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Abstract

To learn multiscale functional connectivity patterns of the aging brain, we built a brain age
prediction model of functional connectivity measures at seven scales on a large fMRI dataset,
consisting of resting-state fMRI scans of 4259 individuals with a wide age range (22 to 97 years,
with an average of 63) from five cohorts. We computed multiscale functional connectivity measures
of individual subjects using a personalized functional network computational method, harmonized
the functional connectivity measures of subjects from multiple datasets in order to build a functional
brain age model, and finally evaluated how functional brain age gap correlated with cognitive
measures of individual subjects. Our study has revealed that functional connectivity measures at
multiple scales were more informative than those at any single scale for the brain age prediction, the
data harmonization significantly improved the brain age prediction performance, and harmonization
in the tangent space worked better than in the original space. Moreover, brain age gap scores of
individual subjects derived from the brain age prediction model were significantly correlated with
clinica and cognitive measures. Overall, these results demonstrated that multiscale functional
connectivity patterns learned from a large-scale multi-site rsfMRI dataset were informative for
characterizing the aging brain and the derived brain age gap was associated with cognitive and

clinical measures.

Keywords: resting-state fMRI, multiscale brain functional network, functional brain age,

harmoni zation, tangent space parameterization, brain age gap

I ntroduction

Brain age derived from non-invasive magnetic resonance imaging (MRI) data using machine
learning provides a novel means to quantify brain development and aging process (Douaud et al.,
2014; Cole and Franke, 2017). Brain age gap (BAG), quantifying the difference between the brain
age and the chronological age, has demonstrated promising performance for elucidating atypical
brain development and aging (Cole and Franke, 2017; Truelove-Hill et al., 2020).

Most brain age modeling studies focused on structural MRI data and have shown that brain age is
associated with changes in both gray matter (GM) (Erus et a., 2015; Chung et al., 2017; Minkova et
al., 2017; Truelove-Hill et al., 2020) and white matter (WM) (Prins and Scheltens, 2015; Habes et
a., 2016; Habes et a., 2021). Particularly, it has been demonstrated that the brain age derived from
structural MRI data can accurately delineate trajectories of brain development and identify
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individuals with cognitive precocity or delay (Erus et al., 2015). Similarly, it has been shown that
brain development during adolescence is associated with widespread, regionally hierarchical gray
matter loss and white matter increase (Truelove-Hill et a., 2020). A recent brain age modeling study
also revealed brain aging trajectories in a large cohort (Habes et al., 2021). Moreover, large-scale
neuroimaging studies have revealed that brain disorders are associated with brain age gap estimated
from structural neuroimaging data (Kaufmann et al., 2019; Bashyam et a., 2020; Dinsdale et al.,
2021).

The brain age has also been investigated based on functional neuroimaging data (Dosenbach et al.,
2010; Dennis and Thompson, 2014; Li et al., 2018; Zonneveld et al., 2019; Truelove-Hill et al.,
2020). It has been demonstrated that brain maturity can be accurately estimated based on individual
subjects’ functional connectivity (FC) measures computed from functional MRI (fMRI) data
(Dosenbach et al., 2010). Multiple studies have reported that the brain age is associated with changes
in widespread functional network connectivity measures over the course of adolescence (Fair et al.,
2008; Di Martino et a., 2014; Truelove-Hill et al., 2020). A large population-based aging study has
revealed that brain aging is associated with weak FC within the anterior default mode network
(DMN), ventral/salience attention network (VAN), and somatomotor network (SMN) and strong FC
within the visual network (VN) (Zonneveld et al., 2019). However, most existing functional
neuroi maging-based brain aging studies typically focused on data from single datasets (Dosenbach et
al., 2010; Chan et al., 2014, Liang et a., 2019; Zonneveld et a., 2019), lacking diversity in the study

cohorts.

In this study, we investigated functional connectivity patterns of the aging brain based on fMRI scans
of a diverse cohort (n = 4259) from five different sites in a brain age modeling framework. We
computed functional connectivity measures of individual subjects at multiple scales using a
personalized functional network computational method (Li et al., 2017), harmonized the multiscale
functional connectivity measures of different sites in their tangent space using ComBat-GAM
(Pomponio et a., 2020), built a regresson model on the harmonized functional connectivity
measures to estimate the brain age and characterize the brain age gap, and finally we identified
clinical and cognitive measures that were significantly correlated with the brain age gap in order to
investigate whether the functional brain age gap is associated with cognitive functions and biological

measures.
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M aterials and methods

The overall design of this study for characterizing multiscale FC patterns of the aging brain is
schematically illustrated in Figure 1, including computing multiscale FC measures of individual
subjects, harmonizing the FC measures of multiple datasets, building a brain age prediction model to
identify informative FC measures, and finally evaluating how the brain age gap correlated with

cognitive/biological measures of individual subjects.

