

1 Cryo-EM structure of an atypical proton-coupled peptide transporter: 2 Di- and tripeptide permease C

3 **Maxime Killer^{1,2}, Giada Finocchio^{1,2}, Haydyn D.T. Mertens², Dmitri I. Svergun², Els Pardon^{3,4},**
4 **Jan Steyaert^{3,4}, Christian Löw^{1,2,*}**

5 ¹ Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607 Hamburg, Germany.

6 ² Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron
7 (DESY), Notkestrasse 85, D-22607 Hamburg, Germany.

8 ³ Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium.

9 ⁴ VIB-VUB Center for Structural Biology, VIB, Brussels 1050, Belgium.

10

11 * Correspondence:

12 Corresponding Author

13 Christian Löw

14 European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany.

15 phone: +49 40 8998 87570

16 e-mail: christian.loew@embl-hamburg.de

17

18 **Keywords: peptide transporter, SLC15, proton-dependent oligopeptide transporter (POT),**
19 **nanobody, macrobody, single particle cryo-EM, DtpC, YjdL**

20 Abstract

21 Proton-coupled Oligopeptide Transporters (POTs) of the Major Facilitator Superfamily (MFS) mediate
22 the uptake of short di- and tripeptides in all phyla of life. POTs are thought to constitute the most
23 promiscuous class of MFS transporters, with the potential to transport more than 8400 unique
24 substrates. Over the past two decades, transport assays and biophysical studies have shown that various
25 orthologues and paralogues display differences in substrate selectivity. The *E. coli* genome codes for
26 four different POTs, known as Di- and Tripeptide permeases A-D (DtpA-D). DtpC was shown
27 previously to favor positively charged peptides as substrates. In this study, we describe, how we
28 determined the structure of the 53 kDa DtpC by cryogenic electron microscopy (cryo-EM), and provide
29 structural insights into the ligand specificity of this atypical POT. We collected and analyzed data on
30 the transporter fused to split superfolder GFP (split sfGFP), in complex with a 52 kDa macrobody and
31 with a 13 kDa nanobody. The latter sample was more stable, rigid and a significant fraction dimeric,
32 allowing us to reconstruct a 3D volume of DtpC at a resolution of 2.7 Å. This work provides a
33 molecular explanation for the selectivity of DtpC, and highlights the value of small and rigid fiducial
34 markers such as nanobodies for structure determination of low molecular weight integral membrane
35 proteins lacking soluble domains.

36

37

38 **1 Introduction**

39 Membranes of cells compartmentalize metabolic processes and present a selective barrier for
40 permeation. To preserve the characteristic intracellular milieu, membrane transporters with specialized
41 functions have evolved to maintain the nutrient homeostasis of cells (Hediger et al., 2013; Zhang et al.,
42 2019). Many of those are energized by an electrochemical proton gradient, providing a powerful
43 driving force for transport and accumulation of nutrients above extracellular concentrations. Proton-
44 dependent oligopeptide transporters (POTs) of the Solute Carrier 15 family (SLC15) are
45 representatives of such secondary active transport systems and occur in all living organisms. They
46 allow an efficient uptake of peptides and amino acids in bulk quantities (Daniel et al., 2006; Thwaites
47 and Anderson, 2007). The best characterized members are the two mammalian PepT1 and PepT2
48 transporters which are known to play crucial roles in human health, being responsible for the uptake
49 and distribution of nutrients such as di- and tripeptides (Brandsch et al., 2004; Smith et al., 2013;
50 Spanier and Rohm, 2018; Viennois et al., 2018). They also play key roles in human diseases, and
51 impact the pharmacokinetic profiles of orally administered drug molecules (Daniel, 2004; Brandsch,
52 2009; Ingersoll et al., 2012; Hillgren et al., 2013; Colas et al., 2017; Heinz et al., 2020). SLC15
53 transporters belong to the Major facilitator superfamily (MFS). MFS transporters share a well-
54 characterized fold, consisting of twelve transmembrane helices organized in two six-helix bundles,
55 expected to function according to the alternate access mechanisms (Jardetzky, 1966) where either side
56 of the transporter is alternately exposed to one side of the membrane. Therefore, substantial
57 conformational changes are required to complete an entire transport cycle with at least three postulated
58 states: (i) inward-open, (ii) occluded, and (iii) outward-open (Yan, 2015; Drew and Boudker, 2016;
59 Quistgaard et al., 2016; Bartels et al., 2021; Drew et al., 2021). POTs have been intensively studied on
60 a structural and biochemical level over the last 30 years. More than 50 entries for this transporter class
61 can be found in the protein data bank, representing ten different bacterial homologues and the
62 mammalian PepT1 and PepT2 transporters, bound to a limited set of substrates and drugs (Newstead
63 et al., 2011; Solcan et al., 2012; Doki et al., 2013; Guettou et al., 2013, 2014; Lyons et al., 2014; Zhao
64 et al., 2014; Quistgaard et al., 2017; Martinez Molledo et al., 2018a, 2018b; Minhas et al., 2018;
65 Nagamura et al., 2019; Ural-Blimke et al., 2019; Killer et al., 2021; Parker et al., 2021; Stauffer et al.,
66 2022). Although bacterial and eukaryotic POTs share an overall conserved binding site, individual
67 amino acids changes in or in close vicinity of the binding site are likely responsible for observed
68 differences in affinities and selectivity for particular peptides and drugs among the studied POT
69 homologues. Here, structural biology studies are particularly crucial to understand substrate
70 promiscuity and drug coordination on a molecular level. While bacterial POT structures, determined
71 by mainly X-ray crystallography, represent exclusively the inward-open or inward-open-partially
72 occluded state, the mammalian PepT1 and PepT2 transporters were recently captured in various
73 conformations by single particle cryo-EM, advancing the mechanistic understanding of the entire
74 transport cycle (Killer et al., 2021; Parker et al., 2021). Despite their small size of typically only 50
75 kDa for an individual transporter unit, these systems become more and more accessible for single-
76 particle cryo-EM approaches. Indeed, in 2021, more MFS transporter structures were determined by
77 single-particle Cryo-EM (17 pdb entries; resolution range 3.0 – 4.2 Å) than X-ray crystallography (14
78 pdb entries; resolution range 1.8 – 3.6 Å).

79 Although known POT structures show a high level of similarity, various works have indicated
80 that homologues can differ in their range of transported substrate and drug molecules (Lyons et al.,
81 2014; Prabhala et al., 2014; Boggavarapu et al., 2015; Sharma et al., 2016; Martinez Molledo et al.,
82 2018a). The *E. coli* genome codes for four different POTs named Di- and Tripeptide permease A-D
83 (DtpA-D), also known as YdgR (=DtpA), YhiP (=DtpB), YjdL (=DtpC) and YbgH (=DtpD). They
84 cluster in pairs, DtpA and B (sequence identity 51%), and DtpC and D (sequence identity 56%) with
85 around 25% identity between them. DtpA and B exhibit a prototypical substrate preference similar to

86 the human PepT1 transporter (Chen et al., 2000; Harder et al., 2008; Foley et al., 2010; Prabhala et al.,
87 2017, 2018), while DtpC and D have been classified as atypical POTs, because DtpC prefers di-
88 peptides in particular those with a lysine residue in the second position. Although DtpC has been well
89 characterized in terms of function over the last years (Ernst et al., 2009; Jensen et al., 2012c, 2012a,
90 2012b, 2014; Prabhala et al., 2014; Aduri et al., 2015), it has resisted structure determination by X-ray
91 crystallography so far (Gabrielsen et al., 2011).

92 Here we describe the structure determination of the bacterial POT transporter DtpC by single
93 particle cryo-EM. Considering that the transporter displays no characteristic cytoplasmic or
94 periplasmic features which are helpful to drive the particle alignment, we applied different strategies
95 previously described in the literature to increase the overall size of the transporter to overcome these
96 limitations. We i) fused the transporter to split-sfGFP (Liu et al., 2020, 2022), ii) raised different
97 nanobodies against DtpC (Pardon et al., 2014) and iii) extended the nanobody to a macrobody (Brunner
98 et al., 2020; Botte et al., 2021). The various samples were subsequently imaged by cryo-EM and
99 analysed. DtpC in complex with the conformation specific nanobody 26 turned out to be more rigid
100 and a significant fraction of the sample dimeric, allowing us to reconstruct DtpC to 2.7 Å resolution.
101 The DtpC structure now provides molecular insights into how selectivity within this transporter family
102 is achieved.

103

104 **2 Results and Discussion**

105 **Different fiducial marker strategies for structure determination**

106 Since MFS transporters typically lack additional domains outside their transport unit, which is
107 a major impediment for accurate particle alignment in single particle cryo-EM approaches, we assessed
108 three fiducial marker strategies introducing additional density outside of detergent micelles containing
109 DtpC, by analyzing the quality of 2D class averages (Fig 1). To obtain conformation specific binders
110 against DtpC, we first immunized llamas with recombinant DtpC and selected nanobodies (Nbs)
111 following standard procedures (Pardon et al., 2014). Three out of five selected binders (Nb17, Nb26,
112 and Nb38) co-eluted with DtpC on gel filtration and increased the melting temperature of the respective
113 DtpC-Nb complex by 20 °C, 16 °C, and 12 °C. (Fig 2 A,B). DtpC in complex with Nb17 and Nb26
114 yielded crystals in various conditions, but despite extensive optimization efforts, the crystals of the
115 DtpC-Nb26 complex did not diffract X-rays better than 5 Å resolution. In a second step, we decided to
116 increase the size of Nb26, which formed a tight complex with DtpC, by fusing one copy of the maltose
117 binding protein (MBP) to its C-terminus as described previously (Botte et al., 2021). This resulted in a
118 52 kDa macrobody, and we expected it to bind to the periplasmic side of the transporter as seen in
119 other MFS transporter-Nb complexes (Fig 1). In a third approach, we fused the two self-assembling
120 parts of split-sfGFP; with β1-6 on the N-terminus of DtpC, and β7-11 on the C-terminus. We named
121 this construct split sfGFP-DtpC_FL. In order to minimize the mobility between the membrane protein
122 and the split sfGFP fiducial, we also generated two additional constructs where the last five (split
123 sfGFP-DtpC₁₋₄₇₅), or ten residues (split sfGFP-DtpC₁₋₄₇₀) of the transporter were deleted. We then
124 assessed proper folding and complementation by monitoring the fluorescence of the chromophore on
125 an HPLC system (Fig 2C). All constructs eluted at similar retention times and the fluorescence was
126 highest in the non-truncated construct (split sfGFP-DtpC_FL) and lowest in the most truncated version
127 (split sfGFP-DtpC₁₋₄₇₀). In order to extend this observation to other MFS transporters, we repeated this
128 experiment with the human POT homologue PepT1, and noticed a similar trend upon shortening of the

129 termini. Yet, since the decrease of fluorescence was only minor in split sfGFP-DtpC₁₋₄₇₅ in comparison
130 to split sfGFP-DtpC_{FL}, we proceeded to imaging with the shorter construct in the presence of Nb26.

131 The particle density and distribution in the vitrified solution was similar in the three imaged
132 samples. However, DtpC-Nb26 produced the best 2D class averages considering the sharpness of
133 secondary structure elements inside the micelle, as judged by visual inspection (Fig 1, Fig S1). The
134 Nb26-MBP (Mb26) fiducial was clearly visible in 2D class averages, but it adopted various positions
135 in relation to the transporter, therefore making accurate alignment of the particles more difficult than
136 in its shorter but more rigid and stable nanobody version (Fig 1, Fig 2 A,B, Fig S1). The split sfGFP-
137 DtpC₍₁₋₄₇₅₎-Nb26 sample allowed clear visualization of the transmembrane helices after clustering a
138 small subset of particles, but the majority of particles clustered in classes with blurry density for the
139 split sfGFP fiducial, or with the two complementary parts β 1-6 and β 7-11 not assembled (Fig S1).
140 Alphafold2 predictions on the imaged construct, as well as on the full length construct later suggested
141 a destabilization of the beta-barrel upon increasing termini restraints, resulting in partial unfolding of
142 β 7 and exposure of the chromophore to solvent quenching. Interestingly, this effect could partially be
143 reverted by adding a linker of five glycine residues between the C-bundle and β 7 based on *in silico*
144 data. We conclude that termini restraining using the split-sfGFP approach is a promising fiducial
145 strategy for structural studies of MFS transporters, in addition to the previous demonstrated showcases
146 on small membrane proteins (2, 4 and 6TMs) (Liu et al., 2020, 2022). However, the amount of
147 restraining in larger membrane proteins such as MFS transporters where both termini are placed far
148 from each other need to be optimized experimentally or *in silico*, to produce a stable and rigid fiducial;
149 two crucial aspects for high resolution structure determination of MFS transporters by single particle
150 cryo-EM.

