
A scalable implementation of the recursive least-squares

algorithm for training spiking neural networks

Benjamin J. Arthur1, Christopher M. Kim1,2, Susu Chen1, Stephan Preibisch1, and Ran
Darshan1

1Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
2Laboratory of Biological Modeling, NIDDK/NIH, Bethesda, MD, USA

Abstract

Training spiking recurrent neural networks on neu-
ronal recordings or behavioral tasks has become a
prominent tool to study computations in the brain.
With an increasing size and complexity of neural
recordings, there is a need for fast algorithms that
can scale to large datasets. We present optimized
CPU and GPU implementations of the recursive
least-squares algorithm in spiking neural networks.
The GPU implementation allows training networks
to reproduce neural activity of an order of millions
neurons at order of magnitude times faster than the
CPU implementation. We demonstrate this by ap-
plying our algorithm to reproduce the activity of
> 66, 000 recorded neurons of a mouse performing a
decision-making task. The fast implementation en-
ables efficient training of large-scale spiking models,
thus allowing for in-silico study of the dynamics and
connectivity underlying multi-area computations.

Introduction

Cognitive functions involve networks of intercon-
nected neurons with complex dynamics that are
distributed over multiple brain areas. One of the
fundamental missions of system neuroscience is to
understand how complex interactions between large
numbers of neurons underlie the basic processes of
cognition.

An increasingly popular data-driven mod-
eling approach for investigating the neural mecha-

nisms that support behavioral tasks is to train neu-
rons in an artificial neural network to reproduce the
activity of recorded neurons in behaving animals
[1, 2, 3, 4, 5, 6]. Such network models can range
from purely artificial networks that are far from be-
ing biological [2, 3, 4, 7], to biophysical neuronal
networks that include spiking activity [8] of differ-
ent neuronal cell types that operate in a brain-like
dynamical state [9]. The neural dynamics and the
connectivity structure of the trained network can
then be analyzed to gain insights into the underly-
ing neural mechanisms.

With the increase in experimentally
recorded neural data, the ability to fit the activ-
ity of neurons in model networks to large data sets
is becoming a challenge. For example, the number
of simultaneously recorded neurons in behaving an-
imals has been increasing in the last few years at
an exponential rate [10]. At present, it is possible
to simultaneously record in a single session about
1,000 neurons using electrophysiology, and up to
100,000 using calcium imaging in behaving animals
[11]. When combining several sessions of recordings,
the amount of data becomes huge and can grow to
millions of recorded neurons in the near future.

Here, we developed a scalable implementa-
tion of the recursive least-squares algorithm (RLS)
to train spiking neural networks of large size (e.g.,
10s to 100s of thousands of neurons) to reproduce
the activity of neural data. RLS [12] (also known as
FORCE [7]) was initially applied to train the out-
puts of a recurrent neural network for performing
complex tasks, such as implementing 3-bit mem-
ory or generating motor movements. Subsequently,
RLS was adopted for training the individual neu-

1

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509578doi: bioRxiv preprint

https://doi.org/10.1101/2022.09.26.509578
http://creativecommons.org/licenses/by/4.0/

rons within a recurrent neural network to repro-
duce target neural activities. Examples of target
activities include activity of neurons recorded from
the brain [2, 4, 3], chaotic activity of a random
network [13], teacher networks [14] and arbitrary
functions [8]. Although most existing studies apply
RLS to rate-based networks, it can also be imple-
mented in spiking neural networks for performing
complex tasks [15] and reproducing neural activi-
ties [8, 16, 9].

We report the strategies we took to opti-
mize the code and demonstrate its performance by
training more than 66,000 spiking units to repro-
duce the activity of neurons recorded using Neu-
ropixels probes [17] in a decision making task[18].
Fitting these data, which were sampled at 20ms for
3 seconds, takes about 10 hours on a CPU and less
than an hour on a GPU. The code is freely available.

Results

We implemented the RLS algorithm to train indi-
vidual neurons within a spiking neural network to
reproduce the spiking activity of a large number
of neurons (Figure 1A). Specifically, we considered
networks of integrate-and-fire spiking neurons, in
which the neurons could fire irregularly due to the
recurrent interactions, known as the fluctuation-
driven regime [19, 20, 21], or due to external noise.

The learning objective was to train the
synaptic current ui(t) of each neuron i = 1, ..., N
such that it followed a target activity pattern fi(t)
on a time interval t ∈ [0, T]. These activity pat-
terns could be, for example, extracted from the peri-
stimulus time histograms (PSTHs) of recorded neu-
rons in the brain (see Appendix: Generating tar-
get trajectories). To trigger the target response,
each neuron was stimulated by a constant input
with random amplitude for a short duration. We
treated every neuron’s synaptic current as a read-
out, which made our task equivalent to training N
recurrently connected read-outs. For the current-
based synapses considered in this study, neuron i’s
synaptic current ui can be expressed in terms of the
spiking activities of other neurons rj , j = 1, ..., N
through the exact relationship ui =

∑
j Wijrj (see

Eqs. (4) and (5) for details). Therefore, we adjusted
the incoming synaptic connections Wij , j = 1, ..., N

to neuron i by the RLS algorithm in order to gen-
erate the target activity. This training scheme al-
lowed us to set up independent objective functions
for each neuron and update them in parallel (see
Appendix: Recursive least-squares).

