is age. $s(a)$ can be any age-dependent mortality function, but we will

213 assume that all post-settlement individuals have the same mortality rate A_m until reaching age
214 N_{spawn} , at which point they all die. For all presented results we divide the annual amount of
215 material contributed to egg production C by N_{spawn} such that lifetime investment in egg
216 production is fixed if there is no adult mortality (e.g., individuals could either produce 100 eggs
217 ten separate times or produce 1000 eggs all during one spawning event). We make this
218 assumption because we are interested in the specific effects of spawning frequency *per se* and
219 this assumption controls for the increased lifetime fecundity that might accrue with increased
220 spawning frequency, or the amount of material contributed to egg production C that might
221 increase as adults grow (Marshall et al. 2022). Future studies could consider additional
222 complexities that emerge from specific relationships between spawning frequency and fecundity.

223

224 *Temporal fluctuations in alongshore flow*

225 We investigate the effect of variation in alongshore flow rates that takes place on time
226 scales equivalent to spawning frequency. For simplicity we will refer to these fluctuations as
227 interannual variation in flow, which is accurate if time steps in our model are treated as years.
228 However, the time steps can be treated as any unit of time longer than the Lagrangian
229 decorrelation timescale (which we set to 4 days, Davis 1985), and “interannual” fluctuations can
230 be interpreted as among time step fluctuations.

231 We incorporate such interannual variation in flow rates into our model by replacing
232 diffusion (L_{diff}) with an estimate for the standard deviation of larval dispersal distance for all
233 larvae released over the lifetime of an adult, $L_{diffeffect}$, which was developed by Byers and Pringle
234 (2006)

235
$$L_{diffeffect} = \sqrt{\left(L_{diff}^2 + \left(1 - \frac{1}{N_{spawn}} \right) \sigma_{L_{adv}}^2 \right)}, \quad \text{(equation 7)}$$

236 where $\sigma_{L_{\text{adv}}}$ is the interannual standard deviation in L_{adv} . Given our equation for L_{adv} above, $\sigma_{L_{\text{adv}}}$
237 is $\sigma_{IA} T_{PLD}$, where σ_{IA}^2 is the interannual variation in mean flow rates U . Note that, if $\sigma_{IA} > 0$ and
238 $N_{\text{spawn}} > 1$, then $L_{\text{diffeffect}} > L_{\text{diff}}$. We checked the robustness of using this estimation of $L_{\text{diffeffect}}$
239 using the direct simulation methods described in the Appendix.

240

241 *Integral projection model*

242 Metapopulation dynamics are given by the set of coupled equations

$$243 N_0(y, t+1) = r \left(\sum_{a=0}^{N_{\text{spawn}}} \int_0^L f k(y, x) N_a(x, t) dx \right) \quad (\text{eq. 8})$$

$$244 N_a(y, t+1) = s(a) N_{a-1}(x, t). \quad (\text{eq. 9})$$

245 $N_0(y, t+1)$ is the number of larvae (age 0) individuals that settle at site y in timestep $t+1$. $N_a(y, t)$
246 is the number of age a individuals at site y at timestep t . f is the number of larvae that survive the
247 pelagic phase (eq [4]), $k(y, x)$ is the probability of dispersing from site x to site y (eq [5]). $s(a)$
248 gives the probability of age a individuals surviving to age $a+1$. L is the length of the coastline. If
249 necessary for the study system, equations [8–9] can be adapted such that mortality rate,
250 fecundity, and larvae size can vary with age.

251

252 *Calculating invasion fitness*

253 Invasion fitness λ is calculated as the initial growth rate of a mutant lineage introduced
254 into, and competing with, a stabilized resident metapopulation. As long as the resident
255 population's local retention is positive, the resident population will fill all microsites along the
256 coast. Therefore, the long-term stable resident distribution is K at all sites. The stable age
257 distribution of residents is then given by (Dewi and Chesson 2003)

258
$$N_{ar} = \frac{l_{ar}}{\sum_{a=1}^{N_{spawn}} l_{ar}}$$

259 where l_{ar} is the probability of surviving to age a . We can then rewrite the recruitment function (eq.

260 6) as

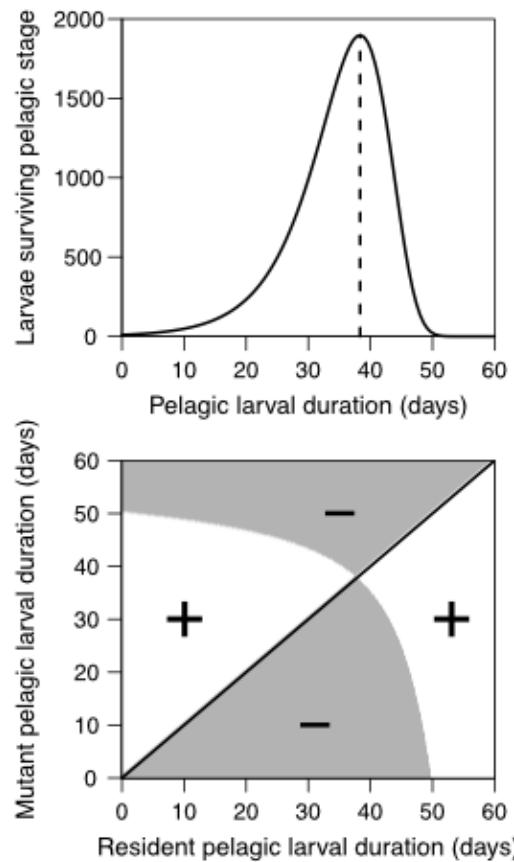
261
$$r(n_{mx}) = \frac{\left(\sum_{a=1}^{a_{max}} s(a) N_{ar} K \right) n_{mx}}{\sum_{a=1}^{a_{max}} \int_0^L f(a) k(y, x, a) N_{ar} K dx}. \quad (\text{eq. 10})$$

262 Note that the number of unoccupied sites μ is now given by the sum of age-specific adult
263 mortality rates $s(a)$ multiplied by the stabilized number of resident adults in that age class $N_{ar}K$.

264 Also, the denominator no longer includes mutants because invader density is by definition very
265 low and can therefore be assumed to not affect density dependence. In essence, this is now a
266 density-independent model where the resident metapopulation distribution is treated like an
267 environmental factor affecting recruitment and growth of the mutant population.

268 Following Ellner and Rees (2006), we calculate invasion growth rates by numerically
269 evaluating our model using the midpoint rule. Details of this protocol are included in the
270 Appendix. We checked the robustness of our assumption that the resident population is
271 stationary and our estimate of $L_{\text{diffeffect}}$ by comparing our results to stochastic simulations which
272 tracked the population dynamics of residents and stochastically varied flow rates. These
273 simulations confirmed the key patterns seen in our deterministic model the Appendix. We focus
274 our analysis on the deterministic model, however, because results of the stochastic model are
275 dependent on specific assumptions about how stochasticity and density dependence are
276 implemented, and while important process could emerge from the stochasticity, the goal of this
277 paper is to make general conclusions about the evolution of T_{PLD} and N_{spawn} in coastal systems.

