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Abstract 35 

Genetic pleiotropy is abundant across spatially distributed brain characteristics derived from one 36 

neuroimaging modality (e.g. structural, functional or diffusion MRI). A better understanding of 37 

pleiotropy across modalities could inform us on the integration of brain function, micro- and 38 

macrostructure. Here we show extensive genetic overlap across neuroimaging modalities at a locus and 39 

gene level in the UK Biobank (N=34,029) and ABCD study (N=8,607). When jointly analysing 40 

phenotypes derived from structural, functional and diffusion MRI with the Multivariate Omnibus 41 

Statistical Test (MOSTest) method, we boost the discovery of loci and genes associated with brain 42 

features beyond previously identified effects for each modality individually. Cross-modality genes are 43 

involved in fundamental biological processes and predominantly expressed during prenatal brain 44 

development. We additionally boost genetic discovery for psychiatric disorders by conditioning 45 

independent GWAS on our multimodal multivariate GWAS. These findings shed light on the shared 46 

genetic mechanisms underlying variation in brain morphology, functional connectivity, and tissue 47 

composition – features often concurrently altered within psychiatric disorders.  48 
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Introduction 49 

The brain is our most complex organ, rapidly integrating information from many different sources1, 50 

with strong genetic influences2. Studying genetic influences through genome-wide association studies 51 

(GWAS) has shown that most loci and genes show association with multiple traits3, a phenomenon 52 

known as “statistical pleiotropy” (e.g. one gene influences multiple phenotypes directly, or indirectly 53 

via a causal pathway or common factor)4. Recently, numerous loci and genes with pleiotropic effects 54 

across brain characteristics derived from a single neuroimaging modality (e.g. structural, functional or 55 

diffusion MRI) have been discovered5–9. Yet the majority of pleiotropic loci act across rather than within 56 

phenotype domains3, indicating that the genes associated within these loci may show pleiotropic effects 57 

across neuroimaging modalities, but the extent of this is underexplored. Investigating how genes 58 

influence a wide variety of brain imaging phenotypes may shed light on the mechanisms underlying 59 

alterations in brain morphology, activity, connectivity, and tissue composition that often co-occur in 60 

heritable psychiatric disorders10,11. 61 

Multivariate GWAS approaches gain their statistical power due to the distributed nature of 62 

genetic influences across phenotypes12. Such approaches are well-suited for the identification of 63 

pleiotropic variants and genes with effects across neuroimaging modalities. Previous studies have 64 

investigated either structural MRI-derived (sub)cortical volumes, surface area, and thickness5–7, 65 

functional MRI-derived brain connectivity8, or diffusion MRI-derived brain tissue composition9 in a 66 

multivariate GWAS framework. Compared to conventional mass-univariate approaches these 67 

multivariate studies showed a boost in genetic discovery (whilst maintaining correct type-I errors7 and 68 

ensuring replicability within and across samples13) due to extensive genetic overlap across spatially 69 

distributed modality-specific measures. The identified loci and genes inform us about the biological 70 

signal that is picked up by MRI. Previous work has linked genetic effects of diffusion MRI to synaptic 71 

pruning, neuroinflammation, and axonal growth9, structural MRI to neurogenesis and cell 72 

differentiation5, and functional MRI to mental health14 and psychiatric disorders8, yet the specificity of 73 

these links remains unclear. The extent to which these genetic effects overlap and show pleiotropy 74 

across neuroimaging modalities can be investigated by 1) overlapping the previously described 75 

multivariate effects for each modality and 2) combining all MRI-derived phenotypes into one 76 
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multimodal multivariate GWAS, obtaining an additional boost for discovery of cross-modality 77 

pleiotropic loci and genes. Identifying such loci, which are currently not discoverable in unimodal 78 

analyses, can improve our understanding of the interplay of biological processes contributing to brain 79 

structural organisation on multiple scales and reveal underpinnings of the structure-function 80 

relationship from a genetics viewpoint. 81 

Here, we demonstrate evidence of extensive pleiotropy across neuroimaging modalities using 82 

583 structural (sMRI), resting-state functional (fMRI) or diffusion (dMRI) MRI-derived phenotypes in 83 

the UK Biobank and the Adolescent Brain Cognitive Development (ABCD) Study®. We do so by 84 

performing unimodal and multimodal multivariate GWAS with the Multivariate Omnibus Statistical 85 

Test (MOSTest), which was designed to boost statistical power by capitalizing on the distributed nature 86 

of genetic influences across imaging-derived phenotypes7. We functionally annotate modality-specific 87 

(identified in only one unimodal analysis) and cross-modality (identified in ≥ 2 unimodal analyses or 88 

unique to multimodal analysis) loci and genes to describe the biological signal unique to and shared 89 

across MRI modalities. We improve locus discovery of the major psychiatric disorders by using the 90 

multimodal, multivariate, genetic signal of brain morphology, functional connectivity, and tissue 91 

composition. Thereby the current study provides insight into pleiotropic effects across neuroimaging 92 

modalities and their relevance for understanding the neurobiology of the human brain and mental health 93 

conditions. 94 

 95 

Results 96 

Abundant pleiotropy of genome-wide significant loci and genes across neuroimaging modalities 97 

We used data from three previous studies that applied MOSTest on single neuroimaging modality 98 

phenotypes: 172 sMRI-derived brain morphology measures (68 regional surface area and 68 regional 99 

thickness of the cerebral cortex, and 36 volumes of subcortical structures)7, 153 fMRI-derived BOLD 100 

signal and connectivity measures (17 network variances and 136 network correlations)8, and 276 dMRI-101 

derived brain tissue composition principal components (65 restricted isotropic diffusion PCs, 124 102 

restricted directional diffusion PCs, 87 normalized free water diffusion PCs)9. We investigated white 103 