Participants

Table 1. Demographic information and the scanning protocols of the multisite data

BLSA OASIS3 CARDIA-1 CARDIA-3 CARDIA-4  PENN_ABC  UKBIOBANK
Number of Subjects 784 826 199 323 280 276 1571
Number of Males (%) 341 (43.39) 462 (55.93) 88 (44.22) 156 (48.30) 125 (44.64) 113 (40.94) 884 (44.44)
Meantstd 65.97+14.80  70.24+9.42 51.27+4.26 5151+43.77 51.10£391  6837:1337  62.63t7.31
Ade Min 22 43 4 43 43 23 45
g Max 95 97 61 61 61 95 75
Median 68 70 52 52 52 70 63
Scanner Philips Achieva Siemens Philips Achieva Siemens Siemens Siemens GE (Multiband
3T TIM Trio 3T 3T TIM Trio 3T TIM Trio 3T Prisma 3T acceleration)
Rﬁ'mug')on 1.2x1x1 1x1x1 1x1x1 1x1x1 1x1x1 0.8x0.8x0.8 1x1x1
Tiw TR (ms) 35 2400 1900 1900 1900 3000 2000
TE (m9) 3 3 2.89 2.89 2.89 354 2,01
Rﬁ'm“g')m 3x3x4 4xax4 35x35x35  35x35x35  3.5x35x35 2x2%2 2.4%2.4x2.4
R TR (ms) 2000 2200 2000 2000 2000 720 735
TE (m9) 25 27 25 25 25 37 39
Duration (min.) 6 6 4 4 4 5 6
Num. of volumes 180 164 120 120 120 420 490

We identified 4549 participants with resting-state fMRI data from the iSTAGING (Imaging-based
coordinate SysTem for AGIng and NeurodeGenerative diseases) consortium (Habes et al., 2021).
The fMRI scans were collected from subjects at a wide age range (22 to 97 years) from 5 different
cohorts, including the Baltimore Longitudinal Study of Aging (BLSA), the Open Access Series of
Imaging Studies (OASIS-3), the Coronary Artery Risk Development in Young Adults (CARDIA),
the University of Pennsylvania Aging Brain Cohort (PENN_ABC), and the UK (United Kingdom)
Biobank. Particularly, the CARDIA cohort was divided into three subcohorts, namely CARDIA-1,
CARDIA-3, and CARDIA-4, according to their scanners/sites used for the data collection. Since
identical scanners and protocols were used for brain imaging scanning in the UKBiobank (Focke et
al., 2011; Chen et al., 2014; Alfaro-Almagro et a., 2018), the UKBiobank scans were considered
from one single data site. In summary, the fMRI scans were modeled from seven different sites, their

demographic information and scanning protocols are summarized in Table 1. This study was
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approved by the supervisory committee and the institutional review board of the University of

Pennsylvania School of Medicine.
Data processing

The UKBiobank scans were processed using UKBiobank preprocessing pipeline (Alfaro-Almagro et
al., 2018), and other scans were processed using a modified UKBiobank preprocessing pipeline with
steps, including head motion correction by FSL's MCFLIRT (Jenkinson et al., 2012), global 4D
mean intensity normalization, and temporal high-pass filtering (> 0.01 Hz). After these standard pre-
processing steps, random noise was removed using FIX (FMRIB’s Independent Component
Analysis-based Xnoisefier) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). Specifically, the
FIX model was built upon Whil_Standard.RData from Whitehall Imaging Study (Filippini et al.,
2014) due to its similarity with our rsfMRI data. The preprocessed rsfMRI scans were co-registered
to their corresponding T1-weighted images using FLIRT with BBR as the cost function, and the T1-
weighted images were registered to the MNI152 template using FSL’s FNIRT (non-linear
registration), generating rsfMRI scans with a spatial resolution of 2 x 2 x 2 mm®. A brain mask was
applied in standard space to exclude white matter, cerebral spinal fluid, and cerebellum (cerebellum

are not fully covered for some subjects).