151 As we obtained the best 2D class averages for DtpC with the fiducial marker Nb26, we
152 proceeded to a large data collection (Table 1) and could cluster a subset of dimers within this data set.
153 The presence of different oligomeric species was already expected based on the peak shape of the gel
154 filtration run. The large mass of the dimer, and the stable and rigid signal of the Nb26 fiducial, allowed
155 us to reconstruct the DtpC-Nb26 dimer to 3.0 Å resolution and model this assembly (Fig 3, 4, Fig S2).
156 The quaternary structure consists of a non-symmetrical inverted dimer mediated by interactions
157 through a large hydrophobic interface between the HA-HB helices of DtpC (Fig S2). Although other
158 inverted dimers were reported in homologous POT structures (Quistgaard et al., 2017), the source of
159 such arrangements is likely to be artificial. We also investigated the oligomer heterogeneity in solution
160 with small angle X-ray scattering and obtained a good fit at low angles (corresponding to the overall
161 shape of particles in solution) for the cryo-EM volume of the dimer (Fig S3). The fit to a monomeric
162 cryo-EM volume was poor, indicating that in detergent solution a significant fraction of DtpC-Nb26 is
163 dimeric. As for the interaction between the membrane protein and the fiducial marker, the CDR3 loop
164 of Nb26 accounts for the strongest interactions with the periplasmic surface of the transporter with two
165 salt bridges, while CDR1 and CDR2 contribute *via* hydrogen bonding (Fig 5). 3D variability analysis
166 (Punjani and Fleet, 2021) revealed a small degree of flexibility between the two DtpC-Nb26 copies.
167 Therefore, we performed a local refinement, focused on one copy of the membrane protein, which
168 extended the resolution of the reconstruction to 2.7 Å and improved the accuracy of the atomic model
169 for subsequent structural analysis (Fig 4).

170

171 Structural basis for ligand selectivity in DtpC

172 The DtpC structure revealed the expected and well-known MFS transporter fold, with twelve
173 transmembrane helices (TMs) organized in two helical bundles and additional two TMs specific for
174 the POT family (known as HA and HB domains). The peptide binding site of DtpC is exposed to the

175 cytoplasmic side (Fig 3, 4). Almost all bacterial POT structures described so far were determined by
176 X-ray methods in a similar inward facing (IF) conformation. The extent to which the central cavity is
177 open to the cytosol is regulated by a mechanism of occlusion mediated by TM4, TM5, TM10, and
178 TM11, as supported by structures in IF occluded, partially occluded, and open states. In the case of the
179 here described DtpC structure, the IF state is open (Fig 3).

180 Molecules from the periplasmic side, on the contrary, cannot enter the central cavity. Tight
181 closure of both bundles above the binding site is mediated by a salt bridge between D43 (TM2, N-
182 bundle) and R294 (TM7, C-bundle) and hydrogen bounds between H37 (TM1, N-bundle) and D293
183 (TM7) as well as R28 (TM1) and N421 (TM11, C-bundle) (Fig 6A). We also analyzed previously
184 determined POT structures with clearly resolved side chain densities, to understand how the IF state is
185 generally maintained in this transporter family. Except for human PepT2 and the POT transporter from
186 *Shewanella oneidensis* (PepTs_o), where the inter-bundle periplasmic salt bridge is formed between
187 TM5 and TM7, the IF state is in all other analyzed structures stabilized by a salt bridge on the tip of
188 TM2 and TM7 (Fig 6B). Additional hydrogen bonding networks as described in other studies, can
189 occur, but vary greatly among different homologues. This analysis highlights that the alternate access
190 mechanism in canonical and in so called 'atypical' POTs share similarities such as electrostatic
191 clamping by formation and disruption of salt bridges. The differences in hydrogen bonding patterns
192 however, could account for the various turnover rates seen among POT homologues.

193 Canonical POTs are characterized by i) the presence of the E₁XXE₂R motif on TM1 involved
194 in proton coupling and ligand binding, and ii) the ability to accommodate dipeptides, tripeptides, and
195 peptidomimetics, which relies on a set of conserved residues located in the central binding cavity. In
196 DtpC, the E₁XXE₂R motif, has evolved to Q₁XXE₂Y (where Q₁=N17, E₂=E20, Y=Y21). In all high
197 resolution X-ray structures of canonical POTs, R is in salt-bridge distance to E₂ and the C-terminus of
198 substrate peptides. Mutation of either E₁ or E₂ in the conventional E₁XXE₂R motif to glutamine residues
199 abolishes uptake (Aduri et al., 2015). A reverse mutation in DtpC, from Q₁XXE₂Y to E₁XXE₂Y or to
200 E₁XXQ₂Y preserves high transport rates, while a Q₁XXQ₂Y motif significantly decreases it (Aduri et
201 al., 2015). In addition, based on previous molecular dynamics experiments, a salt bridge switching
202 mechanism from R-E₂ to R-E₁, upon protonation of E₂ in the E₁XXE₂R motif, was proposed (Aduri et
203 al., 2015). This biochemical and *in silico* data strongly support a dual role of the E₁XXE₂R motif for
204 both proton and peptide transport, where R can form a salt bridge interaction with the C-terminus of
205 peptides or with E₁ when E₂ is protonated, and where the deprotonation event of the latter is required
206 to disrupt the R-peptide interaction.

207 In DtpC, we now observe that the side chain pocket has a different architecture and
208 characteristic in comparison with the one of canonical POTs. It displays an overall more acidic groove
209 caused by the presence of the aspartate residue 392. Canonical POTs have a conserved serine residue
210 instead, yielding a slightly changed hydrophobicity pattern in the binding site (Fig 7 A-D). A structural
211 overlay of DtpC with a canonical POT structure bound to the dipeptide Ala-Phe allows us to position
212 the peptide in the binding site. By replacing the phenyl group with a lysine side chain (generating the
213 known DtpC dipeptide substrate Ala-Lys instead of Ala-Phe), we postulate a putative salt bridge
214 between the carboxyl group of D392 and the ϵ -amino group of the lysine side chain. This observation,
215 together with previous biochemical work (Jensen et al., 2012b; Aduri et al., 2015) allows us to
216 hypothesize that the selectivity of DtpC for dipeptides with C-terminal lysine or arginine residues is
217 caused by swapping a salt bridge between the recurrent carboxyl group of the peptide terminus and the
218 transporter (R21Y mutation), to a side chain specific salt bridge with D392. Since the R-peptide
219 interaction is lost in DtpC, there is no requirement for E1 to destabilize R-peptide for release, which
220 would explain the presence of a Q₁XXE₂Y motif instead of E₁XXE₂R.

221 In summary, our work provides new insights into promiscuous *versus* selective substrate
222 recognition in POTs and constitutes a step forward towards completing the family of *E. coli* POTs

223 structures. Lastly, it displays some of the challenges related to high resolution cryo-EM structure
224 determination of MFS transporters devoid of soluble domains, and manifests once again, the benefit of
225 fiducial markers in overcoming those.

226

227 **3 Material and Methods**

228 **Expression and purification of membrane protein constructs: DtpC; split sfGFP-DtpC (full
229 length split sfGFP-DtpC_{FL}, and truncated constructs split sfGFP-DtpC₁₋₄₇₅ and split sfGFP-
230 DtpC₁₋₄₇₀); split sfGFP-HsPepT1 (full length split sfGFP-HsPepT1_{FL}, and truncated constructs
231 split sfGFP-HsPepT1₁₁₋₆₇₂ and split sfGFP-HsPepT1₁₀₋₆₇₂)**

232 The full-length cDNA of DtpC wild type (WT) was amplified from the *Escherichia coli*
233 genome, and cloned into a pNIC-CTHF vector by ligation-independent cloning (LIC). This vector
234 contains a C-terminal His-Tag and a Tobacco Etch virus (TEV) cleavage site and a kanamycin
235 resistance gene as selectable marker. The first 6 N-terminal beta strands of sfGFP were fused to the N-
236 terminus of DtpC, and the beta strands 7 to 11 fused to the C-terminus. We named this construct split
237 sfGFP-DtpC_{FL}. Two additional constructs were cloned with truncations of 5 (split sfGFP-DtpC₁₋₄₇₅),
238 and 10 residues (split sfGFP-DtpC₁₋₄₇₀), on the C-terminal side of DtpC.

239 *HsPepT1* was previously cloned into a pXLG vector containing an expression cassette
240 composed of an N-terminal Twin-Streptavidin tag followed by the HRV-3C protease recognition
241 sequence (Killer et al., 2021). Similarly, as for DtpC, the two self-assembling parts of split-sfGFP were
242 first inserted into the N- and C-termini of the full-length version of *HsPepT1*, and on two other versions
243 with i) a C-terminal truncation of 36 residues (split sfGFP-HsPepT1₁₁₋₆₇₂), and ii) a C-terminal
244 truncation of 36 residues and a N-terminal truncation of 10 residues (split sfGFP-HsPepT1₁₀₋₆₇₂)
245 were cloned.

246 Recombinant DtpC, and the three split sfGFP-DtpC constructs were expressed in *E. coli*
247 C41(DE3) cells grown in terrific broth (TB) media supplemented with 30 µg/ml kanamycin according
248 to established procedures (Löw et al., 2012, 2013). Cultures were grown at 37°C and protein expression
249 was induced with 0.2 mM IPTG at an OD_{600 nm} of 0.6 - 0.8. After induction, culture growth continued
250 at 18°C for 16-18 hours. Cells were harvested by centrifugation (10,000 g, 15 minutes, 4°C), and the
251 pellet was stored at -20°C until further use. Cell pellets were resuspended in lysis buffer (20 mM NaPi
252 at pH 7.5, 300 mM NaCl, 5% (v/v) glycerol, 15 mM imidazole, with 3 ml of lysis buffer per gram of
253 wet weight pellet), supplemented with lysozyme, DNase and 0.5 mM tris(2-carboxyethyl)phosphine
254 (TCEP). The cells were lysed by three cycles using an Avestin Emulsiflex homogenizer at 10,000-
255 15,000 psi. Recovered material was centrifuged to remove non-lysed cells (10,000 g, 15 minutes, 4°C)
256 and the supernatant was subjected to ultracentrifugation to separate the membrane fraction (100,000g,
257 1 hour, 4°C using an Optima XE-90, Beckman Coulter centrifuge). Membranes were resuspended in
258 lysis buffer supplemented with cOmplete EDTA-free protease inhibitors (Roche), and solubilized by
259 adding 1% n-dodecyl-β-D-maltoside (DDM) detergent (Anatrace). The sample was centrifuged for 50
260 min at 90,000g, and the supernatant was applied to Ni-NTA beads for immobilized-metal affinity
261 chromatography (IMAC) on a gravity column. The beads were pre-equilibrated in lysis buffer and
262 incubated with the solubilized membrane proteins for one hour at 4°C on a rotating wheel. Loaded
263 beads were washed with buffer with increasing imidazole concentrations (20 mM NaPi at pH 7.5, 300
264 mM NaCl, 5% glycerol, 15-30 mM imidazole, 0.5 mM TCEP, 0.03% DDM). The proteins were eluted
265 from the column with a buffer containing high imidazole concentration (20 mM NaPi at pH 7.5, 150
266 mM NaCl, 5% glycerol, 250 mM imidazole, 0.5 mM TCEP, 0.03% DDM) and combined with 1 mg of
267 TEV protease to perform the His-tag cleavage during dialysis overnight at 4°C. The dialysis buffer
268 contained 20 mM HEPES at pH 7.5, 150 mM NaCl, 5% glycerol, 0.5 mM TCEP, 0.03% DDM. The

269 cleaved protein was recovered by negative IMAC, concentrated to 4 ml using a 50 kDa concentrator
270 (Corning® Spin-X® UF concentrators) and run on an ÄKTA Pure system (GE Healthcare Life
271 Sciences), using a HiLoad 16/ 600 Superdex 200 column for DtpC, and a Superdex 200 Increase 10/300
272 column for the split sfGFP-DtpC constructs. Fractions containing the protein were pooled,
273 concentrated, flash frozen and stored at -80°C until further use.