278


279 **Results**

280 **Evolution of pelagic larval duration (T_{PLD})**

281 *No mean alongshore flow*

282 Without ocean currents (*i.e.*, $U=0$ and $\sigma=0$), there is only one pelagic larval duration
283 (T_{PLD}) that is an evolutionarily stable strategy (ESS) and it occurs at the T_{PLD} which maximizes
284 the total number of larvae that survive the pelagic phase (Figure 1). This result recovers classic
285 results from previous models without oceanography (Smith and Fretwell 1974; Levitan 2000).

286 If there are short timescale fluctuations in flow, but still no mean alongshore flow (*i.e.*
287 $U=0$ and $\sigma>0$), the ESS T_{PLD} will slightly decrease from the optimum of 38.35 days shown in
288 figure 1 (Figure 2 when scaled alongshore flow is 0). The slight decrease occurs because our
289 model assumes there is a limited range of habitable coastline and a higher T_{PLD} leads to more
290 individuals dispersing away from the source location and thus being lost off the upstream or
291 downstream edge of the habitable range. However, this effect is small. Given our baseline
292 parameter values, the ESS T_{PLD} never decreased more than 3 days even given the highest values
293 of σ we would expect to see in nature.

294

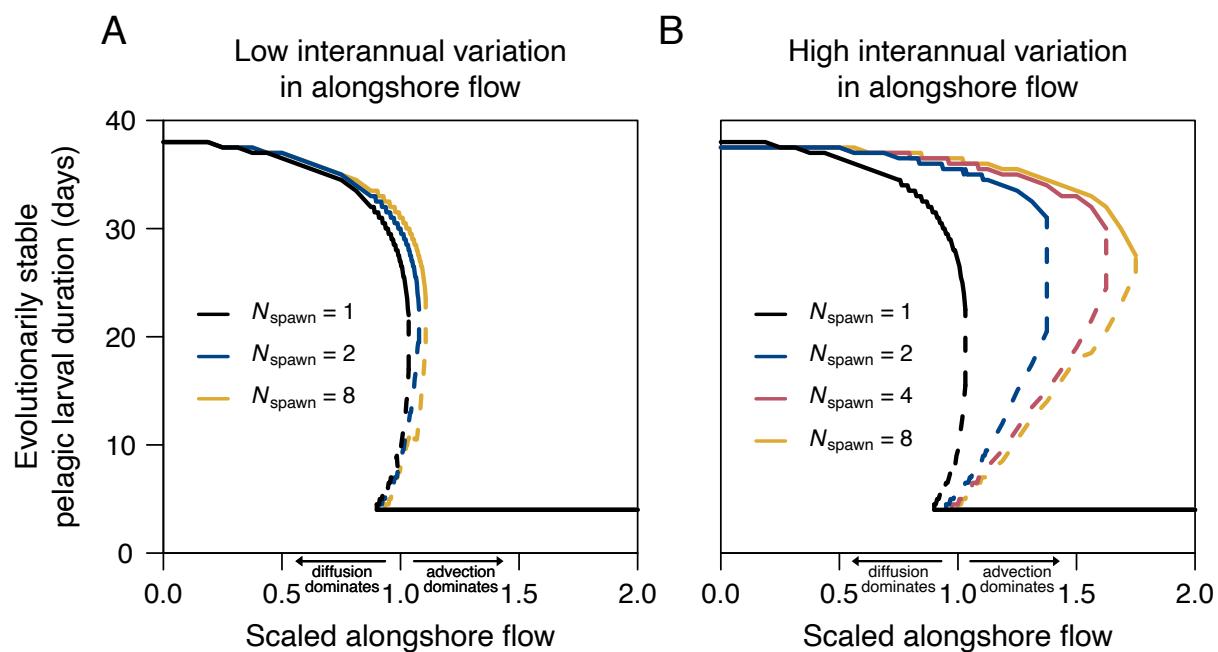
295 **Figure 1.** Evolution of pelagic larval duration (T_{PLD}) without considering oceanography. Top
296 panel: total number of larvae that survive the pelagic phase (f) as a function of pelagic larval
297 duration given by equation 4. Dashed vertical line denotes the optimal pelagic larval duration that
298 gives the maximum number of surviving larvae. Bottom panel: Pairwise invasion plot. Invasion
299 fitness of the mutant is greater than 1 in the white areas and less than 1 in the grey areas. The
300 black line denotes the 1:1 line where the invasion fitness of the mutant is 1. Note that the
301 evolutionary stable pelagic larval duration in the bottom panel occurs at the value that maximizes
302 the number of surviving larvae. Parameters: $\tau=4$, $C=0.1$, $s_{crit}=0.0103$, $g = 0.16$, $m = 5 \times 10^{-7}$,
303 $A_m=0.1$.

304

305 *Effects of scaled alongshore flow on the evolution of pelagic larval duration*

306 As the mean alongshore flow (U) current increases, relative to short timescale
307 fluctuations in currents (σ), which we refer to as “scaled alongshore flow”, there is selection for
308 decreased T_{PLD} (Figure 2). For small to moderate values of scaled alongshore flow ($<\approx 1$), there
309 is only one evolutionary stable T_{PLD} , the value of which is relatively high but decreases as scaled
310 alongshore flow increases for a given number of spawning events. For high values of scaled
311 alongshore flow ($>\approx 1$), there are two evolutionary stable T_{PLD} values, one of which is at the
312 minimum possible T_{PLD} (we set this minimum $T_{PLD} = \tau$). The two ESSs are separated by an
313 unstable equilibrium (indicated by the dashed lines in Figure 2 for each N_{spawn}). If the population
314 with a given N_{spawn} begins with a T_{PLD} below this unstable equilibrium, evolution by a series of
315 small mutations will lead the population to the lower evolutionary stable T_{PLD} . Alternatively, if
316 the population begins with a T_{PLD} above this unstable equilibrium, evolution by a series of small
317 mutations will lead the population to the higher evolutionary stable T_{PLD} . Figure 3 shows
318 pairwise invasion plots for examples when there is one ESS or two ESSs for T_{PLD} .