Starting with a working implementation of
the algorithm [9], we profiled the code to find slow
sections, optimized those lines for performance us-
ing the strategies below, and iterated until there
were no further easy gains to be had. We achieved
an order of magnitude improvement in run times
using the CPU alone compared to the reference
code (Fig. 1C), and another order of magnitude
by refactoring to use a GPU. These trends held true
when random static connections were replaced with
a Gaussian noise model (Fig. 1D). The advantage
of this noise model is that run times are relatively
independent of firing rates (Fig. 1G).

Optimization strategies

We used the Julia programming language [22] for
training the spiking neural networks since rapid
prototyping and fine-grained performance optimiza-
tions, including custom GPU kernels, can be done
in the same language. Several strategies and tech-
niques were used to make the code performant.
Benchmarking was performed on synthetic data
consisting of sinusoidal target functions with ran-
dom phases.

Parallel updates of the state variables. We
exploited the fact that synaptic weights (for al-
gorithmic details, see Appendix: Recursive least
squares) and neuronal voltages and currents can
be updated in parallel (except during an action
potential) and used multiple threads to loop over
the neurons to update these state variables. We
benchmarked CPU multi-threading on a machine
with 48 physical cores and found that performance
plateaued after 16 threads for a large model (Figure
1E). For small network models there was an opti-
mum number of threads, and using more threads
was actually slower.

Given that GPUs are purpose-built to
thread well, we investigated whether the RLS algo-
rithm would scale better with them. Whereas the
CPU run times were linear with model size, GPU

2

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509578doi: bioRxiv preprint

https://doi.org/10.1101/2022.09.26.509578
http://creativecommons.org/licenses/by/4.0/

loops
50 100

F64,F64
F32,F32
F32,F16
F16,F16

0.0

0.2

0.4

0.6

0.8

co
rre

la
tio

n

N=4096
K=205
L=29

spike rate (Hz)
10 1.0 10 1.5 10 2.0

L=128, K=0, σ>0

K=8192, σ=0
L=181

10 0

10 1

10 2

10 3

10 4

lo
op

 ti
m

e
(s

ec
)

N=32768

L
10 1 10 2 10 3

Array
Symmetric
Packed

0.90

0.95

1.00

1.05

N=32768
K=0
A100

N
10 3 10 4 10 5 10 6

0.9

1.0

lo
op

 ti
m

e
re

. A
rra

y

L=128
K=0
A100

CPU threads
1 2 4 8 16 32

Array
Symmetric
Packed

3

6
N=4096
K=0
L=32

CPU threads
1 2 4 8 16 32

200

500

800

lo
op

 ti
m

e
(s

ec
) N=32768

K=0
L=256

L
10 1 10 2 10 3

CPU
2080Ti
A100

10 0

10 1

10 2

10 3
K=0
σ>0
N=32768

N
10 3 10 4 10 5 10 6 10 7

10 0

10 1

10 2

10 3

10 4

lo
op

 ti
m

e
(s

ec
) K=0

σ>0
L=128

K
10 2 10 3 10 4

CPU
2080Ti
A100

Ref

10 1

10 2

10 3

N=32768
σ=0
L=2√K

N
10 3 10 4 10 5 10 6 10 7

10 0
10 1
10 2
10 3
10 4
10 5
10 6

lo
op

 ti
m

e
(s

ec
) K=512

σ=0
L=2√K=45

K : static

L : plastic

+

e

e

i

i

time

sp
k/

s

A B

C

D

E

F

G H

A100
A100

Figure 1: Training speed for models of vari-
ous sizes. (A) Cartoon of a recurrent spiking neu-
ral network. Excitatory (green circles) and inhibitory
(yellow circles) neurons have plastic (magenta lines)
and, optionally, static (grey lines) connections to each
other. Each neuron receives, on average, K static
and L plastic connections. Associated with each neu-
ron are temporal activity patterns (blue insets; only
three shown). For models with no static connections
(K = 0) we injected into each neuron a white noise
with variance σ2 (black insets; only two shown). (B)
Plastic (top) and static (bottom) connectivity matri-
ces. (C) The time taken by each training iteration
for models with static connections. N is the num-
ber of neurons. Compared are the single-threaded
CPU code used by [9] (Ref), our optimization of the
same CPU code (CPU), and our refactoring of the
same algorithm for GPUs using a consumer grade card
(2080Ti) and an enterprise grade board (A100). In
each case we tested the model sizes up to the largest
that would fit in memory: 768 GB for the CPU, 11
GB for the 2080Ti, and 80 GB for the A100. The ref-
erence code used 64-bit floating point numbers and a
full dense array for the large P matrix; all new code
presented here uses 32-bit floating point numbers and
a packed symmetric array for P . (D) Similar to (C)
but with a Gaussian noise model instead of static con-
nections (K = 0, σ > 0). (E) Strong scaling of the
optimized CPU code for large and small models. Pur-
ple: code uses full P matrix (array). Red: symmetric
matrix. Cyan: packed matrix. (F) The effect of the
matrix storage format on the GPU code as a function
of model size. (G) The time taken for each train-
ing iteration as a function of spike rate. The latter
was varied with the external input to neurons (Xbal

