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1. Multivariate GWAS identifies abundant pleiotropy across MRI modalities in UK Biobank and ABCD
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Abstract

Genetic pleiotropy is abundant across spatially distributed brain characteristics derived from one
neuroimaging modality (e.g. structural, functional or diffusion MRI). A better understanding of
pleiotropy across modalities could inform us on the integration of brain function, micro- and
macrostructure. Here we show extensive genetic overlap across neuroimaging modalities at a locus and
gene level in the UK Biobank (N=34,029) and ABCD study (N=8,607). When jointly analysing
phenotypes derived from structural, functional and diffusion MRI with the Multivariate Omnibus
Statistical Test (MOSTest) method, we boost the discovery of loci and genes associated with brain
features beyond previously identified effects for each modality individually. Cross-modality genes are
involved in fundamental biological processes and predominantly expressed during prenatal brain
development. We additionally boost genetic discovery for psychiatric disorders by conditioning
independent GWAS on our multimodal multivariate GWAS. These findings shed light on the shared
genetic mechanisms underlying variation in brain morphology, functional connectivity, and tissue

composition — features often concurrently altered within psychiatric disorders.


https://doi.org/10.1101/2022.12.20.521181
http://creativecommons.org/licenses/by-nc-nd/4.0/

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521181; this version posted December 20, 2022. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Introduction

The brain is our most complex organ, rapidly integrating information from many different sources',
with strong genetic influences?®. Studying genetic influences through genome-wide association studies
(GWAS) has shown that most loci and genes show association with multiple traits®, a phenomenon
known as “statistical pleiotropy” (e.g. one gene influences multiple phenotypes directly, or indirectly
via a causal pathway or common factor)’. Recently, numerous loci and genes with pleiotropic effects
across brain characteristics derived from a single neuroimaging modality (e.g. structural, functional or
diffusion MRI) have been discovered” . Yet the majority of pleiotropic loci act across rather than within
phenotype domains®, indicating that the genes associated within these loci may show pleiotropic effects
across neuroimaging modalities, but the extent of this is underexplored. Investigating how genes
influence a wide variety of brain imaging phenotypes may shed light on the mechanisms underlying
alterations in brain morphology, activity, connectivity, and tissue composition that often co-occur in
heritable psychiatric disorders'®!".

Multivariate GWAS approaches gain their statistical power due to the distributed nature of
genetic influences across phenotypes'?. Such approaches are well-suited for the identification of
pleiotropic variants and genes with effects across neuroimaging modalities. Previous studies have
investigated either structural MRI-derived (sub)cortical volumes, surface area, and thickness’’,
functional MRI-derived brain connectivity®, or diffusion MRI-derived brain tissue composition’ in a
multivariate GWAS framework. Compared to conventional mass-univariate approaches these
multivariate studies showed a boost in genetic discovery (whilst maintaining correct type-I errors’ and
ensuring replicability within and across samples'’) due to extensive genetic overlap across spatially
distributed modality-specific measures. The identified loci and genes inform us about the biological
signal that is picked up by MRI. Previous work has linked genetic effects of diffusion MRI to synaptic
pruning, neuroinflammation, and axonal growth’, structural MRI to neurogenesis and cell
differentiation’, and functional MRI to mental health'* and psychiatric disorders®, yet the specificity of
these links remains unclear. The extent to which these genetic effects overlap and show pleiotropy
across neuroimaging modalities can be investigated by 1) overlapping the previously described

multivariate effects for each modality and 2) combining all MRI-derived phenotypes into one
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77  multimodal multivariate GWAS, obtaining an additional boost for discovery of cross-modality
78  pleiotropic loci and genes. Identifying such loci, which are currently not discoverable in unimodal
79  analyses, can improve our understanding of the interplay of biological processes contributing to brain
80  structural organisation on multiple scales and reveal underpinnings of the structure-function
81  relationship from a genetics viewpoint.
82 Here, we demonstrate evidence of extensive pleiotropy across neuroimaging modalities using
83 583 structural (sMRI), resting-state functional (fMRI) or diffusion (AMRI) MRI-derived phenotypes in
84  the UK Biobank and the Adolescent Brain Cognitive Development (ABCD) Study®. We do so by
85  performing unimodal and multimodal multivariate GWAS with the Multivariate Omnibus Statistical
86  Test (MOSTest), which was designed to boost statistical power by capitalizing on the distributed nature
87  of genetic influences across imaging-derived phenotypes’. We functionally annotate modality-specific
88  (identified in only one unimodal analysis) and cross-modality (identified in > 2 unimodal analyses or
89  unique to multimodal analysis) loci and genes to describe the biological signal unique to and shared
90  across MRI modalities. We improve locus discovery of the major psychiatric disorders by using the
91  multimodal, multivariate, genetic signal of brain morphology, functional connectivity, and tissue
92  composition. Thereby the current study provides insight into pleiotropic effects across neuroimaging
93  modalities and their relevance for understanding the neurobiology of the human brain and mental health
94 conditions.
95
96  Results
97  Abundant pleiotropy of genome-wide significant loci and genes across neuroimaging modalities
98  We used data from three previous studies that applied MOSTest on single neuroimaging modality
99  phenotypes: 172 sMRI-derived brain morphology measures (68 regional surface area and 68 regional
100  thickness of the cerebral cortex, and 36 volumes of subcortical structures)’, 153 fMRI-derived BOLD
101  signal and connectivity measures (17 network variances and 136 network correlations)®, and 276 dMRI-
102 derived brain tissue composition principal components (65 restricted isotropic diffusion PCs, 124
103 restricted directional diffusion PCs, 87 normalized free water diffusion PCs)’. We investigated white

