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Unwanted sample drift is a common issue that plagues mi-
croscopy experiments, preventing accurate temporal quantifi-
cation of biological processes. While multiple methods and tools
exist to correct images post-acquisition, performing drift cor-
rection of large 3D videos using open-source solutions remains
challenging and time-consuming. Here we present a new tool
developed for Image]J/Fiji called Fast4DReg that can quickly
correct axial and lateral drift in 3D video microscopy datasets.
Fast4DReg works by creating intensity projections along multi-
ple axes and estimating the drift between frames using 2D cross-
correlations. Using synthetic and acquired datasets, we demon-
strate that Fast4DReg performs better than other state-of-the-
art open-source drift correction tools and significantly outper-
forms them in speed (5x to 60x). We also demonstrate that
Fast4dDReg can be used to register misaligned channels in 3D
using either calibration slides or misaligned images directly. Al-
together Fast4DReg provides a quick and easy-to-use method to
correct 3D imaging data before further visualization and analy-
sis. Fast4DReg is available on GitHub.
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Introduction

Live imaging is essential in biomedical research, en-
abling scientists to follow biological processes over time.
Despite being heavily used, performing live imaging exper-
iments using fluorescence microscopy remains technically
challenging. The experimenter must carefully balance illumi-
nation power and acquisition speed while maintaining speci-
men health. In addition, imaging is often prone to drift. Drift
can occur due to the microscope instability caused, for exam-
ple, by temperature changes leading to thermal expansion of
the mechanics or by the movement of the sample itself.

Multiple software and hardware solutions have been de-
veloped to minimize drifting during acquisition. For instance,
axial drifting can be limited using an infrared light that is re-
flected on the glass-sample interface and captured by a detec-
tor (e.g., Leica’s Adaptive Focus Control or Nikon’s Perfect
Focus System). Lateral drift due to sample movement can
also be compensated by tracking algorithms that follow the
sample over time and move the microscope stage accordingly
(Fox et al., 2022; von Wangenheim et al., 2017). Yet drift-

ing is rarely entirely eliminated at the acquisition stage, espe-
cially when acquiring multiple positions for an extended pe-
riod. Therefore, it is often necessary to perform drift correc-
tion (via image registration) as a post-processing step before
image visualization and quantification. Beyond live imaging,
drift correction/channel registration is a crucial processing
step for multiple image analysis pipelines, including colo-
calization analysis or the reconstruction of super-resolution
microscopy images.

Most drift correction/registration algorithms work se-
quentially by comparing a reference image to a moving im-
age and estimating the movement between these two images
to correct it. Multiple open-source tools capable of correct-
ing 4D datasets already exist. Popular tools include, for
instance, ITK (McCormick et al., 2014), elastix (Klein et
al., 2010), Multiview Reconstruction (Preibisch et al., 2010,
2014), Fijiyama (Fernandez Moisy, 2021), or Correct 3D
drift (Parslow et al., 2014). However, except for Multiview
Reconstruction and Correct 3D drift, these tools are geared
toward correcting medical imaging datasets and can be un-
practical to use to correct large 3D movies. Multiview Recon-
struction, which was designed to register large lightsheet flu-
orescence microscopy datasets, uses beads and/or segmented
structures in the imaging volume to perform the registration,
which are not always available (Preibisch et al., 2010, 2014).
While Correct 3D drift can often successfully register our
datasets, we felt limited by its speed and available features.

Here, prompted by a need to correct our 3D videos
more easily and more efficiently, we developed Fast4DReg,
a fast 2D and 3D video drift correction tool. Using mul-
tiple datasets, we show that Fast4DReg can perform better
than two other state-of-the-art 3D video drift correction tools
available in Fiji, namely Correct 3D drift (Parslow et al.,
2014) and Fijiyama (Fernandez and Moisy, 2021). In addi-
tion, we show that Fast4DReg can register misaligned chan-
nels in 3D using either calibration slides or misaligned im-
ages directly. Fast4DReg is fast and has a simple graphical
interface. These features make Fast4DReg a versatile and
easy-to-use open-source 2D/3D drift correction tool.
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Fig. 1. Drift correction of 3D videos using Fast4DReg. Scheme highlighting the inner working of Fast4DReg. a) Fast4DReg sequentially estimates the lateral drift, corrects
the lateral drift, and then estimates and corrects the axial drift. Fast4DReg creates intensity projections along multiple axes and estimates the drift between the reference
and moving frames by calculating their cross-correlation matrix (CCM). The location of the peak intensity in the CCM (pink asterisk) defines the linear shift between the two
images (as highlighted by the pink arrow). Fast4DReg outputs the corrected images, the drift plots, a drift table, and a settings file containing all selected parameters and
paths to the drift table. b) The settings file inducing the used parameters and path to the drift table can then be applied to correct other datasets (i.e., another channel) directly.