Participants were excluded from subsequent analyses if their rsfMRI scans had mean relative
displacement higher than 0.2 mm, more than 60% of frames with motion exceeding 0.3 mm, or
temporal signal-to-noise ratio (tSNR) smaller than 100 except for the UKBiobank scans that were
acquired using a multiband protocol (Alfaro-Almagro et al., 2018). In total, 290 participants were

excluded, and the remaining 4259 subjects were included in the following analyses.
Computation of multiscale functional connectivity measures

Multiscale functional connectivity measures were computed from each preprocessed rsfMRI scan
based on functiona networks (FNs) obtained using a personalized functional network computational
method (Li et al., 2017; Cui et al., 2020). We computed personalized FNs for each individual subject
using a group-sparsity regularized non-negative matrix factorization (NMF) method (Li et al., 2017;
Cui et a., 2020), which has been successfully adopted in multiple recent studies for computing
personalized FNs (Cui et a., 2022; Pines et al., 2022; Shanmugan et al., 2022). Particularly, we first
computed group-level FNs using a normalized-cuts based spectral clustering method to identify
representative FNs from 50 sets of group-level FNs, each set being computed on a subset of 150

subjects randomly selected from each of the sites with a probability proportional to the sample sizes
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of different sites. The group-level FNs were then used as initializing FNs to compute personalized
FNs based on each subject’s fMRI data.

Given a group of n subjects, each with fMRI dataX® € R™5,i = 1, ..., n consisting of S voxels and
T time points, we aim to find K non-negative FNs V! = (V) € RS*¥ and their corresponding time

seriesU' = (U(, ;) € R™X for each subject, such that
X'~ UV + EiLst. ULVI 20, V1 <i<n, @)

where (Vi)' is the transpose of V!, and E' is additional independent noise following a Gaussian
distribution. Both U* and V! are constrained to be non-negative so that each FN does not contain any
anti-correlated functional units. A group consensus regularization term was applied to ensure inter-
individual correspondence, which was implemented as a scale-invariant group sparsity term on each

column of Vi,i = 1, ..., n and formulated as

1/2

S5 (v)) 2
(2§=1 Z?:l(vsi.k)z)l/y

_ VK Lon _
Re=2p=1 Vi 21 =

Y

The data locality regularization term was applied to encourage spatial smoothness and coherence of

the FNs using graph regularization and formulated as:
Ry = Tr (Vi) Li,v?), 3

where L}, = Di, — W), is a Laplacian matrix for subject i, W), is a pairwise affinity matrix to
measure spatial closeness or functional similarity between different voxels, and D}, denotes its

corresponding degree matrix. The affinity between each pair of spatially connected voxels is
calculated as(l + corr(X!,, X.fb)) /2, where corr(X!,,X%,) is the Pearson correlation coefficient

between time series X!, and X%, while others were set to be zero so that Wy, would be sparse.
Finally, we identified subject specific functional networks by optimizing a joint model with

integrated data fitting and regularization terms formulated as:

n n n

. . . 2 . .

min Z ||X‘ - U‘(VL)’|| + AR, +/1MZR}|,, + ZR‘,
(wivy i=1 F i=1 i=1

s.t.,ULVE> 0,||V.fk||1 =LViKkKKVIKLiLn, 4
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where A, and A, are used to balance the data fitting, data locality, and group consensus
regularization terms with values setting as the those validated in the previous study (Li et al., 2017).
Instead of computing the FNs at a specific spatial scale, we computed the FNs at seven scales,
yielding seven setsof K (K=17, 25, 50, 75, 100, 125 and 150) FNs.

To facilitate the interpretation of the personalized FNs, we labeled each of them based on spatial
overlapping between their group-level FNs and Yeo's 7-network atlas, including the visual network
(VN), somatomotor network (SMN), dorsal attention network (DAN), salience/ventral attention
network (VAN), limbic network (LN), frontoparietal network (FPN) and default mode network
(DMN).

Sanity testing for computed personalized FNs

Quality control was carried out to ensure that the personalized FNs had higher functional
homogeneity than their group-level counterparts and maintained good spatial correspondence with
their group-level counterparts. Particularly, a FN’s functional homogeneity was measured by a
weighted mean of the correlation coefficients between the time courses of all the voxels within the
FN and its centroid time course that was cal culated as a weighted mean time course over the FN with
its voxel-wise loadings as weights. The spatial correspondence between the personalized FNs and the
group-level FNs was evaluated based on pairwise spatial correlation coefficients. Specifically, each

personalized FN is deemed to maintain correspondence with its corresponding group level
counterpart if ASim; = Corr(FN, FNF) — max;;,; Corr (FNip, FN]?’) > 0, where FN}’ denotes the i-
th personalized FN, FNig denotes its corresponding group average FN, FN].g represents other group

average FNs, and Corr(+,-) isthe spatial correlation coefficient between two FNs.
Har monization of functional connectivity measures in tangent space