in Eq. (2)). Solid lines indicate GPU code and dotted
are the CPU code. (H) The effect of storage precision
on learning. The first column in the legend indicates
the bit precision of all state variables except the P
matrix, which is indicated in the second column.

3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509578doi: bioRxiv preprint

https://doi.org/10.1101/2022.09.26.509578
http://creativecommons.org/licenses/by/4.0/

performance was flat below a certain size. This
is likely because models that are sufficiently small
don’t use all the parallelism that the GPU provides.
The Nvidia A100, for example, has 108 multiproces-
sors and each one can execute 32 threads simulta-
neously, yielding a total of 3456 threads.

Symmetric arrays. The RLS algorithm uses the
pairwise inverse covariance between trained neu-
rons, which is a symmetric matrix that we denote
as P (Eq (9)). While some routines specialized to
operate on symmetric matrices are faster, others
are slower. Consider the function syr, for example,
which computes A = αxxT +A, where A is a sym-
metric matrix, x is a vector, and α is a scalar. Here
A is being updated, and since it is symmetric, there
are only half as many elements to update compared
to ger which computes the non-symmetric counter-
part. syr is hence typically faster than ger. Con-
versely, symv computes y = αAx + βy, where A
is a symmetric matrix, x and y are vectors and α
and β are scalars. Here every element of A must
be accessed to update y. Since extra logic must be
used to ensure that indexing operations only access
a particular triangle, symv is typically slower than
gemv. We found that on balance it was slightly
faster to use routines which operate on the sym-
metric P matrices (Figure 1E,F), particularly for
models with large number of plastic inputs.

Further, the size of P is N×L2, with L be-
ing the number of plastic synapses per neuron, mak-
ing it consume by far more memory than any other
variable. Packing the columns of just the upper or
lower triangle by concatenating them into a vector
saves close to half the memory, thereby permitting
models to be proportionately larger. Though a bit
slower on the GPU overall compared to their un-
packed counterparts (symv and syr; Figure 1F),
BLAS routines specialized for packed symmetric
matrices (spmv and spr) are much faster on the
CPU (Figure 1E) for large models.

BLAS. Basic Linear Algebra Subprograms
(BLAS) is a highly-engineered library of math-
ematical operations which are common in high-
performance computing. We found that simple
refactorings of our CPU code to directly use BLAS
resulted in substantial performance gains. For
example, the RLS algorithm computes k = Pr,

which is a product of the inverse covariance matrix,
P , and the synaptically filtered spike trains, r (see
Eqs (4) and (9)). Preallocating and reusing k and
then calling mul!(k,P , r), which is a thin wrapper
around BLAS’ gemv matrix-vector multiplication
function, is faster and uses less memory than doing
the dot product directly.

A further performance improvement was
realized by using Intel’s Math Kernel Library, which
is a superset of BLAS hand-crafted for the x86
architecture, instead of the default cross-platform
OpenBLAS.

For the GPU version of our code we wrote
our own GPU kernels which batched several BLAS
routines, specifically gemv and ger plus their sym-
metric (symv, syr) and packed symmetric equiv-
alents (spmv, spr). Writing kernels which inter-
nally iterate over N was necessary to overcome what
would otherwise be a huge performance penalty in
calling a non-batched kernel N times, as the over-
head of calling functions is much larger on the GPU
than the CPU. Nvidia only provides batched imple-
mentations of gemm, gemv, and trsm.

Reduced precision. Our original reference code
in [9] used 64-bit floating point precision for all vari-
ables, which can represent numbers up to 1.8×10308

with a machine epsilon of 2.2 × 10−16 around 1.0.
We found that models can be trained just as accu-
rately and with the same number of iterations us-
ing 32-bit floats, whose range is only 3.4× 1038 and
machine epsilon is 1.2×10−7 (Figure 1H). Doing so
not only permits models twice as large to be trained,
but also yields shorter loop times on the CPU (data
not shown). Models failed to learn no matter how
many iterations were used when the representation
was further reduced to 16-bits. Fortunately, it is
seemingly not the P matrix which needs the extra
precision, as learning proceeds normally when P is
stored in 16-bits and all other variables in 32-bits.