274 For the split sfGFP-*HsPepT1* constructs , expression was done in mammalian cells as described
275 previously (Pieprzyk et al., 2018; Killer et al., 2021). Briefly, HEK293F cells were collected 48 hours
276 after transient transfection, and stored at -80°C until further use. Frozen cell pellets were resuspended
277 in 300 mM NaCl, 20 mM NaPi (pH 7.5), 0.5 mM TCEP, and 5% glycerol, supplemented with cOmplete
278 EDTA-free protease inhibitors, and were disrupted using an Avestin Emulsiflex homogenizer at
279 10,000-15,000 psi. The lysate was centrifuged for 10 min at 10,000g, 4°C, and the supernatant was
280 centrifuged for 90 min at 100,000g, 4°C. The pellet containing the membrane fraction was solubilized
281 in 1% N-dodecyl-β-D-maltopyranoside (DDM) and 0.1% cholestryl hemisuccinate (CHS; Tris Salt,
282 Anatrace) for 1 hour at 4°C. The sample was centrifuged for 50 min at 90,000g, and the supernatant
283 was applied to Strep-TactinXT beads (IBA). After 20 min of incubation on a rotating wheel, the
284 suspension was transferred to a gravity column. Following two wash steps with 300 mM NaCl, 20 mM
285 HEPES (pH 7.5), 0.03% DDM, and 0.003% CHS, split sfGFP-*HsPepT1* constructs were eluted with
286 0.03% DDM, 0.003% CHS, 150 mM NaCl, 20 mM HEPES (pH 7.5), and 10 mM desthiobiotin (Sigma-
287 Aldrich).

288

289 Selection, expression and purification of nanobodies against DtpC

290 To generate DtpC specific nanobodies, two non-inbred llamas were injected six times at weekly
291 intervals with a mixture of 94 different proteins including DtpC (50 µg of each antigen weekly). After
292 six weeks of immunization, two separate phage display libraries were constructed, one from each
293 animal, in the pMESy2 vector, which is a derivative of pMESy4 that contain a C-terminal EPEA-tag
294 for affinity purification. After pooling both libraries, nanobodies were selected against individual
295 antigens in two rounds of parallel panning in 96-well plates containing one immobilized antigen in
296 each well. After two selection rounds on DtpC, 60 clones were picked for sequence analysis, 13 clones
297 encoded antigen-specific nanobodies as tested in ELISA, grouping them in 5 different sequence
298 families. A nanobody family is defined as a group of nanobodies with a high similarity in their CDR3
299 sequence (identical length and > 80% sequence identity). Nanobodies from the same family derive
300 from the same B-cell lineage and likely bind to the same epitope on the target. Immunizations, library
301 construction, selection by panning and nanobody characterization were performed according to
302 standard procedures (Pardon et al., 2014). Five nanobodies were further characterized.

303 The nanobodies were expressed in *E. coli* WK6 cells and purified following standard
304 procedures. Specifically, the cell pellet was resuspended in TES buffer (0.2 M TRIS, pH 8, 0.5 mM
305 EDTA, 0.5 M sucrose) supplemented with one protease inhibitor tablet (Roche). Osmotic shock was
306 performed by the addition of diluted TES buffer to release the periplasmic proteins. The solution was
307 first centrifuged for 20 min at 10,000 × g and additionally for 30 min at 100,000 × g. The supernatant
308 was applied to CaptureSelect beads (Thermo Fisher Scientific), which were equilibrated with wash
309 buffer (20 mM NaPi, pH 7.5, 20 mM NaCl). After three column volumes of washing, the nanobody
310 was eluted with 20 mM HEPES, pH 7.5, 1.5 M MgCl₂. The nanobodies were further purified on a
311 HiLoad 16/600 Superdex 75 pg column in 20 mM HEPES, pH 7.5, 150 mM NaCl, 5 % glycerol,
312 concentrated with a 5 kDa cut-off concentrator, flash-frozen and stored at -80 °C until further use.

313

314 **Expression and purification of macrobody 26**

315 The nanobody 26 (Nb26) was first inserted into a pBXNPH3 vector containing a C-terminal
316 penta-histidine tag preceded of a HRV-3C protease recognition sequence. The maltose binding protein
317 (MBP) was then inserted in frame with the 3' end of the nanobody, with two prolines as a linker
318 between the two genes as described in (Botte et al., 2021). The resulting macrobody (Mb26) was
319 expressed in *E. coli* WK6 cells as above. The cell pellet was resuspended in TES buffer (0.2 M TRIS,
320 pH 8, 0.5 mM EDTA, 0.5 M sucrose) supplemented with one protease inhibitor tablet (Roche). Osmotic
321 shock was performed by the addition of diluted TES buffer to release the periplasmic proteins. The
322 solution was first centrifuged for 20 min at 10,000 × g and additionally for 30 min at 142,000 × g. The
323 supernatant was further purified by immobilized-metal affinity chromatography (IMAC) on a gravity
324 column. The beads were pre-equilibrated in 20 mM NaPi at pH 7.5, 300 mM NaCl, 5% glycerol, 15-
325 30 mM imidazole, 0.5 mM TCEP and incubated. Loaded beads were washed with increasing imidazole
326 concentrations (20 mM NaPi at pH 7.5, 300 mM NaCl, 5% glycerol, 15-30 mM imidazole, 0.5 mM
327 TCEP, 0.03% DDM). The proteins were eluted from the column with a buffer containing high
328 imidazole concentration (20 mM NaPi at pH 7.5, 150 mM NaCl, 5% glycerol, 250 mM imidazole, 0.5
329 mM TCEP, 0.03% DDM) and combined with 1 mg of 3C protease to perform the His-tag cleavage.
330 The cleaved protein was recovered by negative IMAC, concentrated to 0.5 ml using a 30 kDa
331 concentrator (Corning® Spin-X® UF concentrators) and run on an ÄKTA Pure system (GE Healthcare
332 Life Sciences), using a Superdex 75 Increase 10/300 column. Fractions containing the protein were
333 pooled, concentrated, flash frozen and stored at -80°C until further use.

334

335 **Thermal stability measurements**

336 The differential scanning fluorimetry method was used to follow the thermal unfolding event
337 (Kotov et al., 2019) of Nb17, Nb26, Nb38, DtpC, DtpC-Nb17, DtpC-Nb26, DtpC-Nb38, Mb26, DtpC-
338 Mb26, and split sfGFP-DtpC₁₋₄₇₅-Nb26 with a Prometheus NT.48 device (NanoTemper Technologies,
339 Munich, Germany). The purified proteins were diluted to 16 μM, and the complexes were formed using
340 a 1:1.5 molar ratio of membrane protein : fiducial. The fluorescence at 330 and 350 nm was recorded
341 over a temperature gradient scan from 15° to 95°C and processed in GraphPad Prism 9.0 (GraphPad
342 Software).

343 **AlphaFold2 predictions**

344 Structures with the following sequences were used as input for AlphaFold2 structure prediction
345 (Jumper et al., 2021), and AMBER relaxation. The best ranked models were used for visualization.

346 > split sfGFP-DtpC₁₋₄₇₅
347 MSKGEELFTGVVPLILVELDGDVNGHKFSVRGEGEGLDATNGKLTGKFLCTTGKLPVWPTLVT
348 TLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVNRI
349 ELKGIDFKEDGNILGHKLEYNKTSPQRAIYYIVAIQIWEYFSFYGMRALLLILYLTHQLGFDD
350 NHAISLFSAYASLVYVTPILGGWLADRLLGRTAVIAGALLMTLGHVVLGIDTNSTFSLYLA
351 LAIIICGYGLFKSNISCLLGELEYDENDHRRDGGFSLLYAAGNIGSIAAPIACGLAAQWYGWHV
352 GFALAGGGMFIGLLIFLSGHRHFQSTRSMDKKALTsvKFALPVWSWLVVMLCLAPVFFTLL
353 LENDWSGYLLAIVCLIAAQIIARMMIKFPEHRRALWQIVLLMFVGTLFWVLAQQGGSTISLFI
354 DRFVNRQAFNIEVPTALFQSVNAIAVMLAGVVLAWLASPESRGNSTLRVWLKFAFGLLLMA
355 CGFMLLAFDARHAAADGQASMGVMISGLALMGFAELFIDPVAIAQITRLKMSGVLTGIYML
356 ATGAVANWLAGVVAQQTTESQISGMAIAAYQRFFSQMGEWTLACVAAIVVLAFAATRFLFST

357 PNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQS
358 VLSKDPNEKRDHMLLEFVTAAGITHGMDELYK

359 > split sfGFP-DtpC_{FL}
360 MSKGEELFTGVV PILVELDGDVNGHKFSVRGEGEGDATNGKLT KFIC TTGKLPV PWPTLV T
361 TLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFE GTDLVNRI
362 ELKGIDFKEDGNILGHKLEYNKTPSQPRAIYYIVAIQIWEYFSFYGM RALLILYLTHQLGFDD
363 NHAISLFSAYASLVYVTPILGGWLADRLGNRTAVIAGALLMTLGHVVLGIDTNSTFSLYLA
364 LAIIICGYGLFKSNISCLLGE LYDENDHRRDGGFSLLYAAGNIGSIAAPIACGLAAQWYGVH
365 GFALAGGGMFIGLLIFLSGHRHFQSTRSMDKKALTSVKFALPVWSWLVVMLCLAPVFTLL
366 LENDWSGYLLAIVCLIAAQIARMMIKFPEHRRALWQIVLLMFVGTLFWVLAQQGGSTISLFI
367 DRFVNRQAFNIEVPTALFQSVNAIAVMLAGVVLAWLASPESRGNSTLRVWLKFAFGLLLMA
368 CGFMLLAFDARHAAADGQASMGVMISGLALMGFAELFIDPV AIAQITRLKMSGVLTGIYML
369 ATGAVANWLAGVVAQQTTEQSISGMAIAAYQRFFSQMGEWTLACV AIVVLAFA TRFLFST
370 PTNMIQESNDNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADHYQQNTPIGDGPVLLPD
371 NHYLSTQSVLSKDPNEKRDHMLLEFVTAAGITHGMDELYK

372 > split sfGFP-DtpC_{+5Gly}
373 MSKGEELFTGVV PILVELDGDVNGHKFSVRGEGEGDATNGKLT KFIC TTGKLPV PWPTLV T
374 TLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFE GTDLVNRI
375 ELKGIDFKEDGNILGHKLEYNKTPSQPRAIYYIVAIQIWEYFSFYGM RALLILYLTHQLGFDD
376 NHAISLFSAYASLVYVTPILGGWLADRLGNRTAVIAGALLMTLGHVVLGIDTNSTFSLYLA
377 LAIIICGYGLFKSNISCLLGE LYDENDHRRDGGFSLLYAAGNIGSIAAPIACGLAAQWYGVH
378 GFALAGGGMFIGLLIFLSGHRHFQSTRSMDKKALTSVKFALPVWSWLVVMLCLAPVFTLL
379 LENDWSGYLLAIVCLIAAQIARMMIKFPEHRRALWQIVLLMFVGTLFWVLAQQGGSTISLFI
380 DRFVNRQAFNIEVPTALFQSVNAIAVMLAGVVLAWLASPESRGNSTLRVWLKFAFGLLLMA
381 CGFMLLAFDARHAAADGQASMGVMISGLALMGFAELFIDPV AIAQITRLKMSGVLTGIYML
382 ATGAVANWLAGVVAQQTTEQSISGMAIAAYQRFFSQMGEWTLACV AIVVLAFA TRFLFST
383 PTNMIQESNDGGGGNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADHYQQNTPIGD
384 PVLLPDNHYLSTQSVLSKDPNEKRDHMLLEFVTAAGITHGMDELYK

385 Cryo-EM sample preparation, data collection, image analysis, and atomic modelling

386 One hour before vitrification, the purified protein complexes were thawed on ice and run on a
387 Superdex Increase 200 5/150 column in 0.015% DDM, 100 mM NaCl, 10 mM HEPES (pH 7.5), 0.5
388 mM TCEP in order to remove the excess of empty detergent micelles earlier generated upon sample
389 concentration. The top fraction reached a concentration ranging between 3 and 6 mg/ml, and for each
390 sample, 3.6 μ l were applied to glow-discharged gold holey carbon 2/1 300-mesh grids (Quantifoil).
391 Grids were blotted for 4 s at 0 force and 1-s wait time before being vitrified in liquid propane using a
392 Mark IV Vitrobot (Thermo Fisher Scientific). The blotting chamber was maintained at 4°C and 100%
393 humidity during freezing.