104  British UK Biobank samples (as derived from both self-declared ethnic background and genetic
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105  principal component analysis) with quality-controlled genotypes and neuroimaging available (Nswri =
106 34,029, Navri=31,023, Namri = 30,106). We also included the ABCD cohort which had identical sMRI-
107  and dMRI-derived measures and similar fMRI-derived measures (see Methods) available in a European
108 (Nsmri = 4,794, Npwri = 4,132, Namri = 4,418) and mixed ancestry (assigned based on genetic ancestry
109  factor as defined in Methods) quality-controlled samples (Nowri = 8,607, Novri = 7,277, Namri =
110  7,853). These ABCD samples were used to test the generalizability of our results across age and genetic
111 ancestral compositions. Heritability estimates obtained in UK Biobank with linkage disequilibrium
112 (LD) Score Regression'® ranged from median = 5.80% (IQR = 3.09%) for fMRI-derived network
113 variances to 28.00% (IQR = 6.92%) for sMRI-derived subcortical volumes (Supplementary Figure 1
114 and Supplementary Table 1), with dMRI-derived measures ranking in-between (median = 13.70%, IQR
115  =9.63%). Genetic and phenotypic correlations were generally similar (p(rg,7p) = 0.53, p = 2.2x107'%),
116  and stronger within modalities than between modalities (Supplementary Figure 2).

117 First, we combined all heritable (nominal p <0.05) phenotypes derived from the same modality
118  in multivariate GWAS analyses using MOSTest (Manhattan plots in Supplementary Figure 3). This
119  heritability filter was applied (as previously by Roelfs et al®) because including non-heritable
120 phenotypes into MOSTest analyses have been shown to reduce statistical power’. MOSTest estimates
121 the correlation between measures from univariate GWAS (on randomly permuted genotype data) and
122 sums the squared decorrelated z-values across univariate GWAS summary statistics (from the original
123 genotype data) to integrate the effects across the measures into a multivariate test statistic’. These
124 unimodal multivariate analyses identified 640, 44 and 562 genome-wide significant loci associated with
125  sMRI, fMRI and dMRI respectively (p < 5x10°; Supplementary Table 2). These results are in line with
126  earlier research (Supplementary Results 1). The number of genome-wide significant lead SNPs from
127 UK Biobank that replicated at nominal significance (p < 0.05) in ABCD-based MOSTest summary
128 statistics differed across modalities (EUR: 24.46% sMRI, 8.70% fMRI, 23.63% dMRI), and were higher
129 for the larger sample with mixed ancestries (42.12% sMRI, 15.38% fMRI, 35.39% dMRI;
130 Supplementary Table 6). Applying MAGMA'” gene-level analyses to unimodal multivariate summary

131  statistics identified 1,809, 45 and 1,638 genome-wide significant genes (p < 2.65x10°) for sMRI, fMRI
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133 Figure 1. Overlap of genome-wide significant a) loci and b) genes observed across neuroimaging modalities in
134 modality-specific and joint multimodal analyses (p < 5x10°%). When sMRI, fMRI and dMRI-derived phenotypes
135  are jointly analysed in MOSTest (multimodal analysis), a boost in discovery of pleiotropic loci and genes is
136 observed (yellow). This pattern partially replicates in the ABCD cohort (Supplementary Figure 4).

137

138 and dMRI respectively (Supplementary Table 3). When overlapping the identified loci (p < 5x10®) and
139 genes (p <2.65x10°) from each modality (Methods), we observed 377 loci (44.41% of total) and 1,170
140  genes (51.23% of total) associated with at least two out of three modalities (Figure 1). This indicates
141  pleiotropy across neuroimaging modalities both at the genome-wide significant locus and gene level.
142 We replicated this pattern of overlap between sSsMRI and dMRI genome-wide significant loci and genes
143 from UK Biobank in the ABCD cohort, though fMRI genome-wide significant loci did not overlap and
144 fMRI genome-wide significant genes were not identified (Supplementary Figure 4, Supplementary
145  Table 4-5). Replication patterns were similar across ancestries, with all of the sMRI and dMRI loci
146  identified in the European ABCD sample overlapping with the loci identified within the mixed ancestry

147  ABCD sample.
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148  Multimodal genome-wide association study boosts discovery of cross-modality loci and genes
149  We next investigated whether combining all sMRI, fMRI, and dMRI-derived measures in one
150  multivariate analysis generated greater statistical power to identify novel pleiotropic loci and genes
151  which show sub-threshold associations in each unimodal multivariate analysis (Manhattan plot in
152 Supplementary Figure 3). We therefore applied MOSTest across neuroimaging modalities, combining
153 583 phenotypes, identifying 851 genetic loci (Supplementary Table 2; replication rates EUR 26.45%,
154 37.55% mixed ancestries; Supplementary Table 6). One-hundred-forty-six (17.16%) of these loci did
155  not overlap with any of the loci identified in the unimodal multivariate analyses, suggesting that
156  MOSTest leveraged the shared genetic signal across imaging modalities to boost the discovery of
157  pleiotropic loci. Gene-based GWAS from MAGMA showed that of the 2,515 genome-wide significant
158  multimodal genes, 416 (16.54%) were not discovered for unimodal gene-based GWAS (Supplementary
159  Table 3). We used the ABCD cohort to investigate the generalizability of our findings and observed a
160  similar boost in multimodal discovery on a genome-wide significant locus and gene level
161  (Supplementary Figure 4, Supplementary Table 4-5). Additionally, 81.82% of multimodal loci
162 identified in the European ABCD sample were overlapping with the loci identified in the mixed ancestry
163  ABCD sample.

