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Abstract  

To learn multiscale functional connectivity patterns of the aging brain, we built a brain age 

prediction model of functional connectivity measures at seven scales on a large fMRI dataset, 

consisting of resting-state fMRI scans of 4259 individuals with a wide age range (22 to 97 years, 

with an average of 63) from five cohorts. We computed multiscale functional connectivity measures 

of individual subjects using a personalized functional network computational method, harmonized 

the functional connectivity measures of subjects from multiple datasets in order to build a functional 

brain age model, and finally evaluated how functional brain age gap correlated with cognitive 

measures of individual subjects. Our study has revealed that functional connectivity measures at 

multiple scales were more informative than those at any single scale for the brain age prediction, the 

data harmonization significantly improved the brain age prediction performance, and harmonization 

in the tangent space worked better than in the original space. Moreover, brain age gap scores of 

individual subjects derived from the brain age prediction model were significantly correlated with 

clinical and cognitive measures. Overall, these results demonstrated that multiscale functional 

connectivity patterns learned from a large-scale multi-site rsfMRI dataset were informative for 

characterizing the aging brain and the derived brain age gap was associated with cognitive and 

clinical measures. 

Keywords: resting-state fMRI, multiscale brain functional network, functional brain age, 

harmonization, tangent space parameterization, brain age gap 

Introduction  

Brain age derived from non-invasive magnetic resonance imaging (MRI) data using machine 

learning provides a novel means to quantify brain development and aging process (Douaud et al., 

2014; Cole and Franke, 2017). Brain age gap (BAG), quantifying the difference between the brain 

age and the chronological age, has demonstrated promising performance for elucidating atypical 

brain development and aging (Cole and Franke, 2017; Truelove-Hill et al., 2020).   

Most brain age modeling studies focused on structural MRI data and have shown that brain age is 

associated with changes in both gray matter (GM) (Erus et al., 2015; Chung et al., 2017; Minkova et 

al., 2017; Truelove-Hill et al., 2020) and white matter (WM) (Prins and Scheltens, 2015; Habes et 

al., 2016; Habes et al., 2021). Particularly, it has been demonstrated that the brain age derived from 

structural MRI data can accurately delineate trajectories of brain development and identify 
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individuals with cognitive precocity or delay (Erus et al., 2015). Similarly, it has been shown that 

brain development during adolescence is associated with widespread, regionally hierarchical gray 

matter loss and white matter increase (Truelove-Hill et al., 2020). A recent brain age modeling study 

also revealed brain aging trajectories in a large cohort (Habes et al., 2021). Moreover, large-scale 

neuroimaging studies have revealed that brain disorders are associated with brain age gap estimated 

from structural neuroimaging data (Kaufmann et al., 2019; Bashyam et al., 2020; Dinsdale et al., 

2021). 

The brain age has also been investigated based on functional neuroimaging data (Dosenbach et al., 

2010; Dennis and Thompson, 2014; Li et al., 2018; Zonneveld et al., 2019; Truelove-Hill et al., 

2020). It has been demonstrated that brain maturity can be accurately estimated based on individual 

subjects’ functional connectivity (FC) measures computed from functional MRI (fMRI) data 

(Dosenbach et al., 2010). Multiple studies have reported that the brain age is associated with changes 

in widespread functional network connectivity measures over the course of adolescence (Fair et al., 

2008; Di Martino et al., 2014; Truelove-Hill et al., 2020). A large population-based aging study has 

revealed that brain aging is associated with weak FC within the anterior default mode network 

(DMN), ventral/salience attention network (VAN), and somatomotor network (SMN) and strong FC 

within the visual network (VN) (Zonneveld et al., 2019). However, most existing functional 

neuroimaging-based brain aging studies typically focused on data from single datasets (Dosenbach et 

al., 2010; Chan et al., 2014; Liang et al., 2019; Zonneveld et al., 2019), lacking diversity in the study 

cohorts.  

In this study, we investigated functional connectivity patterns of the aging brain based on fMRI scans 

of a diverse cohort (n = 4259) from five different sites in a brain age modeling framework. We 

computed functional connectivity measures of individual subjects at multiple scales using a 

personalized functional network computational method (Li et al., 2017), harmonized the multiscale 

functional connectivity measures of different sites in their tangent space using ComBat-GAM 

(Pomponio et al., 2020), built a regression model on the harmonized functional connectivity 

measures to estimate the brain age and characterize the brain age gap, and finally we identified 

clinical and cognitive measures that were significantly correlated with the brain age gap in order to 

investigate whether the functional brain age gap is associated with cognitive functions and biological 

measures. 
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Materials and methods  

The overall design of this study for characterizing multiscale FC patterns of the aging brain is 

schematically illustrated in Figure 1, including computing multiscale FC measures of individual 

subjects, harmonizing the FC measures of multiple datasets, building a brain age prediction model to 

identify informative FC measures, and finally evaluating how the brain age gap correlated with 

cognitive/biological measures of individual subjects.  