319 These general results presented as evolutionary stable strategies for semelparous
320 organisms are qualitatively similar to what Pringle et al (2014) showed in terms of selection
321 coefficients in non-overlapping generations. There is selection for the pelagic larval durations
322 that lead to the most larvae at or upstream of the source location (Pringle et al. 2014). With low
323 scaled alongshore flow, enough local retention occurs with both short and long T_{PLD} , but a longer
324 T_{PLD} maximizes fecundity because it is associated with the production of smaller, more numerous
325 eggs. In contrast, with high scaled alongshore, a long T_{PLD} results in not enough local retention to
326 offset the losses of larvae downstream. As a result, upstream retention is greatest with a short
327 T_{PLD} because it minimizes downstream dispersal. However, unlike Pringle et al. (2014) we show

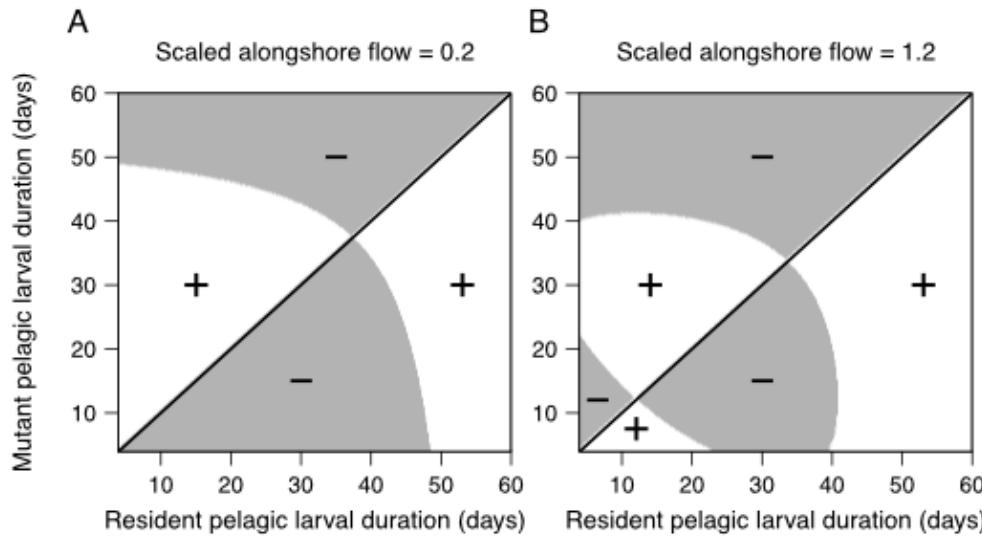

328 a continuous decline in ESS T_{PLD} as scaled alongshore flow increases up until the ESS T_{PLD}
329 reaches the minimum value. In other words, for any given scaled alongshore flow below a
330 certain strength (~ 1.0 in with our parameters), there is a unique ESS T_{PLD} (Figure 2). This differs
331 from the results of Pringle et al. (2014) which only predicted two possible evolutionary stable
332 pelagic larval durations: the maximum possible value and the minimum possible value.

333

334

335

336



337

338 **Figure 2.** Effect of scaled alongshore flow and the number of spawning events (N_{spawn}) on the
339 evolutionary stable pelagic larval duration (T_{PLD}). Panel A shows results when the standard
340 deviation of interannual mean flow rates is $\sigma_{IA}=0.012$ (meters/second) and panel B shows results
341 for when $\sigma_{IA}=0.035$ (meters/second). Solid lines denote evolutionary stable values of T_{PLD} while

342 dashed lines denote unstable equilibrium values of T_{PLD} . Different colors denote different
343 numbers of spawning events (N_{spawn}) as indicated in the figure legend. Parameters: $\sigma=8000$
344 (meters/day), $\tau=4$, $C=0.1$, $s_{crit}=0.0103$, $g=0.16$, $m=5\times10^{-7}$, $A_m=0.1$, $K=200$, length of coastline =
345 100 kilometers, minimum value of T_{PLD} was set to τ .

346

347

348 **Figure 3.** Example pairwise invasion plots for when there is one ESS (left panel) or two ESSs
349 (right panel). Invasion fitness of the mutant is greater than 1 in the white areas and less than 1 in
350 the grey areas. The black line denotes the 1:1 line where the invasion fitness of the mutant is 1.0.
351 In both plots, $N_{spawn} = 2$ and all parameters are the same as in figure 2B.

352

353 *Effects of the number of spawning events on the evolution of pelagic larval duration*

354 The number of spawning events (N_{spawn}) changes the pelagic larval duration that is
355 evolutionarily stable under a given flow regime. Spawning more often longer pelagic larval
356 durations to both remain evolutionarily stable for higher mean scaled alongshore flow rates
357 (Figure 2). For instance, consider a mean scaled alongshore flow of 1.5 in Figure 2B. If

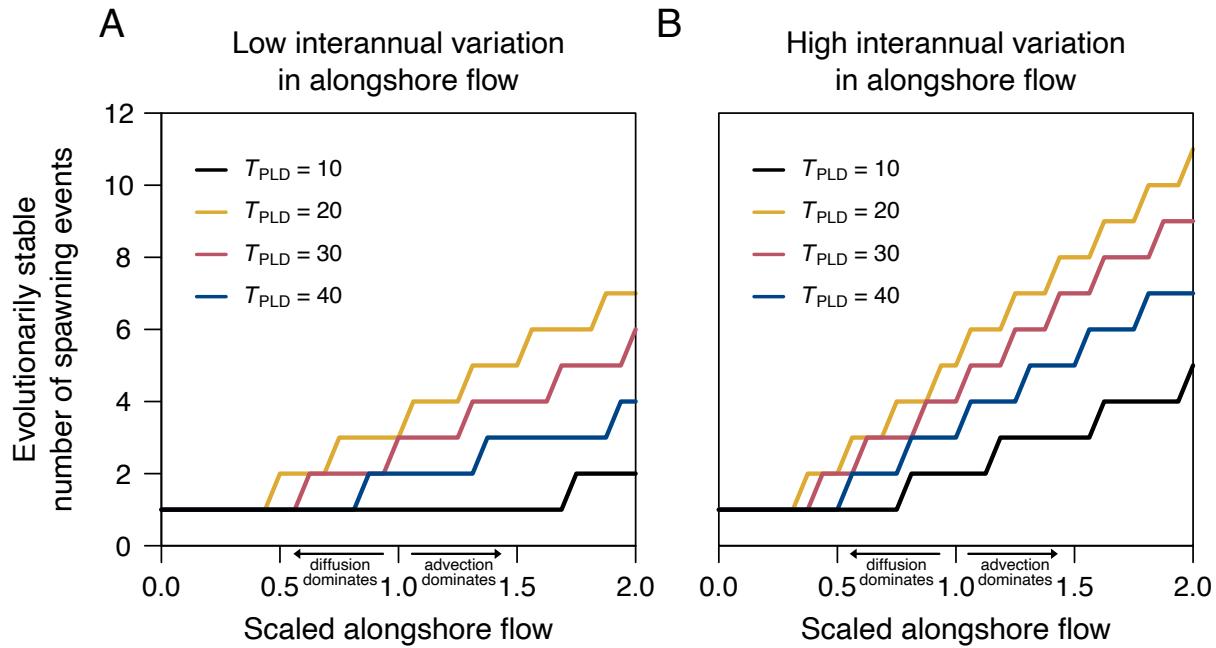
358 $N_{spawn}=1$, the only ESS T_{PLD} is at 4 days (the minimum T_{PLD}), but if $N_{spawn}=8$, $T_{PLD}=35.5$ is
359 evolutionarily stable as well as T_{PLD} of 4 days. As interannual variation in mean flow rates
360 increases ($\sigma_{IA} > 0$), increasing N_{spawn} allows for higher ESS values of T_{PLD} . Increasing N_{spawn}
361 increases the range of scaled alongshore flow rates where there are two ESS T_{PLD} values because
362 spawning on multiple occasions has a smaller effect on the lower evolutionarily stable pelagic
363 larval duration than then upper one (Figure 2).