164 We next determined the extent to which multivariate loci that were uniquely identified in the
165  multimodal analysis demonstrated pleiotropic effects compared to those that were uniquely identified
166  for one modality. We examined the univariate associations underlying different parts of the Venn
167  diagram (Figure 1) by extracting the minimum univariate p-value for every locus’ lead SNP
168 (Supplementary Figure 5). A relatively high minimum univariate p-value would indicate that the signal
169  was highly distributed across other measures for the variant to become genome-wide significant in the
170  multivariate analysis. Lead SNPs boosted by the multimodal analysis had relatively high minimum
171 univariate p-values (0.05 > p > 5x107°) more frequently (89%) than lead SNPs of loci identified in one
172 unimodal analysis only (sMRI-specific 75%; fMRI-specific 22%; dMRI-specific 78%), indicating that

173 the discovery of these lead SNPs was driven by pleiotropic signals across modalities.
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175 Figure 2. Functional consequences of modality-specific and cross-modality lead SNPs as annotated with VEP.
176  The averaged counts of annotations within ten random sets of pruned SNPs were used as background in Fisher’s
177  Exact Test to obtain enrichment estimates and p-values (Supplementary Table 9).

178

179  Comparing the characteristics of modality-specific and cross-modality loci and genes

180  We investigated to what extent modality-specific (identified in only one unimodal analysis) and cross-
181  modality (identified in > 2 unimodal analyses or boosted by the multimodal analysis) loci and genes
182  differ in their biological effects (Supplementary Table 7-8). To this end, we annotated 320 sMRI-, 10
183 fMRI-, 230 dMRI-specific, and 1,261 cross-modality lead SNPs using the Ensembl Variant Effect
184  Predictor'® (Supplementary Table 9). Figure 2 demonstrates that cross-modality and modality-specific
185  lead SNPs were generally similarly enriched in coding regions and depleted in intergenic regions.
186  dMRI-specific lead SNPs showed unique enrichment of transcription factor binding site (TFBS)
187  variants (OR = 4.38, p = 3.74x10%) and exonic variants in non-coding genes (OR = 2.53, p = 1.89x10°
188  ?), although these association were only nominally significant.

189 Next, we tested whether any difference in results from gene-set enrichment analyses with Gene
190  Ontology (GO) biological processes, cellular components and molecular functions could be observed
191  using the 640 sMRI-, 6 fMRI-, 468 dMRI-specific, or 1,586 cross-modality genes (Figure 3a). We
192 identified 40 gene-sets that consisted of both modality-specific and cross-modality subsets of genes and
193  showed significant enrichment (Supplementary Table 10). These processes were mostly related to
194 nervous system development and neuronal growth and differentiation. Overall, showing that extensive

195  pleiotropy across neuroimaging modalities is also present on the level of gene-sets. Another 113 gene-
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Figure 3. a) Gene-ontology biological processes, molecular functions and cellular components that were (FDR-
corrected) significantly enriched for cross-modality, sMRI-specific and/or dMRI-specific genes (none of the GO
terms tested showed enrichment for the 6 fMRI-specific genes). Node size reflects gene-set size, edges reflect
pathway similarity scores (Methods). AutoAnnotate was used in Cytoscape to name clusters of gene-sets with
similar semantics. Note that gene-sets without overlap with any other gene-set are not presented here, they are
listed in Supplementary Table 10. b) Mean-normalized expression (y-axis) of cross-modality and modality-
specific genes over developmental timepoints (x-axis; loglQ scale). Gray shading indicates 95% confidence
intervals. The mean-normalized expression of fMRI-specific genes is displayed in Supplementary Figure 6, since

the number of genes (n=5) was low and therefore created an unreliable pattern.
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206  sets were enriched for cross-modality genes only and highlight the genes’ involvement in fundamental
207  Dbiological processes, such as cell cycle processes, cellular structure (chromatin, cytoskeleton, cell
208  junction), and vesicle transport.

209 To investigate potential differential temporal patterns of cortical gene expression between
210 modality-specific and cross-modality genes, we investigated transcriptome data of post-mortem brain
211  tissue (N=56) representing males and females of multiple ethnicities across the life span (Figure 3b)".
212 The number of fMRI-specific genes in the data (n=5) was too low to generate a reliable expression
213 pattern (Supplementary Figure 6). Prenatal gene expression was high for both sMRI-, dMRI-specific
214 and cross-modality genes compared to all genes in the data. In (early) childhood until adolescence, a
215  differential dMRI-specific expression pattern was not apparent (compared to all genes in the data),
216  whereas sMRI-specific and cross-modality genes were generally lower expressed. This matches a large
217  body of research showing that pre- and postnatal cortical transcriptomes differ largely and pronounced
218  prenatal expression matches the course of cortical development™.