In order to aleviate site effect of functional connectivity measures of participants from different
sites, we adopted ComBat-GAM to harmonize the functional connectivity measures (Pomponio et
a., 2020). Since the functional connectivity measures themselves essentialy resided on a
Riemannian manifold (You and Park, 2021), we applied ComBat-GAM to the functional
connectivity measures in their tangent space (Pervaiz et a., 2020). Functional connectivity measure
between each pair of FNs within each set was estimated as Pearson correlation between time series
of the FNs (Zhou et al., 2020), yielding seven sets of functional connectivity matrices C € RX*X,
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K=17, 25, 50, 75, 100, 125 and 150. The tangent space projection of the FC matrix € was obtained
through

1 1
C =logn, <crzccr2), (5)

where €, € R¥*K is a reference point in the manifold, K is the number FNs, log,,, represents the

logarithm operation on the FC matrix and C is the resulti ng FC measures in the tangent space. To
ensure that all projected covariance matrices lie in the same tangent plane, we chose the geometric
mean as the reference point (Fletcher et a., 2004; Ng et a., 2014; Yger et a., 2017). The FC

measures C in the tangent space can be projected back to the original space by
C = Cfexpm(E)Cg, (6)
where exp,, isthe exponential operation on the FC matrix.

We harmonized the FC measures in the tangent space using ComBat-GAM (Pomponio et al., 2020)
with sex and age as covariates. After data harmonization, we vectorized the upper triangular part of
the harmonized connectivity matrix in each scale and stacked them across scales to obtain a panel of

multiscale features as illustrated in Figure 1.
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Figure 1. An overall flowchart of the present study. Multiscale functional connectivity measures were computed using a
personalized functional network computing method, projected into their tangent space, harmonized using a Combat
method, and finally used as input to build a brain age prediction model, from which a brain age gap score was derived to

charactering the aging brain based functional MRI data of individuals.
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Experimental design and statistical analysis
Brain age predictive modeling

We built a brain age prediction model on the harmonized FC measures using Ridge regression by
optimizing

2
)

rninw Zi\il(f(cl) - Yi)z + 7\2?=1| |Wt|

()

where y; and ¢; denote age and features of subject i, p denotes the number of features, w, is a
regression coefficient, t = 1,2, ..., p, and A is a regularization parameter. We adopted a nested 5-fold
cross-validation, with the inner folds determining the optimal parameter A within the grid of
[23,235,24, ...,275,28] and the outer folds estimating the generalizability of the model. The cross-
validation folds were generated randomly with comparable age distributions. The brain age
prediction performance was quantified with mean absolute error (MAE) and correlation coefficient
between the chronological age and the predicted age. The optimal A value was determined based on
MAE.

We also built brain age prediction models on FC measures in their original space, with and without
the data harmonization, as well as FC measures in the tangent space without the data harmonization,
respectively. In addition to the brain age prediction models built on the multiscale functional
connectivity measures, we also built brain age prediction models on FC measures of individual
scales with 17, 25, 50, 75, 100, 125 and 150 FNs, respectively. All the brain age prediction models
were built and evaluated with the same nested 5-fold cross-validation. The performance difference
between the prediction models built on FC measures with and without the data harmonization was

assessed with Wilcoxon signed-rank test across individual scales and their combination.

Functional network connectivity measures informative for brain age prediction

A permutation test was performed to evaluate the statistical significance of individual FC measures
and the accuracy of the brain age prediction model (Mourao-Miranda et al., 2005; Cui et al., 2018).
Particularly, we permuted the age labels of al subjects and repeated the whole cross-validation
process (splitting the whole dataset into training and testing subsets) with the optimal A parameter for
1000 times, yielding 1000 null brain age prediction models. We projected the weight derived from
the model back to the original space for interpretation with Equation (6) using the same reference
matrix. Thus, we obtained 1000 weight vectors and projected them back to origina space. We also
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projected the feature weight from the real model without permuting the labels back to original space.
The p value for each feature is the proportion of permutations that showed a higher weight value than
the actual value from the real model. And those features with p < 0.05 were identified as the
significantly contributing network connectivity features. Each model’s regression coefficients were
projected back to the original space of their associated FC measures for quantifying their
contribution to the brain age prediction. Furthermore, correlation between individual FC measures

and the chronological age was also calculated to identify FC measures significantly associated with

aging.
Exploration of association between the brain age gap and clinical/cognitive score

Cognitive and clinical measures available for the majority of the 4259 subjects were curated to
investigate if they are correlated with the brain age gap. We computed correlations between the BAG
and cognitive and physiological functioning measures of individual subjects. As summarized in
Table 3, the cognitive and physiological functioning measures included attention, executive function,
working memory, and verbal, spanning several cognitive domains, as well as Systole, Diastole, and
BMI (Body Mass Index). Pearson’s correlations between the BAG and these measures were
computed with sex, age, and site as covariates (Dinsdale et al., 2021). The BAG was computed with
the brain age prediction bias corrected using a linear regression method (Beheshti et al., 2019).