394 All movies were collected using a Titan Krios (Thermo Fisher Scientific) outfitted with a K3
395 camera and BioQuantum energy filter (Gatan) set to 10 eV. Automated data acquisitions were set using
396 EPU (Thermo Fisher Scientific). The applied defocus ranged between -0.9 μ m and -1.8 μ m in all
397 datasets.

398 For DtpC-Nb26 and DtpC-Mb26, movies were collected at a nominal magnification of
399 $\times 105,000$ and a physical pixel size of 0.85 \AA , with a 70- μ m C2 aperture and 100- μ m objective aperture
400 at a dose rate of 19.5 e $^-$ /pixel per second. A total dose of 75 e $^-$ / \AA^2 was used with 2.8 s exposure time,

401 fractionated in 50 frames. For split sfGFP-DtpC₁₋₄₇₅-Nb26, movies were collected at a nominal
402 magnification of $\times 130,000$ and a physical pixel size of 0.67 Å, with a 50-μm C2 aperture and 100-μm
403 objective aperture at a dose rate of 19.0 e-/pixel per second. A total dose of 57 e-/Å² was used with 3
404 s exposure time fractionated in 40 frames.

405 All movies were motion-corrected using Relion-3.1 (Scheres, 2012; Zivanov et al., 2018) own
406 implementation of MotionCor2 (Zheng et al., 2017). Contrast transfer function parameters were
407 calculated using CTFFIND4 (Rohou and Grigorieff, 2015). and putative particle coordinates were
408 initially defined using CrYOLO (Wagner et al., 2019).

409 For DtpC-Mb26, 13257 movies were collected, 3,062,337 coordinates were picked and used
410 for 2D averaging and clustering. For split sfGFP-DtpC₁₋₄₇₅-Nb26, 7602 movies were collected,
411 1,049,399 coordinates were picked and used for 2D averaging and clustering. For DtpC-Nb26, 24,333
412 movies were collected, 6,464,070 coordinates were picked and used for 2D averaging and clustering,
413 and 878,428 particles were used in the final 3D reconstruction. Briefly, DtpC-Nb26 dimeric population
414 was clustered using 3D class averaging in Relion3.1 (Scheres, 2012). Particle trajectories and
415 cumulative beam damage were further corrected by Bayesian polishing in Relion3.1 (Zivanov et al.,
416 2019), and the resulting shiny particles were exported to cryoSPARCv3 (Punjani et al., 2017) for
417 further 3D clustering *via* successive heterogeneous refinement cycles using “bad” and “good” volumes
418 as references to denoise the dataset. Non uniform refinement (Punjani et al., 2020), followed by a local
419 refinement using a soft mask around one transporter unit resulted in a 2.7 Å reconstruction of DtpC.
420 The overall resolution was estimated in CryoSPARCv3 using the FSC = 0.143 cutoff. Local resolution
421 estimations were also calculated in CryoSPARCv3 using the 0.5 FSC cutoff. The two half maps were
422 used as inputs to assess various post-processing strategies such as the CryoSPARC’s sharpening tool,
423 DeepEMhancer (Sanchez-Garcia et al., 2020), and Resolve_cryo-em (Terwilliger et al., 2020). The
424 latter led to a slightly better defined contour of the atoms, and was subsequently used for the last
425 atomic-model refinement of DtpC. The initial models of DtpC and Nb26 were generated using
426 AlphaFold2, and refined against the experimental maps; first in Isolde (Croll, 2018), and last in Phenix
427 (Afonine et al., 2018), principally to refine atomic displacement parameters (B-factors) and perform a
428 slight energy minimization while keeping restraints from Isolde’s reference model. Half-maps, and
429 postprocessed maps of the dimeric arrangement and of the focused refinement, as well as the atomic
430 model of DtpC were deposited in the PDB and EMDB as deposition numbers 7ZC2, and EMD-14618.
431 The atomic model of the dimeric DtpC-Nb26 is available upon request.
432

433 Small-angle X-ray scattering data collection and analysis

434 Synchrotron SAXS data from solutions of DtpC-Nb26 in β-DDM micelles (SEC-SAXS) were
435 collected on the EMBL P12 (Blanchet et al., 2015) beamline at the PETRA III storage ring (Hamburg,
436 Germany), in a buffer consisting of 0.015% DDM, 100 mM NaCl, 10 mM HEPES (pH 7.5), and 0.5
437 mM TCEP. Sample (10 mg/ml) was injected onto a Superdex Increase 200 10/300 column (Cytiva)
438 and run at 0.5 ml/min at 20°C. 3000 successive 1 second frames were collected using a Pilatus 2M
439 detector at a sample-detector distance of 3.1 m and at a wavelength of $\lambda = 0.124$ nm ($I(s)$ vs s , where $s = 4\pi\sin\theta/\lambda$, and 2θ is the scattering angle). The data were normalized to the intensity of the transmitted
440 beam and radially averaged; the scattering of the solvent-blank was subtracted using CHROMIXS
441 (Panjkovich and Svergun, 2018). Cryo-EM volume maps of DtpC-Nb26 were fit to the scattering data
442 across the low-angle range (shape region only) using EM2DAM (Franke et al., 2017) at a density
443 threshold of 0.1.
444

445

446

447 **Data visualization**

448 Graphs were generated using GraphPad Prism 9.0 (GraphPad Software). Molecular graphics
449 and analyses performed with UCSF ChimeraX-1.2.5 (Pettersen et al., 2021). Figures were prepared in
450 Adobe Illustrator 2021.

451 **4 References**

452 Aduri, N. G., Prabhala, B. K., Ernst, H. A., Jørgensen, F. S., Olsen, L., and Mirza, O. (2015). Salt
453 Bridge Swapping in the EXXERFXYY Motif of Proton-coupled Oligopeptide Transporters. *J
454 Biol Chem* 290, 29931–29940. doi:10.1074/jbc.M115.675603.

455 Afonine, P. V., Poon, B. K., Read, R. J., Sobolev, O. V., Terwilliger, T. C., Urzhumtsev, A., et al.
456 (2018). Real-space refinement in PHENIX for cryo-EM and crystallography. *Acta Crystallogr
457 D Struct Biol* 74, 531–544. doi:10.1107/S2059798318006551.

458 Bartels, K., Lasitza-Male, T., Hofmann, H., and Löw, C. (2021). Single-Molecule FRET of
459 Membrane Transport Proteins. *Chembiochem*. doi:10.1002/cbic.202100106.

460 Blanchet, C. E., Spilotros, A., Schwemmer, F., Graewert, M. A., Kikhney, A., Jeffries, C. M., et al.
461 (2015). Versatile sample environments and automation for biological solution X-ray
462 scattering experiments at the P12 beamline (PETRA III, DESY). *J Appl Crystallogr* 48, 431–
463 443. doi:10.1107/S160057671500254X.

464 Boggavarapu, R., Jeckelmann, J.-M., Harder, D., Ucurum, Z., and Fotiadis, D. (2015). Role of
465 electrostatic interactions for ligand recognition and specificity of peptide transporters. *BMC
466 Biol* 13, 58. doi:10.1186/s12915-015-0167-8.

467 Botte, M., Ni, D., Schenck, S., Zimmermann, I., Chami, M., Bocquet, N., et al. (2021). Insight into
468 Lipopolysaccharide Translocation by Cryo-EM structures of a LptDE Transporter in Complex
469 with Pro-Macropinosomes. *Biochemistry* doi:10.1101/2021.03.23.436624.

470 Brandsch, M. (2009). Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls.
471 *Expert Opin Drug Metab Toxicol* 5, 887–905. doi:10.1517/17425250903042292.

472 Brandsch, M., Knütter, I., and Leibach, F. H. (2004). The intestinal H⁺/peptide symporter PEPT1:
473 structure-affinity relationships. *Eur J Pharm Sci* 21, 53–60. doi:10.1016/s0928-
474 0987(03)00142-8.

475 Brunner, J. D., Jakob, R. P., Schulze, T., Neldner, Y., Moroni, A., Thiel, G., et al. (2020). Structural
476 basis for ion selectivity in TMEM175 K⁺ channels. *eLife* 9, e53683. doi:10.7554/eLife.53683.

477 Chen, X. Z., Steel, A., and Hediger, M. A. (2000). Functional roles of histidine and tyrosine residues
478 in the H⁽⁺⁾-peptide transporter PepT1. *Biochem Biophys Res Commun* 272, 726–730.
479 doi:10.1006/bbrc.2000.2851.

480 Colas, C., Masuda, M., Sugio, K., Miyauchi, S., Hu, Y., Smith, D. E., et al. (2017). Chemical
481 Modulation of the Human Oligopeptide Transporter 1, hPepT1. *Mol Pharm* 14, 4685–4693.
482 doi:10.1021/acs.molpharmaceut.7b00775.

483 Croll, T. I. (2018). ISOLDE: a physically realistic environment for model building into low-
484 resolution electron-density maps. *Acta Crystallogr D Struct Biol* 74, 519–530.
485 doi:10.1107/S2059798318002425.

486 Daniel, H. (2004). Molecular and integrative physiology of intestinal peptide transport. *Annu Rev
487 Physiol* 66, 361–384. doi:10.1146/annurev.physiol.66.032102.144149.

488 Daniel, H., Spanier, B., Kottra, G., and Weitz, D. (2006). From bacteria to man: archaic proton-
489 dependent peptide transporters at work. *Physiology (Bethesda)* 21, 93–102.
490 doi:10.1152/physiol.00054.2005.

491 Doki, S., Kato, H. E., Solcan, N., Iwaki, M., Koyama, M., Hattori, M., et al. (2013). Structural basis
492 for dynamic mechanism of proton-coupled symport by the peptide transporter POT. *Proc Natl
493 Acad Sci U S A* 110, 11343–11348. doi:10.1073/pnas.1301079110.

494 Drew, D., and Boudker, O. (2016). Shared Molecular Mechanisms of Membrane Transporters. *Annu
495 Rev Biochem* 85, 543–572. doi:10.1146/annurev-biochem-060815-014520.

496 Drew, D., North, R. A., Nagarathinam, K., and Tanabe, M. (2021). Structures and General Transport
497 Mechanisms by the Major Facilitator Superfamily (MFS). *Chem Rev* 121, 5289–5335.
498 doi:10.1021/acs.chemrev.0c00983.

499 Ernst, H. A., Pham, A., Hald, H., Kastrup, J. S., Rahman, M., and Mirza, O. (2009). Ligand binding
500 analyses of the putative peptide transporter YjdL from *E. coli* display a significant selectivity
501 towards dipeptides. *Biochem Biophys Res Commun* 389, 112–116.
502 doi:10.1016/j.bbrc.2009.08.098.

503 Foley, D. W., Rajamanickam, J., Bailey, P. D., and Meredith, D. (2010). Bioavailability through
504 PepT1: the role of computer modelling in intelligent drug design. *Curr Comput Aided Drug
505 Des* 6, 68–78. doi:10.2174/157340910790980133.

506 Franke, D., Petoukhov, M. V., Konarev, P. V., Panjkovich, A., Tuukkanen, A., Mertens, H. D. T., et
507 al. (2017). ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from
508 macromolecular solutions. *J Appl Crystallogr* 50, 1212–1225.
509 doi:10.1107/S1600576717007786.