219

220  Leveraging shared genetic architecture with psychiatric disorders for genetic discovery

221  Alterations in brain morphology, connectivity, and tissue composition often co-occur in heritable
222 psychiatric disorders'', suggesting that our multimodal, multivariate genetic signal may have relevance
223 for genetic discovery and prediction of psychiatric disorders. It is possible to boost locus discovery and
224 polygenic prediction by re-ranking the test-statistics from a given GWAS based on a genetically related
225  secondary GWAS?'. We conditioned major psychiatric disorder GWAS summary statistics from the
226  Psychiatric Genomics Consortium (Supplementary Table 11) on our multimodal MOSTest summary
227  statistics using the conditional false discovery rate approach (cFDR)* to identify novel loci associated
228  with schizophrenia®, bipolar disorder*’, major depressive disorder”, attention-deficit hyperactivity
229  disorder®, and autism spectrum disorder*’. The rationale behind cFDR is that, in the presence of cross-
230  trait enrichment, a variant with strong associations with both traits is more likely to represent a true
231  association®®. Compared to the number of genome-wide significant loci identified in the original
232 GWAS, we observed a 6-19 fold increase in locus yield (Supplementary Table 12). We calculated the

233 sign concordance of these newly discovered loci using independent disorder GWAS summary

11
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234 statistics® ' (Supplementary Table 11) and observed higher and more significant sign concordance
235  across all disorders compared to the loci identified in the original GWASs (Supplementary Table 13).
236  This illustrates that genetic overlap may be used to identify novel genetic variants that may play a role
237  in psychiatric disorders with relevance for a wide range of neuroimaging traits. We followed-up by
238  testing whether our multimodal cFDR summary statistics could improve polygenic prediction of the
239  disorders in independent samples using a pleiotropy-informed polygenic scoring method”®. This method
240  improved the prediction for bipolar disorder (R* = 5.75%, p = 2.28x10™"*) compared to the original
241  polygenic risk score (R* = 4.63%, p = 8.93x10™") (see Supplementary Results 2 and Supplementary
242  Table 14).

243

244 Discussion

245  The current findings demonstrated that many loci and genes show pleiotropic effects across brain
246  characteristics derived from three distinct MRI modalities. We find evidence of extensive pleiotropy
247  across structural, functional and diffusion MRI from genetic overlap (377 loci and 1,170 genes being
248  associated with at least two out of three modalities), and a boost in discovery of loci (n=146) and genes
249  (n=416) when all MRI-derived phenotypes are jointly analysed using MOSTest. The results in the
250  ABCD cohort show generalizability of structural and diffusion MRI pleiotropic loci from adulthood to
251  childhood, and from European ancestry to mixed ancestries. We show that each MRI modality captures
252 a genetic signal that includes modality-specific and cross-modality biological processes. Moreover, we
253  show how these results can be leveraged to improve locus discovery for major psychiatric disorders.
254 The human brain is a highly complex and inter-connected structure for which “the whole is
255  more than the sum of its parts™*. This complexity emerges from tight interplay between different units
256  and processes, where disturbance of any part may change the state of the whole system. With this in
257  mind, pervasive effects of genetic variants on brain-related traits are inevitable, resulting in abundant
258  pleiotropy not only across phenotypically linked traits such as brain morphology measures®’, but also
259  in widespread genetic overlap between distinct aspects of brain functioning such as personality and
260  cognition?'. Our results implicate that the multivariate genetic signals of structural, functional, or

261  diffusion MRI are not only composed of pleiotropic effects within modalities as previously shown®’,
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262  but also of a component that is shared across brain traits measured with different MRI modalities. This
263  provides a new conceptual insight into the integration of human brain functional connectivity (fMRI),
264  microstructure (dMRI) and macrostructure (SMRI) and highlights the importance of characterizing
265  patterns of specificity and pleiotropy to improve our understanding of molecular neurobiological
266  mechanisms.

267 Genetic overlap was apparent across all three modalities in our discovery sample from UK
268  Biobank. Even though the heritability and number of loci and genes for fMRI was lower than in dMRI
269  and sMRI, the proportions of genome-wide significant loci and genes that did and did not overlap with
270  other modalities was generally equal across modalities. The results in the ABCD cohort showed
271  generalizability of structural-diffusion MRI pleiotropy from old age to late childhood, and from
272  European ancestry to mixed ancestries. A lack of power in this smaller cohort most likely limited the
273 robust estimation of genetic associations for the relatively low heritable functional MRI-derived
274 phenotypes, which complicated examining the generalizability of structural-functional-diffusion MRI
275  pleiotropy beyond structural-diffusion MRI pleiotropy.

276 Our enrichment analyses showed that the biological processes and molecular components
277  implicated can be decomposed to those 1) enriched for either sMRI-specific (neuron development,
278  differentiation, and migration, the synapse, axon) or dMRI-specific genes (cell death, cellular response
279  to stimuli), 2) converging from modality-specific and cross-modality genes (regulation of neuron/cell
280  projection development, organization and guidance, microtubule), and 3) only enriched for cross-
281  modality genes (more general functions such as cell cycle processes, regulation of gene expression, cell
282  junctions). That gene-sets implicated by cross-modality genes alone are involved in fundamental
283  biological processes is consistent with previous findings that genes associated with multiple trait
284  domains are more likely to be involved in general biological functions®.