Participants 

Table 1. Demographic information and the scanning protocols of the multisite data 

 BLSA OASIS-3 CARDIA-1 CARDIA-3 CARDIA-4 PENN_ABC UKBIOBANK 
Number of Subjects 

Number of Males (%) 
784 826 199 323 280 276 1571 

341 (43.39) 462 (55.93) 88 (44.22) 156 (48.30) 125 (44.64) 113 (40.94) 884 (44.44) 

Age 

Mean±std 65.97±14.89 70.24±9.42 51.27±4.26 51.51±3.77 51.10±3.91 68.37±13.37 62.63±7.31 
Min 22 43 42 43 43 23 45 
Max 95 97 61 61 61 95 75 

Median 68 70 52 52 52 70 63 

Scanner Philips Achieva 
3T 

Siemens  
TIM Trio 3T 

Philips Achieva 
3T 

Siemens  
TIM Trio 3T 

Siemens  
TIM Trio 3T 

Siemens 
Prisma 3T 

GE (Multiband 
acceleration) 

T1w 

Resolution 
(mm3) 

1.2×1×1 1×1×1 1×1×1 1×1×1 1×1×1 0.8×0.8×0.8 1×1×1 

TR (ms) 35 2400 1900 1900 1900 3000 2000 
TE (ms) 3 3 2.89 2.89 2.89 3.54 2.01 

fMRI 

Resolution 
(mm3) 

3×3×4 4×4×4 3.5×3.5×3.5 3.5×3.5×3.5 3.5×3.5×3.5 2×2×2 2.4×2.4×2.4 

TR (ms) 2000 2200 2000 2000 2000 720 735 

TE (ms) 25 27 25 25 25 37 39 
Duration (min.) 6 6 4 4 4 5 6 

Num. of volumes 180 164 120 120 120 420 490 

 

We identified 4549 participants with resting-state fMRI data from the iSTAGING (Imaging-based 

coordinate SysTem for AGIng and NeurodeGenerative diseases) consortium (Habes et al., 2021). 

The fMRI scans were collected from subjects at a wide age range (22 to 97 years) from 5 different 

cohorts, including the Baltimore Longitudinal Study of Aging (BLSA), the Open Access Series of 

Imaging Studies (OASIS-3), the Coronary Artery Risk Development in Young Adults (CARDIA), 

the University of Pennsylvania Aging Brain Cohort (PENN_ABC), and the UK (United Kingdom) 

Biobank. Particularly, the CARDIA cohort was divided into three subcohorts, namely CARDIA-1, 

CARDIA-3, and CARDIA-4, according to their scanners/sites used for the data collection. Since 

identical scanners and protocols were used for brain imaging scanning in the UKBiobank (Focke et 

al., 2011; Chen et al., 2014; Alfaro-Almagro et al., 2018), the UKBiobank scans were considered 

from one single data site. In summary, the fMRI scans were modeled from seven different sites, their 

demographic information and scanning protocols are summarized in Table 1. This study was 
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approved by the supervisory committee and the institutional review board of the University of 

Pennsylvania School of Medicine. 

Data processing 

The UKBiobank scans were processed using UKBiobank preprocessing pipeline (Alfaro-Almagro et 

al., 2018), and other scans were processed using a modified UKBiobank preprocessing pipeline with 

steps, including head motion correction by FSL’s MCFLIRT (Jenkinson et al., 2012), global 4D 

mean intensity normalization, and temporal high-pass filtering (> 0.01 Hz). After these standard pre-

processing steps, random noise was removed using FIX (FMRIB’s Independent Component 

Analysis-based Xnoiseifier) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). Specifically, the 

FIX model was built upon WhII_Standard.RData from Whitehall Imaging Study (Filippini et al., 

2014) due to its similarity with our rsfMRI data. The preprocessed rsfMRI scans were co-registered 

to their corresponding T1-weighted images using FLIRT with BBR as the cost function, and the T1-

weighted images were registered to the MNI152 template using FSL’s FNIRT (non-linear 

registration), generating rsfMRI scans with a spatial resolution of 2 × 2 × 2 mm3. A brain mask was 

applied in standard space to exclude white matter, cerebral spinal fluid, and cerebellum (cerebellum 

are not fully covered for some subjects).  

Participants were excluded from subsequent analyses if their rsfMRI scans had mean relative 

displacement higher than 0.2 mm, more than 60% of frames with motion exceeding 0.3 mm, or 

temporal signal-to-noise ratio (tSNR) smaller than 100 except for the UKBiobank scans that were 

acquired using a multiband protocol (Alfaro-Almagro et al., 2018). In total, 290 participants were 

excluded, and the remaining 4259 subjects were included in the following analyses. 