Pre-computed division. The time constants of
the synaptic currents and membrane voltage are in
the denominator of the equations that govern the
neural dynamics. Since they do not vary, we pre-
computed their inverses so that the code could use
multiplication instead of division, which is generally
slower. Loop times were about 2% shorter doing so

4

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509578doi: bioRxiv preprint

https://doi.org/10.1101/2022.09.26.509578
http://creativecommons.org/licenses/by/4.0/

for the CPU code.

Application

With a fast RLS codebase in hand, we next set
out to show that large models can actually be
trained to recapitulate the dynamics in real-world
big data sets. We used 66,002 peri-stimulus time
histograms (PSTHs) of neurons, recorded using
Neuropixels probes [17] from multiple brain areas
of mice performing a delayed-response task (Figure
2A; [18, 23]). We first converted the PSTHs to the
corresponding underlying synaptic currents by in-
verting the activation function of integrate-and-fire
neurons in the presences of noise (see Appendix:
Generating neural trajectories). The synaptic cur-
rents were then used as the target functions, and
external noise was used instead of static recurrent
connections (K = 0, σ > 0; see Appendix: Net-
work dynamics). Training performance increased
with the number of plastic inputs (L), and reached
a plateau in half an hour (Figure 2B). Examina-
tion of the learned synaptic currents (Figure 2D)
and PSTHs (Figure 2C,E) showed a close corre-
spondence with the activity patterns of the recorded
neurons.

Discussion

We presented optimized CPU and GPU implemen-
tations of the recursive least-square (RLS) algo-
rithm for training spiking neural networks. Our
code can simulate and train a spiking network con-
sisting of about one million neurons and 100 million
synapses on a modern high-end workstation.

The size of the networks is limited by
memory usage, which mainly depends on the size
of the inverse covariance matrix (P) used in the
RLS algorithm (Appendix). This matrix scales lin-
early with the number of neurons and quadratically
with the number of plastic synapses (N × L2). We
found that about L ≈ 100 synapses per neuron suf-
fices to train the network to reproduce the activity
of neurons recorded in mice performing a delayed
response task (Figure 2B). However, the number of
plastic synapses needed to train the network is ex-
pected to increase with the number of tasks to be

learned, as well as the complexity of neuronal dy-
namics in each task. Therefore, how large the net-
work model could be could depend on the number
and the complexity of the tasks to be learned.

Finally, our code implementation was tai-
lored to be used on a single computer, instead of
on multiple computers, such as in [24]. This en-
abled fast execution speed, thanks to the absence
of inter-process communication overhead, but lim-
ited the network size due to memory limitations.
Specifically, the CPU implementation uses threads
(not processes), which have precisely zero commu-
nication overhead because they share memory. The
GPU implementation has currently only been tested
on a single GPU. However, modern hardware and
the associated software toolkits support an abstrac-
tion of a unified memory across multiple GPUs
within a single computer that is backed by high-
speed interconnects. If in future, Moore’s law does
not outpace advancements in neural recording tech-
nology, we plan to investigate how much perfor-
mance is decremented when using this feature.

Acknowledgements

We would like to thank Shaul Druckmann, Nuo Li,
Yi Liu and Karel Svoboda for sharing the Neuropix-
els data set. CMK would like to thank the Visit-
ing Scientist Program at Janelia Research Campus
for their support. This work was supported by the
Howard Hughes Medical Institute and the Intramu-
ral Research Program of National Institute of Di-
abetes and Digestive and Kidney Diseases at the
National Institutes of Health.

Code availability

The main repository is located at https://github.
com/SpikingNetwork/TrainSpikingNet.jl. We
also release two new Julia packages that it de-
pends on, and put them in separate repositories
for easy composability with other code bases: one
for packing symmetric matrices and the other for
batching (packed) symmetric BLAS routines on the
GPU. See https://github.com/JaneliaSciComp/
SymmetricFormats.jl and https://github.com/

5

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509578doi: bioRxiv preprint

https://github.com/SpikingNetwork/TrainSpikingNet.jl
https://github.com/SpikingNetwork/TrainSpikingNet.jl
https://github.com/JaneliaSciComp/SymmetricFormats.jl
https://github.com/JaneliaSciComp/SymmetricFormats.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://doi.org/10.1101/2022.09.26.509578
http://creativecommons.org/licenses/by/4.0/

A B C

D

E

time (min)
0 15 30 45 60

256
128
64
32

L

0.00

0.25

0.50

0.75

1.00

co
rre

la
tio

n

N=66002
K=0
σ>0

time (sec)
-2 -1 0 1

ALM

Striatum

Thalamus

Midbrain

Medulla

model

time (sec)
-2 -1 0 1

model

time (sec)
-2 -1 0 1

data

time (sec)
-2 -1 0 1

model
data

0

5

10

15

time (sec)
-2 -1 0 1

0
5

10
15
20
25

time (sec)
-2 -1 0 1

0

5

10

15

time (sec)
-2 -1 0 1

0

5

10

15

time (sec)
-2 -1 0 1

0

1

2

3

sp
ik

e
ra

te
 (H

z)