Implementation, operation, and test datasets

Pipeline. Fast4DReg breaks the drift correction task into
two steps: First, estimation of drift followed by applying the
drift correction. To estimate the drift of a 3D video in X,y,
and z, Fast4DReg sequentially estimates the lateral drift, cor-
rects the lateral drift, and then estimates and corrects the axial
drift (Figure 1). Lateral and axial drift corrections can also
be performed independently, which can be particularly use-
ful when only axial drift needs to be corrected. As an output
of the drift estimation step, Fast4DReg creates a new folder
containing the corrected images, the drift plots, a drift table,
and a settings file containing the selected parameters. No-
tably, the drift table can then be applied to correct other im-
ages using the same parameters (i.e., to correct another chan-
nel). Indeed, when correcting multichannel 3D videos, the
user needs to choose one channel to use to estimate the drift.
The other channel(s) can then be corrected using the same
drift table (Figure 1).

To estimate the lateral or axial drift of a 3D video,
Fast4DReg creates z or y intensity projections for each time
point to create a 2D video. Fast4DReg then estimates the
linear drift between the reference and moving frames by cal-
culating their cross-correlation matrix (CCM). The location
of the peak intensity in the CCM defines the linear shift be-
tween the two images. Sub-pixel accuracy is accomplished
by up-scaling the CCM via bicubic spline interpolation [as
demonstrated by (Laine et al., 2019)]. Depending on their
data, users can choose the first frame (best for fixed data) or
the movie’s previous frame (best for live imaging data) as the

reference frame.

Fast4DReg can also be used to register channels from
misaligned 3D stacks. In this case, Fast4DReg simply con-
verts the channels into time frames before applying the
Fast4DReg drift correction pipeline described above. As a
note of caution, cross-correlation only works well to register
channels where similar structures/cells are labeled.

Importantly Fast4DReg can also register 2D video and
2D multichannel images either one at a time or in batch.

Operation. Fast4DReg can run on any computer where Fiji
(Schindelin et al., 2012) and the Bio-Formats (Linkert et al.,
2010) plugin are installed. Fast4DReg has a RAM-saving
mode that allows the registration of large datasets using a
computer with limited resources at the cost of a slightly
longer processing time.

Fast4DReg expects as input one or multiple single
channel 2D or 3D video and outputs corrected files, drift ta-
bles, drift plots, and a settings file that can be applied to other
channels as needed. Thanks to Bio-Formats (Linkert et al.,
2010), Fast4DReg can handle various image formats as input.
Fast4DReg can be tested using our test datasets available on
Zenodo. Installation procedure and step-by-step instructions
are available on the Fast4DReg GitHub page.

Test datasets. To assess the drift correction ability of
Fast4DReg, we used four types of datasets: (1) Synthetic
drift -datasets, (2) a HUVEC monolayer -dataset, and (3) a
registration slide -dataset, and (4) a Filopodia-dataset. These
datasets and the code generated are available on a dedicated
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Zenodo archive.

Dataset 1: Datasets with synthetic drift. Synthetic drift 3D
video datasets were created by duplicating 25 times a 3D
stack image (416x416 px, 69 z-slices, 25-time points, 16 bit)
and artificially adding a certain amount of x-, y- and z drift
between each frame (Figure 2a). The amount of drift added
corresponds to drift typically observed in our live-cell imag-
ing experiments. Using this method, three videos were cre-
ated: One with no drift (ground truth video), one with only a
small amount of drift, and one with a large drift (across the
field of view). The videos were created using the following
functions:

Tarift = T2 X124+ 21 xt+AX (G —0.5) 1)
Yarift = Y2 X t24+yl xt+ A x (G —-0.5) )
Zdrift = 22 Xt2+2z1lxt+Ax (G—05) (®)]

Where A represents the noise amplitude and G is a
Gaussian "normally" distributed pseudorandom number with
mean 0.0 and standard deviation 1.0.