285 The functional enrichment of modality-specific and cross-modality lead SNPs hints towards the
286  mechanisms through which pleiotropic effects could be exerted. Both within-modality and cross-
287  modality pleiotropic lead SNPs were enriched for protein coding exonic and 3’-UTR variants and
288  depleted for intergenic variants as found previously for pleiotropic SNPs**. There is previous evidence

289  to suggest that pleiotropy emerges from the variants’ effect on total expression of functional protein,
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290  for example by the selective exclusion of missense exons from the gene transcript’® or post-
291 transcriptional influence on gene expression by variants in 3°-UTR regulatory elements®’. However,
292 identification of the (unmeasured) causal SNPs tagged by these multivariate GWAS lead SNPs is
293  necessary in future studies to uncover the mechanisms through which variants exerts their pleiotropic
294 effect.

295 Some limitations are worth noting when interpreting our results. First, despite our efforts to
296  harmonize the three sets of phenotypes to the greatest degree, the differential spatial granularity and
297  number of features across modalities can result in differential representation of certain brain regions or
298  brain characteristics in the multivariate signal. Second, our definition of modality-specificity is inherent
299  to the currently available data and dependends on statistical power — loci that are now associated with
300  one modality could become genome-wide significant in another modality once sample sizes increase.
301  Third, one should keep in mind that the presence of statistical pleiotropy as indicated in this study can
302 include instances of pleiotropy where multiple traits are affected by one gene but different causal SNPs*
303 or one locus with distinct gene effects that are in linkage disequilibrium®. Fourth, MOSTest does not
304  provide effect directions due to its multivariate nature and requires the use of individual level data. This
305  restricted access to certain post GWAS analyses that require direction of effect, but these limitations
306  were outweighed by MOSTest’s ability to boost identification of variants with shared effects across
307  phenotypes and handle hundreds of phenotypes with sample size differences in a computationally
308  efficient manner’.

309 In conclusion, we identified extensive cross-modality pleiotropy and demonstrated that
310  combining different neuroimaging modalities in multivariate analysis substantially increases genetic
311  variant and gene discovery compared to multivariate analyses within single modalities. The results
312 presented improve our understanding of the biology implicated by modality-specific and cross-modality
313 genetic effects, and provide insights into the mechanistic pathways linking common genetic variation,

314  brain structure and function, and psychiatric disorders.
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315  Methods

316  Samples

317 UK Biobank

318  The primary analyses of this study were conducted using data from UK Biobank participants who
319  provided written informed consent. This population-based resource obtained ethical approval from
320  the National Research Ethics Service Committee North West—Haydock (reference 11/NW/0382) and
321  the current study was conducted under application number 27412. We included participants that passed
322 quality control for functional® or diffusion’ MRI-derived phenotypes as described in previous
323  publications (Npvrr = 39,951; Namrr = 31,306). We increased our sample size for participants with
324 structural MRI-derived phenotypes compared to the original MOSTest publication’, since new data had
325  beenreleased (Nsmri = 42,068). For all three subsamples, we excluded participants based on relatedness
326  (kinship coefficient > 0.05 as estimated in PLINK), non-European ancestry (UKB field 22006), a
327  genotype missing rate > 10%, and bad scan quality as indicated by an (age- and sex-adjusted) Euler
328  number > 3 SDs lower than the scanner site mean. This resulted in the sample characteristics described
329  in Supplementary Table 15.

330

331  Adolescent Brain Cognitive Development (ABCD) Study

332 Baseline data from ABCD participants from release 3.0 [NIMH Data Archive (NDA) DOI:10.151.54/
333 1519007] were used for the replication efforts in this study. All children in this cohort assented before
334  participation and their parents or guardians provided written informed consent. The procedures were
335  approved by a central Institutional Review Board (IRB) at the University of California, San Diego, and,
336  in some cases, by individual site Institutional Review Boards. We included participants with data for
337  the structural or functional MRI-derived phenotypes of interest (Ngmrr = 11,760; Npvri = 11,801) or
338 quality controlled diffusion MRI-derived phenotypes as previously described’ (Nawmri = 11,904). For all
339  three subsamples, we excluded participants based on recommended criteria for either modality as
340  provided by ABCD (e.g. imgincl tlw_include), relatedness (first cousin), a genotype missing rate >
341 10%, and bad scan quality as indicated by an (age- and sex-adjusted) Euler number < 3 SDs lower than

342  the scanner site mean. This resulted in a sample with mixed ancestries (Table 1). We additionally
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343 excluded participants with a genetic ancestry factor'> of European ancestry < 90% (as provided by
344  ABCD and applied previously in Loughnan et al’®) to create a replication sample that matched the
345  ancestry characteristics of the discovery sample more specifically (Supplementary Table 15).

346

347  Genotype data

348 UK Biobank

349 UK Biobank samples were genotyped from whole blood either using the UK BiLEVE or the UK
350 Biobank axiom array and subsequently quality controlled and imputed by the UK Biobank Team®’.
351  Additional quality control was performed in-house and included SNP filters on minor allele frequency
352 (MAF > 0.1%), imputation information score (INFO > 0.5), Hardy-Weinberg equilibrium (HWE; p <
353 1x10”) and missingness (< 10%). This resulted in 9,061,587 SNPs used for association testing.
354  Ancestral principal components were computed within European samples by UK Biobank and used to
355  control for population stratification.

