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Recent studies have shown that functional connectivity can be decomposed into its exact frame-
wise contributions, revealing short-lived, infrequent, and high-amplitude time points referred to
as “events.” Although events contribute disproportionately to the time-averaged connectivity pat-
tern, improve identifiability and brain-behavior associations, and differences in their expression have
been linked to endogenous hormonal fluctuations and autism, their origins remain unclear. Here,
we address this question using two independently-acquired imaging datasets in which participants
passively watched movies. We find that events synchronize across individuals and based on the
level of synchronization, can be categorized into three distinct classes: those that synchronize at
the boundaries between movies, those that synchronize during movies, and those that do not syn-
chronize at all. We find that boundary events, compared to the other categories, exhibit greater
amplitude, distinct co-fluctuation patterns, and temporal propagation. We show that underlying
boundary events is a specific mode of co-fluctuation involving the activation of control and salience
systems alongside the deactivation of visual systems. Finally, we find a strong positive relationship
between the similarity of time-locked co-fluctuation patterns and the propensity for those time-
locked frames to involve synchronous events. In other words, the inter-subject similarity of brain
networks during passive movie-watching is strongly related both to the moment in the movie when
they occur, and the likelihood that this moment evoked an event. Collectively, our results suggest
that the spatiotemporal properties of events during passive movie-watching are non-random and

locked to time-varying stimuli.

INTRODUCTION

The human brain is fundamentally a complex network
comprised of anatomically connected neural elements [II-
3]. This physical network constrains dynamical inter-
actions between brain regions, inducing statistical de-
pendencies in the activity of distant brain regions, i.e.
functional connectivity (FC) [4H6]. A growing number
of studies have focused on characterizing the architec-
tural features of FC [7, [§] and linking inter-individual
differences to cognition [OHIT], disease [12, [13], and de-
velopment [14] [15].

Recent methodological advances have made it possible
to precisely decompose FC into its framewise contribu-
tions [16] [I7]. This “edge-centric” approach yields time-
varying estimates of the co-fluctuation magnitude and
valence for every pair of brain regions (edge). Previous
studies have shown that, collectively, edges exhibit bursty
behavior, such that long periods of quiescence are punc-
tuated by brief, high-amplitude “events” in which many
edges simultaneously and strongly co-fluctuate with one
another [I6, [I8-24]. The whole-brain co-fluctuation pat-
terns expressed during events are closely related to the
static (time-averaged) FC [16], improve subject identifi-
cation and brain-behavior correlations [16], are individ-
ualized [I9], can be linked to endogenous hormone fluc-
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tuations [18], clinical status [25], and memory processes
[26], and are shaped by the underlying anatomical con-
nectivity [27].

However, the principles that determine the timing of
events are undisclosed. The first “edge-centric” study
showed that the whole-brain co-fluctuation amplitude is
correlated during movie-watching but not at rest [16],
suggesting that audiovisual stimuli may induce correla-
tions in the timing of events. However, the spatiotem-
poral structure of events in naturalistic stimuli was not
investigated further. In contrast, several recent studies
have called into question whether events have any neu-
rocognitive underpinnings at all, suggesting that events
are mathematical consequences of systems with modular
and stationary correlation structure [28] 29].

Here, we seek to uncover potential drivers of event
timing, and analyze their inter-subject synchronization
during movie-watching. As in [I6], we find that the
timing of events synchronizes across participants watch-
ing the same movie. We replicate this finding using
two independently-acquired, -processed, and -parcellated
datasets, representing eight separate movies (each movie
consisting of a small number of movie scenes, or trailers).
We analyze events further, grouping them into three dis-
tinct categories: events that synchronize at the bound-
aries between movies, those that synchronize within the
body of a movie, and those that are asynchronous. We
focus further on boundary events, showing that they
exhibit distinct overall co-fluctuation amplitudes, co-
fluctuation pattern, and temporal structure. We show
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FIG. 1. Events occurs at the end of movie scenes. (a) We compute edge time series (top), take the root sum square
(RSS) to derive the co-fluctuation amplitude time series. Some of the peaks in co-fluctuation amplitude are determined to
be events using a previously published statistical method [30]. The green line represents the binary event time series created
from this method. (b) Schematic showing that movie scene endings were manually coded by two individuals authors (JT and
RB), and then convolved with the hemodynamic response function (HRF). [Stills from movie scenes were removed for biorxiv
submission, but will be in the published version.] Example of HRF-convolved movie scene endings (orange) plotted below the
relevant co-fluctuation amplitude time series. Note how many of the events from the event time series line up with movie scene
endings. (c¢) Here, we “stack” the event time series across all subjects in a representative scan to illustrate that subjects tend
to have events at the same moment in time, and that the moments when subjects synchronize their events often correspond
to movie scene endings. This result holds across choice of FDR. (d) Here, we show this alignment statistically by correlating
each subject’s event time series with the HRF-convolved movie scene endings while circularly shifting (referred to in figure as
“Lag”) the movie scene endings in either direction. We plot this separately for each of four movies. The bold lines represent
the mean across movie scene endings. (e) Boxplots showing the distribution of cross correlation values for the same time lag.
(f) Plot showing the time-lagged correlation between the indices of movie scene endings, and mean RSS across subjects (first
plot) per scan. Plot showing the time-lagged correlation between the indices of movie scene endings, and the number of events
per time point (second plot), with one line for each movie. (g) Plot showing the probability of an event occurring near a movie
scene ending (movie scene endings centered on zero). Black line is the probability over all scans, and the grey lines are the
probability per scan. (h) Plot showing the mean co-fluctuation amplitude (RSS) near movie scene endings. Black line is the
mean across all scans, and the grey lines are the mean per scan.

that boundary events are also underpinned by a distinct networks during passive movie-watching is strongly re-

pattern of activity that involves visual processing, atten- lated both to the moment in the movie when they occur,
tional, and control systems. Finally, we find a strong pos- and the likelihood that this moment evoked an event.
itive relationship between the similarity of time-locked This work sets the stage for future studies to take advan-
co-fluctuation patterns and the propensity for those time- tage of the shared structure of events during naturalistic

locked frames to involve synchronous events. In other stimuli, and to explore other relevant features in such
words, we find that the inter-subject similarity of brain stimuli that elicit events.
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FIG. 2. Boundary events exhibit distinct spatiotemporal characteristics. In the main text we described methods for
detecting events and partitioning frames into categories based on when they occurred during the movie and the number of
subjects exhibiting temporally coincident events. To detect coincident (synchronous) events, we compared event counts at each
movie frame with a null distribution estimated from resting-state data. (a) Resting-state event count distribution (averaged
across time) and event counts per frame across time. (b) Event counts for movie data, with frames labeled according to
whether events were synchronous and occurred at movie boundaries (boundary event) or within a movie (movie event) or were
not synchronized across individuals (asynchronous). Note that given the size of this cohort (n = 129), at least one participant
exhibited an event at every frame. In principle, there could exist frames where no participant exhibited an event, necessitating
a fourth category of time point (non-events). (¢) Co-fluctuation amplitudes grouped by event type. (d) Global similarity of
whole-brain co-fluctuation patterns grouped by event type (within each type, subject order is identical; mean across scans; see
methods for details). (e) Given each of the three event types, its self similarity and between-type similarity. Panels f-h depict
mean co-fluctuation pattern for each of the three event types. (i) Typical temporal profile (co-fluctuation amplitude) for each
event type (all events locked to their respective peaks).

