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Abstract

We developed a biophysically-detailed model of the macaque auditory thalamocortical circuits, including
primary auditory cortex (A1), medial geniculate body (MGB) and thalamic reticular nuclei (TRN), using the
NEURON simulator and NetPyNE multiscale modeling tool. We simulated A1 as a cortical column with a
depth of 2000 μm and 200 μm diameter, containing over 12k neurons and 30M synapses. Neuron
densities, laminar locations, classes, morphology and biophysics, and connectivity at the long-range, local
and dendritic scale were derived from published experimental data. The A1 model included 6 cortical
layers and multiple populations of neurons consisting of 4 excitatory and 4 inhibitory types, and was
reciprocally connected to the thalamus (MGB and TRN), mimicking anatomical connectivity. MGB
included core and matrix thalamocortical neurons with layer-specific projection patterns to A1, and
thalamic interneurons projecting locally. Auditory stimulus-related inputs to the MGB were simulated using
phenomenological models of the cochlear/auditory nerve and the inferior colliculus. The model generated
cell type and layer-specific firing rates consistent with experimentally observed ranges, and accurately
simulated the corresponding local field potentials (LFPs), current source density (CSD), and
electroencephalogram (EEG) signals. Laminar CSD patterns during spontaneous activity, and in response
to speech input, were similar to those recorded experimentally. Physiological oscillations emerged
spontaneously across frequency bands without external rhythmic inputs and were comparable to those
recorded in vivo. We used the model to unravel the contributions from distinct cell type and layer-specific
neuronal populations to oscillation events detected in CSD, and explored how these relate to the
population firing patterns. Overall, the computational model provides a quantitative theoretical framework
to integrate and interpret a wide range of experimental data in auditory circuits. It also constitutes a
powerful tool to evaluate hypotheses and make predictions about the cellular and network mechanisms
underlying common experimental measurements, including MUA, LFP and EEG signals.
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1. Introduction
The auditory system is involved in a number of crucial sensory functions, including speech

processing (Hamilton et al. 2021; Matsumoto et al. 2011; Fontolan et al. 2014; Gourévitch et al. 2008),
sound localization (Andéol et al. 2011; Carlile, Martin, and McAnally 2005; Ahveninen, Kopčo, and
Jääskeläinen 2014), pitch discrimination (Tramo, Shah, and Braida 2002; Tramo et al. 2005; Dykstra et al.
2012; Hyde, Peretz, and Zatorre 2008), and voice recognition (Latinus et al. 2013; Holmes and Johnsrude
2021). Aberrations along this pathway can result in a wide variety of pathologies. Hearing loss, for
example, can result from lesions in either the peripheral (Merchant and Rosowski 2008; Raveh et al.
2002) or central (Taniwaki et al. 2000; Brody et al. 2013; Cavinato et al. 2012) parts of this pathway, while
other abnormalities can result in increased sensitivity to sound volume (Baguley 2003) or difficulty
processing music (Zendel et al. 2015; Albouy et al. 2013).

Achieving a full understanding of this system is complicated by the many interareal pathways, the
complexity of the inter- and intralaminar circuitry, the heterogeneity of neuronal cell types and behaviors,
and the diversity of network coding mechanisms. A growing body of experimental data, with findings
drawn from different methods at different biological scales, begets the need for a framework which can
integrate these disparate findings and be used to investigate the system as a whole. The model we
present here uses multiscale information with macaque-specific cortical dimensions, a diversity of
excitatory and inhibitory cell types with data-driven electrophysiology (Povysheva et al. 2007), data-driven
population density and connectivity, detailed thalamic circuits (including a full thalamocortical loop)
(Markov et al. 2011), and realistic inputs from upstream structures such as cochlea and inferior colliculus.

Given the multiscale detail of this model, it can also be used to make predictions about the
cellular and network-level mechanisms governing oscillatory dynamics in auditory cortex, which is
important since cortical oscillations are known to play a prominent role in neural information processing.
In auditory cortex, these oscillations may be particularly important for speech processing (Dimitrijevic et
al. 2017; Schroeder et al. 2008; Giraud and Poeppel 2012; Ghitza 2011), with oscillations in different
frequency bands synchronizing to and tracking the dynamic properties of speech waveforms (Giraud and
Poeppel 2012). In some cases, oscillatory behavior in the auditory cortex can even be used to predict
speech intelligibility (Ghitza 2011; Dimitrijevic et al. 2017). Abnormalities in auditory cortex oscillations
have been observed in pathologies that include auditory processing deficits, such as schizophrenia (Y.
Hirano et al. 2020; Spencer et al. 2009; S. Hirano et al. 2018) and autism spectrum disorder (Gandal et
al. 2010; De Stefano et al. 2019). Increased oscillatory activity at rest (Y. Hirano et al. 2020), strong
cross-frequency synchronization (Spencer et al. 2009; S. Hirano et al. 2018), and impaired phase-locking
between auditory cortex oscillations and incoming speech stimuli (Gandal et al. 2010; De Stefano et al.
2019; Jochaut et al. 2015) have been observed in these disorders, and may help explain some of the
auditory processing related deficits seen in these disease states (Spencer et al. 2009; Paciello et al.
2021; Lakatos et al. 2019; Edgar et al. 2015; Gandal et al. 2010).

Our model can be used to investigate the cellular- and network-level mechanisms underlying
thalamocortical oscillations, by first reproducing the oscillations in silico and then examining the activity
which occurs at different scales: from subthreshold currents and dendritic effects, to activity in different
thalamic pathways (e.g. core vs. matrix). Bridging these hierarchical levels also allows us to gain insights
into the biophysical mechanisms underlying activity observed during experimental recordings that occur at
different scales (e.g. single cell recordings, multiunit activity, local field potentials, current source density,
electro- and magneto-encephalography).
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2. Results
2.1 Development of a data-driven model of macaque auditory
thalamocortical circuits
We developed a biophysically-detailed model of macaque auditory thalamocortical circuits, including
medial geniculate body (MGB), thalamic reticular nucleus (TRN) and primary auditory cortex (A1). To
provide input to the thalamic populations, we connected a phenomenological model of the cochlear
nucleus, auditory nerve and inferior colliculus (IC). This resulted in a realistic model capable of processing
arbitrary input sounds along the main stages of the macaque auditory pathway (Fig. 1A). While details of
each stage can be found in the Methods section, the current section includes an overall description of the
main features of the model.

We reconstructed a cylindrical volume of 200 um radius and 2000 um depth of A1 tissue (Fig. 1B). The
model included 12,187 neurons and over 25 million synapses, corresponding to the full neuronal density
of the volume modeled. The model was divided into 7 layers -- L1, L2, L3, L4, L5A, L5B and L6 -- each
with boundaries, neuronal densities, and distribution of cell types derived from experimental data (J. A.
Winer and Larue 1996; Coen-Cagli, Kanitscheider, and Pouget 2017; Markram et al. 2015; Billeh et al.
2020; Kelly and Hawken 2017; Tremblay, Lee, and Rudy 2016; Lefort et al. 2009; Schuman et al. 2019;
Harris and Shepherd 2015; Huang, Larue, and Winer 1999). We included the four main classes of
excitatory neurons: intratelencephalic (IT), present in all layers except L1; spiny stellate (ITS) in L4,
pyramidal tract (PT) in L5B, and corticothalamic (CT) in L5A, L5B and L6. The dendritic length of cell
types in different layers was adapted according to experimental data. While many previous cortical
models only include one or two interneuron types, we incorporated a greater diversity of cell type by
including four classes of interneurons: somatostatin (SOM), parvalbumin (PV), vasoactive intestinal
peptide (VIP), and neurogliaform (NGF). All 4 classes were present in all layers except L1, which only
included NGF. The MGB included two types of thalamocortical neurons and thalamic interneurons. The
TRN included a population of inhibitory cells. Thalamic populations were in turn divided into core and
matrix subpopulations, each with distinct wiring. The total number of thalamic neurons was 721, with cell
densities and ratios of the different cell types derived from published studies.