-2 -1 0 1

model
data

model1

-0.6

-0.4

-0.2

0.0

0.2
Medulla

-2 -1 0 1

-0.6
-0.4
-0.2
0.0
0.2
0.4

Midbrain

-2 -1 0 1

-0.6

-0.4

-0.2

0.0

0.2
Thalamus

-2 -1 0 1

-0.2
-0.1
0.0
0.1
0.2
0.3

Striatum

-2 -1 0 1

-0.8

-0.6

-0.4

-0.2

0.0

sy
na

pt
ic

 in
pu

t

ALM

Sample Delay Response

Lick
left

Lick
right

ITI

or Low
tone

High
tone

0.65 s 1.2 s Go

Figure 2: Application to Neuropixels data. (A) Top: Schematic of experimental setup. Mice learned to lick
to one of two directions (left/right) after a delay period, depending on which of two tones were played. Bottom:
Multiple Neuropixels probes, each with hundreds of recording sites, were placed in the brain while a mouse was
performing the task. [18] (B) A recurrent spiking neural network with 66,002 neurons and no static connections
(K = 0, σ > 0) was trained to learn the neural activity patterns. Initial training rate and final plateau level
both increased with the number of plastic connections (L). (C) Heat maps of the peri-stimulus time histograms
(PSTHs) of the activity patterns in the data (left) and the trained network (middle) and one realization of spike
trains of the trained network (right). 50 neurons are shown for each of five brain areas. Vertical blue lines are
the same as in A. (D) Learned synaptic currents averaged over 1000 trials for one exemplar neuron from each
of the five brain areas. Vertical blue lines are the same as in A. A single realization (non-averaged over trials) is
also shown (model1). (E) Same as D but for PSTHs.

6

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509578doi: bioRxiv preprint

https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://doi.org/10.1101/2022.09.26.509578
http://creativecommons.org/licenses/by/4.0/

JaneliaSciComp/BatchedBLAS.jl, respectively.

References

[1] Dimitry Fisher, Itsaso Olasagasti, David W
Tank, Emre RF Aksay, and Mark S Goldman.
A modeling framework for deriving the struc-
tural and functional architecture of a short-
term memory microcircuit. Neuron, 79(5):987–
1000, 2013.

[2] Kanaka Rajan, Christopher D. Harvey, and
David W. Tank. Recurrent Network Models
of Sequence Generation and Memory. Neuron,
90(1):128–142, 2016.

[3] Kayvon Daie, Karel Svoboda, and Shaul
Druckmann. Targeted photostimulation un-
covers circuit motifs supporting short-term
memory. Nature Neuroscience, 24(2):259–265,
2021.

[4] Arseny Finkelstein, Lorenzo Fontolan,
Michael N Economo, Nuo Li, Sandro Ro-
mani, and Karel Svoboda. Attractor dynamics
gate cortical information flow during decision-
making. Nature Neuroscience, 24(6):843–850,
2021.

[5] Sonja B Hofer, Ho Ko, Bruno Pichler, Joshua
Vogelstein, Hana Ros, Hongkui Zeng, Ed Lein,
Nicholas A Lesica, and Thomas D Mrsic-
Flogel. Differential connectivity and response
dynamics of excitatory and inhibitory neu-
rons in visual cortex. Nature neuroscience,
14(8):1045–1052, 2011.

[6] Aaron S Andalman, Vanessa M Burns,
Matthew Lovett-Barron, Michael Broxton,
Ben Poole, Samuel J Yang, Logan Grosenick,
Talia N Lerner, Ritchie Chen, Tyler Benster,
et al. Neuronal dynamics regulating brain and
behavioral state transitions. Cell, 177(4):970–
985, 2019.

[7] David Sussillo and Larry Abbott. Generat-
ing Coherent Patterns of Activity from Chaotic
Neural Networks. Neuron, 63(4):544–557,
2009.

[8] Christopher M Kim and Carson C Chow.
Learning recurrent dynamics in spiking net-
works. eLife, 7:e37124, 2018.

[9] Christopher M Kim, Arseny Finkelstein, Car-
son C Chow, Karel Svoboda, and Ran Dar-
shan. Distributing task-related neural activ-
ity across a cortical network through task-
independent connections. bioRxiv, 2022.

[10] Ian H Stevenson and Konrad P Kording. How
advances in neural recording affect data analy-
sis. Nature neuroscience, 14(2):139–142, 2011.

[11] Anne E Urai, Brent Doiron, Andrew M Leifer,
and Anne K Churchland. Large-scale neural
recordings call for new insights to link brain
and behavior. Nature neuroscience, 25(1):11–
19, 2022.

[12] Simon Haykin. Adaptive Filter Theory (3rd
Ed.). Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1996.

[13] Rodrigo Laje and Dean V Buonomano. Robust
timing and motor patterns by taming chaos
in recurrent neural networks. Nature neuro-
science, 16(7):925–933, 2013.