510 Gabrielsen, M., Kroner, F., Black, I., Isaacs, N. W., Roe, A. J., and McLuskey, K. (2011). High-
511 throughput identification of purification conditions leads to preliminary crystallization
512 conditions for three inner membrane proteins. *Mol Membr Biol* 28, 445–453.
513 doi:10.3109/09687688.2011.628954.

514 Guettou, F., Quistgaard, E. M., Raba, M., Moberg, P., Löw, C., and Nordlund, P. (2014). Selectivity
515 mechanism of a bacterial homolog of the human drug-peptide transporters PepT1 and PepT2.
516 *Nat Struct Mol Biol* 21, 728–731. doi:10.1038/nsmb.2860.

517 Guettou, F., Quistgaard, E. M., Trésaugues, L., Moberg, P., Jegerschöld, C., Zhu, L., et al. (2013).
518 Structural insights into substrate recognition in proton-dependent oligopeptide transporters.
519 *EMBO Rep* 14, 804–810. doi:10.1038/embor.2013.107.

520 Harder, D., Stoltz, J., Casagrande, F., Obrdlik, P., Weitz, D., Fotiadis, D., et al. (2008). DtpB (YhiP)
521 and DtpA (TppB, YdgR) are prototypical proton-dependent peptide transporters of
522 *Escherichia coli*. *FEBS J* 275, 3290–3298. doi:10.1111/j.1742-4658.2008.06477.x.

523 Hediger, M. A., Cléménçon, B., Burrier, R. E., and Bruford, E. A. (2013). The ABCs of membrane
524 transporters in health and disease (SLC series): introduction. *Mol Aspects Med* 34, 95–107.
525 doi:10.1016/j.mam.2012.12.009.

526 Heinz, L. X., Lee, J., Kapoor, U., Kartnig, F., Sedlyarov, V., Papakostas, K., et al. (2020). TASL is
527 the SLC15A4-associated adaptor for IRF5 activation by TLR7-9. *Nature* 581, 316–322.
528 doi:10.1038/s41586-020-2282-0.

529 Hillgren, K. M., Keppler, D., Zur, A. A., Giacomini, K. M., Stieger, B., Cass, C. E., et al. (2013).
530 Emerging transporters of clinical importance: an update from the International Transporter
531 Consortium. *Clin Pharmacol Ther* 94, 52–63. doi:10.1038/clpt.2013.74.

532 Ingersoll, S. A., Ayyadurai, S., Charania, M. A., Laroui, H., Yan, Y., and Merlin, D. (2012). The role
533 and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation
534 and inflammatory bowel disease. *Am J Physiol Gastrointest Liver Physiol* 302, G484-492.
535 doi:10.1152/ajpgi.00477.2011.

536 Jardetzky, O. (1966). Simple allosteric model for membrane pumps. *Nature* 211, 969–970.
537 doi:10.1038/211969a0.

538 Jensen, J. M., Aduri, N. G., Prabhala, B. K., Jahnson, R., Franzyk, H., and Mirza, O. (2014). Critical
539 role of a conserved transmembrane lysine in substrate recognition by the proton-coupled
540 oligopeptide transporter YjdL. *Int J Biochem Cell Biol* 55, 311–317.
541 doi:10.1016/j.biocel.2014.09.016.

542 Jensen, J. M., Ernst, H. A., Wang, X., Hald, H., Ditta, A. C., Ismat, F., et al. (2012a). Functional
543 investigation of conserved membrane-embedded glutamate residues in the proton-coupled
544 peptide transporter YjdL. *Protein Pept Lett* 19, 282–287. doi:10.2174/092986612799363109.

545 Jensen, J. M., Ismat, F., Szakonyi, G., Rahman, M., and Mirza, O. (2012b). Probing the putative
546 active site of YjdL: an unusual proton-coupled oligopeptide transporter from *E. coli*. *PLoS
547 One* 7, e47780. doi:10.1371/journal.pone.0047780.

548 Jensen, J. M., Simonsen, F. C., Mastali, A., Hald, H., Lillebro, I., Diness, F., et al. (2012c).
549 Biophysical characterization of the proton-coupled oligopeptide transporter YjdL. *Peptides*
550 38, 89–93. doi:10.1016/j.peptides.2012.08.012.

551 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. (2021). Highly
552 accurate protein structure prediction with AlphaFold. *Nature*. doi:10.1038/s41586-021-
553 03819-2.

554 Killer, M., Wald, J., Pieprzyk, J., Marlovits, T. C., and Löw, C. (2021). Structural snapshots of
555 human PepT1 and PepT2 reveal mechanistic insights into substrate and drug transport across
556 epithelial membranes. *Sci Adv* 7, eabk3259. doi:10.1126/sciadv.abk3259.

557 Kotov, V., Bartels, K., Veith, K., Josts, I., Subramanyam, U. K. T., Günther, C., et al. (2019). High-
558 throughput stability screening for detergent-solubilized membrane proteins. *Sci Rep* 9, 10379.
559 doi:10.1038/s41598-019-46686-8.

560 Liu, S., Li, S., Krezel, A. M., and Li, W. (2022). Stabilization and structure determination of integral
561 membrane proteins by termini restraining. *Nat Protoc* 17, 540–565. doi:10.1038/s41596-021-
562 00656-5.

563 Liu, S., Li, S., Yang, Y., and Li, W. (2020). Termini restraining of small membrane proteins enables
564 structure determination at near-atomic resolution. *Sci Adv* 6, eabe3717.
565 doi:10.1126/sciadv.abe3717.

566 Löw, C., Jegerschöld, C., Kovermann, M., Moberg, P., and Nordlund, P. (2012). Optimisation of
567 over-expression in *E. coli* and biophysical characterisation of human membrane protein
568 synaptogyrin 1. *PLoS One* 7, e38244. doi:10.1371/journal.pone.0038244.

569 Löw, C., Moberg, P., Quistgaard, E. M., Hedrén, M., Guettou, F., Frauenfeld, J., et al. (2013). High-
570 throughput analytical gel filtration screening of integral membrane proteins for structural
571 studies. *Biochim Biophys Acta* 1830, 3497–3508. doi:10.1016/j.bbagen.2013.02.001.

572 Lyons, J. A., Parker, J. L., Solcan, N., Brinth, A., Li, D., Shah, S. T. A., et al. (2014). Structural basis
573 for polyspecificity in the POT family of proton-coupled oligopeptide transporters. *EMBO Rep*
574 15, 886–893. doi:10.15252/embr.201338403.

575 Martinez Molledo, M., Quistgaard, E. M., Flayhan, A., Pieprzyk, J., and Löw, C. (2018a).
576 Multispecific Substrate Recognition in a Proton-Dependent Oligopeptide Transporter.
577 *Structure* 26, 467-476.e4. doi:10.1016/j.str.2018.01.005.

578 Martinez Molledo, M., Quistgaard, E. M., and Löw, C. (2018b). Tripeptide binding in a proton-
579 dependent oligopeptide transporter. *FEBS Lett* 592, 3239–3247. doi:10.1002/1873-
580 3468.13246.

581 Minhas, G. S., Bawdon, D., Herman, R., Rudden, M., Stone, A. P., James, A. G., et al. (2018).
582 Structural basis of malodour precursor transport in the human axilla. *eLife* 7, e34995.
583 doi:10.7554/eLife.34995.

584 Nagamura, R., Fukuda, M., Kawamoto, A., Matoba, K., Dohmae, N., Ishitani, R., et al. (2019).
585 Structural basis for oligomerization of the prokaryotic peptide transporter PepTSo2. *Acta
586 Crystallogr F Struct Biol Commun* 75, 348–358. doi:10.1107/S2053230X19003546.

587 Newstead, S., Drew, D., Cameron, A. D., Postis, V. L. G., Xia, X., Fowler, P. W., et al. (2011).
588 Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton
589 symporters, PepT1 and PepT2. *EMBO J* 30, 417–426. doi:10.1038/emboj.2010.309.

590 Panjkovich, A., and Svergun, D. I. (2018). CHROMIXS: automatic and interactive analysis of
591 chromatography-coupled small-angle X-ray scattering data. *Bioinformatics* 34, 1944–1946.
592 doi:10.1093/bioinformatics/btx846.

593 Pardon, E., Laeremans, T., Triest, S., Rasmussen, S. G. F., Wohlköning, A., Ruf, A., et al. (2014). A
594 general protocol for the generation of Nanobodies for structural biology. *Nat Protoc* 9, 674–
595 693. doi:10.1038/nprot.2014.039.

596 Parker, J. L., Deme, J. C., Wu, Z., Kuteyi, G., Huo, J., Owens, R. J., et al. (2021). Cryo-EM structure
597 of PepT2 reveals structural basis for proton-coupled peptide and prodrug transport in
598 mammals. *Sci Adv* 7, eabh3355. doi:10.1126/sciadv.abh3355.

599 Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., et al. (2021).
600 UCSF ChimeraX: Structure visualization for researchers, educators, and developers. *Protein*
601 *Sci* 30, 70–82. doi:10.1002/pro.3943.

602 Pieprzyk, J., Pazicky, S., and Löw, C. (2018). Transient Expression of Recombinant Membrane-
603 eGFP Fusion Proteins in HEK293 Cells. *Methods Mol Biol* 1850, 17–31. doi:10.1007/978-1-
604 4939-8730-6_2.

605 Prabhala, B. K., Aduri, N. G., Iqbal, M., Rahman, M., Gajhede, M., Hansen, P. R., et al. (2017).
606 Several hPepT1-transported drugs are substrates of the Escherichia coli proton-coupled
607 oligopeptide transporter YdgR. *Res Microbiol* 168, 443–449.
608 doi:10.1016/j.resmic.2017.01.005.

609 Prabhala, B. K., Aduri, N. G., Jensen, J. M., Ernst, H. A., Iram, N., Rahman, M., et al. (2014). New
610 insights into the substrate specificities of proton-coupled oligopeptide transporters from E.
611 coli by a pH sensitive assay. *FEBS Lett* 588, 560–565. doi:10.1016/j.febslet.2014.01.004.

612 Prabhala, B. K., Aduri, N. G., Sharma, N., Shaheen, A., Sharma, A., Iqbal, M., et al. (2018). The
613 prototypical proton-coupled oligopeptide transporter YdgR from Escherichia coli facilitates
614 chloramphenicol uptake into bacterial cells. *J Biol Chem* 293, 1007–1017.
615 doi:10.1074/jbc.M117.805960.

616 Punjani, A., and Fleet, D. J. (2021). 3D variability analysis: Resolving continuous flexibility and
617 discrete heterogeneity from single particle cryo-EM. *Journal of Structural Biology* 213,
618 107702. doi:10.1016/j.jsb.2021.107702.

619 Punjani, A., Rubinstein, J. L., Fleet, D. J., and Brubaker, M. A. (2017). cryoSPARC: algorithms for
620 rapid unsupervised cryo-EM structure determination. *Nat Methods* 14, 290–296.
621 doi:10.1038/nmeth.4169.

622 Punjani, A., Zhang, H., and Fleet, D. J. (2020). Non-uniform refinement: adaptive regularization
623 improves single-particle cryo-EM reconstruction. *Nat Methods* 17, 1214–1221.
624 doi:10.1038/s41592-020-00990-8.

625 Quistgaard, E. M., Löw, C., Guettou, F., and Nordlund, P. (2016). Understanding transport by the
626 major facilitator superfamily (MFS): structures pave the way. *Nat Rev Mol Cell Biol* 17, 123–
627 132. doi:10.1038/nrm.2015.25.

628 Quistgaard, E. M., Martinez Molledo, M., and Löw, C. (2017). Structure determination of a major
629 facilitator peptide transporter: Inward facing PepTSt from *Streptococcus thermophilus*

630 crystallized in space group P3121. *PLoS One* 12, e0173126.
 631 doi:10.1371/journal.pone.0173126.

632 Rohou, A., and Grigorieff, N. (2015). CTFFIND4: Fast and accurate defocus estimation from
 633 electron micrographs. *Journal of Structural Biology* 192, 216–221.
 634 doi:10.1016/j.jsb.2015.08.008.