RESULTS dataset [32]. In the following sections, we describe results

of these analyses. Specifically, we show that events syn-

Previous studies have identified brief, high-amplitude
co-fluctuations in resting-state fMRI [16] 27, [30]. The
origins of these “events” are unclear. In this section,
we address this question directly using naturalistic stim-
uli (movie-watching) data from the Human Connec-
tome Project [31] and a second, independently-acquired

chronize across subjects at certain parts of the movie. We
provide a tripartite classification scheme for the events
that occur while subjects watch movies, as follows. Syn-
chronous boundary events occur at the end of movie
scenes (and beginning of rest blocks). Synchronous movie
events occur during the movie, and asynchronous events


https://doi.org/10.1101/2022.06.30.497603
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.497603; this version posted July 4, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

do not synchronize across subjects. We show that bound-
ary events exhibit reproducible and distinct spatiotem-
poral characteristics, as well as a unique activation pat-
tern, and finally we observe a strong positive relationship
between the similarity of time-locked co-fluctuation pat-
terns and the propensity for those time-locked frames to
involve synchronous events.

Events occur at the end of movie scenes

We first aimed to determine whether events synchro-
nize during movie watching and, if so, when in the movies
these synchronous events occurred. To investigate this,
we estimated edge time series for every subject in every
movie, calculated the co-fluctuation amplitude (root sum
square of all edges’ at every time point; RSS), and used
a previously-described algorithm to detect event frames
whose RSS exceeded that of a null distribution [30]. This
resulted in an “event time series” (Fig. [Th). Two of the
authors (JT and RB) without reference to event time
series, then manually coded and hemodynamically con-
volved a time series to indicate the frames at which each
movie scene ended and rest blocks began (Fig. ; see
Methods for details on the structure of this naturalistic
data, and our coding protocol). Authors were blinded to
brain data during coding procedure. We then “stacked”
event time series and discovered an alignment between
frames when many subjects had events and the indices
of movie scene endings (Fig. [Tk).

To confirm this observation statistically, we then per-
formed several complementary tests. First, we correlated
this “event time series” with the time series of hemo-
dynamically convolved indices of movie scene endings
(Fig. [Id). We found that event time series were cor-
related with the movie-scene endings (Fig. ; mean cor-
relation per movie r = 0.17 + 0.07, » = 0.18 £ 0.08,
r = 0.18 £ 0.07, r = 0.16 £ 0.08 respectively). When
we averaged event time series across subjects to obtain
a group-level and pseudo-continuous estimate of event
time series, we found that the fraction of subjects ex-
hibiting an event at any given instance was maximally
correlated with movie-scene endings at a lag of 5 sec-
onds (Fig. ; Correlation at lag: r = 0.35, » = 0.39,
r = 0.39, r = 0.40 respectively, all p-values p < 1071%).
This effect is also evident in the raw and unthresholded
co-fluctuation amplitude (Fig. ; Correlation with mean
RSS across subjects at lag: » = 0.40, r = 0.45, r = 0.45,
r = 0.48 respectively, all p-values p < 107*%). Finally,
we found that these effects resolved to an increased prob-
ability of having an event at a lag of 5 seconds from
movie-scene endings (Fig. ; probability of having an
event Pr(FE) = 0.41; compared with probability at other
nearby time points; two-sample t-test p < 1071°).

Importantly, this result was replicated in an indepen-
dently collected, processed, and parcellated data set. In-
stead of movie scenes, this data set presented participants
with movie trailers. JT and RB again manually coded

and hemodynamically convolved movie trailer endings,
and compared these with the stacked event time series
(Fig. [Sh). We then computed the number of events
within a window of 10 seconds on either side of each
movie trailer ending and compared this with a null model
where this window was circularly shifted 100 times. We
found that there were more events near movie trailer end-
ings than should be expected by chance (Fig. [Slp,c; p-
values for each movie: p = 4.40 x 1073, p = 1.25 x 1077,
p =230 x 1072, p = 1.26 x 1072). Note that the 10
second window was selected to include the peak lag of 5
seconds, but also be broad enough to account for inter-
individual differences in timing.

Taken together, these results suggest that the ending
of movies scenes (or trailers) correspond to time points
when events are likely to occur in many subjects.

Events synchronize within movie scenes

In the previous section, we demonstrated that the
end of movie scenes coincide with high-amplitude co-
fluctuations and are often categorized as events. It is
unclear, however, if synchronized co-fluctuations also oc-
cur within individual movies. Here, we develop a statis-
tical test to determine whether there are other points in
time, specifically during the movies, when events occur
coincidentally across subjects

To address this question, we calculated the group-
averaged event time series by summing across
participant-level event time series. Each frame of
this group time series indicated the number of subjects
exhibiting an event at that instant. To identify tem-
porally coincident events, we compared the observed
group-averaged event time series with a null distribution
estimated using resting-state scans rather than movie-
watching (Fig. ) In the resting data, because subjects’
fMRI BOLD timecourses are not temporally locked to
a movie stimulus, any observed synchronization is due
to chance fluctuations. We also created a null model
by circularly shifting event time series while subjects
watched movies in order to maintain event number and
relative timing while breaking alignment with the movie
stimulus, but we ultimately chose the rest null model
after determining it was more conservative (Fig.
two-sample t-test p < 1071%).

Comparing the observed event time series with the null
distribution of subjects at rest, we found evidence of syn-
chronous events occurring, as expected, at movie bound-
aries (we refer to these as “synchronous boundary events”
or simply “boundary events”; but also within movie
scenes (we refer to these as “synchronous movie events”
or “movie events” (we controlled for multiple comparisons
by fixing the false discovery rate to ¢ = 0.05, paq; = 0.03).
We also defined a third category of time point — those for
which the number of observed events across subjects was
consistent with or less than that of the null distribution
(referred to as “asynchronous events”; Fig. )
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Boundary events exhibit reproducible and distinct
spatiotemporal characteristics

Given this tripartite classification scheme, we asked
whether the three event types exhibited distinguishable
characteristics. First, we tested whether boundary events
exhibited dissimilar amplitudes than the other types. We
found that, on average, boundary events had greater RSS
than both movie and asynchronous events (Fig. ; two-
sample t-test p < 1071%).