Connectivity in the model was established for each pair of the 42 cortical and thalamic populations
resulting in layer- and cell type-specific projections (Fig. 2). Each projection between populations was
characterized by a probability of connection and unitary connection strength (in mV), defined as the PSP
amplitude in a postsynaptic neuron in response to a single presynaptic spike. The probability of
connection from cortical inhibitory populations decayed exponentially with cell-to-cell distance. Synapses
were distributed along specific regions of the somatodendritic tree for each projection. Excitatory
synapses included colocalized AMPA and NMDA receptors, and inhibitory synapses included different
combinations of slow GABAA, fast GABAA and GABAB receptors, depending on cell types. The values for
all the connectivity parameters were derived from over 30 published experimental studies (see Methods).
Afferent projections from other brain regions were modeled by providing background independent
Poisson spiking inputs to apical excitatory and basal inhibitory synapses, adjusted for each cell type to
result in low spontaneous firing rates (~1 Hz). Where available, we used data from the NHP auditory
system, but otherwise resorted to data from other species, including rodent, cat and human. We
employed automated parameter optimization methods to fine tune the connectivity strengths to obtain
physiologically constrained firing rates across all populations.
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Figure 1. Overview of (A) the macaque auditory system model and (B) the biophysically-detailed auditory
thalamocortical circuits model (B). A) A phenomenological model is used to capture the transformation of input
sound into electrical impulses in the cochlea, superior olive and inferior colliculus (IC). Output from IC then drives a
detailed biophysical model of auditory thalamocortical circuits, including medial geniculate body (MGB), thalamic
reticular nuclei (TRN) and primary auditory cortex (A1). Note: many of the connections are bidirectional, but not
shown for simplicity. B) Dimensions of simulated A1 column with laminar cell densities, layer boundaries, cell
morphologies and distribution of populations. Medial geniculate body (MGB) and thalamic relay nuclei (TRN)
populations and simplified morphologies are shown in the bottom, highlighting distinct core- and matrix-projecting
populations. All models are conductance-based with multiple ionic channels tuned to reproduce the cell's
electrophysiology. NCD is normalized cortical depth with values ranging from 0 (pia) to 1 (white matter, WM).
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Figure 2. Connectivity
matrix of model
thalamocortical
populations. Probability of
connection between all 36
cortical and 6 thalamic
populations (thick white
lines separate layers and
thick orange line separates
cortex from thalamus).
Note that the gain from IC
→ MGB is not shown here
since there is no feedback
connection from MGB →
IC in our model, given that
we use phenomenological
cochlea/IC models (see
Methods).

To achieve variability in the baseline model we modified the randomization seeds used to generate the
probabilistic connections and spike times of Poisson background inputs. Specifically, we ran 25
simulations with different seeds (5 connectivity x 5 input seeds), each for 11.5-second simulations (first
1.5 seconds required to reach steady state). This resulted in 250 seconds of simulated data, which is
comparable to some of the macaque experimental datasets used. Modeling results that include statistics
were calculated across all of the 25 x 10 second simulations, which provided a measure of the robustness
of the model to variations in connectivity and inputs and is comparable to the variability across different
macaques and trials, respectively.

We developed the models using NetPyNE (Dura-Bernal et al. 2019) and parallel NEURON (Lytton et al.
2016). Overall, we ran over 500,000 simulations in order to tune the model parameters and explore model
responses to different inputs and conditions. This required over 5 million core hours on several
supercomputers, primarily Google Cloud Platform. All model source code, results, and comparisons to
experimental data are publicly available on ModelDB and Github.
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2.2 Cell type and layer-specific activity recorded at multiple scales

Figure 3. Cell type and
layer-specific activity recorded
at multiple scales. A) Spiking
raster plot. B) Boxplot statistics
of the firing rate of all populations
(interneurons grouped across all
layers). C) Example voltage
traces for different cell types and
layers. D) Laminar CSD with LFP
overlaid. E) Sum of current
dipole moments (Px, Py, Pz
indicate dipole moment
orientations) across all neurons
used to calculate EEG signals
recorded from scalp electrodes
distributed across a volume
conduction head model (each
electrode in gray; mean in
green).

The model generated layer and cell type-specific spontaneous activity (Fig. 3). Distinct spiking patterns
were recorded across thalamus and cortex (Fig. 3A): TC and TRN showed clear alpha oscillations (~8
Hz); cortical granular and supragranular layers exhibited a similar oscillatory pattern but more diffuse over
time and with higher variability in the peak amplitudes; and infragranular layers showed more tonic firing
and a slower delta (~2 Hz) oscillation. Spiking responses also varied across cell types within a layer, e.g.
L5B IT cells fired tonically whereas L5B CT cells showed phasic firing at delta frequency (only 2 peaks of
activity). Overall, average spontaneous firing rates were below 5 Hz for excitatory neurons and below 20
Hz for inhibitory neurons, consistent with experimental data (X. Wang et al. 2005; Sakata and Harris
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2009; Eggermont 1992; Hromádka, Deweese, and Zador 2008). Spontaneous activity was simulated by
driving the thalamic and cortical neurons with non-rhythmic Poisson-distributed low amplitude background
inputs. Therefore, the distinct responses of neural populations must be a consequence of their
heterogeneous biophysical properties and synaptic connectivity.

Figure 4. Comparison of
example laminar LFP/CSD
during spontaneous
activity and speech for
macaque vs model. These
examples illustrate the
variability of patterns
recorded for each condition,
and how the model
reproduced some key
features of each example
pattern (e.g. in top-left
example, a 50 ms long
current sink in the granular
layer and current source
infragranular layer).
Transmembrane currents
(sinks and sources) in CSD
color maps are color-coded
red and blue, respectively.
Y-axis represent LFP and
related CSD channels at
depths spanning pia to white
matter, with supragranular
(S), granular (G) and
infragranular (I) layers
indicated.

The model responses were recorded and analyzed at multiple scales (Fig. 3): neuronal membrane
voltage traces (Fig. 3C), spike times (Fig. 3A), firing rate statistics (Fig. 3B), local field potentials (LFPs)
and current source density (CSD) analysis (Fig. 3D), and current dipole moments and
electroencephalogram (EEG) signals (Fig. 3E). These measurements represent the same underlying
biophysical phenomenon as evidenced by activity features shared across them, e.g. activity peaks around
800 ms and 1300 ms (see Figs. 3A, 3D, 3E). This illustrates how the model can be used to interpret
common experimental measurements (MUA, LFP, EEG) and relate them to the underlying biophysical
circuit properties. In Section 2.4 we use this approach to disentangle the layer and cell type-specific
biophysical sources of an oscillation event.

To examine patterns of LFP/CSD activity in NHP recordings, we first determined the supragranular,
granular, and infragranular layer depths for each macaque subject, as done previously (Lakatos et al.
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2016). In macaques, the determination of the supragranular, granular, and infragranular layer depths
relied on functional demarcation of these regions based on responses to preferred modality stimuli. For
each NHP subject, we examined an averaged CSD profile resulting from the presentation of a stimulus
which provoked an excitatory response in A1 (e.g. clicks, best frequency tones). An early sink in this CSD
profile indicated the presence of the granular layer, while source / sink pairs above and below the granular
layer designated the presence of the supragranular and infragranular layers, respectively.

Characteristic laminar LFP/CSD activity patterns recorded experimentally in macaques were qualitatively
reproduced in model simulations (Fig. 4). For example, during spontaneous activity we observed
examples in both experiment and model showing: 1) ~50 ms long current sinks (red) in the granular layer
together with current sources (blue) immediately above and below, plus current sources (blue) in the most
superficial electrodes (Fig. 4A); 2) ~150 ms long current sinks fluctuating around the border of the
granular and infragranular layers with current sources immediately below, and again in the most
superficial electrodes (Fig. 4B); and 3) ~150 ms long current sources in the granular layer with current
sinks above and below (Fig. 4C). While reproducing responses to specific speech utterances is outside
the scope of this paper, examples of laminar LFP/CSD responses to speech are shown in Fig. 4 and
illustrate that the cochlea and IC model can be used to provide auditory stimuli to the biophysical
thalamocortical model, which in turn generates activity patterns that resemble those recorded
experimentally. For example, ~150-200ms long current sinks in the granular layer, with alternating current
sources and sinks in the infragranular layers (Figs. 4D,E); and short ~30ms current source in granular
layer with similar duration current sources in the supra- and infragranular layers (Fig. 4F). Although there
are similarities, these three examples of spontaneous and speech responses also illustrate the variability
observed both within and between the experimental and modeling datasets. In the next section, we
further quantify this variability in terms of the oscillatory power of spontaneous responses.