356

357  ABCD

358  Release 3.0 genotype data from ABCD participants was obtained through the Affymetric NIDA
359  SmokeScreen Array, using either saliva or whole blood based on higher successful calls, higher non-
360  missingness, matched genetic sex and less excessive identity by state. Initial quality control was
361  performed by ABCD based on calling signals and variant call rates and subsequently following pre-
362  imputation RICOPILI (Rapid Imputation and Computational Pipeline). We complemented ABCD
363  quality control after creating two subsamples (European and mixed ancestries as described above) by
364  further filtering pre-imputed variants on call rates (<5% missingness), MAF > 0.01, passing the HWE
365  test (p < 1x10”) and heterozygosity rate (deviating >6SD from the mean value) in PLINK2*. A pruned
366  set of SNPs (7°=0.1) was used to estimate 20 genetic principal components within each subsample to
367  use downstream as covariates in multivariate GWAS. Genetic data was phased and imputed using the
368  TOPMed imputation server and only SNPs with high imputation quality were retained (INFO > 0.9).
369

370
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371  Neuroimaging data

372 Structural MRI-derived phenotypes

373  Three previous publications have used MOSTest on sMRI-derived phenotypes. These included either
374  region-of-interest (ROI)-based cortical thickness, surface area, and subcortical volume’ or vertex-based
375 cortical thickness, surface area’, and sulcal depthé. Given that the aim of this study was to combine
376  phenotypes derived from three modalities and MOSTest can currently analyse a few thousand of
377  phenotypes simultaneously, we opted to use the ROI-based cortical thickness, surface area, and
378  subcortical volume’ phenotypes given their relative low dimensionality. Supplementary Table 1
379  contains all the regional morphology measures included in the current study and indicates which
380  measures were analysed for the left and right hemisphere separately. The respective publication by Van
381 Der Meer & Frei et al’ describes how the sets of 36 regional subcortical volumes, 68 cortical thickness
382  and 68 surface area, as well as estimated intracranial volume (for covariate use downstream), were
383  extracted from Tl-weighted MRI using FreeSurfer v5.3*"* in UK Biobank samples. A similar
384  procedure was performed by the ABCD Data Acquisition and Integration Core and were readily
385  available. As the importance of normally distributed phenotypes for MOSTest was demonstrated in the
386  original publication’, we applied rank-based inverse-normal transformation to each measure.

387

388  Functional MRI-derived phenotypes

380  We used functional MRI (fMRI)-derived phenotypes as previously described by Roelfs et al®. The UK
390  Biobank resting-state fMRI scans were processed into 1,000 Schaefer parcels* and mapped onto 17

391  large-scale brain networks defined by Yeo & Krienen et a/**

. The averaged time series within each Yeo-
392  defined network were Pearson correlated and represented 136 brain connectivity measures next to the
393 17 network variances (Supplementary Table 1). Rank-based inverse-normal transformation was applied
394  to each measure.

395 The ABCD Data Acquisition and Integration Core provided similar, but not identical, resting-
396  state fMRI-derived phenotypes for replication purposes. Instead of the 17 Yeo & Krienen networks

397  based on 1,000 parcels, temporal variance in 333 Gordon-defined parcels and 66 average correlations

398  between 12 Gordon-defined networks were available*’. We averaged the parcel variances belonging to
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399  the same network to achieve comparability to our discovery phenotypes. Subsequently, we rank-based
400  inverse-normal transformed the 12 network variances and 66 network connectivity phenotypes.

401

402 Diffusion MRI-derived phenotypes

403  We used diffusion MRI-derived phenotypes from UK Biobank and ABCD based on a voxel-wise
404  restriction spectrum imaging (RSI) model (as in Fan et a/’). In short, RSI estimates the signal volume
405  fractions of separable pools of water in the human brain (i.e. intracellular, extracellular, and unhindered
406  free water) and their corresponding spherical harmonic coefficients**’. Three RSI features were used:
407 1) restricted isotropic diffusion (NO) is most sensitive to isotropically diffusing water in the restricted
408  compartment (within cell bodies), restricted directional diffusion (ND) is sensitive to anisotropically
409  diffusing water in the restricted compartment (within oriented structures such as axons and dendrites),
410  and 3) normalized free water diffusion (NF) is sensitive to cerebrospinal fluid or intravascular spaces*.
411  Fan et al’ calculated the principal components (PCs) across all voxels and extracted the first 5,000 PCs
412 explaining more than 70% of the total variance of each feature. Here, due to dimensionality constraints,
413  we reduced the number of PCs for each feature by estimating the “elbow” of each scree plot of
414  eigenvalues using the nScree function of the nFactors R package (Supplementary Figure 8). This
415  resulted in the first 124 ND-PCs, 87 NF-PCs and 65 NO-PCs used in our multivariate GWAS.