635 Sanchez-Garcia, R., Gomez-Blanco, J., Cuervo, A., Carazo, J., Sorzano, C., and Vargas, J. (2020).
 636 DeepEMhancer: a deep learning solution for cryo-EM volume post-processing.
 637 *Bioinformatics* doi:10.1101/2020.06.12.148296.

638 Scheres, S. H. W. (2012). RELION: implementation of a Bayesian approach to cryo-EM structure
 639 determination. *J Struct Biol* 180, 519–530. doi:10.1016/j.jsb.2012.09.006.

640 Sharma, N., Aduri, N. G., Iqbal, A., Prabhala, B. K., and Mirza, O. (2016). Peptide Selectivity of the
 641 Proton-Coupled Oligopeptide Transporter from *Neisseria meningitidis*. *J Mol Microbiol*
 642 *Biotechnol* 26, 312–319. doi:10.1159/000447129.

643 Smith, D. E., Clémenton, B., and Hediger, M. A. (2013). Proton-coupled oligopeptide transporter
 644 family SLC15: physiological, pharmacological and pathological implications. *Mol Aspects*
 645 *Med* 34, 323–336. doi:10.1016/j.mam.2012.11.003.

646 Solcan, N., Kwok, J., Fowler, P. W., Cameron, A. D., Drew, D., Iwata, S., et al. (2012). Alternating
 647 access mechanism in the POT family of oligopeptide transporters. *EMBO J* 31, 3411–3421.
 648 doi:10.1038/emboj.2012.157.

649 Spanier, B., and Rohm, F. (2018). Proton Coupled Oligopeptide Transporter 1 (PepT1) Function,
 650 Regulation, and Influence on the Intestinal Homeostasis. *Compr Physiol* 8, 843–869.
 651 doi:10.1002/cphy.c170038.

652 Stauffer, M., Jeckelmann, J.-M., Ilgü, H., Ucurum, Z., Boggavarapu, R., and Fotiadis, D. (2022).
 653 Peptide transporter structure reveals binding and action mechanism of a potent PEPT1 and
 654 PEPT2 inhibitor. *Commun Chem* 5, 23. doi:10.1038/s42004-022-00636-0.

655 Terwilliger, T. C., Lutcke, S. J., Read, R. J., Adams, P. D., and Afonine, P. V. (2020). Improvement
 656 of cryo-EM maps by density modification. *Nat Methods* 17, 923–927. doi:10.1038/s41592-
 657 020-0914-9.

658 Thwaites, D. T., and Anderson, C. M. H. (2007). H⁺-coupled nutrient, micronutrient and drug
 659 transporters in the mammalian small intestine. *Exp Physiol* 92, 603–619.
 660 doi:10.1113/expphysiol.2005.029959.

661 Ural-Blimke, Y., Flayhan, A., Strauss, J., Rantos, V., Bartels, K., Nielsen, R., et al. (2019). Structure
 662 of Prototypic Peptide Transporter DtpA from *E. coli* in Complex with Valganciclovir
 663 Provides Insights into Drug Binding of Human PepT1. *J Am Chem Soc* 141, 2404–2412.
 664 doi:10.1021/jacs.8b11343.

665 Viennois, E., Pujada, A., Zen, J., and Merlin, D. (2018). Function, Regulation, and
 666 Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory
 667 Bowel Disease. *Compr Physiol* 8, 731–760. doi:10.1002/cphy.c170032.

668 Wagner, T., Merino, F., Stabrin, M., Moriya, T., Antoni, C., Apelbaum, A., et al. (2019). SPHIRE-
669 crYOLO is a fast and accurate fully automated particle picker for cryo-EM. *Commun Biol* 2,
670 218. doi:10.1038/s42003-019-0437-z.

671 Yan, N. (2015). Structural Biology of the Major Facilitator Superfamily Transporters. *Annu Rev*
672 *Biophys* 44, 257–283. doi:10.1146/annurev-biophys-060414-033901.

673 Zhang, Y., Zhang, Y., Sun, K., Meng, Z., and Chen, L. (2019). The SLC transporter in nutrient and
674 metabolic sensing, regulation, and drug development. *J Mol Cell Biol* 11, 1–13.
675 doi:10.1093/jmcb/mjy052.

676 Zhao, Y., Mao, G., Liu, M., Zhang, L., Wang, X., and Zhang, X. C. (2014). Crystal structure of the
677 *E. coli* peptide transporter YbgH. *Structure* 22, 1152–1160. doi:10.1016/j.str.2014.06.008.

678 Zheng, S. Q., Palovcak, E., Armache, J.-P., Verba, K. A., Cheng, Y., and Agard, D. A. (2017).
679 MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron
680 microscopy. *Nat Methods* 14, 331–332. doi:10.1038/nmeth.4193.

681 Zivanov, J., Nakane, T., Forsberg, B. O., Kimanius, D., Hagen, W. J., Lindahl, E., et al. (2018). New
682 tools for automated high-resolution cryo-EM structure determination in RELION-3. *eLife* 7,
683 e42166. doi:10.7554/eLife.42166.

684 Zivanov, J., Nakane, T., and Scheres, S. H. W. (2019). A Bayesian approach to beam-induced motion
685 correction in cryo-EM single-particle analysis. *IUCrJ* 6, 5–17.
686 doi:10.1107/S205225251801463X.

687 **5 Conflict of Interest**

688 The authors declare that the research was conducted in the absence of any commercial or financial
689 relationships that could be construed as a potential conflict of interest.

690 **6 Author Contributions**

691 Conceptualization: MK, CL

692 Methodology: MK, GF, HDTM, EP

693 Investigation: MK, GF, HDTM, EP

694 Visualization: MK, HDTM

695 Funding acquisition: DIS, JS, CL

696 Project administration: CL

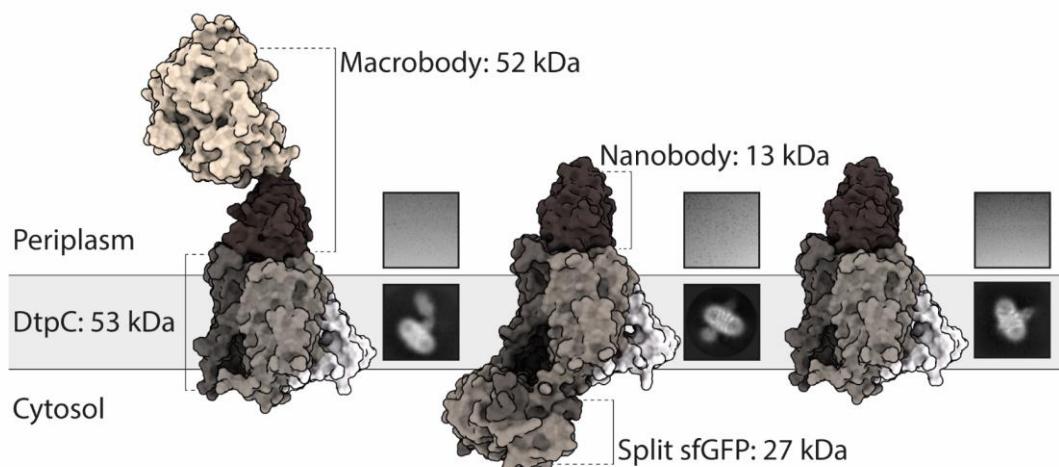
697 Supervision: DIS, JS, CL

698 Writing—original draft: MK, CL

699 Writing—review & editing: MK, GF, HDTM, DIS, EP, JS, CL

700 7 **Funding**

701 This work was supported by a grant from the BMBF (grant number: 05K18YEA). Part of this work
702 was performed at the CryoEM Facility at CSSB, supported by the UHH and DFG grant numbers (INST
703 152/772-1|152/774-1|152/775-1|152/776-1|152/777-1 FUGG).


704 8 **Acknowledgements**

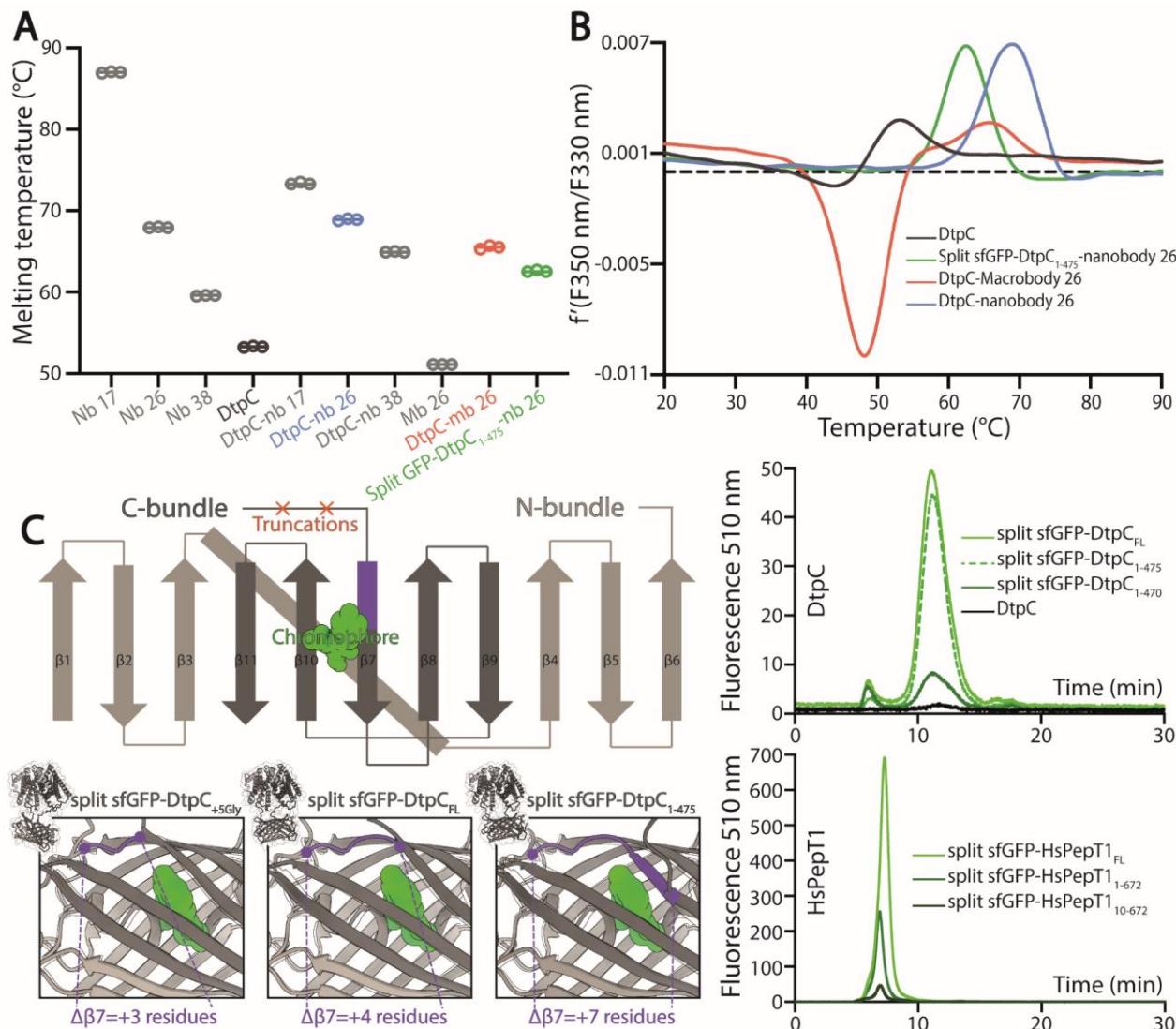
705 We thank the Sample Preparation and Characterization facility of EMBL Hamburg for support in this
706 project and the beamlines P13 and P14 at EMBL Hamburg for regular access. We acknowledge
707 Instruct-ERIC and the FWO for their support to the Nb discovery and Saif Saifuzzaman for the
708 technical assistance during Nb discovery. All past and current group members are acknowledged for
709 their input to this manuscript and their efforts to crystallize DtpC over the years.

710 9 **Data Availability statement**

711 Half-maps, and post processed maps of the dimeric arrangement and of the focused refinement, as well
712 as the atomic model of DtpC were deposited in the PDB and EMDB as deposition numbers 7ZC2, and
713 EMD-14618.