No drift dataset: x1 =0,x2=0,yl =0,y2=0, zI =
0, z2 = 0, noise amplitude A = 0.0. Small drift dataset: x1 =
0.1,x2 =0.05, yl1 = 0.5, y2 =-0.05, z1 =-0.3, z2 = 0, noise
amplitude A = 0.1. Large drift dataset: x1 =0.2,x2=0.1, y1
=1.5,y2=-0.03, z1 = -0.6, z2 = 0, noise amplitude A = 0.1.

After the drifting was simulated, the image background
was made homogeneous via pixel intensity subtraction and
by adding specified noise using Fiji (subtract = 800, add =
800, the addition of specified noise = 100). The x-y-and z
drift in these synthetic datasets was corrected (considering
the whole image, not a selected ROI) using Fast4DReg, Cor-
rect 3D drift, and Fijiyama. For each software, the param-
eters providing the best possible drift correction were cho-
sen and were as follows: Fast4DReg: xy-projection type =
max intensity, Xy time averaging = 1, Xy max expected drift
= disabled, xy-reference previous frame (better for live), z-
projection type = max intensity, z-reslice mode = Top, z time
averaging = 1, z max expected drift =disabled, z-reference
previous frame (better for live), expand stack to fit = disabled,
Save RAM = disabled

Correct 3D drift: Channel for registration = 1, Multi
time scale computing = enabled, Sub pixel drift correction
= enabled, Edge enhancement = enabled, all pixels and z-
planes considered, max shift in x-y and z-directions = 200
pX, use of virtual stack = disabled, only compute vectors =
disabled).

Fijiyama: Max subsampling factor = 4, Min subsam-
pling factor = 2, Higher accuracy = yes, Block half-size x=5,
y=5, z= 3, Block neighborhood x =2, y = 2, z = 2, Striding
along x = 13, y= 13, z = 3, number of iterations = 6, percent-
age of blocks selected by score = 95%, Percentage kept in
Least-trimmed square = 80%.

After correcting the drift in the synthetic datasets, the
images were first cropped to be the same size (352x275px,
69 z-slices, 25 frames) using Fiji. The drift correction perfor-
mance was then quantified by measuring the Pearson’s corre-
lation coefficient between frames (reference frame = first) of
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a selected z-slice (z-slice = 51) using a custom-made Jupyter
notebook. This z-slice was selected as it is in the middle of
the stack.

Dataset 2: the HUVEC monolayer -dataset. The HUVEC
monolayer -dataset consists of a 3D timelapse of human um-
bilical vein endothelial cells (HUVECS) labeled with sirActin
(Spirochrome). The video was acquired using a laser scan-
ning confocal microscope LSM880 (Zeiss) equipped with an
Airyscan detector (Carl Zeiss) and a 63x oil (NA 1.4) ob-
jective. The microscope was controlled using Zen Black
(2.3), and the Airyscan was used in standard super-resolution
mode. This dataset has 200 frames (488 x 488 px) and 24
z-slices (2,3 GB). This dataset suffers from significant drift
in all x-, y- and z-directions.

The xy- and z-drift in this dataset was corrected
(considering the whole image, not a selected ROI) using
Fast4DReg, Correct 3D drift, and Fijiyama. For each soft-
ware, the parameters providing the best possible drift correc-
tion were chosen and were as follows:

Fast4DReg: xy-projection type = max intensity, Xy time
averaging = 1, Xy max expected drift = disabled, xy-reference
= previous frame (better for live), z-projection type = max
intensity , z-reslice mode = Top, z-time averaging = 1, z-
max expected drift =disabled, z-reference = previous frame
(better for live), expand stack to fit = disabled, Save RAM =
disabled.

Correct 3D drift: Channel for registration = 1, Multi
time scale computing = enabled, Sub pixel drift correction
= enabled, Edge enhancement = enabled, all pixels and z-
planes considered, max shift in x-y and z-directions = 200
pX, use of virtual stack = disabled, only compute vectors =
disabled).