Computation of multiscale functional connectivity measures 

Multiscale functional connectivity measures were computed from each preprocessed rsfMRI scan 

based on functional networks (FNs) obtained using a personalized functional network computational 

method (Li et al., 2017; Cui et al., 2020). We computed personalized FNs for each individual subject 

using a group-sparsity regularized non-negative matrix factorization (NMF) method (Li et al., 2017; 

Cui et al., 2020), which has been successfully adopted in multiple recent studies for computing 

personalized FNs (Cui et al., 2022; Pines et al., 2022; Shanmugan et al., 2022). Particularly, we first 

computed group-level FNs using a normalized-cuts based spectral clustering method to identify 

representative FNs from 50 sets of group-level FNs, each set being computed on a subset of 150 

subjects randomly selected from each of the sites with a probability proportional to the sample sizes 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.07.27.501626doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501626
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

of different sites. The group-level FNs were then used as initializing FNs to compute personalized 

FNs based on each subject’s fMRI data.  

Given a group of � subjects, each with fMRI data �� � ���� , � � 1, … , � consisting of 
 voxels and 

� time points, we aim to find � non-negative FNs 
� � �
�,�� � �  �� � 	 and their corresponding time 

series �� � ��
�,��� � �  ���	 for each subject, such that  

�� �  ���
��
 �  �� , �. �.  �� , 
�  � 0, � 1 � � �  �,                   (1) 

where �
��

 is the transpose of 
� , and ��  is additional independent noise following a Gaussian 

distribution. Both ��  and 
�  are constrained to be non-negative so that each FN does not contain any 

anti-correlated functional units. A group consensus regularization term was applied to ensure inter-

individual correspondence, which was implemented as a scale-invariant group sparsity term on each 

column of 
� , � � 1, … , � and formulated as   

�� � ∑ |
�,�
�,…,��	��� |�,� � ∑ �∑ ���,�� ���

��� �
�/�



���

�∑ ∑ ���,�� ���
���



��� �

�/�,      (2) 

The data locality regularization term was applied to encourage spatial smoothness and coherence of 

the FNs using graph regularization and formulated as: 

��� � �� ��
��
 �� 
�!,     (3) 

where  �� � "�� # $��  is a Laplacian matrix for subject � , $��  is a pairwise affinity matrix to 

measure spatial closeness or functional similarity between different voxels, and "��  denotes its 

corresponding degree matrix. The affinity between each pair of spatially connected voxels is 

calculated as �1 � %&����·, � , �·,!� �! /2, where %&�����, � , ��,!� � is the Pearson correlation coefficient 

between time series ��, �  and ��,!�  while others were set to be zero so that $��  would be sparse. 

Finally, we identified subject specific functional networks by optimizing a joint model with 

integrated data fitting and regularization terms formulated as: 

min
���,
��

����� �	�
������
�

�
�

���


���� 
 ������
�

���


����
�

���

, 

�. �. , �� , 
� � 0, )*
·,�� *)� � 1, �� + , + �, �1 + � + �,   (4) 
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where λ�  and λ�  are used to balance the data fitting, data locality, and group consensus 

regularization terms with values setting as the those validated in the previous study (Li et al., 2017). 

Instead of computing the FNs at a specific spatial scale, we computed the FNs at seven scales, 

yielding seven sets of  � (�=17, 25, 50, 75, 100, 125 and 150) FNs.  

To facilitate the interpretation of the personalized FNs, we labeled each of them based on spatial 

overlapping between their group-level FNs and Yeo’s 7-network atlas, including the visual network 

(VN), somatomotor network (SMN), dorsal attention network (DAN), salience/ventral attention 

network (VAN), limbic network (LN), frontoparietal network (FPN) and default mode network 

(DMN). 

Sanity testing for computed personalized FNs 

Quality control was carried out to ensure that the personalized FNs had higher functional 

homogeneity than their group-level counterparts and maintained good spatial correspondence with 

their group-level counterparts. Particularly, a FN’s functional homogeneity was measured by a 

weighted mean of the correlation coefficients between the time courses of all the voxels within the 

FN and its centroid time course that was calculated as a weighted mean time course over the FN with 

its voxel-wise loadings as weights. The spatial correspondence between the personalized FNs and the 

group-level FNs was evaluated based on pairwise spatial correlation coefficients. Specifically, each 

personalized FN is deemed to maintain correspondence with its corresponding group level 

counterpart if ∆Sim" � Corr�FN"
#, FN"

$� # max%,%&" Corr �FN"
#, FN%

$! 9 0, where FN"
# denotes the i-

th personalized FN, FN"
$ denotes its corresponding group average FN, FN%

$ represents other group 

average FNs, and  Corr(·,·) is the spatial correlation coefficient between two FNs. 