British UK Biobank samples (as derived from both self-declared ethnic background and genetic 104 
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principal component analysis) with quality-controlled genotypes and neuroimaging available (NsMRI = 105 

34,029, NfMRI=31,023, NdMRI = 30,106). We also included the ABCD cohort which had identical sMRI- 106 

and dMRI-derived measures and similar fMRI-derived measures (see Methods) available in a European 107 

(NsMRI = 4,794, NfMRI = 4,132, NdMRI = 4,418) and mixed ancestry (assigned based on genetic ancestry 108 

factor15 as defined in Methods) quality-controlled samples (NsMRI = 8,607, NfMRI = 7,277, NdMRI = 109 

7,853). These ABCD samples were used to test the generalizability of our results across age and genetic 110 

ancestral compositions. Heritability estimates obtained in UK Biobank with linkage disequilibrium 111 

(LD) Score Regression16 ranged from median = 5.80% (IQR = 3.09%) for fMRI-derived network 112 

variances to 28.00% (IQR = 6.92%) for sMRI-derived subcortical volumes (Supplementary Figure 1 113 

and Supplementary Table 1), with dMRI-derived measures ranking in-between (median = 13.70%, IQR 114 

= 9.63%). Genetic and phenotypic correlations were generally similar (𝜌(rg,rp) = 0.53, p = 2.2×10-16), 115 

and stronger within modalities than between modalities (Supplementary Figure 2). 116 

First, we combined all heritable (nominal p < 0.05) phenotypes derived from the same modality 117 

in multivariate GWAS analyses using MOSTest (Manhattan plots in Supplementary Figure 3). This 118 

heritability filter was applied (as previously by Roelfs et al8) because including non-heritable 119 

phenotypes into MOSTest analyses have been shown to reduce statistical power7. MOSTest estimates 120 

the correlation between measures from univariate GWAS (on randomly permuted genotype data) and 121 

sums the squared decorrelated z-values across univariate GWAS summary statistics (from the original 122 

genotype data) to integrate the effects across the measures into a multivariate test statistic7. These 123 

unimodal multivariate analyses identified 640, 44 and 562 genome-wide significant loci associated with 124 

sMRI, fMRI and dMRI respectively (p < 5×10-8; Supplementary Table 2). These results are in line with 125 

earlier research (Supplementary Results 1). The number of genome-wide significant lead SNPs from 126 

UK Biobank that replicated at nominal significance (p < 0.05) in ABCD-based MOSTest summary 127 

statistics differed across modalities (EUR: 24.46% sMRI, 8.70% fMRI, 23.63% dMRI), and were higher 128 

for the larger sample with mixed ancestries (42.12% sMRI, 15.38% fMRI, 35.39% dMRI; 129 

Supplementary Table 6). Applying MAGMA17 gene-level analyses to unimodal multivariate summary 130 

statistics identified 1,809, 45 and 1,638 genome-wide significant genes (p < 2.65×10-6) for sMRI, fMRI  131 
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 132 
Figure 1. Overlap of genome-wide significant a) loci and b) genes observed across neuroimaging modalities in 133 
modality-specific and joint multimodal analyses (p < 5×10-8). When sMRI, fMRI and dMRI-derived phenotypes 134 
are jointly analysed in MOSTest (multimodal analysis), a boost in discovery of pleiotropic loci and genes is 135 
observed (yellow). This pattern partially replicates in the ABCD cohort (Supplementary Figure 4). 136 
 137 

and dMRI respectively (Supplementary Table 3). When overlapping the identified loci (p < 5×10-8) and 138 

genes (p < 2.65×10-6) from each modality (Methods), we observed 377 loci (44.41% of total) and 1,170 139 

genes (51.23% of total) associated with at least two out of three modalities (Figure 1). This indicates 140 

pleiotropy across neuroimaging modalities both at the genome-wide significant locus and gene level. 141 

We replicated this pattern of overlap between sMRI and dMRI genome-wide significant loci and genes 142 

from UK Biobank in the ABCD cohort, though fMRI genome-wide significant loci did not overlap and 143 

fMRI genome-wide significant genes were not identified (Supplementary Figure 4, Supplementary 144 

Table 4-5). Replication patterns were similar across ancestries, with all of the sMRI and dMRI loci 145 

identified in the European ABCD sample overlapping with the loci identified within the mixed ancestry 146 

ABCD sample.  147 
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Multimodal genome-wide association study boosts discovery of cross-modality loci and genes 148 

We next investigated whether combining all sMRI, fMRI, and dMRI-derived measures in one 149 

multivariate analysis generated greater statistical power to identify novel pleiotropic loci and genes 150 

which show sub-threshold associations in each unimodal multivariate analysis (Manhattan plot in 151 

Supplementary Figure 3). We therefore applied MOSTest across neuroimaging modalities, combining 152 

583 phenotypes, identifying 851 genetic loci (Supplementary Table 2; replication rates EUR 26.45%, 153 

37.55% mixed ancestries; Supplementary Table 6). One-hundred-forty-six (17.16%) of these loci did 154 

not overlap with any of the loci identified in the unimodal multivariate analyses, suggesting that 155 