2.3 Emergence of spontaneous physiological oscillations across frequency
bands
Physiological oscillations across a range of frequency bands were observed in both the macaque and
model thalamocortical circuits. In the model, these oscillations emerged despite having no oscillatory
background inputs, suggesting they resulted from the intrinsic cellular biophysics and circuit connectivity.
We quantified the power spectral density (PSD) of 10-second LFPs recorded from different macaques
and from the model (Fig. 5). These results illustrate the high variability of spontaneous responses
measured within and across macaques. This variability was comparable to that generated by the model.
Despite the high variability, the model exhibited features similar to those observed consistently across
macaques, including peaks at delta, theta/alpha and beta frequencies. To quantify these similarities and
establish whether the LFP PSD generated by our model could be distinguished from that of macaques,
we performed principal component (PCA) analysis (Fig. 5B). PCA explained a large proportion of the
variance (PC1=57%, PC2=14%). As can be observed, the cluster of model data points partly (10/25 data
points) overlapped those of macaques 1 and 2, yielding them indistinguishable via PCA (circled green
points in Fig. 5B). Furthermore, the mean PCA distance between the macaque 2 and 3 clusters is greater
(2.2) than the mean PCA distance between the model and macaque 2 clusters (1.3). Further validation
was provided by plotting a shuffled version of the model LFP PSDs, which appeared as a clearly separate
cluster with no overlap with the macaque data (with the exception of one outlier from macaque 3). The
correlation matrix (Fig. 5C) across all LFP PSDs showed a much stronger correlation between the model
and macaque than between shuffled model and macaque (0.31 vs 0.006; p<0.001, rank-sum test).
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Figure 5. LFP power spectral density (PSD) of macaques and model. A) PSDs of 10-sec LFPs recorded from 4
macaques exhibit high variability within and across individuals; and show features consistent with the model LFP
PSD, including peaks at delta, theta/alpha and beta. B) PCA analysis of the LFP PSDs reveal an overlap between
model and macaque that is absent in the shuffled model. C) Correlation matrix of LFP PSDs illustrates the model is
more strongly correlated with the macaques than the shuffled model.

Individual oscillation events were detected in current source density (CSD) data from resting state
recordings gathered in silico from the A1 model, and in vivo from non-human primates (NHP), using
software that has previously been used to detect and quantify features of oscillation events in human and
NHP electrophysiology recordings (Neymotin, Barczak, et al. 2020). Once identified, oscillation events
were classified according to frequency band: delta (0.5-4 Hz), theta (4-9 Hz), alpha (9-15 Hz), beta (15-29
Hz), gamma (30-80 Hz). Oscillation events were then sorted once more based on their laminar location, in
either the supragranular, granular, or infragranular layers. We were thus able to compare model and NHP
oscillation events that occurred in the same regions of the cortical column, within the same frequency
band. Examples of matching individual oscillation events from each frequency band are shown in Fig. 6
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Figure 6. Similar oscillation
events detected in CSD
recorded from the model (left)
and non-human primates (right),
across different frequency
bands. Each event is depicted with
a spectrogram of the CSD data on
the top panel (with a red bounding
box delineating the oscillation
event), and the CSD signal on the
bottom panel (red: raw CSD
time-series, blue: CSD time-series
filtered with a bandpass filter with
cutoffs at minimum, maximum
event frequencies shown in
spectrogram red bounding box).
These examples demonstrate the
model’s ability to reproduce
physiologically realistic oscillation
events across different frequency
bands: A) Gamma B) Beta C)
Alpha D) Theta E) Delta. (Note that
the Theta and Alpha oscillations
events are from supragranular
layers, the Beta and Delta events
are from infragranular layers, and
the Gamma event is from the
granular layer).
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Several features were used to compare oscillation events across model and NHP data from different
frequency bands, including temporal duration, peak frequency, and number of cycles in the oscillation
(see Fig. 7). Overall, these three features showed similar average values and overlapping distributions
when compared across the model and NHP, and across cortical layers. Duration was the most consistent
value, with close average values across model and NHP at all frequency bands (p>0.05, t-test). Average
peak frequency did not show significant differences for most frequency bands (p>0.05, t-test), with the
exception of: 1) theta, which showed a slightly lower average frequency compared to the NHP data
(p<0.05, t-test), and 2) gamma, which showed a slightly higher average frequency compared to NHP
(p<0.05, t-test). Similarly, the number of cycles per oscillation event were on average the same across
frequency bands (p>0.05, t-test), with the exception of gamma, which showed a slightly higher average
value (p<0.05, t-test). The minor discrepancies in average values may however represent an artifact due
the short overall duration of simulations (10 sec), compared to the duration of NHP recordings, which
were on the order of minutes.

Figure 7. Oscillation event features in model and non-human primate data show strong similarity. Oscillation
events were detected in resting state recordings, then sorted by frequency band (delta, theta, alpha, beta, gamma).
The top row shows boxplots comparing the duration (ms) of the oscillation events in each frequency band, with model
data shown in yellow, and NHP data in blue. Comparison of the peak frequency (Hz) of the model (purple) and NHP
events (green) is shown in the middle row, while the number of cycles per event is compared in the bottom row, with
model data in red and NHP data in blue. For each of the boxplots, the box itself ranges from the first to the third
quartile, with the orange line depicting the median of the data set. The whiskers extend to 1.5 times the interquartile
range, and outliers are represented with black circles. With the exception of minor differences in theta, gamma peak
frequency, and gamma number of cycles, the average values of each feature were the same across model and NHP
(t-test, p>0.05).
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2.4 Unraveling the biophysical mechanisms underlying physiological
oscillations at the cellular and circuit scales
After verifying that the oscillation events detected in the model data were comparable to the events
observed in the NHP data, we used the model to examine the network- and population-level activity
occurring during these oscillation events. This illustrates one of the advantages of the model. Not only
were we able to generate the overall LFP and CSD data, but the biological detail of the model also
allowed us to record and examine each population’s contribution to the overall LFP and CSD signals.
Additionally, we were able to examine the spiking activity of each population at the time of each oscillation
event, similar to multiunit activity observed during neurophysiological recordings, but with additional
cell-type specificity.

Figure 8. Model predicts layer- and cell type-specific sources of LFP/CSD during oscillations. A) CSD reveals
a theta oscillation in A1 supragranular layer (see Fig. 6). B) Heat map depicting the average CSD amplitude
(mV/mm2) during the time of the theta oscillation event across excitatory model populations and channels. The CSD
spectrogram and time series (top panels) and the firing rate spectrogram and histogram (bottom panels) of the 3
populations with strongest contributions to the theta oscillation depicted in (A) are shown in: (C) ITS4, (D) ITP4, and
(E) IT5A.

Fig. 8 illustrates this approach using a physiologically realistic oscillation event detected in the simulated
A1 column supragranular layer (Fig. 8A). As shown in Fig. 6, similar oscillation events were detected in
the macaque A1 data. To determine the biophysical circuit sources underlying this oscillation event, we
first examined the CSD signal generated by each cell population over all channels (Fig. 8B). This
information showed that the layer 4 stellate (ITS4), layer 4 pyramidal tract (ITP4), and layer 5A
intratelencephanic (IT5A) neural populations made the strongest contributions to the amplitude of the
overall CSD signal during this event. Consistent with the model prediction, the dominant CSD peak
frequencies of these three populations was very similar to that of the overall theta oscillation event
(overall: 6.5 Hz (Fig. 8A); ITS4: 6.75 Hz (Fig. 8C), ITP4: 6.75 Hz (Fig. 8D); IT5A: 7 Hz (Fig. 8E).
Interestingly, the individual population CSDs were not perfectly phase aligned; specifically, the IT5A signal
(Fig. 8E) appeared to be shifted by approximately 10-20 ms with respect to the layer 4 populations (Fig.
8C,D). Although here we are only showing the top three contributing populations, other contributing
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populations also exhibited similar CSD signal phase shifts. We hypothesize that these phase shifts are
responsible for the increased noise observed in the overall CSD signal compared to the individual
population CSD signals that generated it. This increased noise may in turn explain the small differences in
the CSD peak frequencies observed between the overall signal and the population signals that composed
it. The contribution of IT5A to the overall CSD signal recorded at channel 8 is particularly interesting given
that the IT5A cell somas are located at a cortical depth of 1250-1350 μm, whereas the channel 8 signals
arise from electrodes at 700-900 μm depth. This suggests IT5A apical dendrite currents generate a
substantial component of the detected CSD theta oscillation.

The corresponding spiking activity was then examined for each of these cell populations (Fig. 8C, D, E,
bottom panels). Notably, the low-frequency theta event coincided with higher frequency gamma events in
the spike rate spectrograms for all populations involved. These gamma events also occurred during
periods when the population spike rates were elevated, consistent with the observation that elevated
excitatory neuron firing leads to detectable gamma signals (Leszczyński et al. 2020). In addition, there
was evidence of spike/field coherence, seen in the peak firing times of neural populations coinciding with
peaks in the CSD theta rhythm. Overall, the presence of coincident theta and gamma demonstrates a
cross-frequency interaction often observed in neural oscillations (Jensen and Colgin 2007), and highlights
how the model can be used to make predictions on the origins of these complex dynamics observed in
auditory cortex in vivo (O’Connell et al. 2015).