Harmonization of functional connectivity measures in tangent space 

In order to alleviate site effect of functional connectivity measures of participants from different 

sites, we adopted ComBat-GAM to harmonize the functional connectivity measures (Pomponio et 

al., 2020). Since the functional connectivity measures themselves essentially resided on a 

Riemannian manifold (You and Park, 2021), we applied ComBat-GAM to the functional 

connectivity measures in their tangent space (Pervaiz et al., 2020). Functional connectivity measure 

between each pair of FNs within each set was estimated as Pearson correlation between time series 

of the FNs (Zhou et al., 2020), yielding seven sets of functional connectivity matrices : � �	�	, 
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�=17, 25, 50, 75, 100, 125 and 150. The tangent space projection of the FC matrix : was obtained 

through 

:;;< � lo>' ?:(
)�

�::(
)�

�@,      (5) 

where :( � �	�	  is a reference point in the manifold, K is the number FNs, lo>' represents the 

logarithm operation on the FC matrix and :;;< is the resulting FC measures in the tangent space. To 

ensure that all projected covariance matrices lie in the same tangent plane, we chose the geometric 

mean as the reference point (Fletcher et al., 2004; Ng et al., 2014; Yger et al., 2017). The FC 

measures :;;< in the tangent space can be projected back to the original space by 

: � :(
�

�ABC'�:;;<�:(
�

� ,       (6) 

where ABC'  is the exponential operation on the FC matrix.  

We harmonized the FC measures in the tangent space using ComBat-GAM (Pomponio et al., 2020) 

with sex and age as covariates. After data harmonization, we vectorized the upper triangular part of 

the harmonized connectivity matrix in each scale and stacked them across scales to obtain a panel of 

multiscale features as illustrated in Figure 1. 

 

Figure 1. An overall flowchart of the present study. Multiscale functional connectivity measures were computed using a 

personalized functional network computing method, projected into their tangent space, harmonized using a Combat 

method, and finally used as input to build a brain age prediction model, from which a brain age gap score was derived to 

charactering the aging brain based functional MRI data of individuals. 
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Experimental design and statistical analysis 

Brain age predictive modeling 

We built a brain age prediction model on the harmonized FC measures using Ridge regression by 

optimizing  

min* ∑ EfEc"H # y"H�+"�� � λ ∑ *|w,|*�#
,�� ,            (7) 

where K"  and %" denote age and features of subject i, p denotes the number of features, L�  is a 

regression coefficient, � � 1,2, … , C, and λ is a regularization parameter. We adopted a nested 5-fold 

cross-validation, with the inner folds determining the optimal parameter λ  within the grid of 

M2- , 2-./, 20, … , 21./, 22N and the outer folds estimating the generalizability of the model. The cross-

validation folds were generated randomly with comparable age distributions. The brain age 

prediction performance was quantified with mean absolute error (MAE) and correlation coefficient 

between the chronological age and the predicted age. The optimal  λ value was determined based on 

MAE. 

We also built brain age prediction models on FC measures in their original space, with and without 

the data harmonization, as well as FC measures in the tangent space without the data harmonization, 

respectively. In addition to the brain age prediction models built on the multiscale functional 

connectivity measures, we also built brain age prediction models on FC measures of individual 

scales with 17, 25, 50, 75, 100, 125 and 150 FNs, respectively. All the brain age prediction models 

were built and evaluated with the same nested 5-fold cross-validation. The performance difference 

between the prediction models built on FC measures with and without the data harmonization was 

assessed with Wilcoxon signed-rank test across individual scales and their combination. 

Functional network connectivity measures informative for brain age prediction 

A permutation test was performed to evaluate the statistical significance of individual FC measures 

and the accuracy of the brain age prediction model (Mourao-Miranda et al., 2005; Cui et al., 2018). 

Particularly, we permuted the age labels of all subjects and repeated the whole cross-validation 

process (splitting the whole dataset into training and testing subsets) with the optimal λ parameter for 

1000 times, yielding 1000 null brain age prediction models. We projected the weight derived from 

the model back to the original space for interpretation with Equation (6) using the same reference 

matrix. Thus, we obtained 1000 weight vectors and projected them back to original space. We also 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.07.27.501626doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501626
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

projected the feature weight from the real model without permuting the labels back to original space. 

The p value for each feature is the proportion of permutations that showed a higher weight value than 

the actual value from the real model. And those features with p < 0.05 were identified as the 

significantly contributing network connectivity features. Each model’s regression coefficients were 

projected back to the original space of their associated FC measures for quantifying their 

contribution to the brain age prediction. Furthermore, correlation between individual FC measures 

and the chronological age was also calculated to identify FC measures significantly associated with 

aging. 