364 The reasons why longer pelagic larval durations become evolutionarily stable when
365 spawning is more frequent can be understood in terms of what Byers and Pringle (2006) showed
366 for population persistence. Larvae released in different years are exposed to different mean
367 alongshore current speeds and directions. Parents that release larvae in multiple years have
368 greater dispersion in their lifetime dispersal kernel (the dispersal kernel of all larvae released
369 over an individual's lifespan). Increased dispersion allows parents to retain more larvae at or
370 upstream of their spawning location without necessarily increasing fecundity. However, longer
371 pelagic larval durations both increase dispersion and increase fecundity. Therefore, in our
372 adaptive dynamics framework, spawning more frequently (increasing dispersion and upstream
373 retention), together with the effect of longer pelagic larval durations (increasing dispersion and
374 fecundity), allows longer T_{PLD} to become evolutionarily stable in addition to short pelagic larval
375 durations. In contrast, short pelagic larval durations are the only evolutionarily stable strategy in
376 non-overlapping generations with high scaled alongshore flow.

377

378 **Evolution of the number of spawning events (N_{spawn})**

379 Larger interannual fluctuations typically lead to greater evolutionarily stable numbers of
380 spawning events (Figure 4, but see Figure A1 for a counter example). In addition, longer pelagic


381 larval durations and greater scaled alongshore flow speeds also lead to greater evolutionarily
382 stable number of spawning events (Figure 4). At low scaled alongshore flow, the evolutionarily
383 stable number of spawning events is always 1 because increasing N_{spawn} increases the diffusion
384 experienced over the lifetime on an individual (increasing $L_{diffeffect}$ when $\sigma_{IA}>0$), and increases the
385 number of offspring dispersing away from the source location which reduces local growth rates.
386 As scaled alongshore flow increases however, the evolutionarily stable number of spawning
387 events increases to offset the increased loss of larvae downstream, and it increases quicker with
388 longer pelagic larval durations (Figure 4). Longer pelagic larval durations lead to greater
389 downstream losses, more so as scaled alongshore flow increases. Therefore, more frequent
390 spawning evolves to increase retention and offset the downstream losses from increasingly
391 longer pelagic larval durations.

392 Adult mortality has the effect of decreasing the rate at which the evolutionarily stable
393 number of spawning events increases with scaled alongshore flow (Figure 4 vs Figure A2). With
394 adult mortality, individuals with higher N_{spawn} values have lower expected lifetime fecundity than
395 when there is no adult mortality (Figure 4). For a given pelagic larval duration, the evolutionarily
396 stable number of spawning events is not affected by any increase in fecundity that might arise
397 from repeated spawning because we deliberately held potential lifetime fecundity constant for all
398 N_{spawn} values.

399

400

401

402

403 **Figure 4.** Effect of scaled alongshore flow and pelagic larval duration (T_{PLD}) on the
404 evolutionarily stable number of spawning events (N_{spawn}) when there is adult mortality $A_m=0.1$.
405 Panel A shows results when the standard deviation of interannual mean flow rates $\sigma_{IA}=0.012$
406 meters/second and panel B shows results for when $\sigma_{IA}=0.035$ meters/second. Different colors
407 denote different pelagic larval durations as indicated in the figure legend. All other parameters
408 are the same as in figure 2.

409

410 **Coevolution of pelagic larval duration and the number of spawning events**

411 When pelagic larval duration and the number of spawning events coevolve, three insights
412 emerge (Figure 5). First, when scaled alongshore flow is low, a single long pelagic larval
413 duration and a single small number of spawning events are evolutionarily stable, and similar to
414 when they evolve independently. Second, when scaled alongshore flow is high, a single short
415 pelagic larval duration and a single large number of spawning events are evolutionarily stable,