Results

Sanity testing results

We performed the quality control of personalized FNs at all different spatial scales (17, 25, ..., 150),
and found that all the personalized FNs had higher functional homogeneity than their corresponding
group-level FNs and they maintained good correspondence with their corresponding group-level FNs,
i.e, ASim; was larger than O for each personalized FN. Overall, the generated personalized brain
functional networks provided an improved fit to each individual’s fMRI data than to the group-level

FNs that are not equipped to characterize inter-individual variations in functional neuroanatomy.
Brain age prediction results

The prediction performance of all the brain age prediction models under comparison is summarized
in Table 2 and illustrated in Figure 2, indicating that the brain age prediction model built on the

10
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harmonized multiscale FC features in the tangent space obtained the best age prediction
performance, with a mean MAE of 5.57 years and a mean correlation coefficient of 0.78. The
permutation test indicated that its prediction performance was statistically significant with p < 0.001
in terms of both MAE and correlation coefficient. The data harmonization did improve the
performance if the models were built on FC measures in the tangent space (p = 0.025 for MAE and
p = 0.006 for correlation coefficient, Wilcoxon signed-rank test across individual scales and their

combinations) but did not consistently improve the models built on FC measures in their origina

space.
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Figure 2. Correlations between the chronological age and the predicted age obtained by prediction models built upon
functional connectivity measures of individual scales and their combination. In each subplot, x-axis represents the
chronological age while y-axis denotes the predicted age. (A): brain age was predicted by the prediction model built upon
the functional connectivity measures of all individual spatial scales; (B)-(F): brain age was predicted by the prediction
model built upon the functional connectivity measures between functional networks computed with the settings of 17, 25,
50, 75, 100, 125, and 150 FNs separately. In each subplot, the black dashed line is the identity line while the blue solid
line indicates the best linear fit of the predicted age to the chronological age.
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Figure 2 shows scatter plots and associated correlation coefficients between the predicted and
chronological ages obtained by the brain age prediction models built on the harmonized FC measures
of individual scales and their combination in the tangent space, indicating again that the brain age
prediction model built on the harmonized multiscale FC features in the tangent space obtained the
best age prediction performance.

Table 2. Brain age prediction performance (MAE and correlation between the predicted and chronological ages) of all
brain age prediction models built on FC measures of individual scales and their combination with and without the data
harmonization (H+ and H- denote the models built on the FC measures harmonized or not, respectively)

MAE (year) between Correlation coefficient between
predicted age and chronological age predicted age and chronological age
Scales Original Space Tangent Space Original Space Tangent Space
H- H+ H- H+ H- H+ H- H+
17 8.45+0.12 8.34+0.14  8.01+0.11 7.96+0.12 | 042+0.03  0.42+0.03  0.49+0.03  0.51+0.03
25 7.88+0.16  8.12+0.17  7.38+0.15 7.43+0.18 | 052+0.03 0.47+0.03  0.58+0.03  0.58+0.02
50 7.67£0.14 823+#0.12 7.21+0.16  7.33+0.16 | 0.56x0.03  0.46+0.02  0.64+0.01  0.62+0.02
75 7.92+0.18  8.74+0.27 7.91+0.11  817+0.19 | 0.55+0.02  0.41+0.03 0.61+0.08  0.59+0.01

100 8.28+£0.13  9.30+0.16  8.02+0.08  7.80+0.10 | 0.53+x0.02  0.36x0.02  0.60+0.07  0.61+0.01
125 8.26+0.24  8.88+0.25  7.19+0.12 6.96+0.15 | 054+0.03  0.42+0.04 0.65+0.02  0.67+0.02
150 856+0.19 8.86+0.09  6.70+0.09 6.45+0.09 | 0.52+0.04 0.42+0.03 0.68+0.02  0.71+0.02
Multiscale 7.65+0.17  829+0.18  5.92+0.11 557+0.11 | 059+003 0.46+0.03 0.76+0.02  0.78+0.01