[14] Brian DePasquale, Christopher J Cueva,
Kanaka Rajan, G Sean Escola, and LF Abbott.
full-force: A target-based method for training
recurrent networks. PloS one, 13(2):e0191527,
2018.

[15] Wilten Nicola and Claudia Clopath. Su-
pervised learning in spiking neural networks
with force training. Nature communications,
8(1):2208, 2017.

[16] Christopher M. Kim and Carson C. Chow.
Training Spiking Neural Networks in the
Strong Coupling Regime. Neural Computation,
33(5):1199–1233, 04 2021.

[17] James J Jun, Nicholas A Steinmetz, Joshua H
Siegle, Daniel J Denman, Marius Bauza, Brian
Barbarits, Albert K Lee, Costas A Anas-
tassiou, Alexandru Andrei, Çağatay Aydın,
et al. Fully integrated silicon probes for high-
density recording of neural activity. Nature,
551(7679):232–236, 2017.

[18] Hidehiko K Inagaki, Susu Chen, Margreet C
Ridder, Pankaj Sah, Nuo Li, Zidan Yang, Hana
Hasanbegovic, Zhenyu Gao, Charles R Ger-
fen, and Karel Svoboda. A midbrain-thalamus-
cortex circuit reorganizes cortical dynamics to
initiate movement. Cell, 185(6):1065–1081,
2022.

7

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509578doi: bioRxiv preprint

https://github.com/JaneliaSciComp/BatchedBLAS.jl
https://doi.org/10.1101/2022.09.26.509578
http://creativecommons.org/licenses/by/4.0/

[19] Carl Van Vreeswijk and Haim Sompolinsky.
Chaos in neuronal networks with balanced
excitatory and inhibitory activity. Science,
274(5293):1724–1726, 1996.

[20] Nicolas Brunel. Dynamics of sparsely con-
nected networks of excitatory and inhibitory
spiking neurons. Journal of computational neu-
roscience, 8(3):183–208, 2000.

[21] Oren Amsalem, Hidehiko Inagaki, Jianing Yu,
Karel Svoboda, and Ran Darshan. Sub-
threshold neuronal activity and the dynamical
regime of cerebral cortex. bioRxiv, 2022.

[22] Jeff Bezanson, Alan Edelman, Stefan Karpin-
ski, and Viral B Shah. Julia: A fresh ap-
proach to numerical computing. SIAM review,
59(1):65–98, 2017.

[23] Zengcai V Guo, Nuo Li, Daniel Huber, Eran
Ophir, Diego Gutnisky, Jonathan T Ting,
Guoping Feng, and Karel Svoboda. Flow of
cortical activity underlying a tactile decision
in mice. Neuron, 81(1):179–194, 2014.

[24] Jakob Jordan, Tammo Ippen, Moritz Helias,
Itaru Kitayama, Mitsuhisa Sato, Jun Igarashi,
Markus Diesmann, and Susanne Kunkel. Ex-
tremely scalable spiking neuronal network sim-
ulation code: From laptops to exascale com-
puters. Frontiers in Neuroinformatics, VOL-
UME =, 2018.

[25] Henry Clavering Tuckwell. Introduction to the-
oretical neurobiology: linear cable theory and
dendritic structure, volume 1. Cambridge Uni-
versity Press, 1988.

[26] Alex Roxin, Nicolas Brunel, David Hansel,
Gianluigi Mongillo, and Carl van Vreeswijk.
On the distribution of firing rates in networks
of cortical neurons. Journal of Neuroscience,
31(45):16217–16226, 2011.

[27] Lior Lebovich, Ran Darshan, Yoni Lavi, David
Hansel, and Yonatan Loewenstein. Idiosyn-
cratic choice bias naturally emerges from in-
trinsic stochasticity in neuronal dynamics. Na-
ture Human Behaviour, 3(11):1190–1202, 2019.

Appendix

Generating target neural trajectories from
PSTHs. For each recorded neuron, we converted
its PSTH to target synaptic activities to be used for
training the synaptic inputs. Specifically, in Figure
2 we obtained for each spike rate rit (i = 1, ..., N ,
and t = Tinit + ∆t, ..., Tend where Tinit = −2 and
Tend = 1) the mean synaptic input fit that needs to
be applied to the the leaky integrate-and-fire neu-
ron to generate the desired spike rate. To this end,
we numerically solved the nonlinear rate equation

rit = ϕ(fit, σ
2) (1)

where

ϕ(m,σ) = τ−1
m [

√
π

∫ Vthr−m

σ

Vreset−m
σ

dwew
2

erfc(−w)]−1

is the transfer function of the leaky integrate-and-
fire neuron given mean input, m, and variance of
the input, σ2 [25, 26]. This conversion yielded a set
of vectors of target synaptic inputs f1, ..., fN ∈ RT

where T = (Tend − Tinit)/∆t for the recorded neu-
rons. Note that in Figure 2 we did not simulate
the recurrent static connections (K = 0). Simulat-
ing both static connections and the external noise
would require to estimate σ in Eq.(1). This can be
done, for example, by estimating the synaptic noise
in the neurons of the initial network [9].