3. Discussion
3.1. Key findings and novelties
We have developed the first detailed multiscale model of macaque auditory thalamocortical circuits,
including MGB, TRN and A1, and validated it against in vivo experimental data. The model integrated
experimental data on the physiology, morphology, biophysics, density, laminar distribution and proportion
of different cell types, as well as their local and long-range synaptic connectivity (Figs. 1-2). Realistic
auditory inputs can be provided to the thalamus via a phenomenological model of the cochlear nucleus,
auditory nerve and IC. The model generated cell type and layer-specific firing rates in the ranges
observed experimentally, and accurately simulated the corresponding measures at multiple scales: local
field potentials (LFPs), laminar current source density (CSD) analysis, and electroencephalogram (EEG)
(Fig. 3). We identified multiple laminar CSD patterns during spontaneous activity and responses to
speech similar to those recorded experimentally (Fig. 4). Physiological oscillations emerged across
frequency bands without external rhythmic inputs and were comparable to those recorded spontaneously
in vivo. Despite significant variability across animals and over time, the spectral power showed peaks at
delta, theta/alpha and beta frequencies in all animals and in the model (Fig. 5). Additionally, individual
CSD oscillation events closely matched physiological examples in all frequency bands (Fig. 6). Statistics
on simulated CSD oscillation event duration, peak frequency and number of cycles were consistent
across layers and frequency bands with those reported in vivo (Fig. 7). We used the model to make
predictions about the contributions of distinct neural populations to specific oscillation events (Fig. 8).
Notably, the model highlights the importance of disentangling individual neuronal population contributions
to oscillatory activity. For example, the model predicted that the CSD theta oscillation event in Fig. 8A was
caused predominantly by three layer 4 and 5 populations, each generating oscillatory activity with similar
peak frequencies and small phase shifts. Taken together, our findings underline the significant role
modeling plays  when interpreting the basic properties of in vivo electrophysiology data.
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Although circuit models of similar size and complexity have been developed, these models have largely
focused on rodent visual (Billeh et al. 2020) and somatosensory (Markram et al. 2015) cortices. A
highly-detailed rat somatosensory cortex model was used to study stimulus specific adaptation in the
auditory cortex by modifying thalamic inputs (Amsalem et al. 2020), but the overall model cortical
architecture and connectivity was not adapted to replicate the particularities of auditory circuits or the
macaque species. Compared to our model, previous models of auditory cortex lack significant detail in
terms of neuron model complexity, range of cell types, neuronal density and distribution, and/or circuit
connectivity (Park and Geffen 2020; Stanley et al. 2019; Loebel, Nelken, and Tsodyks 2007; Zulfiqar,
Moerel, and Formisano 2019; Kudela et al. 2018).

In short, the main novelties are that this model: 1) incorporates available data specific to the macaque
species and auditory cortex; 2) includes a wide range of excitatory and inhibitory cell types from both
cortical and thalamic regions; 3) uses synaptic connectivity that is cell type and layer-specific, and
includes bidirectional thalamic connections with distinct core and matrix projections; 4) simulates realistic
auditory inputs through a cochlear and inferior colliculus model; 5) generates realistic multiscale
measures, including spiking activity, LFP, CSD, and EEG; and 6) recapitulates a range of macaque A1 in
vivo results.

3.2. Challenges and limitations
Due to gaps in experimental data and in our theoretical understanding of biological principles, the model
is necessarily incomplete and inaccurate and will need to be revised as more in vivo data becomes
available. This is particularly true for the NHP auditory system, which has been less studied and is not as
well characterized as, for example, the rodent visual system. Specifically, the availability of
electrophysiological and connectivity data from the macaque auditory system for the different cortical and
thalamic cell types was limited, so, when required, we used data from other macaque regions or from
other mammalian auditory systems. Validating the layer and cell type-specific firing rates was also
challenging due to lack of macaque A1 data; thus, many of the comparisons to experiments rely on the
readily available laminar LFP and CSD measures. Despite these limitations, we believe our model
incorporates more properties specific to macaque A1 and has been validated against more macaque A1
data than any previous model. Furthermore, it can be iteratively improved and further validated as newer
and more precise data becomes available.

Generating physiologically constrained firing rates in all model populations required parameter tuning
(also referred to as parameter fitting or optimization) of the connection strengths within biologically
realistic ranges. When compared to our previous motor cortex model (Sivagnanam et al. 2020;
Dura-Bernal et al. 2022), this process was particularly challenging in the NHP auditory system model, and
required developing and iteratively improving our automated parameter optimization methods. We believe
the reasons for this include the addition of two inhibitory cell types (VIP, NGF) and the incorporation of
thalamic circuitry, which resulted in complex recurrent intracortical and thalamocortical interactions. The
optimization methods resulted in a range of distinct model parameter combinations that produced valid
network dynamics - a phenomenon known as parameter degeneracy. It is well known that biological
neural circuits exhibit this same property: different combinations of neuron intrinsic and synaptic
properties -- each varying up to several orders of magnitude -- can result in the circuit exhibiting the same
physiological and functional outcome (Prinz, Bucher, and Marder 2004).
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The relatively narrow diameter (200 um) of our simulated cortical column did not allow for a detailed
implementation of the tonotopic organization of thalamic inputs. Nonetheless, the A1 column was tuned to
a specific best frequency, as determined by the filtering of inputs through the cochlear and IC model. The
A1 column also received a realistic number of afferent core and matrix thalamic inputs, with layer and cell
type specificity. Future model versions can be extended to have a larger diameter column, or multiple
columns, each receiving distinct thalamic projections, enabling the studying of circuit mechanisms that
support frequency discrimination of auditory stimuli. Hence, in this study, we did not attempt to reproduce
speech responses in detail, and instead focused on reproducing features of spontaneous activity,
including the high variability observed experimentally.

We simulated, for the first time, EEG signals based on the current dipoles of individual neurons in a
realistic model of macaque auditory cortical circuits. Calculating the voltage at the different scalp
electrodes requires a realistic head volume conduction model. Unfortunately, we did not find a macaque
head model, and had to use the standard human head model available within the LFPy tool (Hagen et al.
2018). This served as additional proof-of-concept of the multiscale capabilities of our model.

3.3. Outlook on research and clinical applications
Overall, the computational model provides a quantitative theoretical framework to integrate and interpret a
wide range of experimental data, generate testable hypotheses and make quantitative predictions. It
constitutes a powerful tool to study the biophysical underpinnings of different experimental
measurements, including LFP, EEG, and MEG (Neymotin, Daniels, et al. 2020). This theoretical
framework represents a baseline model that can be updated and extended as new data becomes
available. Ongoing efforts by the BRAIN Initiative Cell Census Network (BICCN) and others may soon
provide a cell census of the mammalian auditory cortex, similar to that recently made available for the
motor cortex (BRAIN Initiative Cell Census Network (BICCN) 2021). Our model is fully open source and
implemented using the NetPyNE tool (Dura-Bernal et al. 2019), which was explicitly designed to facilitate
integration of experimental data through an intuitive language focused on describing biological
parameters. This will enable other researchers to readily adapt the model to reproduce experimental
manipulations, e.g. chemogenetic or pharmacologic interventions, or dynamics associated with different
brain diseases. Work is already ongoing to adapt the model to study the EEG correlates of schizophrenia
in A1 (Metzner and Steuber 2021), and to evaluate a novel LFP recording device (Abrego et al. 2021). To
facilitate interoperability with other tools, NetPyNE can also export the model to standard formats, such as
NeuroML (Gleeson et al. 2019) and SONATA (Dai et al. 2020), making it widely available to the
community. This is also the first detailed circuit model to incorporate naturalistic auditory inputs, allowing
future research linking structure, dynamics and function, and providing insights into neural
representations during naturalistic stimulus processing. Given the general similarities between NHP and
human thalamocortical circuitry (Herculano-Houzel 2009; Passingham 1973), this data-driven model has
high translational relevance, and can start to bridge the gap across species and offer insights into healthy
and pathological auditory system dynamics in humans.
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4. Methods
We developed a model of the macaque auditory system consisting of a phenomenological model of
cochlea and IC, and biophysically-detailed models of auditory thalamic and cortical circuits (Fig. 1). We
validated the model against macaque in vivo experimental data. This section details the modeling,
experimental and analysis methods used.