MOSTest leveraged the shared genetic signal across imaging modalities to boost the discovery of 156 

pleiotropic loci. Gene-based GWAS from MAGMA showed that of the 2,515 genome-wide significant 157 

multimodal genes, 416 (16.54%) were not discovered for unimodal gene-based GWAS (Supplementary 158 

Table 3). We used the ABCD cohort to investigate the generalizability of our findings and observed a 159 

similar boost in multimodal discovery on a genome-wide significant locus and gene level 160 

(Supplementary Figure 4, Supplementary Table 4-5). Additionally, 81.82% of multimodal loci 161 

identified in the European ABCD sample were overlapping with the loci identified in the mixed ancestry 162 

ABCD sample. 163 

We next determined the extent to which multivariate loci that were uniquely identified in the 164 

multimodal analysis demonstrated pleiotropic effects compared to those that were uniquely identified 165 

for one modality. We examined the univariate associations underlying different parts of the Venn 166 

diagram (Figure 1) by extracting the minimum univariate p-value for every locus’ lead SNP 167 

(Supplementary Figure 5). A relatively high minimum univariate p-value would indicate that the signal 168 

was highly distributed across other measures for the variant to become genome-wide significant in the 169 

multivariate analysis. Lead SNPs boosted by the multimodal analysis had relatively high minimum 170 

univariate p-values (0.05 > p > 5×10-5) more frequently (89%) than lead SNPs of loci identified in one 171 

unimodal analysis only (sMRI-specific 75%; fMRI-specific 22%; dMRI-specific 78%), indicating that 172 

the discovery of these lead SNPs was driven by pleiotropic signals across modalities.  173 
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174 
Figure 2. Functional consequences of modality-specific and cross-modality lead SNPs as annotated with VEP. 175 
The averaged counts of annotations within ten random sets of pruned SNPs were used as background in Fisher’s 176 
Exact Test to obtain enrichment estimates and p-values (Supplementary Table 9). 177 
 178 

Comparing the characteristics of modality-specific and cross-modality loci and genes 179 

We investigated to what extent modality-specific (identified in only one unimodal analysis) and cross-180 

modality (identified in ≥ 2 unimodal analyses or boosted by the multimodal analysis) loci and genes 181 

differ in their biological effects (Supplementary Table 7-8). To this end, we annotated 320 sMRI-, 10 182 

fMRI-, 230 dMRI-specific, and 1,261 cross-modality lead SNPs using the Ensembl Variant Effect 183 

Predictor18 (Supplementary Table 9). Figure 2 demonstrates that cross-modality and modality-specific 184 

lead SNPs were generally similarly enriched in coding regions and depleted in intergenic regions. 185 

dMRI-specific lead SNPs showed unique enrichment of transcription factor binding site (TFBS) 186 

variants (OR = 4.38, p = 3.74×10-2) and exonic variants in non-coding genes (OR = 2.53, p = 1.89×10-187 

2), although these association were only nominally significant. 188 

Next, we tested whether any difference in results from gene-set enrichment analyses with Gene 189 

Ontology (GO) biological processes, cellular components and molecular functions could be observed 190 

using the 640 sMRI-, 6 fMRI-, 468 dMRI-specific, or 1,586 cross-modality genes (Figure 3a). We 191 

identified 40 gene-sets that consisted of both modality-specific and cross-modality subsets of genes and 192 

showed significant enrichment (Supplementary Table 10). These processes were mostly related to 193 

nervous system development and neuronal growth and differentiation. Overall, showing that extensive 194 

pleiotropy across neuroimaging modalities is also present on the level of gene-sets. Another 113 gene-  195 
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 196 

Figure 3. a) Gene-ontology biological processes, molecular functions and cellular components that were (FDR-197 
corrected) significantly enriched for cross-modality, sMRI-specific and/or dMRI-specific genes (none of the GO 198 
terms tested showed enrichment for the 6 fMRI-specific genes). Node size reflects gene-set size, edges reflect 199 
pathway similarity scores (Methods). AutoAnnotate was used in Cytoscape to name clusters of gene-sets with 200 
similar semantics. Note that gene-sets without overlap with any other gene-set are not presented here, they are 201 
listed in Supplementary Table 10. b) Mean-normalized expression (y-axis) of cross-modality and modality-202 
specific genes over developmental timepoints (x-axis; log10 scale). Gray shading indicates 95% confidence 203 
intervals. The mean-normalized expression of fMRI-specific genes is displayed in Supplementary Figure 6, since 204 
the number of genes (n=5) was low and therefore created an unreliable pattern. 205 
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sets were enriched for cross-modality genes only and highlight the genes’ involvement in fundamental 206 

biological processes, such as cell cycle processes, cellular structure (chromatin, cytoskeleton, cell 207 

junction), and vesicle transport. 208 

To investigate potential differential temporal patterns of cortical gene expression between 209 

modality-specific and cross-modality genes, we investigated transcriptome data of post-mortem brain 210 

tissue (N=56) representing males and females of multiple ethnicities across the life span (Figure 3b)19. 211 

The number of fMRI-specific genes in the data (n=5) was too low to generate a reliable expression 212 

pattern (Supplementary Figure 6). Prenatal gene expression was high for both sMRI-, dMRI-specific 213 

and cross-modality genes compared to all genes in the data. In (early) childhood until adolescence, a 214 

differential dMRI-specific expression pattern was not apparent (compared to all genes in the data), 215 

whereas sMRI-specific and cross-modality genes were generally lower expressed. This matches a large 216 

body of research showing that pre- and postnatal cortical transcriptomes differ largely and pronounced 217 

prenatal expression matches the course of cortical development20. 218 

 219 

Leveraging shared genetic architecture with psychiatric disorders for genetic discovery 220 