416

417  Statistical analyses

418  SNP-based GWAS

419  We performed discovery and replication SNP-based GWAS in PLINK2* for every MRI-derived
420  phenotype separately while controlling for sex, age, age”, genotype array (UKB only), scanner, 20
421  genetic principal components, and modality specific covariates. The latter included Euler number, and
422 total surface area, mean thickness or intracranial volume (sMRI), signal to noise ratio and motion
423 (fMRI), and intracranial volume (dMRI). A linear regression model with additive allelic effects was
424 fitted for each SNP. Subsequently, SNP-based heritability (hZyp) was estimated for each phenotype

425  using Linkage Disequilibrium Score Regression (LDSC)'®. Univariate GWAS summary statistics from
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2
426  non-heritable phenotypes (nominal significance threshold }lei > 1.96 as used by Roelfs et al®) were
SNPsSE

427  dropped from further multivariate analyses, since including them may reduce statistical power’. This
428  led to the exclusion of 3 dMRI-derived NF-PCs and 14 fMRI-derived connectivity phenotypes GWAS
429  summary statistics (Supplementary Table 1). Then, variant z-scores from univariate GWAS were
430  combined in the MOSTest framework to construct multivariate p-values as described by Shadrin et al°.
431  This approach selects a regularization parameter optimized to the maximum yield of genetic loci
432 (Supplementary Table 16). The alpha level for SNPs reaching genome-wide significance in the
433 multivariate GWAS was o.= 5x107%,

434

435  Locus definition

436  We defined genome-wide significant loci from MOSTest and conditional FDR summary statistics
437  following a protocol as implemented in FUMA. First, independent genome-wide significant SNPs were
438  obtained by clumping (+* < 0.6) and SNPs in linkage disequilibrium (LD) with them (+* > 0.6) were
439  defined as candidate SNPs. LD was estimated using reference genotypes, using 5,000 random
440  participants from the UK Biobank sample for UKB-based summary statistics and 1000 Genomes Phase
441 3 EUR for the European as well as mixed ancestry ABCD-based summary statistics. Second,
442 independent significant SNPs with * < 0.1 were defined as lead SNPs and the minimum and maximum
443 positional coordinates of the corresponding candidate variants defined the locus start and end position.
444 Loci in <250kb proximity were merged into a single locus. We excluded loci with a single SNP as these
445  are more likely to be false positives.

446

447  Multivariate gene-based GWAS

448  We explored the overlap between modalities and multimodal MOSTest on a gene-level by applying a
449  SNP-wise mean model for 18,877 genes with MAGMA (Multi-marker Analysis of GenoMic
450  Annotation) v1.08'" in FUMA. The SNP-based MOSTest summary statistics from sMRI, dMRI, fMRI

451  and multimodal served as input with default settings and the UKB European population was used as
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452  reference. The alpha level for genes reaching genome-wide significance was adjusted from o = 0.05 to
453  o=(0.05/18,877 =) 2.65x10°° according to Bonferroni correction for multiple testing.

454

455  Definition of modality-specific and cross-modality loci and genes

456  Locus overlap between the three MOSTest summary statistics (sMRI, fMRI, dMRI) was defined as
457  physically overlapping genome-wide significant loci after clumping (see above). We used the
458  GenomicRanges R-package®’ to compare the chromosome and start and end base pair positions of all
459  loci between any pair of summary statistics. A locus was considered modality-specific when it did not
460  overlap with any of the loci identified for other modalities. All loci that were found to overlap between
461  two or more modalities also overlapped with the multimodal loci, hence we decided to represent these
462  cross-modality loci with the association statistics of the multimodal locus’ lead SNP(s) in downstream
463  analyses. The sMRI, fMRI, dMRI and multimodal MOSTest genes that were found to be genome-wide
464  significant in MAGMA were compared to provide a similar overview. The overlapping patterns were
465  then plotted with the eulerr R-package. This procedure was repeated for both discovery (UKB) and
466  replication (ABCD) MOSTest summary statistics, to investigate whether a similar overlapping pattern
467  could be observed.

468

469  Comparison of modality-specific and cross-modality lead SNP properties

470  We were interested in potential differences between modality-specific and cross-modality loci.
471  Therefore we selected the lead SNPs within the respective loci (see Locus definition) and annotated
472 them with the Ensembl Variant Effect Predictor (VEP)'®. As reference, we averaged the counts of
473  annotations within ten randomly pruned sets of SNPs. Enrichment of the modality-specific and cross-
474  modality lead SNPs in positional annotation categories was then tested using Fisher’s Exact test. The
475  alpha level for significant enrichment was Bonferroni corrected (o= 0.05 / 41 = 1.22x107%).

476

477  Comparison of modality-specific and cross-modality gene properties

478  In order to interpret the biological processes, cellular components or molecular functions our modality-

479  specific and cross-modality genes are involved in, Gene Ontology (GO)*™! gene-sets were tested for
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480  enrichment of genes in these four lists using hypergeometric testing as implemented in FUMA*. Protein
481  coding genes were used as background genes and correction for multiple comparisons was performed
482  using the Benjamini-Hochberg method. The significant modality-specific and cross-modality GO terms
483  were visualized as a graph using Cytoscape, EnrichmentMap® and AutoAnnotate® following the
484  Nature Protocol by Reimand & Isserlin et al>. Stringent pathway similarity scores (Jaccard and overlap
485 combined coefficient = 0.6 as used in Paczkowska, Barenboim et al>®) were used as edges.