After drift correcting this dataset, the correction perfor-
mance was quantified by measuring the Pearson’s correlation
coefficient between adjacent frames (reference frame = pre-
vious) of a selected z-slice (z-slice = 8) using a custom-made
Jupyter notebook. Two computers were used to compare
the execution times of all compared methods; Computer 1
(C1) (operating system: Windows, processor: AMD Ryzen 7
5800X 8-Core Graphics card: GeForce GTX™ 3080, RAM:
32 GB, Fiji version 1.53q) and Computer 2 (C2) (operat-
ing system: Mac, Processor: M1 chip (8-core CPU, 8-core
GPU), RAM: 16 GB, Fiji version 1.53q).

The settings used to process this dataset with Fijiyama
were as follows: Max subsampling factor = 4, Min subsam-
pling factor = 2, Higher accuracy = yes, Block half-size x=5,
y=35, z= 3, Block neighborhood x =2, y = 2, z = 2, Striding
along x = 13, y= 13, z = 3, number of iterations = 6, percent-
age of blocks selected by score = 95%, Percentage kept in
Least-trimmed square = 80%.

Dataset 3: The Registration slide -dataset. The Registra-
tion slide -dataset was created by imaging a channel cali-
bration slide (Argolight ™ HM) with four channels using
a widefield microscope (1024x1024 px, 25 z-slices, 4 chan-
nels). This dataset was acquired using a DeltaVision OMX v4
(GE Healthcare Life Sciences) microscope fitted with a 60x
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Plan-Apochromat objective lens, 1.42 NA (immersion oil RI
of 1.516) used in widefield illumination mode. Emitted light
was collected on a front-illuminated pco.edge sCMOS (pixel
size 6.5 mm, readout speed 95 MHz; PCO AG) controlled by
SoftWorx.

The x-y- and z-drift in this dataset was corrected
(considering the whole image, not a selected ROI) using
Fast4DReg using the following parameters: Xy-projection
type = max intensity, xy-time averaging = 1, Xy-max ex-
pected drift = disabled, xy-reference = first frame (default,
better for fixed), z-projection type = max intensity , z-reslice
mode = Top, z time averaging = 1, z-max expected drift =dis-
abled, z-reference = first frame (default, better for fixed), ex-
pand stack to fit = disabled, Save RAM = disabled.

Dataset 4:  Filopodia-dataset. The Filopodia-dataset
(1024x1024 px, 17 z-slices, 3 channels) consists of a
3D structured illumination microscopy (SIM) image of a
U20S cell expressing a GFP-tagged Lamellipodin frag-
ment, MYO10-mScarlet, and labeled to visualize its actin
cytoskeleton using sirActin (Spirochrome) (Miihkinen et al.,
2022). This dataset was acquired using a DeltaVision OMX
v4 (GE Healthcare Life Sciences) microscope fitted with a
60x Plan-Apochromat objective lens, 1.42 NA (immersion
oil RI of 1.516) used in SIM illumination mode (five phases
x three rotations). Emitted light was collected on a front-
illuminated pco.edge sCMOS (pixel size 6.5 mm, readout
speed 95 MHz; PCO AG) controlled by SoftWorx.

The x-y- and z-drift in this dataset was corrected
(considering the whole image, not a selected ROI) using
Fast4DReg using the following parameters: Xy-projection
type = max intensity, Xy-time averaging = 1, Xy-max ex-
pected drift = disabled, xy-reference = previous frame (better
for live), z-projection type = max intensity , z-reslice mode
= Top, z-time averaging = 1, z max expected drift =disabled,
z-reference = first frame (default, better for fixed), expand
stack to fit = disabled, Save RAM = disabled.

Use cases

FastdDReg outperforms Correct 3D drift or Fijiyama
on our synthetic dataset. To assess the capabilities of
Fast4DReg to correct 3D videos, we compared Fast4DReg
results to two other widely used state-of-the-art drift cor-
rection methods available in Fiji (Schindelin et al., 2012),
namely Correct 3D drift (Parslow et al., 2014) and Fijiyama
(Fernandez and Moisy, 2021). For this purpose, three syn-
thetic videos with known amounts of drift were created: one
with no drift, one displaying a small amount of drift, and an-
other with a larger amount of drift (Figure 2a and the Test
datasets section for details). As these videos were generated
by duplicating an acquired single 3D stack and adding arti-
ficial drift, a perfect drift correction will generate identical
time frames.