Informative functional connectivity measures for predicting brain age

Figure 3 shows a hierarchical organization of the FNs from coarse to finer scales and FC measures
contributed to the brain age prediction model built on the harmonized multiscale FC features in the
tangent space with statistical significance (43 FC measures in total, p < 0.05, permutation test),
illustrating that FC measures at multiple scales were informative for the brain age prediction.
Particularly, FC measures between DMN, frontoparietal network (FPN), VN, VAN, SMN, dorsal
attention network (DAN) and limbic network (LN) played vital roles. Among 43 informative FC
measures identified by the brain age prediction model, 19 were significantly correlated with aging
(p<0.05) and most of them were connections between SMN, VAN, DMN or FPN, as illustrated in
Figure 4.
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Figure 3. Functional connections informative for predicting the brain age. (A): A multi-scale organization of the brain
networks, illustrated following the Yeo atlas of 7 networks, including VN, SMN, DAN, VAN, LN, FPN and DMN. (B):
Functional connections informative for the brain age prediction. The different edge colors are used to differentiate

different brain networks, corresponding to the FNs of the Yeo's 7-network parcellation.
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Figure 4. Functional connections with connectivity significantly correlated with the chronological. Regression linesin
red and blue indicate functional connectivity measures positively and negatively correlated with the chronological age,
respectively.

Brain age gap correlation with cognitive scores

Table 3 summarizes correlation coefficients between BAG and clinical/cognitive measures.
Particularly, MMSE (Mini-Mental State Examination), DSST (Digital Symbol Substitution Test),
CVLT_IM (Cdlifornia Verbal Learning Test Immediate), CVLT_Long (California Verbal Learning
Test Long), DSB (Digit Span Backward), and DSF (Digit Span Forward) were negatively correlated
with the BAG, while measures of ‘time taken to complete a cognitive task’, i.e, TMT_A (Trail
Making Test Part A) and TMT_B (Trail Making Test Part B) were correlated positively with the
BAG. The BAG was positively correlated with blood pressure (systole and diastole) and BMI (Body

Mass Index).
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Table 3. Correlation between BAG and cognitive/clinical measures

Clinical or cognitive measures gggﬁggg p values

. DSF -0.061 0.0109
Attention N
TMT_A 0.078 0.0012
DSST -0.0957 0.0002"
Executive TMT_B 0.0641 0.0089
DSB -0.0779 0.0138

BNT -0.1063 0.24
ANI_Fluency -0.1158 0.0664
Verbal Fluency Category_Fluency -0.0866 0.0163
Letter_Fluency -0.0667 0.0646
VEG_Fluency -0.1405 0.0137

CVLT_IM -0.0849 0.019

Verbal Memory -

CVLT_Long -0.0919 0.0113
MMSE -0.1362 0.0000"
Global MOCA -0.146 0.0035
WM_SUM -0.1629 0.0171
Systole 0.0544 0.0032
Biological Diastole 0.0148 0.4213
BMI 0.0376 0.0301

1. * Significant after Bonferroni correction.

2. ANI_Fluency: Animal Fluency; BMI: Body Mass Index; BNT: Boston Naming Task; CVLT_IM: Cdifornia Verba Learning Test
Immediate; CVLT_Long: California Verbal Learning Test Long; DSB: Digit Span Backward; DSF: DSpan igit Forward; DSST:
Digital Symbol Substitution Test; MM SE: Mini-Mental State Examination; MOCA: Montreal Cognitive Assessment; TMT_A: Trall
Making Test Part A; TMT_B: Trail Making Test Part B; VEG_Fluency: Vegetable Fluency; WM_SUM: Working Memory Summary.

Discussion

In this study, we built a brain age prediction model of functional connectivity measures at multiple
scales on a large fMRI dataset to learn multiscale functional connectivity patterns of the aging brain
and characterize the functional brain. The brain age prediction model built on the harmonized data
obtained promising age prediction performance and the derived brain age gap was significantly
correlated with cognitive measures, consistent with established brain aging trends.

In the present study, the personalized FNs was computed with an initialization of group-level FNs
that were computed in 50 runs, each on a subset of 150 subjects randomly selected from each of the
sites with a probability proportional to the sample sizes of different sites. This procedure may
generate personalized FNs biased to large sites. We also computed the personalized FNs with an
initialization of group-level FNs that were computed in 50 runs, each on a subset of 154 subjects
randomly selected from each site with the same number (n = 22) of subjects. Age prediction models
were built on the computed personalized FNs and evaluated with the same data harmonization in the
tangent space with the same cross-validation. The MAE between the predicted and chronological
ages was 5.56 years, close to the result obtained by the prediction models built on the personalized
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FNs with the group-level FNs computed on subsets with subjects randomly selected proportional to
the samples sizes of different sites (MAE = 5.57), indicating that the age prediction performance was
not affected too much by the bias in personalized FNs. It merits further investigation to elucidate the

sample size effect on the personalized FNs.