Next, we asked whether the whole-brain co-fluctuation
patterns expressed during events were dissimilar across
event types. To do this, we calculated the similarity (bi-
variate linear correlation) between all pairs of detected
events. Then, we averaged these scores by subject and
event type. For every pair of subjects, this yielded three
similarity scores — one per each event type (Fig. [2d).
For a given event type (indicated by the blocks shown
Fig. ), we compared within- and between-event type
similarity. Intuitively, this corresponds to comparing ele-
ments in the diagonal blocks with the off-diagonal blocks.
We found that “boundary events” were more similar to
other boundary events than to other event types (Fig. ;
two-sample t-test p < 1071%), suggesting that boundary
events represent a distinct category of events, dissimilar
from the other two, which are largely indistinguishable
from one another.

Interestingly, we also found strong subject-level effects
across event types. That is, irrespective of which types
of events are being compared, subjects in most scans
maintained a high level of identifiability (Fig. syn-
chronous movie events did not pass identifiability tests
for two scans). To confirm this, we directly compared
the within-subject similarity to between subject simi-
larity and found that it was statistically significant for
nearly every block in the similarity matrix (two-sample
t-test p < 8.66 x 10~%). More importantly, we found
that identifiability is actually higher in boundary events
than any other event type (Fig. two-sample t-test
p < 10719).

We then examined the co-fluctuation patterns in
greater detail. For each event type, we calculated its
mean co-fluctuation pattern across all subjects and scans
(Fig. 2f-h). In general, we found that the mean co-
fluctuations patterns shared a relatively high baseline
level of similarity (mean similarity » = 0.91+£0.07). How-
ever, we observed subtle yet systematic deviations be-
tween event types. Notably, boundary events displayed
stronger co-fluctuation within many systems, specifically
interactions of the central visual system with salience and
control networks (spin test, false discovery rate fixed at
q = 0.05, paq; = 1.73 x 10~%; Fig. [S3k).

We then examined the local temporal structure around
events. Briefly, this involved temporally aligning ev-
ery instance of all event types to their respective peaks
(Fig. [2). We found, in agreement with the previous RSS
analysis, that at their peaks, event types were stratified
based on their amplitudes, with boundary events exhibit-

ing greater RSS than the other event types. Interestingly,
we also found off-peak effects. That is, the frames before
and after peaks, exhibited a similar relationship, suggest-
ing that the frames immediately before and after bound-
ary events also exhibited greater RSS than other event
types (searched 10 frames on either side of event peak,
two-sample ¢-test Bonferroni corrected poq; = 4.76 x107°
for all 21 frames.).

Critically, all of these effects were directly replicated
in a second dataset (Fig. [S2). In addition, we found
that the mean co-fluctuation pattern for each event type
also replicated. We also found that time-averaged FC is
mostly driven by synchronous movie events in the Human
Connectome Project data, and that this effect is likely
due to synchronous movie events containing more frames
per scan than other event types (Fig. two-sample
t-test p < 1071%) but this result did not replicate in the
Indiana University data set (Fig. [S5e-g).

Collectively, these results suggest that timing of events
and their synchronicity across individuals shapes their
amplitude, co-fluctuation pattern, and temporal evolu-
tion.

Activation patterns during boundary events

To this point, we have analyzed co-fluctuations, which
are defined at the level of edges (pairs of brain regions).
While the calculation of edge-time series from activations
is straightforward, obtaining the activation pattern un-
derpinning a given co-fluctuation matrix is not. This is
because every co-fluctuation matrix could have been gen-
erated by two different patterns of activity that differ in
their sign at every node. For example, the product of two
positively-valued nodal activations yields a positive co-
fluctuation. However, had the activation amplitude been
identical but negatively-valued (a deactivation) we would
still obtain an identical co-fluctuation. Here, we investi-
gate the activation patterns that underlie co-fluctuations
during events, focusing specifically on their configuration
at movie boundaries.

First, we identified brain regions whose activity sig-
nificantly increased or decreased during boundary events
compared to all other time points (Fig. ,b; as many
as 227 scans significant per region, Bonferroni corrected
for number of scans tested paq; = 8.77 x 107°). Inter-
estingly, we found that these correlations were highly
system-specific, with increased activation among control
b and salience/ventral attention nodes b and decreased
activation in central visual (spin test; Bonferroni cor-
rected pag; = 2.90 x 1073; Fig & Fig . We also
expanded our activation analysis to include subcortical
and cerebellar regions of interest [33H36]. We found de-
creased activation in thalamic regions that are associ-
ated, based on their functional connectivity, with cortical
control networks (Fig, [Bt,e). We also found changes in
activation patterns among cerebellar regions, specifically
those associated with default mode, control, and dorsal
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FIG. 3. Boundary events correspond to activation of control, and salience systems, and deactivation of visual
systems. (a) Plot of mean system activity for a window of time. The black line represents an index of boundary events.
Notice the decrease in visual systems activation and an increase in salience and control. (b) Mean correlation values (across
subjects) per region organized according to brain system (indices of brain system are color coded on the left of the plot). A
space-preserving spin test was used to test if any of these brain systems tended to have a higher or lower concentration of
correlation values than expected by chance. Control b, salience b, and central visual systems passed this test (p < 2.90 x 107%).
Systems that did not pass this test are shown shaded in grey. (¢) Mean correlation values (across subjects) per subcortical
and cerebellar region. Regions are organized mainly into parcellations for striatum, thalamus, and cerebellum. (d & e) Plot
of the correlation values per subject and node (cortical, and subcortical respectively). (f) The pattern of correlation values
across nodes is significantly similar across subjects, when compared with a time-shifted null model where we circularly shifted

the boundary event indices before correlating them with the nodal time series (p = 0.03).

attention networks (Fig. ,e; as many as 151 time series
significant per region; Bonferroni corrected for number
of scans tested p,q; = 8.77 x 107°).

Importantly, we found that these correlation patterns
were highly stable across individuals, both at the level
of cortex as well as subcortex and cerebellum (Fig. [3d,e;
mean correlation r = 0.51 4+ 0.18, compared against cor-
relation patterns found when using randomly permuted
boundary event indices; p < 0.05).

In summary, these results suggest that, although co-
fluctuation patterns could, in principle, arise from a de-
generate set of activity patterns, in the case of boundary
events, they are underpinned by a single mode of activa-
tion and deactivation, involving a specific constellation
of brain systems and regions.

Time-locked movie events exhibit distinct
co-fluctuation patterns

To this point we have shown that movie boundaries
tend to elicit high-amplitude co-fluctuations that are
synchronous across individuals and exhibit distinct spa-

tiotemporal characteristics that distinguish them from
other types of events. On one hand, perhaps this is to be
expected; movie boundaries correspond to periods dur-
ing the movie with similar audiovisual features, e.g. black
or darkened screen and the absence of auditory stimuli.
However, we have largely overlooked synchronous events
that occur within the context of a single movie segment—
the so-called “synchronous movie events.” In this sec-
tion, we take advantage of the repeated presentation of
the same movie scene across multiple scans to character-
ize the stable properties of synchronous and time-locked
events across that occur within the same movie.