714 10 **Figures**

717

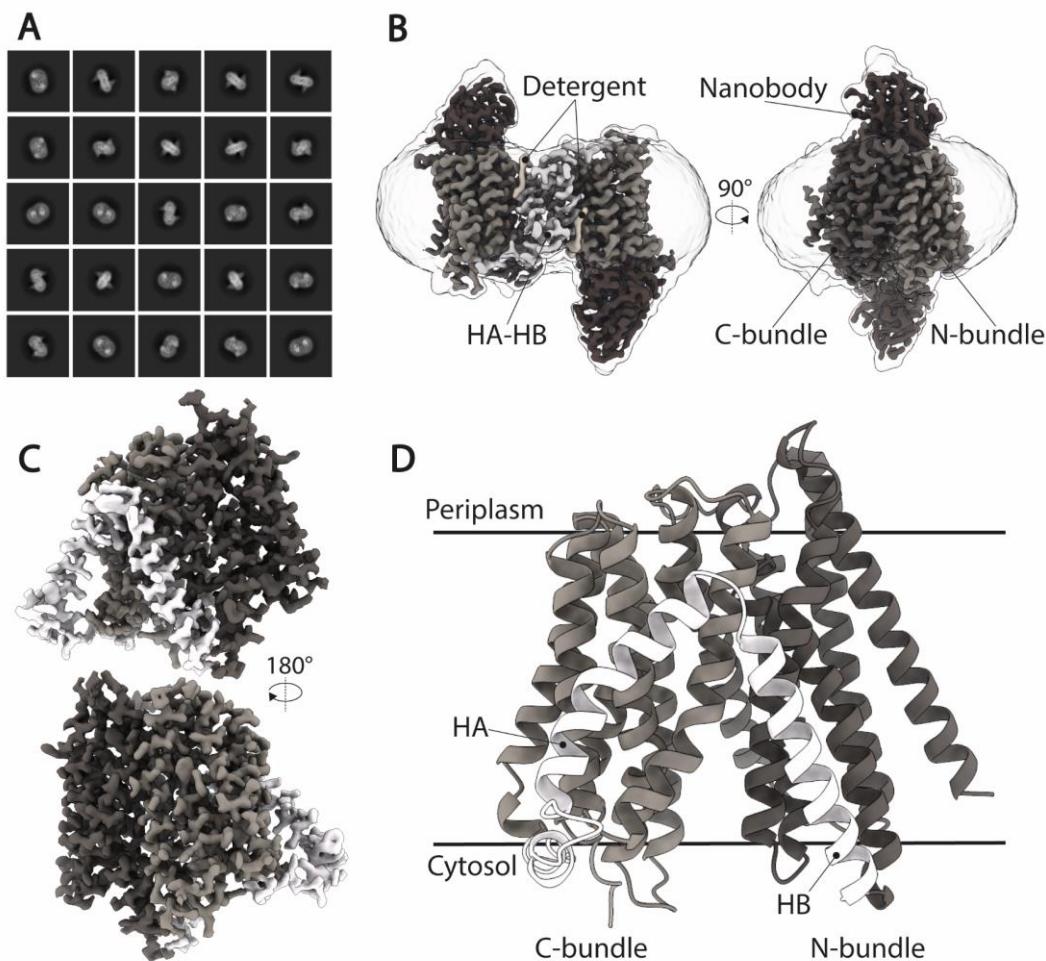

718 **Figure 1: Utilization of different fiducial markers to improve particle alignment and 2D**
719 **averaging from cryo-EM images.** From left to right: DtpC-Mb26, split-sfGFP-DtpC₁₋₄₇₅-Nb26, and
720 DtpC-Nb26 were purified, vitrified on grids and imaged. Single particles were identified, clustered and
721 averaged. The best average from each sample is shown under a representative raw micrograph.

722

723

724

725



726

727 **Figure 2: Characterization of the different fiducial markers.** (A) The melting temperature of each
728 fiducial and DtpC-fiducial complex was measured by nano-differential scanning fluorimetry (DSF) in
729 triplicate measurements as shown as open circles. The average of the three values is marked by a line.
730 (B) The first derivative of the summarized data in (A) is shown for DtpC and the three imaged samples
731 together with the respective fiducial. (C) A schematic representation of the split sfGFP-DtpC
732 architecture is shown on the top left panel. Below, structure predictions were generated for split-sfGFP-
733 DtpC_{5Gly}, split-sfGFP-DtpC_{FL}, sfGFP-DtpC₁₋₄₇₅, and overlaid with sfGFP (PDB accession number
734 2B3P). The dark-violet coloring corresponds to the fraction of $\beta 7$ which is properly folded in sfGFP
735 while unfolded in the restrained chimeric construct. The right panel shows HPLC chromatogram
736 profiles monitoring the fluorescence of the chromophore of split sfGFP in the context of the indicated
737 constructs, using 480 nm as excitation wavelength and recording at 510 nm the emitted light.

738

739

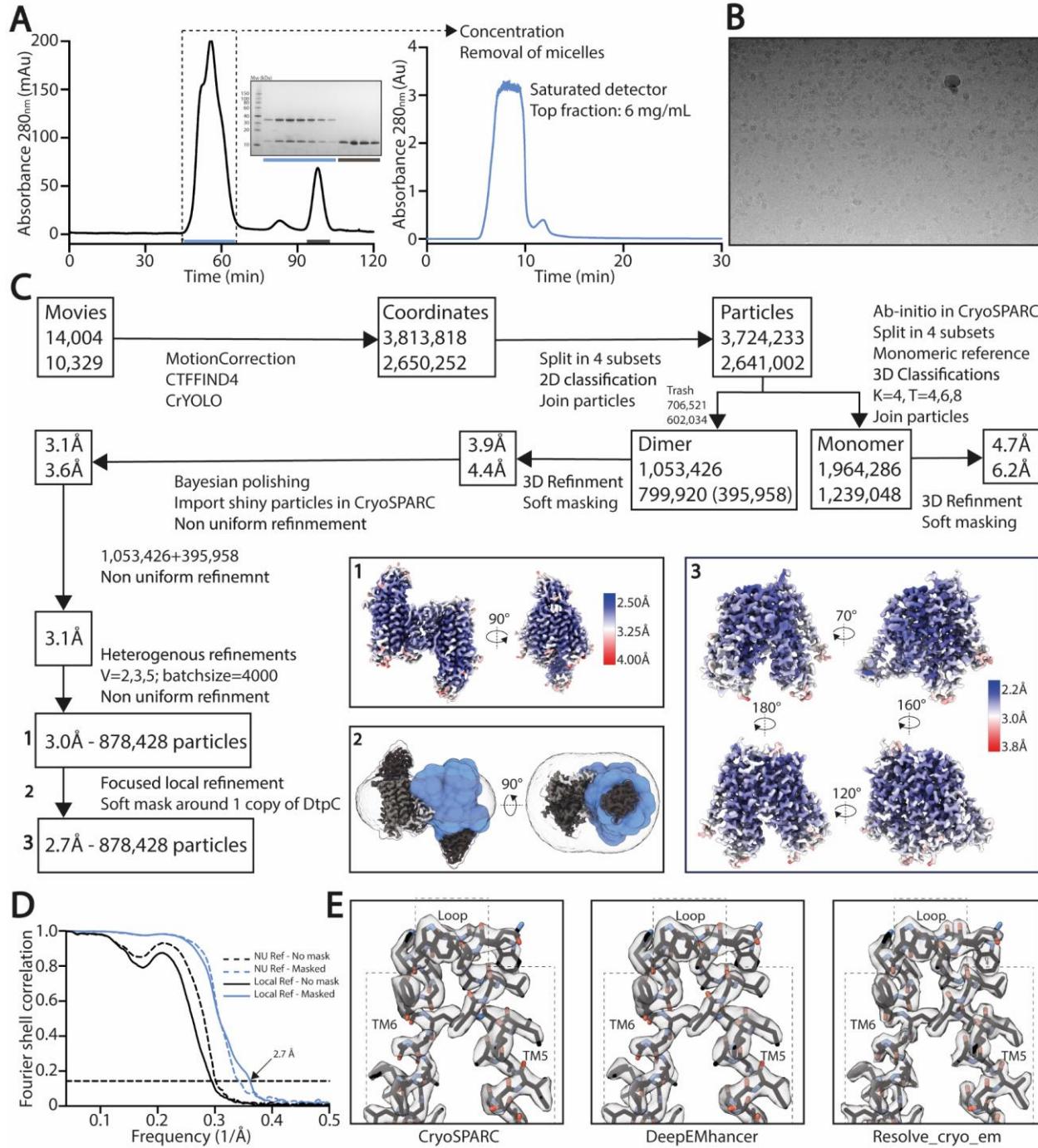
740

741 **Figure 3: Cryo-EM structure of DtpC-Nb26.** (A) Representative 2D class averages of the dimeric
742 population. (B) 3D reconstruction of the DtpC-Nb26 inverted dimer used for local focused refinement
743 on one copy of the transporter, shown in (C). (D) Atomic model of DtpC displayed as ribbon diagram.
744 The different structural elements are labelled.