Most existing studies investigate the brain functional networks at a specific scale or resolution. For
instance, functional networks can be computed based on aset of 17 FNs or abrain atlas with a fixed
number of regions. On other hand, recent studies have demonstrated that the brain is a multi-scale
system (Betzel and Bassett, 2017; Eickhoff et al., 2018) and with a hierarchical organization (Pines
et a., 2022). Therefore, we hypothesized that functional networks computed at multiple scales may
provide complementary information for characterizing the brain. Our experiment results have
provided empirical evidence that FNs a multiple scales provided useful information for predicting
the brain age, with performance better than FNs at any single scale, as indicated by the results
presented in Table 2 and Figure 3B. Moreover, the improved brain age prediction performance
(Supplementary Table 1) was also observed for functional networks computed with a multiscale
brain atlas (Craddock et al., 2012).

We utilized a personalized functional network computational method (Li et a., 2017; Cui et al.,
2020). Comparison results have demonstrated that the prediction model built upon the multiscale
brain functional connectivity measures could better predict the brain age than those built upon
functional connectivity measures of any single scale. As illustrated in Figure 3(A), the multi-scale
brain functional networks largely follow a hierarchical organization structure with a few exceptions
in finer scales with the FNs computed with settings of 75, 100, 125 and 150 FNs. Specifically, one
FN of the LN computed with the setting of 50 FNs switches to the VN computed with the setting of
75 FNs, while two FN of the DMN computed with the setting of 100 FNs switch to SMN and LN
computed with the settings of 125 FNs. These results indicated that |ess stable brain decompasitions
were generated at finer scales, consistent with findings in structural imaging studies (Varikuti et al.,
2018; Patel et al., 2020).

Data harmonization is a prerequisite step in neuroimaging studies with data from multiple sites
(Shinohara et al., 2017). Severa methods have been developed to harmonize data from different
sites, including ComBat and its variants, normative modelling, as well as deep learning based
algorithms that transfer the data from different sites into a common, comparable space (Fortin et al.,
2017; Fortin et al., 2018; Yu et a., 2018; Dewey et a., 2019; Kia et al., 2020; Moyer et al., 2020;
Bayer et a., 2021; Liu et a., 2021; Zuo et a., 2021; Rutherford et al., 2022; Sun et al., 2022).
Particularly, ComBat and its variants have been successfully applied to a variety of neuroimaging
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studies to harmonize diffusion tensor imaging measures, cortical thickness, regional volume
measures, and functional connectivity measures (Fortin et a., 2017; Fortin et al., 2018; Yu et al.,
2018). A recent study has demonstrated that ComBat-GAM, the method adopted in the present study,
outperformed other data harmonization methods in detecting sex differences in regiona cortical
thickness (Sun et a., 2022). Normative modelling uses percentiles or z-scores to chart the variation
of one or several targeting variables orthogona to the variation of other covariates. Instead of
removing site effects from data as a data preprocessing step, normative modelling models site
variance as part of the normative model (Kiaet a., 2020; Bayer et al., 2021; Rutherford et al., 2022).
However, the computational cost and complexity of the model limit its current use to low
dimensional imaging data. Deep learning-based data harmonization methods are typically built upon
auto-encoders or generative adversarial networks (Dewey et a., 2019; Moyer et al., 2020; Liu et al.,
2021; Zuo et a., 2021). Although the deep learning methods have achieved promising performance
to translate data from different domains to a common domain, they are limited in their scalability
since the deep learning-based data harmonization models have to be trained with objective or loss
functions appropriately defined for the problems under study and the training process is
computationally heavy. On the other hand, ComBat and its variants are computationally efficient,
readily applicable to different data harmonization problems, and capable of modeling both linear and
nonlinear effects of covariates. It is out of scope of the present study to compare different data
harmoni zation methods though it is merits further investigation in our future studies.

To improve the generalization ability of machine learning models and increase statistical power, we
adopt ComBat-GAM to perform data harmonization. Functional connectivity measures themselves
are correlated with each other and reside in a data space that is a manifold, not a vector space
(Pervaiz et al., 2020). Therefore, each of the functional connectivity measures should be modeled in
conjunction with others for the data harmonization so that potential correlations among different
functional connectivity measures can be taken into consideration (Chen et al., 2022). In the present
study, we adopt a tangent space modeling method, a successful approach widely adopted in
neuroimaging studies (Pervaiz et a., 2020; Zhou et al., 2022), to project the functional connectivity
measures onto their tangent space so that the powerful ComBat based data harmonization method
can be directly used to harmonize the functional connectivity measures of different sites.