To address this question, we first extracted frames cor-
responding to the same movie scene presented across four
independent scans (a total of 516 viewings; Fig. ) Us-
ing the previously-described algorithm for detecting syn-
chronous movie events, we identified and focused on three
peaks (frames) in the event time series (Fig. [4b). These
peaks also corresponded to points in time when sub-
jects’ co-fluctuation patterns were highly similar (Fig. k)
and the 129 individuals who watched the movie scene
four times reliably exhibited events upon each viewing

(Fig. [4k).
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FIG. 4. Time-locked movie events have similar co-fluctuation patterns. (a) Schematic showing that all four scans
ended with the same movie clip, and how we temporally aligned the time series data from the four different presentations of
this clip. (b) Histogram on the left shows the null distribution of subjects at rest. The plot on the right shows the number
of events per time point in blue, with the dashed line indicating when this number is significantly greater than chance. We
highlighted and numbered three peaks that we will focus on in further analyses. (c¢) This plot shows the 129 subjects who
watched this movie scene four times. The values in this matrix show how many times a given subject had an event during each
frame, where four is the maximum number possible. Three areas stand out in this matrix, and as the plot below the matrix
shows, these areas correspond to frames where as many as 15 subjects had an event every time they watched this movie scene.
(d,e & f) These three matrices show the mean co-fluctuation patterns (across subjects) at the frames highlighted in other plots.
(g) This matrix shows the main differences between the 1st peak and the 2nd peak in their system by system interactions. (h)
This matrix shows the main differences between the 2nd peak and the 3rd peak in their system by system interactions. (i) Plot
showing the positive linear relationship between the number of events per time point, and the mean similarity of co-fluctuation
patterns (across subjects). (j) Plot showing the positive linear relationship between the mean co-fluctuation amplitude (across
subjects), and the mean similarity of co-fluctuation patterns (across subjects). (k) Mean similarity of co-fluctuation patterns
(across subjects) plotted across time. Three frames/peaks are highlighted. (1) Matrix showing the similarity of co-fluctuation
patterns for the three time-locked frames. (m) Boxplots showing the data in the previous figure divided into similarity within
and between the highlighted peaks (1st, 2nd, & 3rd). Each peak is significantly more similar to itself than to the other peaks.

Next, we examined the co-fluctuation patterns dur- corresponded to (Fig. ,m; p < 1071%).
ing these three peaks (Fig. [4d,e,f). Interestingly, we

found that these co-fluctuation patterns were dissimi- 'UPQH reflection, this pattern — wherein peaks were
lar to one another, driven by system-specific differences ~ dissociable from one another based on co—ﬂuc‘Fuatlon
involving the dorsal attention and temporo-parietal net- ~ Patterns and event status — represents the tail of a

works (Fig. [dg,h). This pattern is evident across subjects ~ more general phenomenon in which inter-subject simi-
(Fig. ), where co-fluctuation patterns could be reliably ~ larity is positively associated with both event times and

distinguished from one another based on which peak they co-fluctuation amplitude (r = 0.47, p = 8.81 x 1075
r=0.53, p = 2.64 x 1077, respectively; Fig. @,j).
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In summary, these results posit a link between the
similarity of co-fluctuation patterns across subjects and
the propensity for those patterns to occur synchronously
across individuals. Further, it reveals repeatable, fine-
scale, and spatiotemporally dissociable event structure
within movie scenes.

DISCUSSION

Previous studies have shown that spontaneous resting-
state fMRI data exhibited “events” - brief, high-
amplitude, and network-level co-fluctuations. The
drivers of events remain unclear. Here, we investigate
this question using data acquired while subjects passively
viewed movie scenes (or trailers) in the scanner. We
find evidence for three types of events: boundary events,
movie events, and asynchronous events. We show that
boundary events are likely to occur across subjects during
the boundaries between sequential movie scenes (or trail-
ers). Further, we show that these boundary events are
of greater amplitude than non-boundary events, exhibit
similar co-fluctuation patterns across subjects, and follow
distinct temporal trajectories. Interestingly, boundary
events also carry the most subject-specific information of
any event type. At the nodal level, boundary events are
underpinned by a distinct pattern of activity, correspond-
ing to deactivation of visual areas and the activation of
control and ventral attention networks. In addition to
showing that boundary events are distinct from other
event types in many of their features, we show that movie
events (synchronous events that occur during the movie)
share features that are time-locked to the movies that
subjects are watching. That is, when a movie scene elicits
an event in many subjects, the whole-brain co-fluctuation
patterns of these subjects tend to be similar. Addition-
ally, we found that this specific pattern is a feature of
a more general phenomenon wherein inter-subject syn-
chrony in events is associated with higher inter-subject
similarity in co-fluctuation patterns.

Movie boundaries reliably elicit high-amplitude
co-fluctuations

Events explain a large fraction of variance in static
FC and can improve subject identification and brain-
behavior correlations [16] [37]. They are individualized
[30], are correlated with quotidian variability in hormones
across the menstrual cycle [I8], can be used to distin-
guish healthy controls from individuals with autism [25],
and can arise spontaneously in networks whose under-
lying anatomical structure is modular [27]. However,
the timing of events — why they occur when they do —
is not understood. Resting-state datasets—the focus of
most previous edge time series papers—are poorly suited
for addressing this question; the unconstrained nature of
rest and the absence of any temporal correlations across

participants makes it difficult to establish possible event
drivers.

Here, we leverage naturalistic movie-watching data
[38-40] to begin addressing this question. We find evi-
dence that, while events occur at all times during movies,
they reliably and synchronously occur at the end of movie
scenes. This observation is consistent with several recent
studies, which link activations and intersubject synchro-
nization at the boundaries of movies to memory [41], [42],
attention processes [43], and general cognition [44].

Why events reliably occur at boundaries remains un-
clear. One possibility is that boundary events serve as
brain-based markers for the discretization of experience
[45, 46]. That is, that boundary events signify the ending
of one subjectively and perceptually defined segment and
the beginning of another [47H49]. Although appealing, di-
rectly testing this hypothesis necessitates the collection of
additional data to confirm that movie boundaries align
with participants’ subjectively defined segment bound-
aries [50].

Another possibility is that synchronous events arise
from perturbations to a dynamical system. Many studies
have shown that the temporal evolution of brain activity
can be modeled as a dynamical system. If these systems
are broadly similar across individuals, we might expect
that driving them with the same time-varying inputs (au-
diovisual stimuli) will yield similar response profiles. This
partially explains intersubject correlations during natu-
ralistic paradigms. We speculate that the ends of movies,
which are often typified by lower levels of luminance and
sound volume, represent particularly evocative or arous-
ing stimuli so that the shared response is brain-wide and
initiates an event. Indeed, previous studies have shown
that state of arousal is a powerful modulator of brain ac-
tivity [51l, 52] and connectivity [53] [64], suggesting that
it may also play a role in event induction and should be
investigated further in future studies.