Network connectivity. In Figure 1A, the spik-
ing neural network consisted of randomly connected
NE excitatory and NI inhibitory neurons. They
were recurrently connected as in [9]. In short, the
recurrent synapses consisted of static weights J that
remained constant throughout training and plastic
weights W that were modified by the training algo-
rithm (Figure 1B). The static synapses connected
neuron j in population β to neuron i in population
α with probability pαβ = Kαβ/Nβ and synaptic
weight J̄αβ/

√
Kαβ , where Kαβ is the average num-

ber of static connections from population β to α:

Pr(Jαβ
ij ̸= 0) =

Kαβ

Nβ
.

The strength of plastic synapses, W̄αβ/
√
Kαβ , was

of the same order as the static weights. How-
ever, the plastic synapses connected neurons with

8

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509578doi: bioRxiv preprint

https://doi.org/10.1101/2022.09.26.509578
http://creativecommons.org/licenses/by/4.0/

a smaller probability:

Pr(Wαβ
ij ̸= 0) =

Lαβ

Nβ
with Lαβ = c

√
Kαβ

which made the plastic synapses much sparser than
the static synapses [27, 9]. Here, c is an order 1
parameter that depends on training setup.

The static and plastic connections were
non-overlapping in that any two neurons in the net-
work can have only one type of synapse.

Jαβ
ij Wαβ

ij = 0.

Keeping them disjoint allowed us to maintain the
initial network dynamics generated by the static
synapses and, subsequently, introduce trained ac-
tivity to the initial dynamics by modifying the plas-
tic synapses.

The static recurrent synapses were strong
in that the coupling strength between two con-
nected neurons scaled as 1√

Kαβ

, while the aver-

age number of synaptic inputs scaled as Kαβ . As
a result of this strong scaling, the excitatory and
inhibitory synaptic inputs to a neuron from static
synapses increased as

√
Kαβ , and thus were much

larger than the spike-threshold for a large Kαβ .
However, the excitatory and inhibitory currents
were dynamically canceled, and, together with the
external input, the sum was balanced to be around
the spike-threshold [19, 9].

In contrast to the static synapses, each
trained neuron received only about

√
Kαβ plastic

synapses. This made the plastic synapses much
sparser than the sparse static EI connectivity (e.g.,
with K = 1000 static synapses, there are of the
order of

√
K ≈ 30 plastic synapses per neuron).

Consequently, the EI plastic inputs of the initial
network were independent of Kαβ and substantially
weaker than the EI balanced inputs for a large Kαβ .
After training the plastic synapses, the total synap-
tic input, i.e., the sum of plastic and balanced in-
puts, to each trained neuron was able to follow
the target patterns. With this scaling of plastic
synapses, training was robust to variations in the
network size, N , and the number of synaptic con-
nections, Kαβ (Fig. 1C).

In Figures 1D, F and Figure 2, on the other
hand, the network had only plastic synapses but
no static synapses, i.e., K = 0. Without the

static excitatory-inhibitory synaptic connections, as
in Figure 1, the network lacked internally generated
noise. Therefore, we injected external noise to the
neuron’s voltage equation to induce variability in
spiking activity (Fig. 2C). The variance of this white
noise, σ2, was chosen such that the externally in-
jected noise was similar to internally generated fluc-
tuating synaptic current when static connections
were present (K = 1000).

Network dynamics. In the following mathemat-
ical description of network activity, the static con-
nections present in Figure 1C (K > 0) produced
the balanced inputs (uα

bal,i), which exhibited large
fluctuations. For this reason, no additional external
noise was injected to the network (σ = 0). On the
other hand, as mentioned above, in Figure 2 (and
also in Figs. 1D, F), the static connections did not
exist (K = 0) and external noise was injected to the
neurons (σ > 0).

We used integrate-and-fire neuron to
model the membrane potential dynamics of i’th
neuron:

τmv̇αi = −vαi + uα
i +Xα

i + σξi

where a spike is emitted and the membrane poten-
tial is reset to vreset when the membrane potential
crosses the spike-threshold vthr.

Here, uα
i is the total synaptic input to neu-

ron i in population α that can be divided into static
and plastic inputs incoming through the static and
plastic synapses, respectively:

uα
i = uα

bal,i + uα
plas,i.

Xα
i is the total external input that can be divided

into constant external input, plastic external input,
and the stimulus:

Xα
i = Xα

bal,i +Xα
plas,i +Xα

stim,i. (2)

Xα
bal,i is a constant input associated with the ini-

tial balanced network. It scales with the number
of connections, i.e., proportional to

√
Kαβ , deter-

mines the firing rate of the initial network and stays
unchanged [19]. Xα

plas,i is plastic input provided
to trained neurons in the recurrent network from
external neurons that emit stochastic spikes with
pre-determined rate patterns. The synaptic weights
from the external neurons to the trained neurons

9

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509578doi: bioRxiv preprint

https://doi.org/10.1101/2022.09.26.509578
http://creativecommons.org/licenses/by/4.0/

were modified by the training algorithm. Xα
stim,i

is the pre-determined stimulus, generated indepen-
dently from the Ornstein-Ulenbeck process for each
neuron, and injected to all neurons in the network
to trigger the learned responses in the trained neu-
rons.