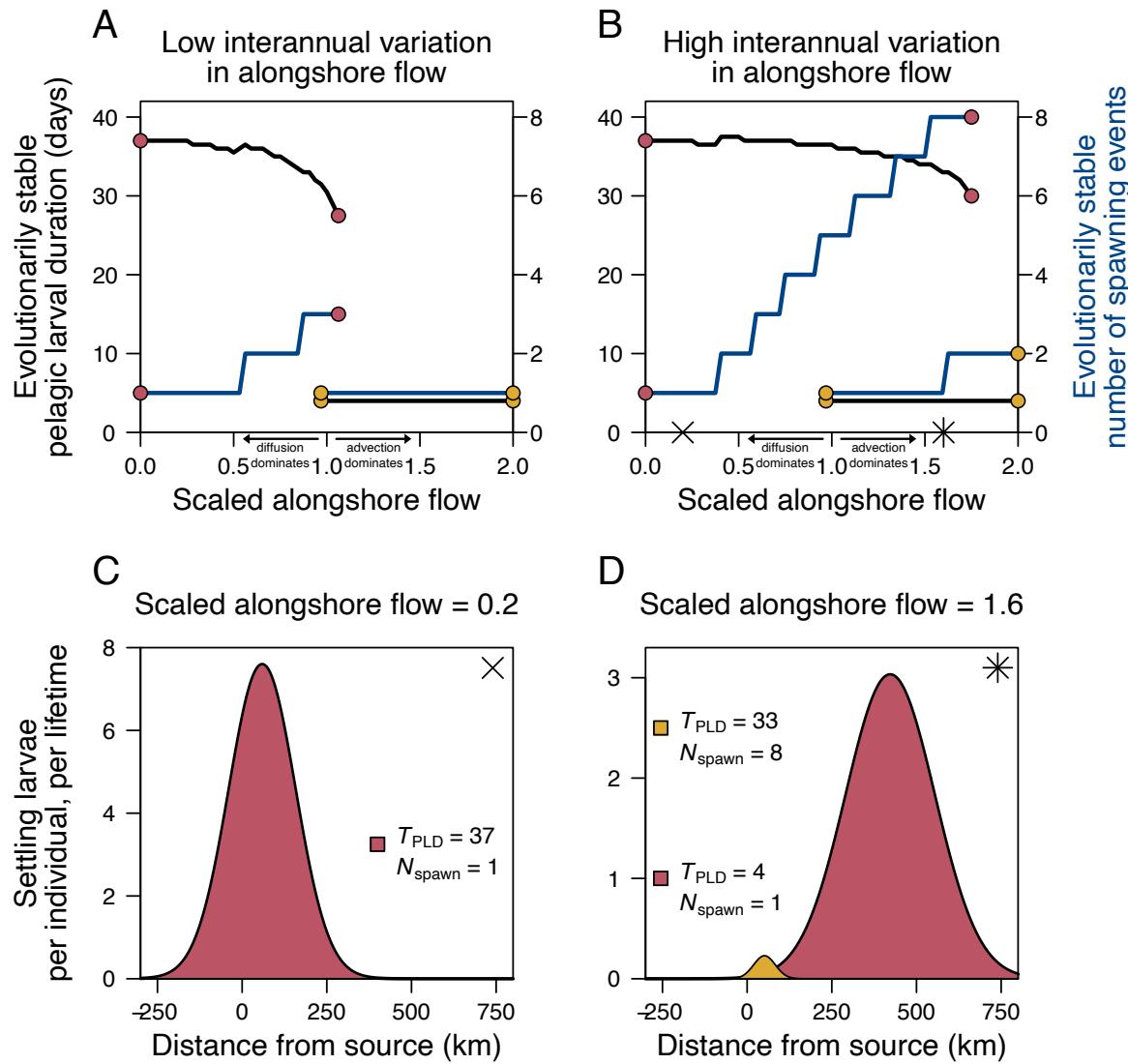
416 also similar to when they evolve independently. Third, and in contrast to outcomes when each
417 trait evolves independently, at intermediate scaled alongshore flows, two combinations of
418 pelagic larval duration and number of spawning events are evolutionarily stable: one with a long
419 pelagic larval duration and many spawning events, and another with a short pelagic larval
420 duration and few spawning events (Figure 5). In particular, two evolutionarily stable numbers of
421 spawning events at higher scaled alongshore flow was not predicted when considering the
422 evolution of the number of spawning events in isolation (Figure 4). With greater degrees of
423 interannual variation, there is a greater range of scaled alongshore flow values that lead to two
424 evolutionarily stable combinations of pelagic larval duration and number of spawning events.
425 The initial trait values determine whether the traits evolve to the upper or lower ESSs (Figure
426 A3)

427 An outcome of coevolution at low scaled alongshore flow values is that the evolutionarily
428 stable pelagic larval duration does not always decrease monotonically with increased scaled
429 alongshore flow as it does when pelagic larval duration evolves independently (compare Figure 2
430 to Figure 5). The ESS T_{PLD} can increase with an increased scaled alongshore flow (e.g., scaled
431 advection $\sim 0.5\text{--}0.7$ in Figure 5A) when selection favors an increase in spawning frequency,
432 which then allows a higher pelagic larval duration to be stable in that current (Figure 4).

433 At intermediate values of scaled alongshore flow where two combinations of pelagic
434 larval duration and number of spawning events are evolutionarily stable, the evolution of
435 spawning events effects the maximum value of scaled alongshore flow where the upper ESS
436 combination is stable. As seen in Figure 2, if only T_{PLD} evolves, the upper ESS remains stable
437 with higher scaled alongshore flow if there is a higher value of N_{spawn} . Therefore, if there is a
438 higher ESS N_{spawn} for a given scaled alongshore flow in the coevolutionary model, the upper ESS

439 N_{spawn} values remain stable with more scaled alongshore flow. In contrast, the evolution of
440 spawning frequency has little effect on pelagic larval duration in the lower ESS combination.
441 The lower ESS T_{PLD} is always the minimum possible value and thus the lower ESS N_{spawn} evolves
442 how as it does when it evolved independently with a fixed T_{PLD} (Figure 4). At the highest values
443 of scaled alongshore flow, the upper ESS combination is no longer stable and only the lower
444 combination of traits remains.

445


446 *Effects of coevolution of pelagic larval duration and the number of spawning events on lifetime*
447 *dispersal kernels*

448 The theory presented here shows how three key aspects of coastal oceanographic regimes
449 (mean alongshore currents U , short-term stochasticity in currents σ , and interannual variation in
450 mean alongshore currents inter σ_{IA}) select on both larval and adult traits to increase upstream
451 retention and alter the expected mean and spread of lifetime dispersal kernels.

452 When scaled alongshore flow is low, organisms evolve a long pelagic larval duration and
453 a single spawning release, which results in a high fecundity and dispersal kernels with a mean
454 shifted downstream and high variance (e.g., Figure 7C). When scaled alongshore flow is high,
455 organisms evolve short pelagic larval durations and fewer spawning events, which results in a
456 low fecundity and evolutionarily stable dispersal kernels with a low downstream mean and low
457 variance (e.g., orange distribution in Figure 7D). However, when interannual variation in mean
458 alongshore currents is high, a second dispersal kernel with a mean distance shifted downstream
459 and a much higher spread in dispersal distances is also evolutionarily stable (e.g., red distribution
460 in Figure 7D). This second dispersal kernel is the result of selection for a long pelagic larval
461 duration (which leads to high fecundity) and high spawning frequency, which is just another way

462 to counter the downstream losses of larvae, but results in much greater mean and variance in
463 dispersal distances as a consequence.

464

465

466 **Figure 5.** Coevolution of pelagic larval duration (T_{PLD}) and number of spawning events (N_{spawn}).
467 Top panels show the evolutionarily stable values of T_{PLD} (black lines) and N_{spawn} (blue lines) for
468 different degrees of scaled alongshore flow with a low standard deviation of interannual mean
469 flow rates (A; $\sigma_{IA}=0.012$ meters/second) or high standard deviation of interannual mean flow

470 rates (B; $\sigma_{IA}=0.035$ meters/second). Lines denoted with the same color circles are evolutionarily
471 stable together. Note that at intermediate values of scaled alongshore flow there are two
472 combinations of T_{PLD} and N_{spawn} that are evolutionarily stable: one where both T_{PLD} and N_{spawn} are
473 at high values and where they are both at low values. Bottom panels show the distribution of
474 larvae released by one individual over its lifetime for different evolutionarily stable life history
475 strategies that emerge with high interannual variation in alongshore flow. Panel C shows a case
476 with low scaled alongshore flow when there is only one evolutionarily stable life history and
477 panel D shows a case with intermediate scaled alongshore flow when there are two
478 evolutionarily stable life history strategies. Note difference in scale bars between panels C and D.
479 Parameters the same as in Figure 2.