Exploration of association between the brain age gap and clinical/cognitive score 

Cognitive and clinical measures available for the majority of the 4259 subjects were curated to 

investigate if they are correlated with the brain age gap. We computed correlations between the BAG 

and cognitive and physiological functioning measures of individual subjects. As summarized in 

Table 3, the cognitive and physiological functioning measures included attention, executive function, 

working memory, and verbal, spanning several cognitive domains, as well as Systole, Diastole, and 

BMI (Body Mass Index). Pearson’s correlations between the BAG and these measures were 

computed with sex, age, and site as covariates (Dinsdale et al., 2021). The BAG was computed with 

the brain age prediction bias corrected using a linear regression method (Beheshti et al., 2019).  

Results  

Sanity testing results 

We performed the quality control of personalized FNs at all different spatial scales (17, 25, …, 150), 

and found that all the personalized FNs had higher functional homogeneity than their corresponding 

group-level FNs and they maintained good correspondence with their corresponding group-level FNs, 

i.e.,  ∆Sim" was larger than 0 for each personalized FN. Overall, the generated personalized brain 

functional networks provided an improved fit to each individual’s fMRI data than to the group-level 

FNs that are not equipped to characterize inter-individual variations in functional neuroanatomy. 

Brain age prediction results 

The prediction performance of all the brain age prediction models under comparison is summarized 

in Table 2 and illustrated in Figure 2, indicating that the brain age prediction model built on the 
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harmonized multiscale FC features in the tangent space obtained the best age prediction 

performance, with a mean MAE of 5.57 years and a mean correlation coefficient of 0.78. The 

permutation test indicated that its prediction performance was statistically significant with C < 0.001 

in terms of both MAE and correlation coefficient. The data harmonization did improve the 

performance if the models were built on FC measures in the tangent space (C = 0.025 for MAE and 

C = 0.006 for correlation coefficient, Wilcoxon signed-rank test across individual scales and their 

combinations) but did not consistently improve the models built on FC measures in their original 

space.  

 

Figure 2. Correlations between the chronological age and the predicted age obtained by prediction models built upon 

functional connectivity measures of individual scales and their combination. In each subplot, x-axis represents the 

chronological age while y-axis denotes the predicted age. (A): brain age was predicted by the prediction model built upon 

the functional connectivity measures of all individual spatial scales; (B)-(F): brain age was predicted by the prediction 

model built upon the functional connectivity measures between functional networks computed with the settings of 17, 25, 

50, 75, 100, 125, and 150 FNs separately. In each subplot, the black dashed line is the identity line while the blue solid 

line indicates the best linear fit of the predicted age to the chronological age. 
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Figure 2 shows scatter plots and associated correlation coefficients between the predicted and 

chronological ages obtained by the brain age prediction models built on the harmonized FC measures 

of individual scales and their combination in the tangent space, indicating again that the brain age 

prediction model built on the harmonized multiscale FC features in the tangent space obtained the 

best age prediction performance. 

Table 2. Brain age prediction performance (MAE and correlation between the predicted and chronological ages) of all 
brain age prediction models built on FC measures of individual scales and their combination with and without the data 
harmonization (H+ and H- denote the models built on the FC measures harmonized or not, respectively) 
 

 

Scales 

MAE (year) between 
predicted age and chronological age 

Correlation coefficient between 
predicted age and chronological age 

Original Space Tangent Space Original Space Tangent Space 
H- H+ H- H+ H- H+ H- H+ 

17 8.45±0.12 8.34±0.14 8.01±0.11 7.96±0.12 0.42±0.03 0.42±0.03 0.49±0.03 0.51±0.03 

25 7.88±0.16 8.12±0.17 7.38±0.15 7.43±0.18 0.52±0.03 0.47±0.03 0.58±0.03 0.58±0.02 

50 7.67±0.14 8.23±0.12 7.21±0.16 7.33±0.16 0.56±0.03 0.46±0.02 0.64±0.01 0.62±0.02 

75 7.92±0.18 8.74±0.27 7.91±0.11 8.17±0.19 0.55±0.02 0.41±0.03 0.61±0.08 0.59±0.01 

100 8.28±0.13 9.30±0.16 8.02±0.08 7.80±0.10 0.53±0.02 0.36±0.02 0.60±0.07 0.61±0.01 

125 8.26±0.24 8.88±0.25 7.19±0.12 6.96±0.15 0.54±0.03 0.42±0.04 0.65±0.02 0.67±0.02 

150 8.56±0.19 8.86±0.09 6.70±0.09 6.45±0.09 0.52±0.04 0.42±0.03 0.68±0.02 0.71±0.02 

Multiscale 7.65±0.17 8.29±0.18 5.92±0.11 5.57±0.11 0.59±0.03 0.46±0.03 0.76±0.02 0.78±0.01 

 

Informative functional connectivity measures for predicting brain age 

Figure 3 shows a hierarchical organization of the FNs from coarse to finer scales and FC measures 

contributed to the brain age prediction model built on the harmonized multiscale FC features in the 

tangent space with statistical significance (43 FC measures in total, � � 0.05, permutation test), 

illustrating that FC measures at multiple scales were informative for the brain age prediction. 