4.1 Single neuron models

Morphology and physiology of neuron classes

The network includes conductance-based cell models with parameters optimized to reproduce
physiological responses. We used simplified morphologies of 1 - 6 compartments for each cell type, and
sized dendritic lengths to match macaque cortical dimensions (Oliver et al. 2018, Figs. 8.3/4.4). We fitted
the electrophysiological properties of each cell type to extant electrophysiology data from macaque when
available, or other animal models when it was not. Passive parameters, such as membrane capacitance,
were tuned to fit resting membrane potential (RMP) and other features of subthreshold traces (e.g. sag
from hyperpolarization). Active parameters included values such as the fast sodium channel density, and
were tuned to reproduce characteristics like oscillatory bursting and firing rate vs input current (f-I) curve
(see Supplementary Fig. 1) .

Within the A1 network, we modeled four classes of excitatory neurons: the intratelencephalic spiny
stellate (ITS), intratelencephalic pyramidal (IT), pyramidal tract (PT) and corticothalamic (CT). These were
distributed across the six cortical layers. The ITS model consisted of 3 compartments (a soma and 2
dendrites), and was adapted from a previously published Layer 4 spiny stellate model (Mainen and
Sejnowski 1996). There is evidence for the presence of stellate cells in A1 in mammals, including rodents,
rabbits, bats, cats and humans (Meyer, González-Hernández, and Ferres-Torres 1989; Oliver et al. 2018;
Harris and Shepherd 2015; Y. Wang, Brzozowska-Prechtl, and Karten 2010), although in some species
these were relatively rare compared to visual and somatosensory cortices. Several macaque studies also
mention the role of A1 L4 stellate cells in receiving input from thalamus (Steinschneider et al. 1998, 1992;
Fishman et al. 2000). The IT, PT, and CT cell models were each composed of 6 compartments: a soma,
axon, basal dendrite, and 3 apical dendrites. These models were based on previous work (Neymotin et al.
2017), in which simplified cell models were optimized to reproduce subthreshold and firing dynamics
observed in vivo (Suter, Migliore, and Shepherd 2013; Yamawaki et al. 2014; Oswald et al. 2013). Apical
dendrite lengths were modified to match macaque cortical dimensions and layer-specific connectivity
requirements. The classification of cortical neurons into IT, PT and CT was based not only on their
projection targets, but also on their local connectivity, laminar location, morphology, intrinsic physiology
and genetics (Harris and Shepherd 2015; Shepherd and Yamawaki 2021). Although the PT terminology
may be confusing for A1, this cell class refers to subcerebral projection neurons, including brainstem, and
has been previously used for non-motor cortical regions (A1, V1, S1) (Harris and Shepherd 2015;
Shepherd and Yamawaki 2021; Baker et al. 2018). PT neurons have also been labeled as
'extratelencephalic' (ET), but this does not distinguish them from the also extratelencephalic CT neurons.
In A1, a category of neurons described as 'large pyramidal cells' overlap significantly with features of the
PT cell class: mostly occupy L5B, have thick-tufted morphologies reaching up to L1, are intrinsically
bursting and project to brainstem, including inferior colliculus (IC), superior olivary complex and the
cochlear nuclear complex (Budinger and Kanold 2018; Jeffery A. Winer et al. 2002; Baker et al. 2018;
Jeffery A. Winer and Schreiner 2010).
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Four classes of inhibitory neurons (NGF, SOM, PV, VIP) were also simulated in the A1 network model.
The vasoactive intestinal peptide (VIP) cell model was based on a previously published 5-compartment
model (Turi et al. 2019), whereas the somatostatin (SOM) and parvalbumin (PV) interneurons were based
on published 3-compartment models (Konstantoudaki et al. 2014). Parameters such as dendritic length
were modified to better fit extant cortical data regarding rheobase and f-I curve (Tripathy et al. 2015). The
neurogliaform (NGF) cell model was adapted from an existing model in rodent (Bezaire et al. 2016), with
soma compartment size modified to more closely match the geometry of NGF cells in monkeys
(Povysheva et al. 2007). Channel mechanisms, including A-type potassium and Ih currents, were also
added to the soma compartment to replicate the electrophysiological characteristics (e.g. sag, f-I curve)
described for these cell types in the literature (Povysheva et al. 2007).

In thalamus, the modeled MGB contained thalamocortical (TC) cells, high-threshold thalamocortical cells
(HTC), and local thalamic interneurons (TI). The TC and HTC cells were both single-compartment models
capable of tonic and burst firing (Iavarone et al. 2019), with the HTC model having the addition of a
high-threshold T-type channel mechanism (Vijayan and Kopell 2012). The locally inhibitory TI cells had 2
compartments (a soma and a dendrite) and were fitted to in vitro electrophysiology data recorded from
lateral geniculate nucleus (Zhu, Uhlrich, and Lytton 1999a, [b] 1999; Zhu, Lytton, and Xue 1999). These
cells were optimized to reproduce the oscillatory bursting observed in this cell type (Zhu, Lytton, and Xue
1999). The thalamic reticular nucleus (TRN) contained the single-compartment inhibitory reticular (IRE)
cells, with parameters also optimized to display this cell type’s characteristic intrinsic rhythmicity
(Destexhe et al. 1994, 1996).

4.2 Thalamocortical circuit model populations

Auditory thalamus

Our auditory thalamus model included the medial geniculate body (MGB) and the thalamic reticular
nucleus (TRN). The MGB was composed of two types of thalamocortical neurons (TC, HTC) and thalamic
interneurons (TI). TRN was composed of reticular nucleus cells (IRE). The overall proportion of excitatory
to inhibitory neurons was 3:1. For TC, TI and IRE cell types, we included two separate populations in
order to capture the distinct connectivity patterns of the core vs matrix thalamic circuits. Matrix
populations were labeled with an 'M' at the end: TCM, IREM, TIM. The proportion of core to matrix
neurons was 1:1 (Bonjean et al. 2012). The density and ratio of the different thalamic populations was
based on experimental data (J. A. Winer and Larue 1996; Huang, Larue, and Winer 1999). The resulting
ratio of thalamic to cortical neurons was 1:17, consistent with published data (Coen-Cagli, Kanitscheider,
and Pouget 2017).

Auditory cortex

We modeled a cylindrical volume of the macaque primary auditory cortex (A1) with a 200 µm diameter
and 2000 µm height (cortical depth) including 12,187 neurons and over 25 million synapses (Fig. 1B). The
cylinder diameter was chosen to approximately match the horizontal dendritic span of a neuron located at
the center, consistent with previous modeling approaches (Markram et al. 2015; Billeh et al. 2020).
Macaque cortical depth and layer boundaries were based on macaque published data (Kelly and Hawken
2017; Tremblay, Lee, and Rudy 2016). The model includes 36 neural populations distributed across the 6
cortical layers and consisting of 4 excitatory (IT, ITS, PT, CT), and 4 inhibitory types (SOM, PV, VIP and
NGF). Details of the biophysics and morphology of each cell type are provided in section ["Single Neuron
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Models"] above. The laminar distribution, cell density and proportion of each cell type was based on
experimental data (Kelly and Hawken 2017; Lefort et al. 2009; Schuman et al. 2019; Harris and Shepherd
2015). Layer 1 included only NGF cells. Layers 2 to 6 included IT, SOM, PV, VIP and NGF cells.
Additionally, ITS cells were added to layer 4, PT cells to layer 5B, and CT cells to layers 5A, 5B and 6.
The resulting number of cells in each population depended on the modeled volume, layer boundaries and
neuronal proportions and densities per layer.

4.3 Thalamocortical circuit model connectivity

Connectivity parameters: connection probability and weight

We characterized connectivity in the thalamocortical circuit using two parameters for each projection:
probability of connection and unitary connection strength. Probability of connection was defined as the
probability that each neuron in the postsynaptic population was connected to a neuron in the presynaptic
population. For example, if both pre- and postsynaptic populations have 100 neurons, a probability of
10% will result in an average of 1,000 connections (10% of the total 10,000 possible connections). The
set of presynaptic neurons to connect to was randomly selected and autapses and multapses were not
allowed. Given the neuronal morphologies were simplified to 6 or less compartments, we used a single
synaptic contact for each cell-to-cell connection.