We note that these hypotheses — experience segmen-
tation and perturbations to dynamical systems — repre-
sent only two possible explanations for boundary events
and are, themselves, not mutually exclusive. Addition-
ally, we note that while movie scene boundaries are fac-
tors that explain some synchronous high-amplitude co-
fluctuations, we also observe synchronous events at other
points within movies. The underlying mechanisms sup-
port “movie events” may be similar to boundary events,
although stimuli during the movie are much richer and
complex [55]. Future studies should focus on linking this
second category of events with other features, e.g. movie
annotations or eye-tracking data as a proxy for arousal.

Event timing is not fully explained by sampling
variability

Several studies have suggested that events arise not
from any neurocognitively meaningful mechanism, but
simply from sampling variability around a fixed correla-
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tion structure [28] 29]. That is, given a static FC matrix,
nodal and edge time series must have a specific set of
properties, including events. This is an important con-
cern, and one that echoes other ongoing and unresolved
debates in the network and cognitive neuroscience liter-
ature [56H58].

Our results speak directly to this controversy. Specif-
ically, if events arise only due to stochastic fluctuations,
then their occurrences should be independent and uncor-
related across individuals. However, we find that this is
not the case and that, in line with previous studies [16],
the timing of events within a scan session is correlated
across individuals. These events cannot obviously be at-
tributed to “rest blocks” that are interspersed between
movie scenes, as we also find evidence of correlated events
within movies.

These observations contribute to and enrich the ongo-
ing dialogue surrounding exactly what features of brain
networks are stationary wersus non-stationary. Future
studies — both empirical and in silico — should continue
to investigate these and related questions.

Future Directions

There are several ways that the results of this study
could be extended in the future. For instance, we
examined naturalistic stimuli (passive movie-watching).
We found robust evidence of inter-subject correlations,
specifically the timing of events, both during and at the
end of movie scenes. While it is clear that subjects syn-
chronize events, the precise causes remain unclear. One
way to gain insight into these causes involves leveraging
the movie annotations that accompany the imaging data.
That is, to link the timing of events, synchronized or oth-
erwise, to the timing of particularly salient features (e.g.
objects and actions) occurring in the movie [59]. Addi-
tionally, future studies with more specified and explicit
task design could also be performed to adjudicate be-
tween competing hypotheses about the origins of events.
For example, online experience sampling during acquisi-
tion could be used to better understand the subjective
experiences that co-occur with events [60].

Another way to extend these results would be to ex-
amine multi-modal recordings made at, potentially, faster
timescales, e.g. scalp or intracranial EEG or MEG [61-
63]. Our work here, and related studies, have focused
almost exclusively on fMRI data. However, fMRI has a
number of known limitations, most notably it exhibits
relatively poor temporal resolution, which may obscure
rapidly occurring neural processes, e.g. fine-grained tem-
poral structure that occurs just prior to or following an
event [64H66]. Future studies should investigate inter-
synchrony of events using imaging modalities that are
acquired at faster rates.

Here, we focus on empirical recordings. However, re-
cent studies have shown that events can be observed in
synthetic data generated by dynamic models [27]. This

opens up several avenues for future work, including ar-
tificially “stimulating” in silico brains to induce events
and, if we have two independent simulations, whether si-
multaneous stimulation leads them to synchronize [67].
The simulation-based analyses also make it possible to
investigate and test related hypotheses using data from
non-human subjects, e.g. macaque [68].

One of our key findings was that events are temporally
coincident during movie-watching and especially near the
boundaries between movie trailers. However, partici-
pants consistently exhibit events throughout the scan,
even if the timing is not coincident with other individu-
als. What are the origins of these “asynchronous events?”
One possibility is that they reflect an intrinsic mode of
rest that is decoupled from the ongoing task/movie stim-
uli [69]. Future studies, likely with dedicated experimen-
tation, are needed to clarify the distinction between asyn-
chronous and synchronous events.

Another noteworthy point concerns how events were
defined. Here, a time point was considered an event
if global — i.e. whole-brain — cofluctuations exceeded a
statistical criterion. We found that these global events
reliably occurred during movie boundaries, which corre-
spond to large shifts in movie content. Future studies
should investigate locally-defined events — e.g. at the
level of brain systems — which may be linked to more
subtle variation in movie features.

Finally, while we find evidence of synchronous events,
we note that synchronization does not imply that all
subjects experienced an event at the same moment (just
that a sufficiently large number did). An important open
question is whether those subjects that did not experi-
ence an event are distinguished from their peers along
other dimensions as well, e.g. cognitive, clinical, demo-
graphic profiles. For example, perhaps subjects that ex-
perienced an event have better recall of related movie
scenes than subjects that did not.

Limitations

There are several limitations of the current study. One
notable issue is the use of fMRI data to infer brain activ-
ity. Functional imaging data is fundamentally an indi-
rect (and slow) measure of the hemodynamic response to
population-level activity. Follow-up studies should aim
to reproduce these results using more direct assessments
of activity, e.g. intracranial EEG.

Additionally, there are several limitations associated
with the movie data themselves. The first concerns the
subjectivity with which individuals experience the movie
stimuli. While the stimuli are identical across individu-
als, their experiences may not be, e.g. participants may
attend to different movie features at the same time point
or draw on their personal history, leading to dissimilar ex-
perience. Without subjective post-scan reports or incor-
poration of additional data modalities, e.g. eye-tracking,
it remains challenging to uncover the drivers of synchro-
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nized events.

Furthermore, it is important to clarify that while previ-
ous studies have primarily focused on events during the
resting-state, we focus here on events detected during
passive movie-watching. While the statistical approach
used to detect periods of high-amplitude co-fluctuations
is identical, it remains unclear whether resting and movie
events share common neurocognitive underpinnings. Fu-
ture studies should investigate their differences and com-
monalities in more detail.

Lastly, there remain challenges related to data pro-
cessing and analysis. Specifically, the procedures
for disambiguating activations (first-order effects) from
co-fluctuations (second-order effects) during movie-
watching watching are not well defined. In blocked or
event-related task design, regressors can be constructed
to orthogonalize time series with respect to activations
[70], making it possible to effectively remove activa-
tions as confounds prior to estimating connectivity or co-
fluctuations. However, with movie-watching data, stim-
uli are presented in a naturalistic way, meaning that
many stimuli overlap and co-occur, e.g. the presence of
a face is often correlated with speech, making it difficult
to control for all possible stimuli. Moreover, the stimuli
are presented in a continuous stream, similarly making
it difficult to construct appropriate regressors. This re-
mains an active and contentious area of research. Future
methodological studies will address this potential issue.
One particular concern unique to our findings is the pres-
ence of “rest blocks” in the HCP dataset. An alternative
interpretation of our results is that because the transi-
tion from a “movie state” to “rest state” is accompanied
by a short pause, it is the pause itself that induces a
non-stationarity in the activations, yielding a boundary
event.