Visually, all three tools successfully corrected the arti-
ficially drifting 3D videos regardless of the amount of drift
(Figure 2b, Video 1). To carefully quantify the performance
of these three software, we selected a z-slice and (1) plot-

ted the standard deviation projection of the corrected stack
(Figure 2c and 2d), and (2) calculated the Pearson’s correla-
tion coefficient between the first and each subsequent frames
(Figure 2e and 2f). Both assessment methods indicate that
Fast4DReg performs slightly better than Correct 3D drift or
Fijiyama on our synthetic dataset (Video 2, Figure 2c-2f).
Importantly, these results demonstrate that 2D intensity pro-
jection followed by 2D cross-correlation is a viable method
to correct drifting 3D videos.

Fast4DReg is fast and efficiently corrects drift from acquired
3D videos. Next, we assessed the suitability of Fast4DReg
to correct drifts in acquired 3D biological images. We used
a long 3D video of a HUVEC monolayer labeled with sir-
Actin that suffered from significant xyz-drifting during the
imaging. We also registered this dataset with Correct 3D
drift and Fijiyama. While both Fast4DReg and Correct 3D
drift produced good results when assessed visually (Video 3),
we failed to generate meaningful results with Fijiyama as the
processing made the video drift even more than the raw data
(data not shown).

To estimate the correction efficiency of Fast4DReg and
Correct 3D drift on this dataset, we first searched for a struc-
ture that should remain immobile across multiple time points
in the movie and chose a large stress fiber. We then color-
coded three consecutive frames (one color per frame) and
observed the overlaps of this stable structure between frames
using line profiles (Figure 3a). In the uncorrected movie, the
stress fiber does not overlap in these three frames, clearly
indicating drift. In the movies corrected by Fast4DReg and
Correct 3D drift, the stress fiber overlap between frames im-
proves, showing that the drift correction works in both cases.
Interestingly the drift correction provided by Fast4DReg ap-
pears superior here as the stress fiber overlap between the
three frames is greater despite the correction being performed
globally (and not locally to that specific structure) (Figure
3a).

To visualize the axial drift correction efficiency of
Fast4DReg and Correct 3D drift on this dataset, we generated
kymographs from the y-projections (Figure 3b). In the origi-
nal data, the kymograph shows a clear band pattern due to the
microscope stage jumping cyclically. This banding pattern is
improved in the movies corrected by Fast4DReg and Correct
3D. Still, it has not entirely disappeared, indicating that while
both registration methods work well on this dataset, the cor-
rection is not perfect (Figure 3b and Video 3). This is perhaps
because part of the data goes out of the imaging volume sev-
eral times. Of note, in this case, Correct 3D drift processing
leads to the monolayer slowly sinking over time.