486 To visualize the temporal gene expression pattern of the sets of modality-specific and cross-
487  modality genes, we made use of gene expression data derived from brain tissue from 56 donors'®. This
488  dataset ranges from 5 weeks post conception to 82 years of age and we used the data as pre-processed
489  in Kang et al'’. We selected the probe with the highest differential stability for each gene (n = 16,660).
490 A number of modality-specific (Dsmrrspecific = 125, NaMmRI-specific = 88, Nimri-specific = 1) and cross-modality
491  genes (n=311) were not available in the data. Given the relatively high homogeneity of expression
492  patterns across cortical brain samples’’, we subsequently averaged over 13 cortical regions, within
493 donor, and normalized the expression values, within probe, across donors, to a range between 0 and
494 100. Mean expression over time per set of genes was plotted with ggplot2 in R v4.0.3., with
495  geom_smooth(method="gam”) using default settings.

496

497  Conditioning the genetic signal of major psychiatric disorders on multimodal MOSTest

498  We explored whether the multimodal multivariate summary statistics could be leveraged to improve
499  locus discovery for major psychiatric disorders (schizophrenia®, bipolar disorder*, major depressive
500  disorder®, attention-deficit hyperactivity disorder®, and autism spectrum disorder?’). For that purpose,
501  we applied Conditional False Discovery Rate (¢cFDR)* on Psychiatric Genomics Consortium GWAS
502  summary statistics (listed in Supplementary Table 11) by conditioning on multimodal MOSTest
503  summary statistics. We obtained disorder summary statistics excluding UK Biobank to prevent sample
504  overlap. In cFDR analyses, original p-values are replaced by FDR values that reflect the posterior
505  probability that a SNP is null for the disorder given that the p-values for both phenotypes are as small

506  or smaller as the observed p-values:
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1o (Pmultimodal)Pdisorder
507 (1 FDR(paisorder| ltimodal) = >
) Paisorder IPmultimoda F(Paisorder|Pmultimodat)

508  with F = the conditional empirical cumulative distribution function and 7y(Pmuitimodar) = the
509  conditional proportion of null SNPs for the disorder given that p-values for the multimodal phenotype
510  are as small or smaller. We subsequently defined genome-wide significant loci (see Locus definition)
511  for the original (p < 5x10™®) and conditioned (FDR < 0.05) summary statistics and compared the results.
512 We tested how replicable the identified loci from original and conditioned summary statistics
513  were by performing sign concordance tests in independent disorder summary statistics. All summary
514  statistics that were used to look up lead SNPs and test for replication are listed in Supplementary Table
515  11. An exact binomial was used test to test the null hypothesis that sign concordance was randomly
516  distributed (p=0.5), given the total number of variants and the number of variants with concordant
517  effects.

518

519  PleioPGS

520  We then compared the prediction power of the original and conditioned summary statistics by
521  constructing polygenic scores (PGS) in independent case-control samples for the five major psychiatric
522  disorders described above in independent samples. The TOP, BUPGEN and MoBa® samples are
523 described in the Supplementary Methods (and Supplementary Table 11). We applied and compared two
524  different set-ups, both based on the C+T (clumping + thresholding) approach® using different strategies
525  for ranking SNPs: 1) original GWAS p-value-based ranking and original GWAS effect sizes (standard
526  PGS); 2) cFDR-based ranking (described above) and original GWAS effect sizes (pleioPGS as

527  introduced by Van der Meer et al*®; https://github.com/precimed/pleiofdr). For these two setups PGS

528  were calculated across five sets of LD-independent SNPs (N = 1,000, 10,000, 50,000, 100,000, 150,000)
529  using PRSice-2 (v2.3.3)* with no additional clumping (--no-clump option). Sets of LD-independent
530  SNPs were obtained using plink v1.90b6.1* based on the setup-defined SNP ranking with --clump-kb
531 250, --clump-r2 0.1 parameters and in-sample LD estimates. In both setups the phenotypic variance

532 explained by the PGS (R?) was estimated using linear regression model controlling for age, sex and first

533 10 genetic PCs.
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534  Data availability
535  Genome-wide summary statistics will be made publicly available via

536  https://ctg.cncr.nl/software/summary_statistics/ and GWAS Catalog upon acceptance. The individual-

537  level data that support the discovery findings of this study are available from UK Biobank but
538  restrictions apply to the availability of these data, which were used under license no. 27412 for the
539  current study. Data used in the preparation of this article were obtained from the Adolescent Brain

540  Cognitive Development™ (ABCD) Study (https://abedstudy.org), held in the NIMH Data Archive

541  (NDA). ABCD data used for replication in this study is registered under the NDA study register at

542 https://doi.org/10.15154/1527969. Data from the Norwegian Mother, Father and Child Cohort Study

543  and the Medical Birth Registry of Norway used in this study are managed by the national health register
544 holders in Norway (Norwegian Institute of public health) and can be made available to researchers,
545  provided approval from the Regional Committees for Medical and Health Research Ethics (REC),
546  compliance with the EU General Data Protection Regulation (GDPR) and approval from the data
547  owners.

548

549  Code availability

550 Code to obtain the multimodal results presented in this manuscript are available via

551  https://github.com/EPTissink/MOSTest-multimodal. Code from previously published studies based on

552  different modalities from which we used phenotypic data are available at https:/github.com/cmig-

553 research-group/RSIGWAS (dMRI), https://github.com/precimed/mostest (sMRI)

554 and https://www.github.com/norment/open-science (fMRI).
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