480

481 **Discussion**

482 We sought to understand how coastal oceanographic processes affect the evolution of
483 marine life history traits and how that could indirectly affect the expected distribution of
484 dispersal distances. Along most coastlines, there is usually a dominant water flow direction that
485 biases larval dispersal downstream, and stochastic events during dispersal (like eddies and
486 weather), as well as seasonal and yearly changes in mean flow speed and direction, that slow or
487 reverse currents allowing occasional upstream retention (Largier 2003; Lumpkin and Garraffo
488 2005; Shanks and Eckert 2005). These common features of coastal environments act as agents of
489 selection on marine life history traits that affect dispersal, and could potentially explain the
490 evolution of dispersal without invoking the traditional causes of inbreeding, kin competition, and
491 environmental variability. The new and key results emerging from our theory are especially
492 relevant on coastlines with relatively high mean flow rates and high interannual variation in flow

493 rates (Largier 2003; Lumpkin and Garraffo 2005). First, selection induced by coastal
494 oceanography favors the release of larvae over multiple time periods, rather than all at once.
495 Releasing larvae on multiple occasions allows individuals to retain more larvae to avoid
496 extinction from net downstream larval loss by increasing the variance in their lifetime dispersal
497 kernel. Doing so reduces the costs of long pelagic larval durations predicted in Pringle et al
498 (2013). Costs are reduced by offsetting downstream losses under strong currents, allowing long
499 pelagic larval durations to be maintained in marine life cycles if it allows individuals to access
500 greater fecundity through reduced parental investment per offspring. Second, while pelagic larval
501 duration and the number of spawning events both affect dispersal, the evolution of the number of
502 spawning events affects the evolution of pelagic larval duration, and vice versa. Such
503 coevolution between larval and adult traits changes how currents affect the evolution of each trait
504 separately and the expected dispersal distances that evolve in a given current regime. Third, the
505 same current regime can give rise to populations with quite different evolutionarily stable pelagic
506 larval durations and spawning frequencies. Finally, the evolution of quite different pelagic larval
507 durations and spawning frequency gives rise to dispersal kernels with very different means and
508 variances in dispersal distances. Our model is structured in such a way that it can be
509 parameterized with data to explore specific situations. The main implication of our findings is
510 that the statistics of coastal ocean flows are important agents of selection that can generate
511 multiple, often co-occurring, evolutionary outcomes for marine life history traits that affect
512 dispersal.

513 Our findings offer a new explanation for the disconnect between the diversity of pelagic
514 larval durations and spawning frequencies found co-occurring in nature and the predictions from
515 classic marine life history theory that species should produce either many small eggs or few large

516 eggs (Vance 1973), or a single intermediate optimal egg sizes depending on larval growth and
517 mortality rates (e.g., Levitan 2000). A given combination of larval growth and mortality rates can
518 lead to a range of evolutionarily stable life history strategies depending on the oceanographic
519 conditions during the time in which larvae are released. Our adaptive dynamics approach allows
520 us to identify oceanographic conditions where two different life history strategies are
521 evolutionarily stable, and which one evolves depends on a population's evolutionary starting
522 point. For instance, closely related species might evolve very different pelagic larval durations
523 and spawning frequencies if they live on coastlines with different currents, or spawn at different
524 times of the year with different currents. Moreover, even on the same section of coast, similar
525 species could evolve dramatically different pelagic larval durations and spawning frequencies
526 simply because of their different evolutionary histories. Combining these effects with among-
527 species differences in larval growth rates, larval mortality rates, adult mortality rates, and other
528 parameters, all of which lead to different evolutionarily stable life histories, it becomes clearer
529 how a diversity of life histories can be seen in nature on any given stretch of coastline.

530 By showing how dispersal kernels can be shaped by the coevolution of larval and adult
531 traits, our results imply that considering either larval or adult traits in isolation might produce
532 incorrect predictions about how life history traits and dispersal kernels evolve. Previous marine
533 dispersal theory has either modeled the dispersal kernel inherently as an unconstrained trait
534 responding to habitat heterogeneity (Shaw et al. 2019) or only modeled selection on larval traits
535 (Pringle et al. 2014). Byers and Pringle (2006) showed that spawning over multiple time periods
536 could increase population persistence and spread through upstream retention but did not consider
537 the evolution of either pelagic larval duration or spawning frequency. Shanks and Eckert
538 compiled data on nearshore and shelf/slope fishes and crustaceans and made the case that both

539 adult traits (e.g., longevity, the number of broods per year) and larval traits (e.g., pelagic larval
540 durations) have evolved to exploit eddies and counter-currents to aid in larval retention. Our
541 theory provides a framework to understand how selection for larval retention influences the
542 evolution of both larval and adult traits.

543 In the presented form, our model makes qualitative predictions about the evolution of
544 marine life histories for a broad range of realistic parameters, but its integral projection model
545 structure makes it easily adaptable to match specific systems. When populations are structured in
546 multiple dimensions (e.g., space and age), integral projection models typically require the
547 estimation of many fewer parameters than an equivalent matrix population model (Ellner and
548 Rees 2006). Empirical estimates of the parameters in our model could be used to give specific
549 predictions about evolutionary outcomes in specific situations. Perhaps more usefully, however,
550 any of the functions that give transition probabilities between stages could also be replaced with
551 empirically estimated relationships. For instance, we assume a specific relationship between egg
552 size and the probability of surviving the pelagic larval stage (eq. 1–3). Researchers interested in a
553 specific species could instead estimate this relationship by collecting data and fitting a statistical
554 model, such as (Graham et al. 2008; Connolly and Baird 2010; Moneghetti et al. 2019). This new
555 estimated function could then replace equation 3 and thus f in equation 8. It is important to note
556 though, when applying our model to real systems, researchers should take care to estimate
557 oceanographic statistics on a spatiotemporal scale relevant to their study species. For instance,
558 the annual mean alongshore flow rate might be an inappropriate measure for predicting life
559 history evolution of a species that only spawns in April each year.