To obtain a more quantitative estimate of the perfor-
mance of Fast4DReg and Correct 3D drift on the HUVEC
dataset, we measured Pearson’s correlation coefficients be-
tween each adjacent frame pair for a selected z-plane in the
corrected videos. Indeed, we consider that efficient drift cor-
rection will make successive frames more similar to one an-
other despite the inevitable biological changes. Using this
metric, we find that Fast4DReg performed equally or slightly
better than Correct 3D drift on this dataset (Figure 3c).
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Fig. 2. Figure 2: Fast4DReg outperforms Correct 3D drift and Fijiyama on a synthetic 3D + t dataset. a) Three synthetic 3D video datasets were created, one with no
drift, one with a small amount of drift, and another with a large amount of drift. The small and large drift datasets were then corrected using Fast4DReg, Correct 3D drift, and
Fijiyama. Of note, the settings giving the best performance were used for each tool (see methods for details). b) The drift correction performance of the three algorithms was
first visually assessed using a temporal color projection of the middle slice of the stack and a kymograph (along a white dashed line). ¢) Standard deviation projection of the
middle slice of the stack. This projection takes the standard deviation of the pixel intensities through the stack. Positions with large differences in the pixel intensities through
the stack appear brighter in this projection. Therefore a black image highlight no variation between the frames over time (perfect drift correction), while signals highlight slight
errors in the drift correction. d) For each z-slice, the standard deviation projection over time was generated and quantified using Fiji, and the results are shown as boxplots
created by PlotsOfData (Postma and Goedhart, 2019). No drift shows a high baseline value as specified noise was added during background homogenization. e-f) Pearson’s
correlation coefficient was calculated between the first and subsequent frames. A value of 1 indicates perfect drift correction. For all panels, the scale bar = 10 um.
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Fig. 3. Fast4DReg can rapidly correct axial and lateral drift in 3D videos. A 3D video of HUVECs cells labeled with sirActin displaying large xyz-drift was corrected with
Fast4DReg and Correct 3D drift. a) A region of interest containing a stress fiber that should remain immobile across multiple time points was chosen. Three consecutive
frames were pseudo-colored red, green, and blue and merged. White indicates structural overlaps between the three frames. Line profiles to further study the overlap
between frames were drawn as shown. b) Kymograph of a selected line in y-projection was created to visualize the drift in z over time. c) Pearson’s correlation coefficient
was calculated between each consecutive frame pair. d) Two computers, computer 1 (high-performance desktop) (C1) and computer 2 (laptop) (C2) were used to measure
the speed of the correction methods. Shown values are the average times of three measurements (C1, operating system: Windows, processor: AMD Ryzen 7 5800X 8-Core
Graphics card: GeForce GTX™ 3080, RAM: 32 GB, Fiji version 1.53q; C2, operating system: Mac, Processor: M1 chip 8-core CPU, 8-core GPU, RAM: 16 GB, Fiji version
1.53q).

6 Pylvanainen etal. | Fast4DReg


https://doi.org/10.1101/2022.08.22.504744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.22.504744; this version posted October 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a) Lateral channel alignment in calibration slide

normalized signal

distance (um)

S

normalized signal

distance (um)

¢) Lateral channel alignment in biological sample

original original

o o o o
SR VI~

normalized signal

distance (pm)

DNbomﬁ
\\\
/

normalized signal
oo o o

distance (um)

chl
ch2

—ch3

00 04 08 12 16 20 24

chl
ch2

—ch3

00 04 08 12 16 20 24

0 02040608 1 121416

0 02040608 1 121416

b) Axial channel alignment in calibration slide

—ch3

normalized signal
ococoo
SR VI N =N

1.0 6.0 110 16.0 21.0

distance (um)

/hx
e ch2

—ch3

corrected 10

60 110 160 21.0

normalized signal

distance (um)

d) Axial channel alignment in biological sample

corrected i

—ch1 1
ch2
ch3

—chl

ch3

AN

—_—

normalized signal

1
.8
.6
.4
.2

0

normalized signal
o ©o o o

0.00 0.20 0.40

0.20
distance (pm)

0.40
distance (um)

Fig. 4. Fast4DReg can align 3D multi-channel images. a-b) 4-channel 3D registration slide image acquired using a widefield microscope was aligned using Fast4DReg.
Merged images and line intensity profiles are displayed to highlight the level of overlap between the four channels. Scale bar = 10 pm. a) A single z-plane is displayed to
illustrate the lateral misalignment corrected by Fast4DReg. b) A y-projection of one of the calibration slide spots is displayed to illustrate the axial misalignment corrected
by Fast4DReg. c-d) A SIM image of a U20S cell expressing a GFP-tagged Lamellipodin fragment (cyan), MYO10-mScarlet (magenta), and labeled to visualize its actin
cytoskeleton (yellow) was aligned using Fast4DReg. ¢) A single z-plane is displayed to illustrate the lateral misalignment, evident in filopodia, corrected by Fast4DReg. d) A
y-projection of one filopodium illustrates the axial misalignment corrected by Fast4DReg. Scale bar = 5 pm.