Alterations in brain morphology, connectivity, and tissue composition often co-occur in heritable 221 

psychiatric disorders11, suggesting that our multimodal, multivariate genetic signal may have relevance 222 

for genetic discovery and prediction of psychiatric disorders. It is possible to boost locus discovery and 223 

polygenic prediction by re-ranking the test-statistics from a given GWAS based on a genetically related 224 

secondary GWAS21. We conditioned major psychiatric disorder GWAS summary statistics from the 225 

Psychiatric Genomics Consortium (Supplementary Table 11) on our multimodal MOSTest summary 226 

statistics  using the conditional false discovery rate approach (cFDR)22 to identify novel loci associated 227 

with schizophrenia23, bipolar disorder24, major depressive disorder25, attention-deficit hyperactivity 228 

disorder26, and autism spectrum disorder27. The rationale behind cFDR is that, in the presence of cross-229 

trait enrichment, a variant with strong associations with both traits is more likely to represent a true 230 

association28. Compared to the number of genome-wide significant loci identified in the original 231 

GWAS, we observed a 6-19 fold increase in locus yield (Supplementary Table 12). We calculated the 232 

sign concordance of these newly discovered loci using independent disorder GWAS summary 233 
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statistics29–31 (Supplementary Table 11) and observed higher and more significant sign concordance 234 

across all disorders compared to the loci identified in the original GWASs (Supplementary Table 13). 235 

This illustrates that genetic overlap may be used to identify novel genetic variants that may play a role 236 

in psychiatric disorders with relevance for a wide range of neuroimaging traits. We followed-up by 237 

testing whether our multimodal cFDR summary statistics could improve polygenic prediction of the 238 

disorders in independent samples using a pleiotropy-informed polygenic scoring method28. This method 239 

improved the prediction for bipolar disorder (R2 = 5.75%, p = 2.28×10-15) compared to the original 240 

polygenic risk score (R2 = 4.63%, p = 8.93×10-13) (see Supplementary Results 2 and Supplementary 241 

Table 14). 242 

 243 

Discussion 244 

The current findings demonstrated that many loci and genes show pleiotropic effects across brain 245 

characteristics derived from three distinct MRI modalities. We find evidence of extensive pleiotropy 246 

across structural, functional and diffusion MRI from genetic overlap (377 loci and 1,170 genes being 247 

associated with at least two out of three modalities), and a boost in discovery of loci (n=146) and genes 248 

(n=416) when all MRI-derived phenotypes are jointly analysed using MOSTest. The results in the 249 

ABCD cohort show generalizability of structural and diffusion MRI pleiotropic loci from adulthood to 250 

childhood, and from European ancestry to mixed ancestries. We show that each MRI modality captures 251 

a genetic signal that includes modality-specific and cross-modality biological processes. Moreover, we 252 

show how these results can be leveraged to improve locus discovery for major psychiatric disorders. 253 

The human brain is a highly complex and inter-connected structure for which “the whole is 254 

more than the sum of its parts”32. This complexity emerges from tight interplay between different units 255 

and processes, where disturbance of any part may change the state of the whole system. With this in 256 

mind, pervasive effects of genetic variants on brain-related traits are inevitable, resulting in abundant 257 

pleiotropy not only across phenotypically linked traits such as brain morphology measures20, but also 258 

in widespread genetic overlap between distinct aspects of brain functioning such as personality and 259 

cognition21. Our results implicate that the multivariate genetic signals of structural, functional, or 260 

diffusion MRI are not only composed of pleiotropic effects within modalities as previously shown5–9, 261 
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but also of a component that is shared across brain traits measured with different MRI modalities. This 262 

provides a new conceptual insight into the integration of human brain functional connectivity (fMRI), 263 

microstructure (dMRI) and macrostructure (sMRI) and highlights the importance of characterizing 264 

patterns of specificity and pleiotropy to improve our understanding of molecular neurobiological 265 

mechanisms. 266 

Genetic overlap was apparent across all three modalities in our discovery sample from UK 267 

Biobank. Even though the heritability and number of loci and genes for fMRI was lower than in dMRI 268 

and sMRI, the proportions of genome-wide significant loci and genes that did and did not overlap with 269 

other modalities was generally equal across modalities. The results in the ABCD cohort showed 270 

generalizability of structural-diffusion MRI pleiotropy from old age to late childhood, and from 271 

European ancestry to mixed ancestries. A lack of power in this smaller cohort most likely limited the 272 

robust estimation of genetic associations for the relatively low heritable functional MRI-derived 273 

phenotypes, which complicated examining the generalizability of structural-functional-diffusion MRI 274 

pleiotropy beyond structural-diffusion MRI pleiotropy. 275 

Our enrichment analyses showed that the biological processes and molecular components 276 

implicated can be decomposed to those 1) enriched for either sMRI-specific (neuron development, 277 

differentiation, and migration, the synapse, axon) or dMRI-specific genes (cell death, cellular response 278 

to stimuli), 2) converging from modality-specific and cross-modality genes (regulation of neuron/cell 279 

projection development, organization and guidance, microtubule), and 3) only enriched for cross-280 

modality genes (more general functions such as cell cycle processes, regulation of gene expression, cell 281 

junctions). That gene-sets implicated by cross-modality genes alone are involved in fundamental 282 

biological processes is consistent with previous findings that genes associated with multiple trait 283 