560 Many of the qualitative predictions from our models match empirical patterns. For
561 instance, the prediction that there should be shorter pelagic larval durations with stronger scaled

562 alongshore flow is supported by evidence that the proportion of marine invertebrate species with
563 planktotrophic decreases with scaled alongshore flow rate (Marshall et al. 2012; Pringle et al.
564 2014). Data from the fishes and crustaceans off the coast of California also support our
565 predictions that species will have longer pelagic larval durations with greater short-time scale
566 fluctuations in alongshore flow and higher spawning frequencies with greater inter-spawning-
567 event variation in alongshore flow (Shanks and Eckert 2005). Shanks and Eckert (2005) also
568 found a positive correlation between maximum age and pelagic larval duration, which matches
569 our coevolutionary predictions if living longer equates to more spawning events. Empirical
570 studies also emphasize a factor not included in our model, the timing of spawning (e.g., Morgan
571 and Christy 1995; Reitzel et al. 2004; Shanks and Eckert 2005), which affects the scaled
572 alongshore flow and interannual variation experienced, finding that a disproportionate number of
573 species have evolved to spawn during seasons with relatively low alongshore flow rates or across
574 months when currents reverse directions (Shanks and Eckert 2005; Byers and Pringle 2006).
575 Other factors not included in our model are cross-shore currents and larval swimming behavior
576 which could interact to affect the realized scaled alongshore flow (Largier 2003; Meyer et al.
577 2021a). However, like all simplifications of complex phenomena, our model serves the purpose
578 of re-orientating and focusing empirical research, and learning why observations match or do not
579 match model predictions. In particular, it provides predictions of the parameter space where
580 larval behaviors would have greater or less impact and how they could possibly substitute for the
581 role of pelagic larval duration or spawning frequency.

582 In the future, our model could be extended to include other concepts from the marine
583 dispersal literature such as non-Gaussian dispersal kernels (Pringle et al. 2009; Chiswell 2012;
584 Stover et al. 2014), non-feeding larvae (Marshall and Bolton 2007; Marshall and Keough 2007),

585 swimming behavior (Meyer et al. 2021a; Burgess et al. 2022), or spatial heterogeneity in habitat
586 availability or quality (Baskett et al. 2007; Meyer et al. 2021b). Ultimately, a comprehensive
587 theory of dispersal evolution, applicable to both terrestrial and marine organisms, will integrate
588 the ideas discussed here that focus on the evolution of traits that give rise to dispersal outcomes
589 with key factors in dispersal evolution theory that directly cause selection on dispersal outcomes
590 (e.g., variation in local conditions, kin selection, and inbreeding depression; Clobert et al. 2012).
591

592 Literature cited

593

594 Baskett, M. L., J. S. Weitz, and S. A. Levin. 2007. The evolution of dispersal in reserve
595 networks. *The American Naturalist* 170:59–78.

596 Bottesch, M., G. Gerlach, M. Halbach, A. Bally, M. J. Kingsford, and H. Mouritsen. 2016. A
597 magnetic compass that might help coral reef fish larvae return to their natal reef. *Current
598 Biology* 26:R1266–R1267.

599 Burgess, S. C., M. L. Baskett, R. K. Grosberg, S. G. Morgan, and R. R. Strathmann. 2016. When
600 is dispersal for dispersal? Unifying marine and terrestrial perspectives. *Biological
601 Reviews* 91:867–882.

602 Burgess, S. C., M. Bode, J. M. Leis, and L. B. Mason. 2022. Individual variation in marine
603 larval-fish swimming speed and the emergence of dispersal kernels. *Oikos* 2022:e08896.

604 Byers, J., and J. Pringle. 2006. Going against the flow: retention, range limits and invasions in
605 advective environments. *Marine Ecology Progress Series* 313:27–41.

606 Cecino, G., and E. A. Treml. 2021. Local connections and the larval competency strongly
607 influence marine metapopulation persistence. *Ecological Applications* 31:e02302.

608 Chesson, P. L., and R. R. Warner. 1981. Environmental Variability Promotes Coexistence in
609 Lottery Competitive Systems. *The American Naturalist* 117:923–943.

610 Chiswell, S. M. 2012. Non-Gaussian larval dispersal kernels in Gaussian ocean flows. *Aquatic
611 Biology* 16:203–208.

612 Clobert, J., M. Baguette, T. G. Benton, and J. M. Bullock, eds. 2012. *Dispersal Ecology and
613 Evolution*. Oxford University Press, Oxford, United Kingdom.

614 Connolly, S. R., and A. H. Baird. 2010. Estimating dispersal potential for marine larvae:
615 dynamic models applied to scleractinian corals. *Ecology* 91:3572–3583.

616 Davis, R. E. 1985. Drifter observations of coastal surface currents during CODE: The statistical
617 and dynamical views. *Journal of Geophysical Research: Oceans* 90:4756–4772.

618 Dewi, S., and P. Chesson. 2003. The age-structured lottery model. *Theoretical Population
619 Biology, Understanding the role of environmental variation in population and community
620 dynamics* 64:331–343.

621 Ellner, S. P., and M. Rees. 2006. Integral projection models for species with complex
622 demography. *The American Naturalist* 167:410–428.

623 Emlet, R. B., L. R. McEdward, and R. R. Strathmann. 1987. Echinoderm larval ecology viewed
624 from the egg. Pages 55–136 in M. Jangoux and J. M. Lawrence, eds. Echinoderm studies
625 (Vol. 2). CRC Press, London, UK.

626 Gaylord, B., and S. D. Gaines. 2000. Temperature or Transport? Range Limits in Marine Species
627 Mediated Solely by Flow. *The American Naturalist* 155:769–789.

628 Graham, E. M., A. H. Baird, and S. R. Connolly. 2008. Survival dynamics of scleractinian coral
629 larvae and implications for dispersal. *Coral Reefs* 27:529–539.

630 Grantham, B. A., G. L. Eckert, and A. L. Shanks. 2003. Dispersal potential of marine
631 invertebrates in diverse habitats. *Ecological Applications* 13:108–116.

632 Iwasa, Y., Y. Yusa, and S. Yamaguchi. 2022. Evolutionary game of life-cycle types in marine
633 benthic invertebrates: Feeding larvae versus nonfeeding larvae versus direct
634 development. *Journal of Theoretical Biology* 537:111019.

635 Kinlan, B. P., and S. D. Gaines. 2003. Propagule dispersal in marine and terrestrial
636 environments: a community perspective. *Ecology* 84:2007–2020.

637 Largier, J. L. 2003. Considerations in estimating larval dispersal distances from oceanographic
638 data. *Ecological Applications* 13:71–89.

639 Leis, J. M. 2006. Are larvae of demersal fishes plankton or nekton? Pages 57–141 in *Advances in*
640 *Marine Biology* (Vol. 51). Academic Press.

641 Levitan, D. R. 2000. Optimal egg size in marine invertebrates: theory and phylogenetic analysis
642 of the critical relationship between egg size and development time in echinoids. *The*
643 *American Naturalist* 156:175–192.

644 Lumpkin, R., and Z. Garraffo. 2005. Evaluating the decomposition of tropical atlantic drifter
645 observations. *Journal of Atmospheric and Oceanic Technology* 22:1403–1415.