Conclusion

In conclusion, this study represents an analysis of
the synchronization of high-amplitude co-fluctuations,
or “events”, while participants are watching the same
movie in two separately collected, processed and par-
cellated data sets. Our analysis suggests that events
during movie watching can be divided into three cate-
gories based upon their synchronization. Synchronous
boundary events occur at the end of movie scenes, or
trailers, and are distinct from the other event types in
overall co-fluctuation pattern, amplitude and temporal
structure, as well as carrying the most subject-specific
information. Synchronous movie events occur during the
movie and their time-locked co-fluctuation patterns are
highly similar across subjects. In fact, we found a gen-
eral relationship between the degree of event synchro-
nization across subjects and the across subject similar-
ity in co-fluctuation pattern. These two types of syn-
chronous events suggests that events can be elicited by
environmental stimuli. Asynchronous events also occur
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throughout the movie, suggesting an individualized ele-
ment to the inducement of events.

MATERIALS AND METHODS
Human Connectome Project Data

The Human Connectome Project (HCP) 7T dataset
[31] consists of structural magnetic resonance imaging
(T1w), resting state functional magnetic resonance imag-
ing (rsfMRI) data, movie watching functional magnetic
resonance imaging (mwfMRI) from 184 adult subjects.
These subjects are a subset of a larger cohort of ap-
proximately 1200 subjects additionally scanned at 3T.
Subjects’ 7T fMRI data were collected during four scan
sessions over the course of two or three days at the Cen-
ter for Magnetic Resonance Research at the University of
Minnesota. Subjects’ 3T T1w data collected at Washing-
ton University in St. Louis. The study was approved by
the Washington University Institutional Review Board
and informed consent was obtained from all subjects.

Demographics

We analyzed MRI data collected from Ny = 129 sub-
jects (77 female, 52 male), after excluding subjects with
poor quality data. Our exclusion criteria was as fol-
lows: where each spike is defined as relative framewise
displacement of at least 0.25 mm, we excluded subjects
who fulfill at least 1 of the following criteria: greater than
15% of time points spike, average framewise displacement
greater than 0.2 mm; contains any spikes larger than
Smm. Following this filter, subjects who contained all
four scans were retained. At the time of their first scan,
the average subject age was 29.36 & 3.36 years, with a
range from 22 — 36. 70 of these subjects were monozy-
gotic twins, 57 where non-monozygotic twins, and 2 were
not twins.

MRI acquisition and processing

A comprehensive  description of the imag-
ing parameters and image preprocessing can be
found in [7I] and in HCP’s online documentation
(https://www.humanconnectome.org/study/hcp-young-
adult/document/1200-subjects-data-release). T1lw were
collected on a 3T Siemens Connectome Skyra scanner
with a 32-channel head coil. Subjects underwent two
T1-weighted structural scans, which were averaged for
each subject (TR = 2400 ms, TE = 2.14 ms, flip angle
= 8° 0.7 mm isotropic voxel resolution). fMRI were
collected on a 7T Siemens Magnetom scanner with a 32-
channel head coil. All 7T fMRI data was acquired with a
gradient-echo planar imaging sequence (TR = 1000 ms,
TE = 22.2 ms, flip angle = 45°, 1.6 mm isotropic voxel
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resolution, multi-band factor = 5, image acceleration
factor = 2, partial Fourier sample = 7/8, echo spacing
= 0.64 ms, bandwidth = 1924 Hz/Px). Four resting
state data runs were collected, each lasting 15 minutes
(frames = 900), with eyes open and instructions to
fixate on a cross. Four movie watching data runs were
collected, each lasting approximately 15 minutes (frames
= 921, 918, 915, 901), with subjects passively viewing
visual and audio presentations of movie scenes. Movies
consisted of both freely available independent films
covered by Creative Commons licensing and Hollywood
movies prepared for analysis [(2]. For both resting
state and movie watching data, two runs were acquired
with posterior-to-anterior phase encoding direction and
two runs were acquired with anterior-to-posterior phase
encoding direction.

Structural and functional images were minimally pre-
processed according to the description provided in [71].
7T fMRI images were downloaded after correction and re-
processing announced by the HCP consortium in April,
2018. Briefly, Tlw images were aligned to MNI space
before undergoing FreeSurfer’s (version 5.3) cortical re-
construction workflow. fMRI images were corrected for
gradient distortion, susceptibility distortion, and mo-
tion, and then aligned to the corresponding T1w with
one spline interpolation step. This volume was fur-
ther corrected for intensity bias and normalized to a
mean of 10000. This volume was then projected to the
2mm 32k_fs_.LR mesh, excluding outliers, and aligned to
a common space using a multi-modal surface registra-
tion [73]. The resultant CIFTI file for each HCP sub-
ject used in this study followed the file naming pattern:
*x_Atlas_MSMA1l hp2000_clean.dtseries.nii. Resting
state and moving watching fMRI images were nuisance
regressed in the same manner. Each minimally prepro-
cessed fMRI was linearly detrended, band-pass filtered
(0.008-0.25 Hz), confound regressed and standardized us-
ing Nilearn’s signal. clean function, which removes con-
founds orthogonally to the temporal filters. The con-
found regression strategy included six motion estimates,
mean signal from a white matter, cerebrospinal fluid, and
whole brain mask, derivatives of these previous nine re-
gressors, and squares of these 18 terms. Spike regressors
were not applied. Following these preprocessing opera-
tions, the mean signal was taken at each time frame for
each node, as defined by the Schaefer 400 parcellation
[74] in 32k_fs_LR space.

Indiana University Data
Demographics

We analyzed MRI data collected from Ng; = 29 sub-
jects (5 female, 24 male; 25 were right-handed). This
cohort was male-dominant, as subjects were intended to
serve as controls for a study in autism spectrum disorder,
which is more common in men than women. At the time
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of their first scan, the average subject age was 24.9 +4.7
years.