domains are more likely to be involved in general biological functions3. 284 

The functional enrichment of modality-specific and cross-modality lead SNPs hints towards the 285 

mechanisms through which pleiotropic effects could be exerted. Both within-modality and cross-286 

modality pleiotropic lead SNPs were enriched for protein coding exonic and 3’-UTR variants and 287 

depleted for intergenic variants as found previously for pleiotropic SNPs3,35. There is previous evidence 288 

to suggest that pleiotropy emerges from the variants’ effect on total expression of functional protein, 289 
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for example by the selective exclusion of missense exons from the gene transcript36 or post-290 

transcriptional influence on gene expression by variants in 3’-UTR regulatory elements37. However, 291 

identification of the (unmeasured) causal SNPs tagged by these multivariate GWAS lead SNPs is 292 

necessary in future studies to uncover the mechanisms through which variants exerts their pleiotropic 293 

effect. 294 

 Some limitations are worth noting when interpreting our results. First, despite our efforts to 295 

harmonize the three sets of phenotypes to the greatest degree, the differential spatial granularity and 296 

number of features across modalities can result in differential representation of certain brain regions or 297 

brain characteristics in the multivariate signal. Second, our definition of modality-specificity is inherent 298 

to the currently available data and dependends on statistical power – loci that are now associated with 299 

one modality could become genome-wide significant in another modality once sample sizes increase. 300 

Third, one should keep in mind that the presence of statistical pleiotropy as indicated in this study can 301 

include instances of pleiotropy where multiple traits are affected by one gene but different causal SNPs4 302 

or one locus with distinct gene effects that are in linkage disequilibrium3. Fourth, MOSTest does not 303 

provide effect directions due to its multivariate nature and requires the use of individual level data. This 304 

restricted access to certain post GWAS analyses that require direction of effect, but these limitations 305 

were outweighed by MOSTest’s ability to boost identification of variants with shared effects across 306 

phenotypes and handle hundreds of phenotypes with sample size differences in a computationally 307 

efficient manner7.  308 

 In conclusion, we identified extensive cross-modality pleiotropy and demonstrated that 309 

combining different neuroimaging modalities in multivariate analysis substantially increases genetic 310 

variant and gene discovery compared to multivariate analyses within single modalities. The results 311 

presented improve our understanding of the biology implicated by modality-specific and cross-modality 312 

genetic effects, and provide insights into the mechanistic pathways linking common genetic variation, 313 

brain structure and function, and psychiatric disorders.  314 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.20.521181doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.20.521181
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

Methods 315 

Samples 316 

UK Biobank 317 

The primary analyses of this study were conducted using data from UK Biobank participants who 318 

provided written informed consent. This population-based resource obtained ethical approval from 319 

the National Research Ethics Service Committee North West–Haydock (reference 11/NW/0382) and 320 

the current study was conducted under application number 27412. We included participants that passed 321 

quality control for functional8 or  diffusion9 MRI-derived phenotypes as described in previous 322 

publications (NfMRI = 39,951; NdMRI = 31,306). We increased our sample size for participants with 323 

structural MRI-derived phenotypes compared to the original MOSTest publication7, since new data had 324 

been released (NsMRI = 42,068). For all three subsamples, we excluded participants based on relatedness 325 

(kinship coefficient > 0.05 as estimated in PLINK), non-European ancestry (UKB field 22006), a 326 

genotype missing rate > 10%, and bad scan quality as indicated by an (age- and sex-adjusted) Euler 327 

number > 3 SDs lower than the scanner site mean. This resulted in the sample characteristics described 328 

in Supplementary Table 15. 329 

 330 

Adolescent Brain Cognitive Development (ABCD) Study 331 

Baseline data from ABCD participants from release 3.0 [NIMH Data Archive (NDA) DOI:10.151.54/ 332 

1519007] were used for the replication efforts in this study. All children in this cohort assented before 333 

participation and their parents or guardians provided written informed consent. The procedures were 334 

approved by a central Institutional Review Board (IRB) at the University of California, San Diego, and, 335 

in some cases, by individual site Institutional Review Boards. We included participants with data for 336 

the structural or functional MRI-derived phenotypes of interest (NsMRI = 11,760; NfMRI = 11,801) or 337 

quality controlled diffusion MRI-derived phenotypes as previously described9 (NdMRI = 11,904). For all 338 

three subsamples, we excluded participants based on recommended criteria for either modality as 339 

provided by ABCD (e.g. imgincl_t1w_include), relatedness (first cousin), a genotype missing rate > 340 

10%, and bad scan quality as indicated by an (age- and sex-adjusted) Euler number < 3 SDs lower than 341 

the scanner site mean. This resulted in a sample with mixed ancestries (Table 1). We additionally 342 
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excluded participants with a genetic ancestry factor15 of European ancestry < 90% (as provided by 343 

ABCD and applied previously in Loughnan et al38) to create a replication sample that matched the 344 

ancestry characteristics of the discovery sample more specifically (Supplementary Table 15). 345 

 346 

Genotype data 347 

UK Biobank 348 

UK Biobank samples were genotyped from whole blood either using the UK BiLEVE or the UK 349 

Biobank axiom array and subsequently quality controlled and imputed by the UK Biobank Team39. 350 

Additional quality control was performed in-house and included SNP filters on minor allele frequency 351 

(MAF > 0.1%), imputation information score (INFO > 0.5), Hardy-Weinberg equilibrium (HWE; p < 352 

1×10-9) and missingness (< 10%). This resulted in 9,061,587 SNPs used for association testing. 353 