Particularly, FC measures between DMN, frontoparietal network (FPN), VN, VAN, SMN, dorsal 

attention network (DAN) and limbic network (LN) played vital roles. Among 43 informative FC 

measures identified by the brain age prediction model, 19 were significantly correlated with aging 

(p<0.05) and most of them were connections between SMN, VAN, DMN or FPN, as illustrated in 

Figure 4. 
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Figure 3. Functional connections informative for predicting the brain age. (A): A multi-scale organization of the brain 

networks, illustrated following the Yeo atlas of 7 networks, including VN, SMN, DAN, VAN, LN, FPN and DMN. (B): 

Functional connections informative for the brain age prediction. The different edge colors are used to differentiate 

different brain networks, corresponding to the FNs of the Yeo’s 7-network parcellation. 
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Figure 4. Functional connections with connectivity significantly correlated with the chronological. Regression lines in 

red and blue indicate functional connectivity measures positively and negatively correlated with the chronological age, 

respectively. 

Brain age gap correlation with cognitive scores 

Table 3 summarizes correlation coefficients between BAG and clinical/cognitive measures. 

Particularly, MMSE (Mini-Mental State Examination), DSST (Digital Symbol Substitution Test), 

CVLT_IM (California Verbal Learning Test Immediate), CVLT_Long (California Verbal Learning 

Test Long), DSB (Digit Span Backward), and DSF (Digit Span Forward) were negatively correlated 

with the BAG, while measures of ‘time taken to complete a cognitive task’, i.e., TMT_A (Trail 

Making Test Part A) and TMT_B (Trail Making Test Part B) were correlated positively with the 

BAG. The BAG was positively correlated with blood pressure (systole and diastole) and BMI (Body 

Mass Index).  
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Table 3. Correlation between BAG and cognitive/clinical measures 

 Clinical or cognitive measures 
correlation 
coefficients p values 

Attention 
DSF -0.061 0.0109 

TMT_A 0.078 0.0012* 

Executive 

DSST -0.0957 0.0002* 
TMT_B 0.0641 0.0089 

DSB -0.0779 0.0138 

Verbal Fluency 

BNT -0.1063 0.24 

ANI_Fluency -0.1158 0.0664 

Category_Fluency -0.0866 0.0163 

Letter_Fluency -0.0667 0.0646 

VEG_Fluency -0.1405 0.0137 

Verbal Memory 
CVLT_IM  -0.0849 0.019 

CVLT_Long -0.0919 0.0113 

Global 

MMSE -0.1362 0.0000* 

MOCA -0.146 0.0035 

WM_SUM -0.1629 0.0171 

Biological 

Systole 0.0544 0.0032 

Diastole 0.0148 0.4213 

BMI 0.0376 0.0301 
1. * Significant after Bonferroni correction. 
2. ANI_Fluency: Animal Fluency; BMI: Body Mass Index; BNT: Boston Naming Task; CVLT_IM: California Verbal Learning Test 
Immediate; CVLT_Long: California Verbal Learning Test Long; DSB: Digit Span Backward; DSF: DSpan igit Forward; DSST: 
Digital Symbol Substitution Test; MMSE: Mini-Mental State Examination; MOCA: Montreal Cognitive Assessment; TMT_A: Trail 
Making Test Part A; TMT_B: Trail Making Test Part B; VEG_Fluency: Vegetable Fluency; WM_SUM: Working Memory Summary. 

Discussion  

In this study, we built a brain age prediction model of functional connectivity measures at multiple 

scales on a large fMRI dataset to learn multiscale functional connectivity patterns of the aging brain 

and characterize the functional brain. The brain age prediction model built on the harmonized data 

obtained promising age prediction performance and the derived brain age gap was significantly 

correlated with cognitive measures, consistent with established brain aging trends.  

In the present study, the personalized FNs was computed with an initialization of group-level FNs 

that were computed in 50 runs, each on a subset of 150 subjects randomly selected from each of the 

sites with a probability proportional to the sample sizes of different sites. This procedure may 

generate personalized FNs biased to large sites. We also computed the personalized FNs with an 

initialization of group-level FNs that were computed in 50 runs, each on a subset of 154 subjects 

randomly selected from each site with the same number (n = 22) of subjects. Age prediction models 

were built on the computed personalized FNs and evaluated with the same data harmonization in the 

tangent space with the same cross-validation. The MAE between the predicted and chronological 

ages was 5.56 years, close to the result obtained by the prediction models built on the personalized 
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FNs with the group-level FNs computed on subsets with subjects randomly selected proportional to 

the samples sizes of different sites (MAE = 5.57), indicating that the age prediction performance was 

not affected too much by the bias in personalized FNs. It merits further investigation to elucidate the 

sample size effect on the personalized FNs. 