MRI acquisition and processing

MRI images were acquired using a 3T whole-body
MRI system (Magnetom Tim Trio, Siemens Medical So-
lutions, Natick, MA) with a 32-channel head receive ar-
ray. Both raw and prescan-normalized images were ac-
quired; raw images were used at all preprocessing stages
and in all analyses unless specifically noted. During
functional scans, T2*-weighted multiband echo planar
imaging (EPI) data were acquired using the following
parameters: TR/TE = 813/28 ms; 1200 vol; flip angle
= 60°; 3.4 mm isotropic voxels; 42 slices acquired with
interleaved order covering the whole brain; multi-band
acceleration factor of 3. Preceding the first functional
scan, gradient-echo EPI images were acquired in opposite
phase-encoding directions (10 images each with P-A and
A-P phase encoding) with identical geometry to the EPI
data (TR/TE = 1175/39.2 ms, flip angle = 60°) to be
used to generate a fieldmap to correct EPI distortions,
similar to the approach used by the Human Connec-
tome Project [75]. High-resolution T1-weighted images
of the whole brain (MPRAGE, 0.7 mm isotropic voxel
size; TR/TE/TI = 2499/2.3/1000 ms) were acquired as
anatomical references.

All functional data were processed according to an
in-house pipeline using FEAT (v6.00) and MELODIC
(v3.14) within FSL (v. 5.0.9; FMRIB’s Software Li-
brary, www.fmrib.ox.ac.uk/fsl)), Advanced Normaliza-
tion Tools (ANTSs; v2.1.0) [76], and Matlab_R2014b. This
pipeline was identical to the GLM + MGTR procedure
described in [32].

In more detail, individual anatomical images were bias-
corrected and skull-stripped using ANTs, and segmented
into gray matter, white matter, and CSF partial volume
estimates using FSL FAST. A midspace template was
constructed using ANTS’ buildtemplateparallel and sub-
sequently skull-stripped. Composite (affine and diffeo-
morphic) transforms warping each individual anatomi-
cal image to this midspace template, and warping the
midspace template to the Montreal Neurological Insti-
tute MNI152 1mm reference template, were obtained us-
ing ANTs.

For each functional run, the first five volumes (=4
seconds) were discarded to minimize magnetization
equilibration effects. Framewise displacement traces
for this raw (trimmed) data were computed using
fsl_motion_outliers. Following [32}[77], we performed FIX
followed by mean cortical signal regression. This pro-
cedure included rigid-body motion correction, fieldmap-
based geometric distortion correction, and non-brain re-
moval (but not slice-timing correction due to fast TR
[75]). Preprocessing included weak highpass temporal
filtering (>2000 s FWHM) to remove slow drifts [75] and
no spatial smoothing. Off-resonance geometric distor-
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tions in EPI data were corrected using a fieldmap de-
rived from two gradient-echo EPI images collected in op-
posite phase-encoding directions (posterior-anterior and
anterior-posterior) using FSL topup.

We then used FSL-FIX [78] to regress out independent
components classified as noise using a classifier trained
on independent but similar data and validated on hand-
classified functional runs. The residuals were regarded as
“cleaned” data. Finally, we regressed out the mean corti-
cal signal (mean BOLD signal across gray matter partial
volume estimate obtained from FSL FAST). All analyses
were carried out on these data, which were registered to
subjects’ skull-stripped T1-weighted anatomical imaging
using Boundary-Based Registration (BBR) with epi_reg
within FSL. Subjects’ functional images were then trans-
formed to the MNI152 reference in a single step, using
ANTS to apply a concatenation of the affine transfor-
mation matrix with the composite (affine + diffeomor-
phic) transforms between a subject’s anatomical image,
the midspace template, and the MNI152 reference. Prior
to network analysis, we extracted mean regional time se-
ries from regions of interest defined as sub-divisions of
the 17-system parcellation reported in [79] and used pre-
viously [80H82]. Wakefulness during movie and rest scans
was monitored in real-time using an eye tracking camera
(Eyelink 1000).

Naturalistic stimuli and coding boundaries
Human Connectome Project Data

Movies consisted of concatenated movie scenes with 20
second blocks of rest between them. The movies scenes
were sourced from both freely available independent films
covered by Creative Commons licensing and Hollywood
movies prepared for analysis [72)].

Both JCT and RFB manually coded the boundaries
between the end of movie scenes and the beginning of rest
blocks and confirmed consistency across codings. Addi-
tionally, JCT confirmed that these codings aligned with
the end of movie scenes and the beginning of rest blocks
using the RGB values from a digitized version of the
movies. The movie screen during rest blocks, on aver-
age, contains more black pixels (See Fig for example).
By indexing the number of black pixels and overlaying
the coded boundaries, JCT found an alignment between
the beginning of rest blocks (where the number of black
pixels increased) and coded boundaries.

Indiana University Data

All movies were obtained from Vimeo (https://
vimeo.com). They were selected based on multiple crite-
ria. First, to ensure that movie trailers represented novel
stimuli, we excluded any movie that had a wide theatrical
release. Secondly, we excluded movies with potentially
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objectionable content including nudity, swearing, drug
use, etc. Lastly, we excluded movies with intentionally
startling events that could lead to excessive in-scanner
movement.

Each trailer lasted between 45 and 285 seconds (ap-
proximately 1 to 5 minutes). Each movie scan comprised
between four and six trailers with genres that included
documentaries, dramas, comedies, sports, mystery, and
adventure (See Table. [S1| for more details). Both JCT
and RFB manually coded the boundaries between trail-
ers and confirmed consistency across codings.

Functional connectivity

Functional connectivity (FC) measures the statisti-
cal dependence between the activity of distinct neural
elements. In the modeling of macroscale brain net-
works with fMRI data, this usually means computing
the Pearson correlation of brain regions’ activity time
series. To calculate FC for regions ¢ and j, then, we first
standardize their time series and represent them as z-
scores. We denote the z-scored time series of region i as
z; = [2i(1),. ..,z (T)], where T is the number of samples.
The Pearson correlation is then calculated as:

1 T
ry = g O s 24(). (1)

In other words, the correlation is equal to the temporal
average of two regions’ co-fluctuation.

Edge time series

We analyzed edge time series data. Edge time series
can be viewed as a temporal decomposition of a corre-
lation (functional connection) into its framewise contri-
butions. Note that Pearson correlation is calculated as
Toy = 7og 2oy 2a(t) - 2y(t), where T' is the number of
samples and 2, (t) = “ 1= is the z-scored transformation
of the time series z = [z(1),...,2(T)]. If we omit the
summation in our calculation of r, ,, we obtain a time
series 74.4(t) = 24(t) - zy(t), whose elements index the
instantaneous co-fluctuation between variates x and y.
Here, we estimated the edge time series for all pairs of
brain regions {i,j}.

We analyzed edge time series using two distinct ap-
proaches.

Edge time series amplitude (RSS)

First, we calculated the amplitude at each frame as
the root sum of squared co-fluctuations. That is, the
amplitude at time ¢t was given by:
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RSS(t) = [ ry(t)? (2)

1,5>1

Whole-brain co-fluctuation patterns

The section way in which we analyzed edge time series
was by considering the whole-brain co-fluctuation pat-
tern at a given time point. That is, we focused on the co-
fluctuation matrices, C(t) € RV*N. The element {i,}
in this matrix denoted the co-fluctuation magnitude be-
tween regions ¢ and j at time ¢, i.e. 7;;(¢). Although
co-fluctuation matrices are not correlation matrices, they
can nonetheless be analyzed using similar network science
tools.