Our primary motivation behind developing Fast4DReg
was to create a 3D registration pipeline that is easy to use,
flexible, and very fast. Therefore we next assessed the com-
puting time required by Fast4DReg, Correct 3D-Drift, and
Fijiyama to process the HUVEC dataset using two different
computers. We found that Fast4DReg (1 min 48s to 6 min
24s) is 4-7 times faster than Correct 3D drift (12 min 30 to
24 min) and 20 to 70 times faster than Fijiyama (1 h to 2
h) when correcting the HUVEC dataset (Figure 3d). These
differences are significant as datasets’ registration often re-
quires tweaking hyperparameters to obtain the best possible
results. Fast4DReg speed is likely due to two factors: (1)
using 2D projections greatly simplifies the computations re-
quired, and (2) using CPU multithreading further accelerates
the 2D cross-correlation process. Overall, Fast4DReg outper-
forms Correct 3D-Drift when correcting the HUVEC dataset
and is much faster.

Fast4DReg can also register misaligned 3D channel stacks.
Next, we tested if Fast4DReg could be used to align 3D
multi-channel images instead of 3D videos. In this case,
Fast4DReg uses the same pipeline as described for time se-
ries but first converts the channels into time frames.

To test this approach, we first registered, using
Fast4DReg, a four-channel 3D image of a calibration slide
imaged using a widefield microscope. In this dataset, the raw
images display significant xy and z misalignment due to chro-
matic aberrations and the fact that the channels were acquired

Pylvénainen etal. | Fast4DReg

using different cameras (Figure 4a and 4b). Using line inten-
sity profiles, we found that Fast4DReg can efficiently regis-
ter this dataset laterally and axially (Figure 4a and 4b). As
Fast4DReg can apply saved drift correction tables, we envi-
sion that the approach described here can be used to register
any microscopy images when the shift is first estimated using
a registration calibration slide or multi-color bead images.

However, calibration slides or bead images are not al-
ways available, so we next tested the ability of Fast4DReg to
correct misaligned channels directly. Here we chose three-
channel 3D images acquired using structured illumination
microscopy (Figure 4c and 4d). We chose images of cells
displaying filopodia as these actin structures are very thin and
narrow, rendering them almost two-dimensional. As with the
registration slide image, Fast4DReg performs well when reg-
istering this dataset (Figure 4c and 4d). This approach will
not work with all images, as the registration method used here
will work only if sufficient structural overlap exists between
the channels. Regardless, we envision that the approach de-
scribed here can be beneficial in correcting channel misalign-
ment when no calibration data is available.

Discussion. Sample drifting is a significant challenge in
live microscopy, and implementing post-processing drift cor-
rection pipelines is not always fast nor straightforward. Here
we developed Fast4DReg, an ImageJ-based tool that can
quickly correct axial and lateral drift in 2D and 3D videos.
We show that Fast4DReg can outperform two open-source
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3D drift correction tools on our test datasets. A significant
advantage of Fast4DReg is that it can correct 3D videos in a
fraction of the time compared to other tested tools and comes
with an easy-to-use graphical user interface. Additionally,
Fast4DReg is flexible and can be used for aligning multichan-
nel 3D images.

Despite its performance, Fast4DReg has several limi-
tations. (1) Fast4DReg can only perform translations when
correcting a dataset. Rotation, scaling, or shearing transfor-
mations are not supported, although these should not be re-
quired to correct most time-course video or multichannel mi-
croscopy datasets. (2) The channel alignment is limited to
images with structural conservation between channels or re-
quires calibration slides or beads images to compute the shift
maps.

With Fast4DReg, we demonstrate that using intensity
projections followed by 2D cross-correlation is a quick and
efficient way to register various multidimensional data types,
including 3D videos and 3D multichannel datasets. In the
future, it would be interesting to assess the suitability of us-
ing 3D cross-correlation directly to register similar images.
But using 3D cross-correlation will likely impede processing
times.

To promote adoption by the community, Fast4DReg is
available through GitHub/Zenodo, where the pipeline, test
datasets, and detailed step-by-step instructions are provided.
With Fast4dDReg, we hope to make the process of multidi-
mensional data registration more straightforward and faster
and, therefore, more accessible to the community.

Data Availability. All datasets used in this study are avail-
able on Zenodo.

Software Availability. Fast4DReg, the generator of synthetic
drift, and the notebook used to make the Image similar-
ity measurements (all under MIT licenses) are available on
GitHub, and their source code is archived on Zenodo.
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