Ancestral principal components were computed within European samples by UK Biobank and used to 354 

control for population stratification. 355 

 356 

ABCD 357 

Release 3.0 genotype data from ABCD participants was obtained through the Affymetric NIDA 358 

SmokeScreen Array, using either saliva or whole blood based on higher successful calls, higher non-359 

missingness, matched genetic sex and less excessive identity by state. Initial quality control was 360 

performed by ABCD based on calling signals and variant call rates and subsequently following pre-361 

imputation RICOPILI (Rapid Imputation and Computational Pipeline). We complemented ABCD 362 

quality control after creating two subsamples (European and mixed ancestries as described above) by 363 

further filtering pre-imputed variants on call rates (<5% missingness), MAF > 0.01, passing the HWE 364 

test (p < 1×10-9) and heterozygosity rate (deviating >6SD from the mean value) in PLINK240. A pruned 365 

set of SNPs (r2=0.1) was used to estimate 20 genetic principal components within each subsample to 366 

use downstream as covariates in multivariate GWAS. Genetic data was phased and imputed using the 367 

TOPMed imputation server and only SNPs with high imputation quality were retained (INFO > 0.9). 368 

 369 

  370 
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Neuroimaging data 371 

Structural MRI-derived phenotypes 372 

Three previous publications have used MOSTest on sMRI-derived phenotypes. These included either 373 

region-of-interest (ROI)-based cortical thickness, surface area, and subcortical volume7 or vertex-based 374 

cortical thickness, surface area5, and sulcal depth6. Given that the aim of this study was to combine 375 

phenotypes derived from three modalities and MOSTest can currently analyse a few thousand of 376 

phenotypes simultaneously, we opted to use the ROI-based cortical thickness, surface area, and 377 

subcortical volume7 phenotypes given their relative low dimensionality. Supplementary Table 1 378 

contains all the regional morphology measures included in the current study and indicates which 379 

measures were analysed for the left and right hemisphere separately. The respective publication by Van 380 

Der Meer & Frei et al7 describes how the sets of 36 regional subcortical volumes, 68 cortical thickness 381 

and 68 surface area, as well as estimated intracranial volume (for covariate use downstream), were 382 

extracted from T1-weighted MRI using FreeSurfer v5.341,42 in UK Biobank samples. A similar 383 

procedure was performed by the ABCD Data Acquisition and Integration Core and were readily 384 

available.  As the importance of normally distributed phenotypes for MOSTest was demonstrated in the 385 

original publication7, we applied rank-based inverse-normal transformation to each measure. 386 

 387 

Functional MRI-derived phenotypes 388 

We used functional MRI (fMRI)-derived phenotypes as previously described by Roelfs et al8. The UK 389 

Biobank resting-state fMRI scans were processed into 1,000 Schaefer parcels43 and mapped onto 17 390 

large-scale brain networks defined by Yeo & Krienen et al44. The averaged time series within each Yeo-391 

defined network were Pearson correlated and represented 136 brain connectivity measures next to the 392 

17 network variances (Supplementary Table 1). Rank-based inverse-normal transformation was applied 393 

to each measure. 394 

 The ABCD Data Acquisition and Integration Core provided similar, but not identical, resting-395 

state fMRI-derived phenotypes for replication purposes. Instead of the 17 Yeo & Krienen networks 396 

based on 1,000 parcels, temporal variance in 333 Gordon-defined parcels and 66 average correlations 397 

between 12 Gordon-defined networks were available45. We averaged the parcel variances belonging to 398 
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the same network to achieve comparability to our discovery phenotypes. Subsequently, we rank-based 399 

inverse-normal transformed the 12 network variances and 66 network connectivity phenotypes. 400 

 401 

Diffusion MRI-derived phenotypes 402 

We used diffusion MRI-derived phenotypes from UK Biobank and ABCD based on a voxel-wise 403 

restriction spectrum imaging (RSI) model (as in Fan et al9). In short, RSI estimates the signal volume 404 

fractions of separable pools of water in the human brain (i.e. intracellular, extracellular, and unhindered 405 

free water) and their corresponding spherical harmonic coefficients46,47. Three RSI features were used: 406 

1) restricted isotropic diffusion (N0) is most sensitive to isotropically diffusing water in the restricted 407 

compartment (within cell bodies), restricted directional diffusion (ND) is sensitive to anisotropically 408 

diffusing water in the restricted compartment (within oriented structures such as axons and dendrites), 409 

and 3) normalized free water diffusion (NF) is sensitive to cerebrospinal fluid or intravascular spaces48. 410 

Fan et al9 calculated the principal components (PCs) across all voxels and extracted the first 5,000 PCs 411 

explaining more than 70% of the total variance of each feature. Here, due to dimensionality constraints, 412 

we reduced the number of PCs for each feature by estimating the “elbow” of each scree plot of 413 

eigenvalues using the nScree function of the nFactors R package (Supplementary Figure 8). This 414 

resulted in the first 124 ND-PCs, 87 NF-PCs and 65 N0-PCs used in our multivariate GWAS. 415 

 416 

Statistical analyses 417 

SNP-based GWAS 418 

We performed discovery and replication SNP-based GWAS in PLINK240 for every MRI-derived 419 

phenotype separately while controlling for sex, age, age2, genotype array (UKB only), scanner, 20 420 

genetic principal components, and modality specific covariates. The latter included Euler number, and 421 

total surface area, mean thickness or intracranial volume (sMRI), signal to noise ratio and motion 422 