Most existing studies investigate the brain functional networks at a specific scale or resolution. For 

instance, functional networks can be computed based on a set of 17 FNs or a brain atlas with a fixed 

number of regions. On other hand, recent studies have demonstrated that the brain is a multi-scale 

system (Betzel and Bassett, 2017; Eickhoff et al., 2018) and with a hierarchical organization (Pines 

et al., 2022). Therefore, we hypothesized that functional networks computed at multiple scales may 

provide complementary information for characterizing the brain. Our experiment results have 

provided empirical evidence that FNs at multiple scales provided useful information for predicting 

the brain age, with performance better than FNs at any single scale, as indicated by the results 

presented in Table 2 and Figure 3B. Moreover, the improved brain age prediction performance 

(Supplementary Table 1) was also observed for functional networks computed with a multiscale 

brain atlas (Craddock et al., 2012). 

We utilized a personalized functional network computational method (Li et al., 2017; Cui et al., 

2020). Comparison results have demonstrated that the prediction model built upon the multiscale 

brain functional connectivity measures could better predict the brain age than those built upon 

functional connectivity measures of any single scale. As illustrated in Figure 3(A), the multi-scale 

brain functional networks largely follow a hierarchical organization structure with a few exceptions 

in finer scales with the FNs computed with settings of 75, 100, 125 and 150 FNs. Specifically, one 

FN of the LN computed with the setting of 50 FNs switches to the VN computed with the setting of 

75 FNs, while two FN of the DMN computed with the setting of 100 FNs switch to SMN and LN 

computed with the settings of 125 FNs. These results indicated that less stable brain decompositions 

were generated at finer scales, consistent with findings in structural imaging studies (Varikuti et al., 

2018; Patel et al., 2020).  

Data harmonization is a prerequisite step in neuroimaging studies with data from multiple sites 

(Shinohara et al., 2017). Several methods have been developed to harmonize data from different 

sites, including ComBat and its variants, normative modelling, as well as deep learning based 

algorithms that transfer the data from different sites into a common, comparable space (Fortin et al., 

2017; Fortin et al., 2018; Yu et al., 2018; Dewey et al., 2019; Kia et al., 2020; Moyer et al., 2020; 

Bayer et al., 2021; Liu et al., 2021; Zuo et al., 2021; Rutherford et al., 2022; Sun et al., 2022). 

Particularly, ComBat and its variants have been successfully applied to a variety of neuroimaging 
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studies to harmonize diffusion tensor imaging measures, cortical thickness, regional volume 

measures, and functional connectivity measures (Fortin et al., 2017; Fortin et al., 2018; Yu et al., 

2018). A recent study has demonstrated that ComBat-GAM, the method adopted in the present study, 

outperformed other data harmonization methods in detecting sex differences in regional cortical 

thickness (Sun et al., 2022). Normative modelling uses percentiles or z-scores to chart the variation 

of one or several targeting variables orthogonal to the variation of other covariates. Instead of 

removing site effects from data as a data preprocessing step, normative modelling models site 

variance as part of the normative model (Kia et al., 2020; Bayer et al., 2021; Rutherford et al., 2022). 

However, the computational cost and complexity of the model limit its current use to low 

dimensional imaging data. Deep learning-based data harmonization methods are typically built upon 

auto-encoders or generative adversarial networks (Dewey et al., 2019; Moyer et al., 2020; Liu et al., 

2021; Zuo et al., 2021). Although the deep learning methods have achieved promising performance 

to translate data from different domains to a common domain, they are limited in their scalability 

since the deep learning-based data harmonization models have to be trained with objective or loss 

functions appropriately defined for the problems under study and the training process is 

computationally heavy. On the other hand, ComBat and its variants are computationally efficient, 

readily applicable to different data harmonization problems, and capable of modeling both linear and 

nonlinear effects of covariates. It is out of scope of the present study to compare different data 

harmonization methods though it is merits further investigation in our future studies. 

To improve the generalization ability of machine learning models and increase statistical power, we 

adopt ComBat-GAM to perform data harmonization. Functional connectivity measures themselves 

are correlated with each other and reside in a data space that is a manifold, not a vector space 

(Pervaiz et al., 2020). Therefore, each of the functional connectivity measures should be modeled in 

conjunction with others for the data harmonization so that potential correlations among different 

functional connectivity measures can be taken into consideration (Chen et al., 2022). In the present 

study, we adopt a tangent space modeling method, a successful approach widely adopted in 

neuroimaging studies (Pervaiz et al., 2020; Zhou et al., 2022),  to project the functional connectivity 

measures onto their tangent space so that the powerful ComBat based data harmonization method 

can be directly used to harmonize the functional connectivity measures of different sites. 

In order to identify informative functional connectivity features for the brain age prediction, we 

performed permutation tests (Golland et al., 2005) and univariate correlation based significance tests. 