745

746

747


748

749

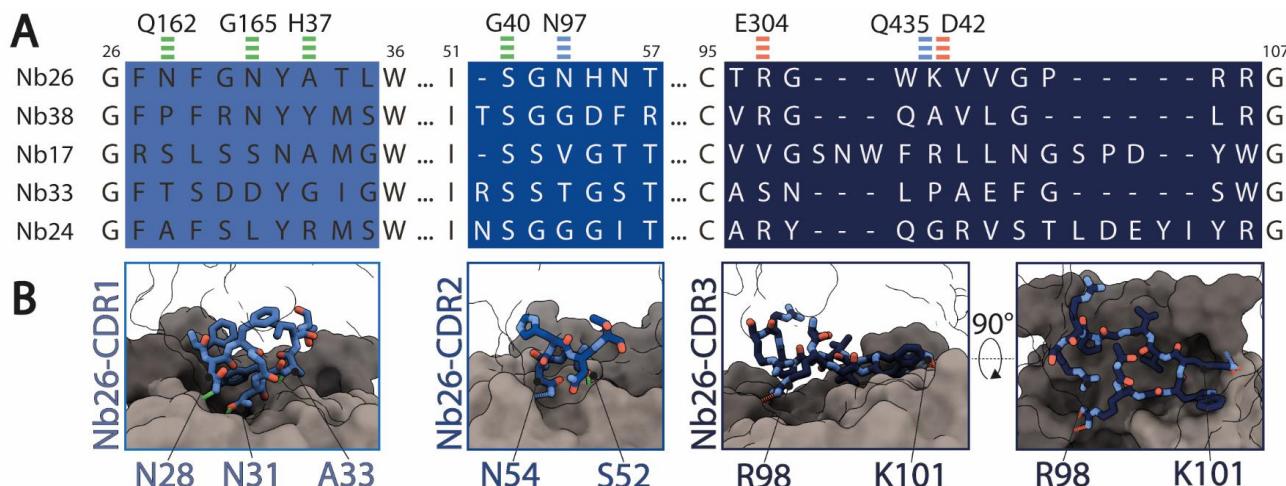
750

751

752

753

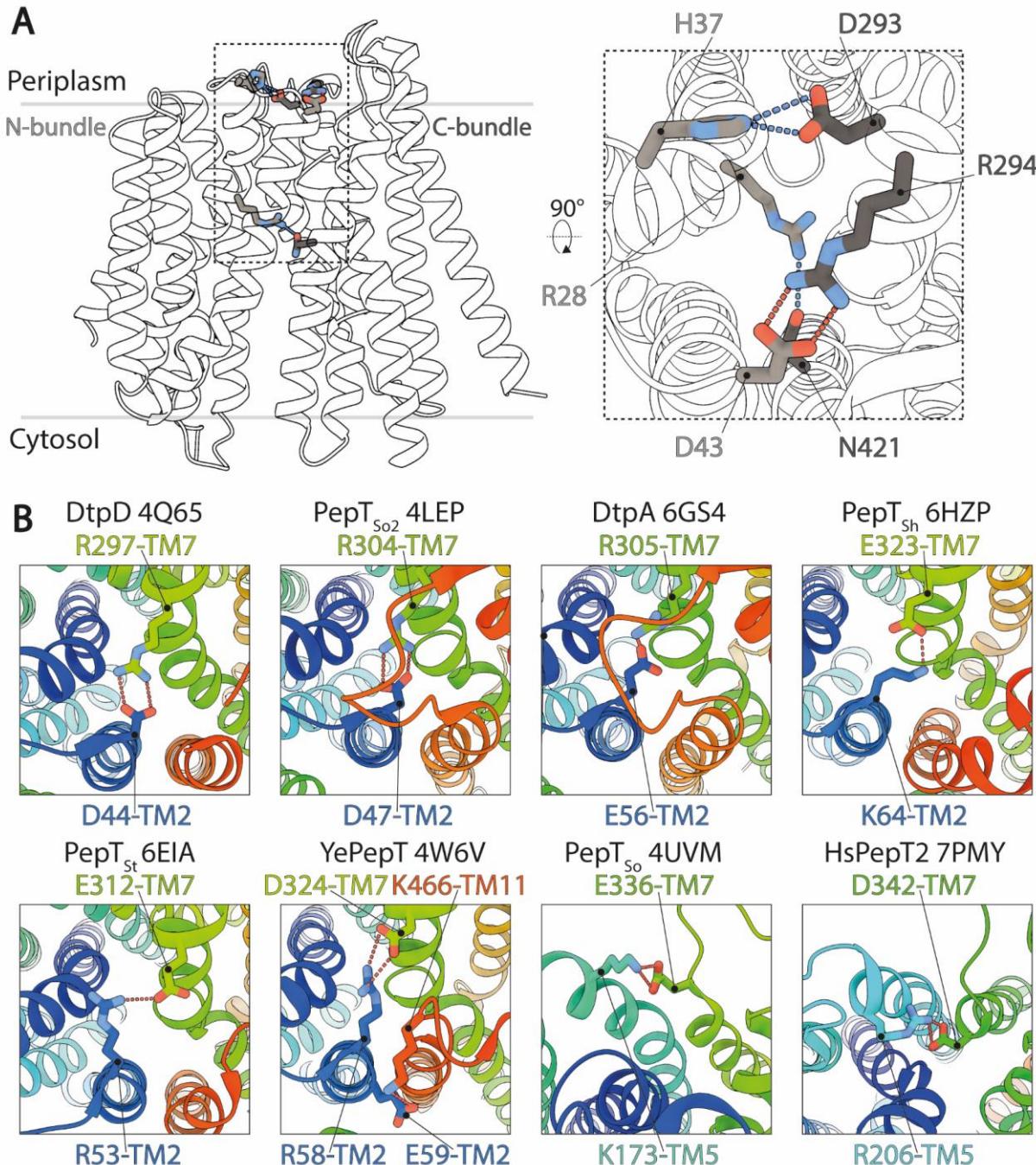
754 **Figure 4: High resolution structure determination of DtpC-Nb26.** (A) Gel filtration was performed
 755 on a preparative column (left) before concentrating the sample to 60 mg/mL and rerunning it on an
 756 analytic column on an HPLC system (right), in order to obtain a highly concentrated sample, free of
 757 empty detergent micelles. Peak shape already indicates a mixture of different oligomeric species. (B)
 758 Representative raw micrograph of the acquired dataset. The applied defocus is -1.5 μ m. (C) Summary
 759 of the image analysis. The angular assignments from the dimeric reconstruction were used as prior to
 760 perform a local focused refinement with reduced angular and translational searches on the masked
 761 region illustrated in blue. (D) The Fourier transforms over different shells on frequency space, of two
 762 independent volumes (half maps) were compared (FSC) and plotted as a function of spatial frequency,


763 to estimate the overall resolution using the 0.143 cutoff threshold. (E) The two half maps were used as
764 inputs to assess various post-processing strategies.

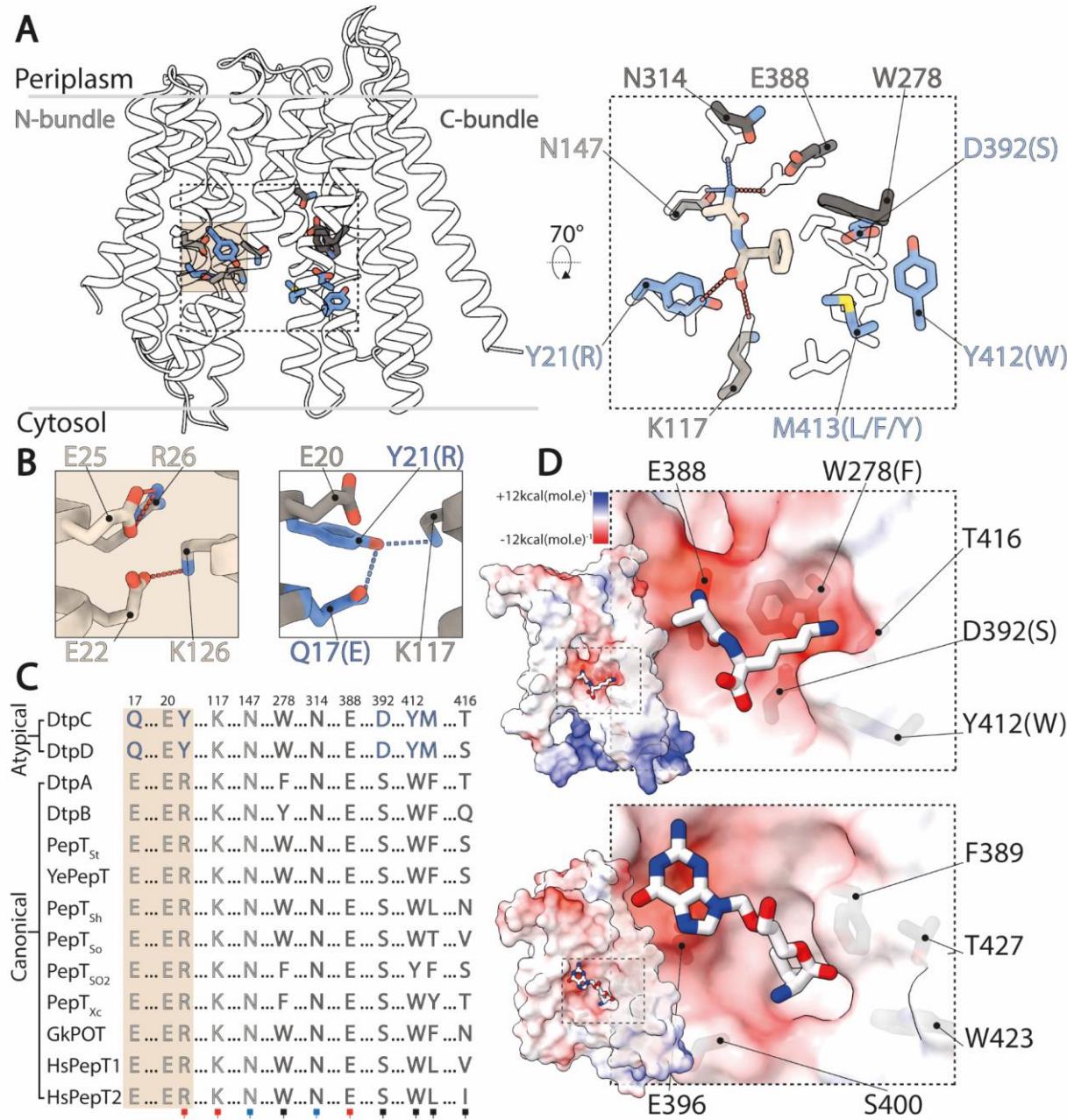
765

766

767


768

769


770 **Figure 5: Interactions between Nb26 and DtpC.** (A) The sequences of the five nanobodies
 771 representing five different families, obtained after selection, with their complementary determining
 772 regions (CDR) are shown. Interactions of Nb26 with DtpC are highlighted as green (hydrogen bounds
 773 involving the protein backbone), blue (hydrogen bounds involving side chains) and red dashes (salt
 774 bridges). (B) These interactions are further displayed in 3D. CDR regions are depicted as sticks on the
 775 surface of DtpC where the N-terminal bundle is colored in grey, and the C-terminal bundle in dark
 776 grey.

777

778

779 **Figure 6: Structural basis for the stabilization of the inward facing state in DtpC and other POT**
780 **homologues.** (A) The salt bridge and hydrogen bounds favoring closure of the two bundles on the
781 periplasmic side of DtpC are respectively shown as red and blue dashes. (B) The structures of
782 homologous POTs from *Escherichia coli* (DtpD, DtpA), *Shewanella oneidensis* (PepT_{So2}, PepT_{So})
783 *Staphylococcus hominis* (PepT_{Sh}), *Streptococcus thermophilus* (PepT_{St}), *Yersinia enterocolitica*
784 (YePepT) and *Homo sapiens* (HsPepT2), were all previously captured in the IF state. Here they were
785 analyzed to identify the strongest interaction stabilizing their common conformation. The structures
786 are colored from blue to red, from their N- to C-termini, and the respective PDB accession numbers
787 are indicated. Conserved salt bridges are labelled and highlighted by red dashed lines.

788

Figure 7: Structural basis for ligand selectivity in DtpC and atypical POTs. (A) Key residues involved in substrate binding are colored and shown as sticks. In the close up view, an overlay of HsPepT2 (transparent residues) bound to the dipeptide Ala-Phe (beige) with DtpC is shown. Residues colored in grey are conserved while blue residues are exclusive to atypical POTs. (B) The arrangement of the E1XXE2R motif from PepT_{st} is shown on the left panel, and the atypical Q1XXE2Y on the right. (C) The sequences of 13 POTs were aligned and residues involved in proton coupling and substrate binding are shown. The red squares mark residues strongly interacting with the charged termini of substrates peptides via salt bridges. The blue squares indicate two conserved asparagine residues stabilizing peptides through hydrogen bounds. The black squares point to residues constituting the side chain pocket of POTs, tuning ligand promiscuity or selectivity. (D) Surface representation colored by electrostatic potential, of the C-bundles of DtpC (top panel) and DtpA (bottom panel). A pose of the preferred substrate of DtpC, Ala-Lys, is proposed (top) and the co-crystallized valganciclovir drug hijacking canonical POTs is shown in DtpA (bottom). PDB accession codes of

802 previously published work: HsPepT2 bound to Ala-Phe: 7PMY; PepT_{St}: 5OXO; DtpA bound to
803 valganciclovir: 6GS4.

804

805 **11 Tables**

806 **Table 1:** Data collection and refinement statistics of the deposited DtpC structure

Protein reconstructed	Di- and tripeptide permease C (DtpC)
PDB accession code	7ZC2
EMDB accession code	EMD-14618

Data acquisition	
Microscope/Detector	Titan Krios/Gatan K3
Imaging software	EPU
Magnification	105,000
Voltage (kV)	300
Electron exposure (e-/Å ²)	75
Dose rate (e-/pix/s)	19.5
Frame exposure (e-/Å ²)	1.5
Defocus range (μm)	-0.9 to -1.8
Physical pixel size (Å)	0.85
Micrographs	24,333

Reconstruction	
Picked coordinates (cryolo)	6,464,070
Particles in 3D classification (RELION)	6,365,235
Particles in final refinement (CryoSPARC)	878,428
Symmetry imposed	C1
Map sharpening method	Phenix Resolve_cryo_em
Map resolution, FSC _{half maps} ; 0.143 masked/unmasked (Å)	2.72/3.43

Refinement	
Initial model used for refinement	AlphaFold2 model, relaxed with Amber
Model resolution (Å)	
FSC 0.143, masked/unmasked	2.64/5.43
Model composition	
Non-hydrogen atoms	7334
Protein residues	471
ADP B factor (Å ²) mean	12.73
R.m.s deviations	
Bond lengths (Å) (#>4σ)	0.003 (0)
Bond angles (°) (#>4σ)	0.616 (0)
Validation	
MolProbity score	1.44
Clashscore	8.04
Rotamer outliers (%)	0.00
Ramachandran plot	
Favored (%)	98.29
Allowed (%)	1.71
Outliers (%)	0.00