646 Marshall, D. J., D. R. Barneche, and C. R. White. 2022. How does spawning frequency scale
647 with body size in marine fishes? *Fish and Fisheries* 23:316–323.

648 Marshall, D. J., and T. F. Bolton. 2007. Effects of egg size on the development time of non-
649 feeding larvae. *The Biological Bulletin* 212:6–11.

650 Marshall, D. J., and M. J. Keough. 2007. The evolutionary ecology of offspring size in marine
651 invertebrates. *Advances in Marine Biology* 53:1–60.

652 Marshall, D. J., P. J. Krug, E. K. Kupriyanova, M. Byrne, and R. B. Emlet. 2012. The
653 biogeography of marine invertebrate life histories. *Annual Review of Ecology, Evolution,*
654 *and Systematics* 43:97–114.

655 Marshall, D. J., A. K. Pettersen, and H. Cameron. 2018. A global synthesis of offspring size
656 variation, its eco-evolutionary causes and consequences. *Functional Ecology* 32:1436–
657 1446.

658 McGill, B. J., and J. S. Brown. 2007. Evolutionary game theory and adaptive dynamics of
659 continuous traits. *Annual Review of Ecology, Evolution, and Systematics* 38:403–435.

660 Metaxas, A., and M. Saunders. 2009. Quantifying the “bio-” components in biophysical models
661 of larval transport in marine benthic invertebrates: advances and pitfalls. *The Biological*
662 *Bulletin* 216:257–272.

663 Meyer, A. D., A. Hastings, and J. L. Largier. 2021a. Larvae of coastal marine invertebrates
664 enhance their settling success or benefits of planktonic development – but not both –
665 through vertical swimming. *Oikos* 130:2260–2278.

666 ———. 2021b. Spatial heterogeneity of mortality and diffusion rates determines larval delivery
667 to adult habitats for coastal marine populations. *Theoretical Ecology* 14:525–541.

668 Moneghetti, J., J. Figueiredo, A. H. Baird, and S. R. Connolly. 2019. High-frequency sampling
669 and piecewise models reshape dispersal kernels of a common reef coral. *Ecology*
670 100:e02730.

671 Morgan, S. G. 2014. Behaviorally mediated larval transport in upwelling systems. *Advances in
672 Oceanography* 2014:e364214.

673 Morgan, S. G., and J. H. Christy. 1995. Adaptive significance of the timing of larval release by
674 crabs. *The American Naturalist* 145:457–479.

675 Müller, K. 1982. The colonization cycle of freshwater insects. *Oecologia* 52:202–207.

676 Pachepsky, E., F. Lutscher, R. M. Nisbet, and M. A. Lewis. 2005. Persistence, spread and the
677 drift paradox. *Theoretical Population Biology* 67:61–73.

678 Paris, C. B., and R. K. Cowen. 2004. Direct evidence of a biophysical retention mechanism for
679 coral reef fish larvae. *Limnology and Oceanography* 49:1964–1979.

680 Pringle, J., F. Lutscher, and E. Glick. 2009. Going against the flow: effects of non-Gaussian
681 dispersal kernels and reproduction over multiple generations. *Marine Ecology Progress Series*
682 Series 377:13–17.

683 Pringle, J. M., J. E. Byers, P. Pappalardo, J. P. Wares, and D. Marshall. 2014. Circulation
684 constrains the evolution of larval development modes and life histories in the coastal
685 ocean. *Ecology* 95:1022–1032.

686 Rees, M., and S. P. Ellner. 2016. Evolving integral projection models: evolutionary demography
687 meets eco-evolutionary dynamics. *Methods in Ecology and Evolution* 7:157–170.

688 Reitzel, A. M., B. G. Miner, and L. R. McEdward. 2004. Relationships between spawning date
689 and larval development time for benthic marine invertebrates: a modeling approach.
690 *Marine Ecology Progress Series* 280:13–23.

691 Robinson, A. R., and K. H. Brink, eds. 2006. *The Sea* (Vol. Volume 14A, B. The global coastal
692 ocean: interdisciplinary regional studies and synthesis). Harvard University Press,
693 Cambridge, Massachusetts, USA.

694 Shanks, A. L. 2009. Pelagic larval duration and dispersal distance revisited. *The Biological
695 Bulletin* 216:373–385.

696 Shanks, A. L., and G. L. Eckert. 2005. Population persistence of California current fishes and
697 benthic crustaceans: a marine drift paradox. *Ecological Monographs* 75:505–524.

698 Shaw, A. K., C. C. D'Aloia, and P. M. Buston. 2019. The evolution of marine larval dispersal
699 kernels in spatially structured habitats: analytical models, individual-based simulations,
700 and comparisons with empirical estimates. *The American Naturalist* 193:424–435.

701 Siegel, D., B. Kinlan, B. Gaylord, and S. Gaines. 2003. Lagrangian descriptions of marine larval
702 dispersion. *Marine Ecology Progress Series* 260:83–96.

703 Smith, C. C., and S. D. Fretwell. 1974. The optimal balance between size and number of
704 offspring. *The American Naturalist* 108:499–506.

705 Speirs, D. C., and W. S. C. Gurney. 2001. Population persistence in rivers and estuaries. *Ecology*
706 82:1219–1237.

707 Starrfelt, J., and H. Kokko. 2012. The theory of dispersal under multiple influences. Pages 19–28
708 in *Dispersal Ecology and Evolution*. Oxford University Press.

709 Stover, J. P., B. E. Kendall, and R. M. Nisbet. 2014. Consequences of dispersal heterogeneity for
710 population spread and persistence. *Bulletin of Mathematical Biology* 76:2681–2710.

711 Strathmann, R. 1982. Selection for retention or export of larvae in estuaries. Pages 521–536 in V.
712 S. Kennedy, ed. *Estuarine comparisons*. Academic Press.

713 Strathmann, R. R. 1985. Feeding and nonfeeding larval development and life-history evolution in
714 marine invertebrates. *Annual Review of Ecology and Systematics* 16:339–361.

715 Travis, J. M. J., M. Delgado, G. Bocedi, M. Baguette, K. Bartoń, D. Bonte, I. Boulangeat, et al.
716 2013. Dispersal and species' responses to climate change. *Oikos* 122:1532–1540.

717 Treml, E. A., J. R. Ford, K. P. Black, and S. E. Swearer. 2015. Identifying the key biophysical
718 drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in
719 the sea. *Movement Ecology* 3:17.

720 Vance, R. R. 1973. On reproductive strategies in marine benthic invertebrates. *The American
721 Naturalist* 107:339–352.

722 Warner, R. R., and P. L. Chesson. 1985. Coexistence Mediated by Recruitment Fluctuations: A
723 Field Guide to the Storage Effect. *The American Naturalist* 125:769–787.

724