Unitary connection strength was defined as the EPSP amplitude in response to a spike from a single
presynaptic neuron. Given that synaptic weights in NEURON are typically defined as a change in
conductance (in uS), we derived a scaling factor to map unitary EPSP amplitude (in mV) to synaptic
weights. To do this, we simulated an excitatory synaptic input to generate a somatic EPSP of 0.5 mV at
each neuron segment. We then calculated a scaling factor for each neuron segment that converted the
EPSP amplitude (mV) values used to define connectivity in NetPyNE into the corresponding NEURON
synaptic weights (in uS). This resulted in the somatic EPSP response to a unitary connection input being
independent of synaptic location, also termed synaptic democracy (Poirazi and Papoutsi 2020). This is
consistent with experimental evidence showing synaptic conductances increased with distance from
soma, "counterbalancing the filtering effects of the dendrites and reducing the location dependence of
somatic EPSP amplitude" (Magee and Cook 2000). We thresholded dendritic scaling factors to 4x that of
the soma to avoid overexcitability in the network in cases when neurons receive hundreds of inputs that
interact nonlinearly (Spruston 2008; Behabadi et al. 2012).

Types of synapses

Excitatory synapses consisted of colocalized AMPA (rise, decay 𝜏: 0.05, 5.3 ms) and NMDA (rise, decay
𝜏: 15, 150 ms) receptors, both with reversal potentials of 0 mV. The ratio of NMDA to AMPA receptors was
1:1 (Myme et al. 2003), meaning their weights were each set to 50% of the connection weight. NMDA
conductance was scaled by 1/(1+0.28 · Mg · e(-0062 · V)) with Mg = 1mM (Jahr and Stevens 1990).
Inhibitory synapses from SOM to excitatory neurons consisted of a slow GABAA receptor (rise, decay 𝜏: 2,
100 ms) and GABAB receptor, with a 9:1 ratio. Synapses from SOM to inhibitory neurons only included the
slow GABAA receptor. Synapses from PV consisted of a fast GABAA receptor (rise, decay 𝜏: 0.07, 18.2).
Synapses from VIP included a different fast GABAA receptor (rise, decay 𝜏: 0.3, 6.4) (Pi et al. 2013), and
synapses from NGF included the GABAA and GABAB receptors with a 1:1 ratio. The reversal potential
was 0 mV from AMPA and NMDA, -80 mV for all GABAA and -93 mV for GABAB. The GABAB synapse
was modeled using second messenger connectivity to a G protein-coupled, inwardly-rectifying potassium
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channel (GIRK) (Destexhe, Babloyantz, and Sejnowski 1993). The remaining synapses were modeled
with a double-exponential mechanism.

Connection delays

Connection delays were estimated as 2 ms to account for presynaptic release and postsynaptic receptor
delays, plus a variable propagation delay calculated as the 3D Euclidean distance between the pre- and
postsynaptic cell bodies divided by a propagation speed of 0.5 m/s. Conduction velocities of unmyelinated
axons range between 0.5-10 m/s (Purves et al. 2018), but here we chose the lowest value given that our
soma-to-soma distance underestimates the non-straight trajectory of axons and the distance to target
dendritic synapses.

Intra-thalamic connectivity

Intrathalamic connectivity was derived from existing rodent, cat and primate experimental and
computational studies (Bonjean et al. 2012; Cruikshank et al. 2010; Serkov and Gonchar 1996; Jones
2002; Billeh et al. 2020) (see Fig. 2). More specifically, connection probabilities and unitary strength for
TC→RE, RE→TC and RE→RE (both core and matrix populations) were largely based on a previous
primate thalamus study (Bonjean et al. 2012) and validated with data from mouse ventrobasal thalamus
(Cruikshank et al. 2010) and cat MGBv (Bonjean et al. 2012; Cruikshank et al. 2010; Serkov and Gonchar
1996; Jones 2002; Billeh et al. 2020). No evidence was found for TC recurrent connections. Thalamic
interneuron connectivity was derived from the same cat MGBv study, which provided the number of
synaptic contacts for TI→TI, TI→TC and TC→TI, from which we estimated the probability of connection
from each projection. We also verified that our model intra-thalamic connectivity was generally consistent
with that of the Allen Brain Institute visual thalamocortical model (Jones 2002; Billeh et al. 2020). Given
that thalamic neuron models were single-compartment, no specific dendritic synaptic location information
was included.

Intra-cortical connectivity

Connectivity within the A1 local circuit populations was defined as a function of pre- and postsynaptic cell
type and layer. Given the overall lack of detailed cell type-specific connectivity experimental data for
macaque A1, we used as a starting point the connectivity from two experimentally-grounded mammalian
cortical microcircuit modeling studies: the Allen Brain Institute (ABI) V1 (Billeh et al. 2020) and the Blue
Brain Project (BBP) S1 (Markram et al. 2015). We then updated the model connectivity with experimental
data specific to macaque A1, when available, or simply mammalian A1.

Both studies included the projection-specific probability of connection and unitary connection strength
parameters that we required for our model. However, the ABI V1 model had fewer excitatory (1) and
inhibitory (3) broad cell types than our A1 model (4 E and 4 I), whereas the BBP S1 model included
significantly more (11 E and 15 I). Neither model included the distinction between L5A and L5B present in
our A1 model. The ABI V1 did provide length constants to implement distance-dependent connectivity,
which we wanted to include for some of the A1 projections. Therefore, as a first step, we mapped our cell
types to the closest ones in the ABI V1 model and obtained the corresponding connectivity matrices for
A1. We then updated the A1 connectivity of cell types that were missing from ABI V1 based on data from
BBP S1, more specifically, the ITS, PT, CT and VIP cell types. To do this we mapped A1 cell types to
those closest in BBP S1, and scaled the connectivity parameters of missing cell types proportionally,
using shared cell types as reference (e.g. IT or PV). Through this systematic approach we were able to
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combine data from ABI V1 and BBP S1 in a consistent way, to determine the connectivity parameters of
all the A1 populations.

Inhibitory connections were further refined using data from A1 (Budinger and Kanold 2018; Kato, Asinof,
and Isaacson 2017; Pi et al. 2013) or from studies with more detailed cell type-specific data (Tremblay,
Lee, and Rudy 2016; Naka and Adesnik 2016). We updated the L2/3 SOM connectivity so they projected
strongly not only to superficial layer excitatory neurons, but also to deeper ones by targeting their apical
dendrites; this was not the case for PV cells, which projected strongly mostly to intralaminar excitatory
neurons (Kato, Asinof, and Isaacson 2017; Naka and Adesnik 2016). More specifically, probabilities of
connection from L2/3 SOM and PV to excitatory neurons were a function of the postsynaptic neuron layer
(L1-L6) based on data from an A1 study (Kato, Asinof, and Isaacson 2017). The probability of connection
from VIP to excitatory neurons was set to a very low value derived from mouse A1 data (Pi et al. 2013).
Following this same study, VIP→SOM connections were made strong, VIP→PV weak, and VIP→VIP very
weak. Connection probabilities of all I→E/I projections decayed exponentially with distance using a
projection-specific length constant obtained from the ABI V1 study.

Information on the dendritic location of synaptic inputs was also incorporated, when available, into the
model. Cortical excitatory synapses targeted the soma and proximal dendrites of L2-4 excitatory neurons,
distal dendrites of L5-6 excitatory neurons, and were uniformly distributed in cortical inhibitory neurons
(Billeh et al. 2020; Budinger and Kanold 2018; Harris and Shepherd 2015). L1 NGF neurons targeted the
apical tuft of excitatory neurons, L2-4 NGF targeted the apical trunk of L2-4 excitatory neurons and the
upper trunk of L5-6 excitatory neurons, and L5-6 NGF targeted the lower trunk of L5-6 excitatory neurons
(Tremblay, Lee, and Rudy 2016; Budinger and Kanold 2018; Naka and Adesnik 2016). Synapses from
SOM interneurons were uniformly distributed along excitatory neurons, those from PV and VIP neurons
targeted the soma and proximal dendrites of excitatory neurons (Naka and Adesnik 2016; Kato, Asinof,
and Isaacson 2017; Tremblay, Lee, and Rudy 2016).

Thalamocortical and corticothalamic connectivity

Thalamocortical connections were layer- and cell type-specific and were derived from studies in mouse
auditory cortex (Ji et al. 2016) and rodent somatosensory cortex (Constantinople and Bruno 2013;
Cruikshank et al. 2010). Core MGB thalamocortical neurons projected to cortical excitatory neurons in
cortical layers 3 to 6. The strongest projections were to layer 4 ITP, ITS and PV neurons. Weaker
thalamocortical projections also targeted L3 IT and PV; L4 SOM and NGF; L5-6 IT, CT and PV; and L5B
PT and SOM. Matrix thalamocortical neurons projected to excitatory neurons in all layers except 4, and to
L1 NGF, L2/3 PV and SOM, and L5-6 PV. Core thalamic inputs targeted the soma and proximal dendrites
of cortical excitatory cells, whereas matrix thalamic inputs targeted their distal dendrites (Bonjean et al.
2012; Jones 2002).