The synaptic activity was modeled by in-
stantaneous jump of the synaptic input due to
presynaptic neuron’s spike, followed by exponential
decay. Since the static and plastic synapses did not
overlap, we separated the total synaptic input into
static and plastic components as mentioned above:

τbalu̇
α
bal,i = −uα

bal,i +
∑

β∈{E,I}

∑
j∈β

Jαβ
ij

∑
tjk<t

δ(t− tjk)

τplasu̇
α
plas,i = −uα

plas,i +
∑

β∈{E,I}

∑
j∈β

Wαβ
ij

∑
tjk<t

δ(t− tjk).

(3)

Alternatively, the synaptic activity can be ex-
pressed as a weighted sum of filtered spike trains
because the synaptic variable equations (Eq. 3) are
linear in J and W:

uα
bal,i =

∑
β,j

Jαβ
ij rβbal,j

uα
plas,i =

∑
β,j

Wαβ
ij rβplas,j

(4)

where

τbalṙ
β
bal,i = −rβbal,i +

∑
tik<t

δ(t− tik)

τplasṙ
β
plas,i = −rβplas,i +

∑
tik<t

δ(t− tik)

describe the dynamics of synaptically filtered spike
trains.

Each external neuron emitted spikes
stochastically at a pre-defined rate that changed
over time. The rate patterns, followed by the
external neurons, were randomly generated from
an Ornstein-Ulenbeck process with mean rate of 5
Hz. The synaptically filtered external spikes were
weighted by plastic synapses WX and injected to
trained neurons:

Xα
plas,i =

∑
j

WX
ij r

X
j (5)

where

τplasṙ
X
plas,i = −rXplas,i +

∑
tik<t

δ(t− tik)

Similarly, the external stimulus Xstim,i applied
to each neuron i in the network to trigger the
learned response is generated independently from
the Ornstein-Ulenbeck process.

In the following section, we will use the
linearity of W,WX in Eqs. 4 and 5 to derive the
training algorithm that modifies plastic synaptic
weights.

10

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509578doi: bioRxiv preprint

https://doi.org/10.1101/2022.09.26.509578
http://creativecommons.org/licenses/by/4.0/

Recursive least squares. We derive a synaptic update rule that modifies the plastic synapses to
learn the target activities. The derivation presented here closely follows previous papers [8, 16, 9]. For
notational simplicity, we drop the neuron index i in wi and other variables, e.g., fi, ui, but the same
synaptic update rule is applied to all the trained neurons. In fact, the plastic connections to every trained
neuron can be updated simultaneously since each trained neuron has its own private target function and
plastic connections. Therefore, the CPU multithreading (Fig. 1E) or GPU implementation (Figs. 1C, D)
presented in our study leverages the fact that the synaptic update rule can be applied in parallel to all
plastic synapses.

The gradient of the cost function with respect to the weights w is

∇wC =
1

2
∇w

[∑
t

(ft − ut)
2 + λ∥w∥2 + µ

(
(w · 1E)

2 + (w · 1I)
2
)]

=
∑
t

(−ftrt + rtr
′
tw) + λw + µ(1E1

′
E + 1I1

′
I)w

where we substitute the expression ut = w · rt in the first line to evaluate the gradient with respect to
w. To derive the synaptic update rule, we compute the gradient at two consecutive time points

0 = ∇wnC =
n∑

t=1

(−ftrt + rtr
′
twn) + λwn + µ(1E1

′
E + 1I1

′
I)wn (6)

and

0 = ∇wn−1
C =

n−1∑
t=1

(−ftrt + rtr
′
twn−1) + λwn−1 + µ(1E1

′
E + 1I1

′
I)wn−1. (7)

Subtracting Eqs (6) and (7) yields

wn = wn−1 + enPnrn

en = fn −wn−1 · rn
(8)

where

Pn =

[n∑
t=1

rt(rt)
′ + λI + µ1E1

′
E + µ1I1

′
I

]−1

for n ≥ 1 (9)

with the initial value

P 0 = [λI + µ1E1
′
E + µ1I1

′
I]

−1. (10)

To update Pn iteratively, we use the Woodbury matrix identity

(A+ UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1 (11)

where A is invertible and N ×N , U is N × T , C is invertible and T × T and V is T ×N matrices. Then
Pn can be calculated iteratively

Pn = Pn−1 − Pn−1rn(rn)
′Pn−1

1 + (rn)′Pn−1rn
.

11

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509578doi: bioRxiv preprint

https://doi.org/10.1101/2022.09.26.509578
http://creativecommons.org/licenses/by/4.0/