Global Similarity Matrix

We assessed the similarity of events between subjects
and types (boundary, movie, and asynchronous). The
procedure for doing so involved two steps. First, for a
given pair of subjects, r and s, with n, and n, events,
respectively, we calculated the R € RI**7sl similarity
matrix between all pairs of events. The elements of this
matrix could be further aggregated and averaged based
on the category to which events were assigned, reducing
R to an asymmetric, [3 X 3] matrix (rows and columns
correspond to the three event types).

This first step was repeated for all pairs of subjects,
each time yielding an analogous [3 x 3] matrix. At its
completion this, second step yielded a 387 x 387 similarity
matrix, whose rows and columns could be reordered by
event types. We show this matrix in Fig. 2.
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Co-fluctuation Matrix Differences

In the main text, we described differences in the
co-fluctuation matrices associated with different event
types. To assess these differences, we performed the fol-
lowing set of calculations. For a given pair of event types,
we identified all instances of each type and calculated, at
the level of edges, the differences in their co-fluctuation
magnitude and the mean sign of those differences. We
then retained the sign of these differences. The result
is a n X n matrix for each subject whose elements are
{—1,1}. Note that this calculation was performed within
subjects.

Next, we examined whether, across subjects, edges ex-
hibited concordant behavior using a paired-samples ¢-
test. That is, we assessed whether, across subjects, an
edge’s co-fluctuation magnitude under one event type was
consistently greater than or less than that of another
event type. This procedure was repeated for every pair
of event types.
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FIG. S1. Replication of synchronous boundary events in Indiana University data set. (a) Each panel represents two
things: 1) the stacked event time series of all subjects, and 2) the hrf-convolved movie trailer endings. Each of the four figures
is representative of a different scan/movie-presentation for the Indiana University data set. (b) Plot showing the number of
subjects with an event for each trailer ending (for every scan). Bold line indicates the mean across all trailer endings. (c¢) Using
a window of 10 seconds on either side of all movie trailer endings, we compared the number of events within this window to a
null model where this window is circularly shifted 100 times.

Scan |Title Genre Runtime
1 Man Up and Go documentary /emotional 4m20s
1 The First 70 documentary 3m

1 Fixation documentary /adventure 1m42s
1 The Living drama 2m

1 SAMSARA documentary / “unparalleled sensory experience” 1m35s
1 Blood Brother documentary 2m20s
2 Birdmen documentary /adventure 3mb9s
2 Groomed drama 1m30s
2 Cold outdoor/sports 2m

2 Sleepwalkers drama 2m

2 A Kind of Show comedy 1m

3 Geofish documentary /adventure 4m40s
3 The Debut outdoor/sports 3m23s
3 Dreams of a Life documentary /mystery 2m10s
3 The Front Man documentary 2m30s
3 This Is Vanity drama 1m

4 Planetary documentary 4m30s
4 Sign Painters documentary 2m50s
4 Florida Man documentary/drama 2m

4 The Sleeping Bear |drama 3m40

TABLE S1. Movies included in each movie scan for the Indiana University dataset.


https://doi.org/10.1101/2022.06.30.497603
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.497603; this version posted July 4, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

18

Replication in Indiana University data set
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FIG. S2. Three types of events: replication in Indiana University data set. (a-c) Mean co-fluctuation matrices
representing the mean of all events for a given event type. (d) Boxplots of the distribution of co-fluctuation amplitudes per
event type. (e) Global similarity within and between different event types (global similarity is defined in the methods section).
(f) Boxplots showing the data from the previous figure divided by similarity values within the same type and similarity values
between different types. (g) Plot showing the mean temporal trajectory of each event type. (h-j) System by system mean
co-fluctuation patterns across boundary events, movie events, and asynchronous events respectively for both data sets (HCP:
left; Indiana: Right). (k) Across data set similarity of system by system mean cofluctuation matrices for each event type.
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FIG. S3. Differences between the Event Types All differences described here are computed using the method detailed
in the methods section. (a) Difference between boundary events and asynchronous events. (b) Difference between boundary
events and movie events. (c) Difference between movie events and asynchronous events. (d) Significantly different edges
between boundary events and asynchronous events each colored according to whether the difference was significantly positive
or significantly negative. (e) Significantly different edges between boundary events and movie events each colored according to
whether the difference was significantly positive or significantly negative. (f) Significantly different edges between movie events
and asynchronous events each colored according to whether the difference was significantly positive or significantly negative.
(g9) Significantly different edges between boundary events and both asynchronous events as well as movie events each colored
according to whether the difference was significantly positive or significantly negative. (h) Significant system by system edges
after running a space-preserving null model (spin test) to test if the significant edges in the previous figure are more concentrated
in system by system blocks than we should expect by chance. Here we controlled for multiple comparisons by fixing the false
discovery rate to ¢ = 0.05. (i) Same test as previous figure with a false discovery rate set to ¢ = 0.001.
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FIG. S4. Identifiability of the event types. (a-d) Each of the following figures show two plots: a similarity matrix and
boxplots of these values divided into four categories per event type (same individual-within type, same individual-between
type, different individual-within type, and different individual-between type). All p-values below p < 8.66 x 10™*, p-values for
boundary events p < 1075,
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FIG. S5. Movie events are the most similar to functional connectivity in HCP data. (a) Boxplots showing the
distribution of correlations between an event type (mean across the participants scan) and FC for the same scan. Movie events
are the most similar to FC (all p-values below p < 107'%). (b) Boxplots showing the number of frames assigned to each event
type per scan/participant (all p-values below p < 107'%). (¢) Scatter plot showing the relationship between similarity with FC
and number of frames. Similarity with FC appears to be at least partially driven by the number of frames used to compute
the mean cofluctuation pattern for an event type. (d) Mean functional connectivity across all scans/participants. (e) Boxplots
showing the distribution of correlations between an event type (mean across the participants scan) and FC for the same scan.
(f) Boxplots showing the number of frames assigned to each event type per scan/participant. (g) Mean functional connectivity
across all scans/participants.
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FIG. S6. Rest-based null model is more conservative than circularly shifted movie event time series. (a) Plot of
two null distributions. The rest null was computed as the number of events per time point while subjects were at rest. The circ
shift movie null was computed as the number of events per time point with the event time series circularly shifted to maintain
the number and relative timing of events in the actual data, but break the alignment.
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FIG. S7. Spin test shows that correlations are significantly concentrated in control b, salience b, and central
visual systems. (a) We found that in three systems (control b, salience b, and central visual) the mean correlation value
between nodal activations in that system and boundary events was significantly higher than a null distribution created using
a space-preserving permutations test (spin test). (b) All correlations plotted to the brains surface. (¢) Systems that were not
significant were overlaid with grey.
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