Corticothalamic projections originating from L5A, L5B and L6 CT neurons targeted all core thalamus
populations (TC, HTC, TI and IRE); whereas projections from L5B IT and PT neurons targeted the matrix
thalamus populations (TCM, TIM, IREM). Connectivity data was derived from primate and rodent studies
on auditory cortex and other cortical regions (Bonjean et al. 2012; Yamawaki and Shepherd 2015;
Budinger and Kanold 2018; Harris and Shepherd 2015; Jones 2002; Crandall, Cruikshank, and Connors
2015).
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4.4 Background inputs
To model the influence of the other brain regions not explicitly modeled on auditory cortex and thalamus,
we provided background inputs to all our model neurons. These inputs were modeled as independent
Poisson spike generators for each cell, targeting apical excitatory and basal inhibitory synapses, with an
average firing rate of 40 Hz. Connection weights were automatically adjusted for each cell type to ensure
that, in the absence of local circuit connectivity, all neurons exhibited a low spontaneous firing rate of
approximately 1 Hz.

4.5 Full model synaptic weight tuning

Overview of approach

Although we followed a systematic data-driven approach to build our model, the complete experimental
dataset required to build a detailed model of the macaque auditory thalamocortical system is currently not
available. Therefore, we had to combine experimental data from different species, different brain regions
and obtained using different recording techniques. It is therefore not surprising that in order to obtain
physiologically constrained firing rates across all populations, we needed to tune the connectivity
parameters. Automated optimization methods have been previously used for simpler networks (e.g.
recurrent point-neuron spiking networks) (Nicola and Clopath 2017; Sussillo and Abbott 2009;
Dura-Bernal et al. 2017; Carlson et al. 2014; Hasegan et al. 2021). However, optimization of large-scale
biophysically-detailed networks typically requires expert-guided parameter adjustments (Bezaire et al.
2016; Markram et al. 2015), for example through parameter sweeps (grid search) (Billeh et al. 2020). In
order to find a more systematic approach to tune this type of model, here we explored automated
optimization methods, and gradually refined them and combined them with heuristic approaches as
needed. Here we describe the final approach employed to obtain the tuned network.

Automated optimization algorithm

Our starting point was the network with cell type-specific background inputs, so that all cells fired at
approximately 1 Hz in the absence of connectivity. We then added connectivity with parameters taken
from the literature and similar existing models. The resulting network included many silent populations (0
Hz) and others firing at very high rates (>100 Hz). Our aim was to obtain a baseline network where all
populations fired within biologically constrained rates.

After classical grid search methods failed, we evaluated the Optuna (http://optuna.org) (Akiba et al. 2019),
a hyperparameter optimization framework designed for machine learning applications, which dynamically
searches the parameter space. Compared to evolutionary algorithms we used in the past, Optuna has the
advantage of producing similar results while not requiring all candidates of a generation to be completed
before moving to the next one. Instead, it dynamically decides the next candidate to explore based on all
the evaluated candidates up to that point, which makes it faster and less resource-consuming.

In order to automate the process, we implemented a fitness function to automatically evaluate how good
each of the solutions was:

fitness = 1/(Np·Nt) · ∑p=1..Np ∑i=1..Nt min(e|r(p,i) - t(p,i)| / s(p,i), fitmax) if r(p,i) ≥ m(p) else fitmax

, where Np is the number of neural populations, Nt is the number of time periods that are evaluated, p is
the population index, i is the time period index, r(p, i) is the average firing rate for population with index p
during time period with index i, t(p, i) and s(p, i) are the target rate mean and standard deviation for
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population p and time period with index i, and fitmax is the maximum (worst possible) fitness value. For
each population the target firing rate is described by a Gaussian function with mean and standard
deviation and a minimum threshold (for E pops: mean=5, std=20, min=0.05; for I pops: mean=10, std=30,
min=0.05). This Gaussian function is evaluated across four consecutive 250ms periods, to ensure relative
homogeneity in the firing rates, e.g. to avoid populations firing only during the first 100ms, but with an
average firing rate matching the target rate. The mean output of this function across populations and time
periods constitutes the fitness error (Supplementary Fig. 2).

Layer-specific and cell-type specific parameters

In order to reduce the fitness errors, we gradually included more tuned parameters (see Fig. 11A). Our
final approach included 4 projection-class weight gains (E→E, E→I, I→E, I→I) for each of the 7 layers (1,
2, 3, 4, 5A, 5B, 6). Analysis also revealed the highly specific dynamics for each of the four inhibitory cell
types, which prompted us to include inhibitory cell type-specific weight gains: E→ PV, E→ SOM, E→ VIP,
E→ NGF and PV→ E, SOM→ E, VIP→ E, NGF→ E. Including both layer-specific and cell type-specific
parameters resulted in overall better solutions with lower fitness errors.

Stepwise layer-by-layer tuning

Increasing the number of parameters (dimensions) increases the size of the parameter space to explore,
which increases the number of optimization trials (simulations) required to obtain a good solution, and
increases the risk of getting stuck in local minima. There are two main ways to reduce the parameter
space: 1) reducing the number of parameters, e.g. including only parameters for a subset of layers, or of
projection types; and 2) reducing the range of parameter values explored, e.g. constraining these based
on previous optimization results. Both of these solutions are implemented in the stepwise layer-by-layer
tuning approach we employed, which reduced the massive HPC resources required to explore the large
model parameter spaces.

To implement the layer-by-layer tuning approach, we first optimized the parameters within L4 alone. Once
this layer achieved valid firing rates in all cell populations we added L3, and tuned the L3 connectivity
parameters, while we kept L2 parameters within a small range of the previously obtained solution. We
repeated this for L2, L5A, L5B, L6 and finally L1. Due to a small bug when tuning L2 and L3, once the full
model was tuned, we retuned to L2 and L3 while keeping the rest of parameters within a small range (Fig.
11). A similar layer-by-layer approach was followed to tune the Allen Brain Institute V1 model (Billeh et al.
2020), although they used a heuristic unidimensional grid search approach, whereas we employed an
automated multidimensional dynamic search using Optuna.

Projection-specific weight tuning

Once we had obtained a reasonable solution for most model populations using the layer-by-layer
approach, additional fine-tuning was required to improve the rate of specific populations. In particular, the
SOM2 and SOM3 were 0 Hz and PV2 and VIP2 were firing too high (>100 Hz). The current parameters
explored did not appear to provide enough specificity to improve the rate of these populations without
worsening some of the others. Therefore, we had to tune the weight gains of specific
population-to-population projections, e.g. from IT2 to SOM2. Using Optuna, we optimized the weights of
all projections targeting the populations with inadequate rates: PV2, SOM2, VIP2 and SOM3. This
resulted in improved rates for these populations.
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Final model

Our final network included all 43 thalamic and cortical populations firing within 0.1 and 25 Hz, i.e. no
epileptic or silent populations. Due to the unprecedented scale and level of detail in the model, e.g.
complex interaction between 4 interneuron types, we had to employ an exploratory approach evaluating
many several methods to tune the weights. Overall, this required over 500,000 simulations and over 5
million core hours on Google Cloud HPCs. The lessons learned during this process should facilitate the
automated tuning of similar detailed models in the future.

4.6 Phenomenological models of peripheral auditory structures
To simulate spontaneous activity in our baseline model we used background white noise as inputs to our
thalamic and cortical populations. However, in order to accurately simulate auditory stimuli input we also
connected a model of peripheral auditory structures such as the auditory nerve (AN) and inferior colliculus
(IC). To simulate these structures, we used phenomenological models that captured the signal
transformations occurring in these regions (Krishna and Semple 2000). These models produced outputs
that were used to drive the thalamocortical cells in the downstream, more biologically detailed portion of
the auditory pathway model. The AN responses modeled here included several characteristic
nonlinearities such as rate saturation, adaptation, and phase locking (Carney, Li, and McDonough 2015;
Krishna and Semple 2000). Outputs from the AN model were convolved and modulated with synaptic
information and used as inputs to a phenomenological model of inferior colliculus (IC). Model neurons of
the IC utilized different types of modulation transfer functions to capture both the spectral and amplitude
modulation tuning observed in this structure (Carney, Li, and McDonough 2015; Nelson and Carney 2004;
Krishna and Semple 2000; Joris, Schreiner, and Rees 2004). These phenomenological models mitigated
common encoding issues encountered at high frequencies and high sound levels, providing us with IC
outputs that were useful throughout a broad range of frequencies and noise (Carney, Li, and McDonough
2015).