In order to identify informative functional connectivity features for the brain age prediction, we
performed permutation tests (Golland et al., 2005) and univariate correlation based significance tests.
The statistically significant functional connectivity measures identified by both the tests included 18
connections between SMN, VAN, FPN, and DMN as illustrated in Figure 4. Specifically, many
functional network connectivity measures exhibited lower strength with aging, such as those
connections with SMN, DMN, and FPN, consistent with findings of the existing studies (Chan et al.,
2014; Grady et a., 2016; Zonneveld et a., 2019; Truelove-Hill et al., 2020). Interestingly, the within
network connectivity strength of the VN and SMN became higher with aging. Similar findings were

also reported in severa existing studies (Song et al., 2014; Seidler et al., 2015; Zonneveld et al.,
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2019). We noticed that the connectivity between DMN (network 16, the anterior cingulate) and VAN
(network 1, the insula) computed with the setting of 17 FNs exhibited an increasing pattern with
aging, consistent with findings reported in previous studies (Cao et al., 2014; Fan et al., 2020), as
well as higher connectivity between SMN and DAN computed with the settings of 17 and 50 FNs.
Similar to findings reported in (de Lange et al., 2020), we also found that the most informative FC
measures for the brain age prediction might vary across the lifespan, as shown in Figure S1 of the

supplementary data.

A highly consistent finding in the aging literature is lower DMN connectivity with aging (Ferreira
and Busatto, 2013; Dennis and Thompson, 2014; Damoiseaux, 2017; Stumme et al., 2020). Aging is
also associated with substantial declines in motor functioning as well as higher-order cognitive
networks, such as the FPN. In addition to these findings, we also observed that aging was associated
with higher within-network connectivity in the VN and SMN, contradictory with findings of existing
studies (Stumme et al., 2020). Particularly, it was observed that aging is associated with lower
functional connectivity within the primary processing networks, including the VN and SMN
(Stumme et al., 2020). A variety of factors might contribute to such discrepancies, including different
atlases or brain parcellations used for computing the functional connectivity measure (Arslan et al.,
2018) and the sample size and diversity (Marek et a., 2022).

Many methods are available to evaluate feature importance and interpretability of machine learning
models (Lundberg and Lee, 2017; Hou and Zhou, 2020), including the label permutation method
adopted in the present study and many model-agnostic methods, such as permutation feature
importance, partial dependence plot, and Shapely values. We chose the label permutation method
because it is capable of generating statistical significance for feature importance and taking into
consideration of interactive effects of all features. We will explore other feature importance
evaluation methods in our future studies since all the methods have their specific advantages and
limitations.

Recent studies have demonstrated that the BAG score could potentially serve as a quantitative
marker of the brain aging (Cole et al., 2017; Smith et a., 2019; Boyle et al., 2021; Dinsdale et al.,
2021). In order to investigate to what extent the BAG score is associated with cognitive and clinical
measures of the subjects in the multisite cohort, Pearson correlation analysis was performed between
the BAG score and each of the available cognitive and clinical measures, including DSF (Digit Span
Forward), DSST (Digital Symbol Substitution Test), DSB (Digit Span Backward), MMSE (Mini-
Mental State Examination), MOCA (Montreal Cognitive Assessment), WM_SUM (Working
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Memory Summary), verbal fluency and verbal memory related tasks, TMT_A and TMT_B (Trail
Making Test Part A and B), Systole, Diastole, and BMI (Body Mass Index). In all the analyses, age,
sex, and site were included as covariates. We found that the BAG score was positively correlated
with measures decreasing with aging and negatively correlated with those increasing with aging,
consisting with existing findings that a positive BAG score indicated an accelerated aging process
(Coleet al., 2017; Smith et a., 2019; Boyle et al., 2021; Dinsdale et al., 2021).

Our study has following limitations. First, the present study has focused on functional connectivity
within FNs. Functional connectivity within networks across different scales may provide additional
informative functional connectivity measures for characterizing the aging brain (Irgji et al., 2021).
Second, the present study has focused on functional connectivity information alone. The functional
connectivity measures can be further enhanced by functional network topology measures that are
informative for charactering the brain development (Cui et al., 2020). Moreover, integration of brain
anatomy, structural connectivity, and functional connectivity measures may further improve the
brain age prediction as well as the characterization of brain aging (Truelove-Hill et a., 2020). Third,
the present study identified informative functional connectivity measures using a combination of
permutation test and univariate correlation analysis. It merits further investigation to establish
explainable and interpretable brain age prediction models (Tian and Zalesky, 2021).

In summary, the present study revealed that functional connectivity measures at multiple scales were
more informative than those at any single spatial scale for the brain age prediction and the data
harmonization in the tangent space of functional connectivity measures significantly improved the
brain age prediction performance. Moreover, the derived brain age gap score was associated with

cognitive and clinical measures.
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