(fMRI), and intracranial volume (dMRI). A linear regression model with additive allelic effects was 423 

fitted for each SNP. Subsequently, SNP-based heritability (ℎ!"#$ ) was estimated for each phenotype 424 

using Linkage Disequilibrium Score Regression (LDSC)16. Univariate GWAS summary statistics from 425 
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non-heritable phenotypes (nominal significance threshold %!"#
$

%!"#
$

!%
 > 1.96 as used by Roelfs et al8) were 426 

dropped from further multivariate analyses, since including them may reduce statistical power7. This 427 

led to the exclusion of 3 dMRI-derived NF-PCs and 14 fMRI-derived connectivity phenotypes GWAS 428 

summary statistics (Supplementary Table 1). Then, variant z-scores from univariate GWAS were 429 

combined in the MOSTest framework to construct multivariate p-values as described by Shadrin et al5. 430 

This approach selects a regularization parameter optimized to the maximum yield of genetic loci 431 

(Supplementary Table 16). The alpha level for SNPs reaching genome-wide significance in the 432 

multivariate GWAS was α = 5×10−8. 433 

 434 

Locus definition 435 

We defined genome-wide significant loci from MOSTest and conditional FDR summary statistics 436 

following a protocol as implemented in FUMA. First, independent genome-wide significant SNPs were 437 

obtained by clumping (r2 < 0.6) and SNPs in linkage disequilibrium (LD) with them (r2 ≥ 0.6) were 438 

defined as candidate SNPs. LD was estimated using reference genotypes, using 5,000 random 439 

participants from the UK Biobank sample for UKB-based summary statistics and 1000 Genomes Phase 440 

3 EUR for the European as well as mixed ancestry ABCD-based summary statistics. Second, 441 

independent significant SNPs with r2 < 0.1 were defined as lead SNPs and the minimum and maximum 442 

positional coordinates of the corresponding candidate variants defined the locus start and end position. 443 

Loci in <250kb proximity were merged into a single locus. We excluded loci with a single SNP as these 444 

are more likely to be false positives. 445 

 446 

Multivariate gene-based GWAS 447 

We explored the overlap between modalities and multimodal MOSTest on a gene-level by applying a 448 

SNP-wise mean model for 18,877 genes with MAGMA (Multi-marker Analysis of GenoMic 449 

Annotation) v1.0817 in FUMA. The SNP-based MOSTest summary statistics from sMRI, dMRI, fMRI 450 

and multimodal served as input with default settings and the UKB European population was used as 451 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.20.521181doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.20.521181
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

reference. The alpha level for genes reaching genome-wide significance was adjusted from α = 0.05 to 452 

α = (0.05/18,877 =) 2.65×10−6 according to Bonferroni correction for multiple testing.  453 

 454 

Definition of modality-specific and cross-modality loci and genes 455 

Locus overlap between the three MOSTest summary statistics (sMRI, fMRI, dMRI) was defined as 456 

physically overlapping genome-wide significant loci after clumping (see above). We used the 457 

GenomicRanges R-package49 to compare the chromosome and start and end base pair positions of all 458 

loci between any pair of summary statistics. A locus was considered modality-specific when it did not 459 

overlap with any of the loci identified for other modalities. All loci that were found to overlap between 460 

two or more modalities also overlapped with the multimodal loci, hence we decided to represent these 461 

cross-modality loci with the association statistics of the multimodal locus’ lead SNP(s) in downstream 462 

analyses. The sMRI, fMRI, dMRI and multimodal MOSTest genes that were found to be genome-wide 463 

significant in MAGMA were compared to provide a similar overview. The overlapping patterns were 464 

then plotted with the eulerr R-package. This procedure was repeated for both discovery (UKB) and 465 

replication (ABCD) MOSTest summary statistics, to investigate whether a similar overlapping pattern 466 

could be observed. 467 

 468 

Comparison of modality-specific and cross-modality lead SNP properties 469 

We were interested in potential differences between modality-specific and cross-modality loci. 470 

Therefore we selected the lead SNPs within the respective loci (see Locus definition) and annotated 471 

them with the Ensembl Variant Effect Predictor (VEP)18. As reference, we averaged the counts of 472 

annotations within ten randomly pruned sets of SNPs. Enrichment of the modality-specific and cross-473 

modality lead SNPs in positional annotation categories was then tested using Fisher’s Exact test. The 474 

alpha level for significant enrichment was Bonferroni corrected (α = 0.05 / 41 = 1.22×10−3). 475 

 476 

Comparison of modality-specific and cross-modality gene properties 477 

In order to interpret the biological processes, cellular components or molecular functions our modality-478 

specific and cross-modality genes are involved in, Gene Ontology (GO)50,51 gene-sets were tested for 479 
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enrichment of genes in these four lists using hypergeometric testing as implemented in FUMA52. Protein 480 

coding genes were used as background genes and correction for multiple comparisons was performed 481 

using the Benjamini-Hochberg method. The significant modality-specific and cross-modality GO terms 482 

were visualized as a graph using Cytoscape, EnrichmentMap53 and AutoAnnotate54 following the 483 

Nature Protocol by Reimand & Isserlin et al55. Stringent pathway similarity scores (Jaccard and overlap 484 

combined coefficient = 0.6 as used in Paczkowska, Barenboim et al56) were used as edges. 485 