The AN and IC models were implemented in Matlab and are available within the UR_EAR 2.0 tool (see
Supplementary Fig. 3). We used .wav files as input to this tool and obtained time-resolved IC firing rates.
The model allowed customization of several options, including the cochlear central frequency and
bandwidth. We saved the firing rates for different input sounds and converted these to spike times using a
Python-based inhomogeneous Poisson generator (Muller et al. 2007). We then used NEURON spike
generators (VecStims) defined in NetPyNE to provide the IC spike times as input to the model thalamic
populations.

4.7 Model building, simulation and optimization
We developed the computational model using the NetPyNE tool (Dura-Bernal et al. 2019), and ran all
parallel simulations using NEURON 8.0 (Lytton et al. 2016; Carnevale and Hines 2006) with a fixed time
step of 0.05 ms. NetPyNE is a python package that provides a high-level interface to NEURON, and
allows for the definition of complicated multiscale models using an intuitive declarative language focused
on the biological parameters. NetPyNE then translates these specifications into a NEURON model,
facilitates running parallel simulations, and automates the optimization and exploration of parameters
using supercomputers. We executed our simulations primarily on Google Cloud supercomputers using a
Slurm-based cluster with 80-core compute nodes (Sivagnanam et al. 2020). Some simulations were also
run on XSEDE supercomputers Comet and Stampede, either using our own allocations or through the
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Neuroscience Gateway (NSG) (Sivagnanam et al. 2013). We used the NetPyNE software tool to design,
execute, organize, and analyze the simulations, as well as to export our model to the SONATA (Dai et al.
2020) and NeuroML (Gleeson et al. 2019) standards.

4.8 Data Analysis and Visualization

Spiking raster plot, firing rate statistics and voltage traces

The NetPyNE package (Dura-Bernal et al. 2019) was used to record and analyze simulation output data,
and to visualize spiking raster plots, firing rate statistics, and neuronal membrane voltage traces.

Local Field Potential (LFP)

At each in silico electrode, the local field potential (LFP) was calculated as the sum of the extracellular
potential from each neuronal segment. For estimation of extracellular potential, we used the line source
approximation method and assumed that the model neurons were immersed in an ohmic medium with a
fixed conductivity of sigma = 0.3 mS/mm (Parasuram et al. 2016; Gold et al. 2006; Dura-Bernal et al.
2019). Electrodes were spatially distributed at 100 μm intervals along a vertical axis of the 2000 μm A1
column. Model LFP recording, analysis and visualization was performed using the NetPyNE package.

Current Source Density (CSD)

We compared the in silico current source density (CSD) signals with in vivo data recorded from the
supragranular, granular, and infragranular layers of A1 while NHPs were at rest. CSD was calculated as
the second spatial derivative of the LFP. CSD analysis and visualization was performed using the
NetPyNE package (Dura-Bernal et al. 2019).

Oscillation event detection

Using the OEvent package (Neymotin, Barczak, et al. 2020), we also used Morlet wavelet spectrograms
and their corresponding CSD waveforms to identify individual oscillation events occurring in spontaneous
data, and to compare these events across in vivo and in silico contexts. OEvent extracted
moderate/high-power events using 7-cycle Morlet wavelets on non-overlapping 10 s windows (Sherman
et al. 2016; Neymotin, Daniels, et al. 2020). We used linearly spaced frequencies (0.25 Hz frequency
increments) ranging from 0.25 - 125 Hz. Power time-series of each wavelet transform were normalized by
median power from the recording/simulation. We applied a local maximum filter to detect peaks in the
spectrogram. Local peaks were assessed to determine whether their power exceeded a 4x median
threshold to detect moderate- to high-power events. Frequency and time bounds around the peak were
determined by including time and frequency values before/after, above/below peak frequency until power
fell below the smaller of ½ maximum event amplitude and 4⨉ median threshold. As shown in Fig. 6, this
produced a bounding box around each oscillation event that was used to determine frequency spread
(minF to maxF), duration, and peak frequency (frequency at which maximum power is detected). We
merged events when their bounding box overlapping area in the spectrogram exceeded 50% of the
minimum area of each individual event. This allowed for the continuity of events separated by minor
fluctuations below threshold. We then calculated additional features from this set of events, including the
number of cycles (event duration x peak frequency). We classified events into standard frequency bands
on the following intervals: delta (0.5-4 Hz), theta (4-9 Hz), alpha (9-15 Hz), beta (15-29 Hz), gamma
(30-80 Hz). Classification was based on the frequency at which maximum power occurred during each
event. These oscillation event analysis techniques yielded morphologically similar events between the
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simulated and NHP data (Figs. 6, 7). Non-normalized CSD data were used to validate and analyze the
contributions of individual cell populations to the detected oscillation events (Fig. 8).

4.9 Experiment recordings
We used a dataset which included local field potentials invasively recorded from the primary auditory
cortex (A1) of 4 female non-human primates as they sat quietly in a dark room with their eyes mostly
open (previously described in (Neymotin, Barczak, et al. 2020)). In a subset of recordings, short
sentences in the English language were presented at 80dB SPL. In both conditions, there were no
behavioral requirements of the NHPs and no rewards were offered. Outside of the recording sessions,
NHPs had full access to fluids and food.

All procedures were approved in advance by the Animal Care and Use Committee of the Nathan Kline
Institute. NHP data was recorded during acute penetrations of A1 in rhesus macaques weighing 5-8 kg,
who had been prepared surgically for chronic awake electrophysiological recordings. Prior to surgery,
each animal was adapted to a custom fitted primate chair and to the sound proofed recording chamber.
Surgical preparation was performed under general anesthesia using aseptic techniques (for details see
(Schroeder 1998; Lakatos et al. 2013)). Briefly, to provide access to the brain, either Cilux (Crist
Instruments) or Polyetheretherketone (PEEK; Rogue Research Inc.) recording chambers were positioned
normal to the cortical surface of the superior temporal plane for orthogonal penetration of A1. These
recording chambers and a PEEK headpost (used to permit painless head restraint) were secured to the
skull with ceramic screws and embedded in dental acrylic. Each NHP was given a minimum of 6 weeks
for post-operative recovery before behavioral training and data collection began.

During recordings, NHPs were head-fixed and linear array multielectrodes (23 contacts with 100, 125 or
150µm intercontact spacing, Plexon Inc.) were acutely positioned to sample all cortical layers of A1.
Neuroelectric signals were continuously recorded with a sampling rate of 44 kHz using the Alpha Omega
SnR system. For NHP data analyses using current-source density (CSD) signals, CSD was calculated as
the second spatial derivative of laminar local field potential. This was done to reduce potential issues
related to volume conducted activity.
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Supplementary Figures

Supplementary Figure 1. Frequency-current (f-I) curves of all distinct cortical and thalamic cell types used in
the model. X-axis shows the amplitude of somatic current injection provided over a 1 second interval, and y-axis
shows the number of action potentials produced.
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Supplementary Figure 2. Optimization of connectivity parameters in auditory thalamocortical model. A)
Range of values explored for each parameter tuned, and fitness error (color) associated with each value. Only
parameter values with fitness errors below 400 were included; red indicates approximate final parameter value. Note
that only layer 2 and 3 connectivity parameters were tuned across a wide value range, while the rest of parameters
were highly constrained based on previous optimizations. B) Fitness error of the trials, each evaluating a different
parameter combination; moving mean average across 10 trials (orange); overall minimum fitness (red) shows fast
improvement up to ~750 trials and then plateaus. C) Range of average firing rates obtained for each population, and
fitness error (color) associated with each value. Only rates with fitness errors below 400 were included; red indicates
approximate final rate. D) Relation between fitness error and PV4 average firing rate; the V-shape indicates very low
or very high firing rates were correlated with high fitness errors, whereas firing rates close to the target (~5-10 Hz)
were correlated with low fitness error.
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Supplementary Figure 3. Example output of the cochlea and inferior colliculus (IC) phenomenological model.
From top to bottom: time series of example input sound (.wav file); spectrogram of the input sound; output of the
Cochlear inner hair cells (IHC) model (in mV); output of the auditory nerve (AN) model (in Hz); output of the IC model
(in mV). The firing rates of the IC units are then converted to spike times and provided as input to the biophysically
detailed MGB model.
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