The statistically significant functional connectivity measures identified by both the tests included 18 

connections between SMN, VAN, FPN, and DMN as illustrated in Figure 4. Specifically, many 

functional network connectivity measures exhibited lower strength with aging, such as those 

connections with SMN, DMN, and FPN, consistent with findings of the existing studies (Chan et al., 

2014; Grady et al., 2016; Zonneveld et al., 2019; Truelove-Hill et al., 2020). Interestingly, the within 

network connectivity strength of the VN and SMN became higher with aging. Similar findings were 

also reported in several existing studies (Song et al., 2014; Seidler et al., 2015; Zonneveld et al., 
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2019). We noticed that the connectivity between DMN (network 16, the anterior cingulate) and VAN 

(network 1, the insula) computed with the setting of 17 FNs exhibited an increasing pattern with 

aging, consistent with findings reported in previous studies (Cao et al., 2014; Fan et al., 2020), as 

well as higher connectivity between SMN and DAN computed with the settings of 17 and 50 FNs. 

Similar to findings reported in (de Lange et al., 2020), we also found that the most informative FC 

measures for the brain age prediction might vary across the lifespan, as shown in Figure S1 of the 

supplementary data.  

A highly consistent finding in the aging literature is lower DMN connectivity with aging (Ferreira 

and Busatto, 2013; Dennis and Thompson, 2014; Damoiseaux, 2017; Stumme et al., 2020). Aging is 

also associated with substantial declines in motor functioning as well as higher-order cognitive 

networks, such as the FPN. In addition to these findings, we also observed that aging was associated 

with higher within-network connectivity in the VN and SMN, contradictory with findings of existing 

studies (Stumme et al., 2020). Particularly, it was observed that aging is associated with lower 

functional connectivity within the primary processing networks, including the VN and SMN 

(Stumme et al., 2020). A variety of factors might contribute to such discrepancies, including different 

atlases or brain parcellations used for computing the functional connectivity measure (Arslan et al., 

2018) and the sample size and diversity (Marek et al., 2022). 

Many methods are available to evaluate feature importance and interpretability of machine learning 

models (Lundberg and Lee, 2017; Hou and Zhou, 2020), including the label permutation method 

adopted in the present study and many model-agnostic methods, such as permutation feature 

importance, partial dependence plot, and Shapely values. We chose the label permutation method 

because it is capable of generating statistical significance for feature importance and taking into 

consideration of interactive effects of all features. We will explore other feature importance 

evaluation methods in our future studies since all the methods have their specific advantages and 

limitations. 

Recent studies have demonstrated that the BAG score could potentially serve as a quantitative 

marker of the brain aging (Cole et al., 2017; Smith et al., 2019; Boyle et al., 2021; Dinsdale et al., 

2021). In order to investigate to what extent the BAG score is associated with cognitive and clinical 

measures of the subjects in the multisite cohort, Pearson correlation analysis was performed between 

the BAG score and each of the available cognitive and clinical measures, including DSF (Digit Span 

Forward), DSST (Digital Symbol Substitution Test), DSB (Digit Span Backward), MMSE (Mini-

Mental State Examination), MOCA (Montreal Cognitive Assessment), WM_SUM (Working 
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Memory Summary), verbal fluency and verbal memory related tasks, TMT_A and TMT_B (Trail 

Making Test Part A and B), Systole, Diastole, and BMI (Body Mass Index). In all the analyses, age, 

sex, and site were included as covariates. We found that the BAG score was positively correlated 

with measures decreasing with aging and negatively correlated with those increasing with aging, 

consisting with existing findings that a positive BAG score indicated an accelerated aging process 

(Cole et al., 2017; Smith et al., 2019; Boyle et al., 2021; Dinsdale et al., 2021). 

Our study has following limitations. First, the present study has focused on functional connectivity 

within FNs. Functional connectivity within networks across different scales may provide additional 

informative functional connectivity measures for characterizing the aging brain (Iraji et al., 2021). 

Second, the present study has focused on functional connectivity information alone. The functional 

connectivity measures can be further enhanced by functional network topology measures that are 

informative for charactering the brain development (Cui et al., 2020). Moreover, integration of brain 

anatomy, structural connectivity, and functional connectivity measures may further improve the 

brain age prediction as well as the characterization of brain aging (Truelove-Hill et al., 2020). Third, 

the present study identified informative functional connectivity measures using a combination of 

permutation test and univariate correlation analysis. It merits further investigation to establish 

explainable and interpretable brain age prediction models (Tian and Zalesky, 2021).  

In summary, the present study revealed that functional connectivity measures at multiple scales were 

more informative than those at any single spatial scale for the brain age prediction and the data 

harmonization in the tangent space of functional connectivity measures significantly improved the 

brain age prediction performance. Moreover, the derived brain age gap score was associated with 

cognitive and clinical measures.  
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