 To visualize the temporal gene expression pattern of the sets of modality-specific and cross-486 

modality genes, we made use of gene expression data derived from brain tissue from 56 donors19. This 487 

dataset ranges from 5 weeks post conception to 82 years of age and we used the data as pre-processed 488 

in Kang et al19. We selected the probe with the highest differential stability for each gene (n = 16,660). 489 

A number of modality-specific (nsMRI-specific = 125, ndMRI-specific = 88, nfMRI-specific = 1) and cross-modality 490 

genes (n=311) were not available in the data. Given the relatively high homogeneity of expression 491 

patterns across cortical brain samples57, we subsequently averaged over 13 cortical regions, within 492 

donor, and normalized the expression values, within probe, across donors, to a range between 0 and 493 

100. Mean expression over time per set of genes was plotted with ggplot2 in R v4.0.3., with 494 

geom_smooth(method=”gam”) using default settings. 495 

 496 

Conditioning the genetic signal of major psychiatric disorders on multimodal MOSTest 497 

We explored whether the multimodal multivariate summary statistics could be leveraged to improve 498 

locus discovery for major psychiatric disorders (schizophrenia23, bipolar disorder24, major depressive 499 

disorder25, attention-deficit hyperactivity disorder26, and autism spectrum disorder27). For that purpose, 500 

we applied Conditional False Discovery Rate (cFDR)22 on Psychiatric Genomics Consortium GWAS 501 

summary statistics (listed in Supplementary Table 11) by conditioning on multimodal MOSTest 502 

summary statistics. We obtained disorder summary statistics excluding UK Biobank to prevent sample 503 

overlap. In cFDR analyses, original p-values are replaced by FDR values that reflect the posterior 504 

probability that a SNP is null for the disorder given that the p-values for both phenotypes are as small 505 

or smaller as the observed p-values: 506 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.20.521181doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.20.521181
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

(1)  𝐹𝐷𝑅(𝑝&'()*&+*|𝑝,-./',)&0.) =
1&(3'()*+',-.))3-+/,0-10

56𝑝&'()*&+*7𝑝,-./',)&0.8
 507 

with F = the conditional empirical cumulative distribution function and 𝜋9(𝑝,-./',)&0.) = the 508 

conditional proportion of null SNPs for the disorder given that p-values for the multimodal phenotype 509 

are as small or smaller. We subsequently defined genome-wide significant loci (see Locus definition) 510 

for the original (p < 5×10-8) and conditioned (FDR < 0.05) summary statistics and compared the results. 511 

We tested how replicable the identified loci from original and conditioned summary statistics 512 

were by performing sign concordance tests in independent disorder summary statistics. All summary 513 

statistics that were used to look up lead SNPs and test for replication are listed in Supplementary Table 514 

11. An exact binomial was used test to test the null hypothesis that sign concordance was randomly 515 

distributed (p=0.5), given the total number of variants and the number of variants with concordant 516 

effects. 517 

 518 

PleioPGS 519 

We then compared the prediction power of the original and conditioned summary statistics by 520 

constructing polygenic scores (PGS) in independent case-control samples for the five major psychiatric 521 

disorders described above in independent samples. The TOP, BUPGEN and MoBa58 samples are 522 

described in the Supplementary Methods (and Supplementary Table 11). We applied and compared two 523 

different set-ups, both based on the C+T (clumping + thresholding) approach59 using different strategies 524 

for ranking SNPs: 1) original GWAS p-value-based ranking and original GWAS effect sizes (standard 525 

PGS); 2) cFDR-based ranking (described above) and original GWAS effect sizes (pleioPGS as 526 

introduced by Van der Meer et al28; https://github.com/precimed/pleiofdr). For these two setups PGS 527 

were calculated across five sets of LD-independent SNPs (N = 1,000, 10,000, 50,000, 100,000, 150,000) 528 

using PRSice-2 (v2.3.3)60 with no additional clumping (--no-clump option). Sets of LD-independent 529 

SNPs were obtained using plink v1.90b6.140 based on the setup-defined SNP ranking with --clump-kb 530 

250, --clump-r2 0.1 parameters and in-sample LD estimates. In both setups the phenotypic variance 531 

explained by the PGS (R2) was estimated using linear regression model controlling for age, sex and first 532 

10 genetic PCs. 533 
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Data availability 534 

Genome-wide summary statistics will be made publicly available via 535 

https://ctg.cncr.nl/software/summary_statistics/ and GWAS Catalog upon acceptance. The individual-536 

level data that support the discovery findings of this study are available from UK Biobank but 537 

restrictions apply to the availability of these data, which were used under license no. 27412 for the 538 

current study. Data used in the preparation of this article were obtained from the Adolescent Brain 539 

Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive 540 

(NDA). ABCD data used for replication in this study is registered under the NDA study register at 541 

https://doi.org/10.15154/1527969. Data from the Norwegian Mother, Father and Child Cohort Study 542 

and the Medical Birth Registry of Norway used in this study are managed by the national health register 543 

holders in Norway (Norwegian Institute of public health) and can be made available to researchers, 544 

provided approval from the Regional Committees for Medical and Health Research Ethics (REC), 545 

compliance with the EU General Data Protection Regulation (GDPR) and approval from the data 546 

owners.  547 

 548 

Code availability 549 

Code to obtain the multimodal results presented in this manuscript are available via 550 

https://github.com/EPTissink/MOSTest-multimodal. Code from previously published studies based on 551 

different modalities from which we used phenotypic data are available at https://github.com/cmig-552 

research-group/RSIGWAS (dMRI), https://github.com/precimed/mostest (sMRI) 553 

and https://www.github.com/norment/open-science (fMRI). 554 
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