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Abstract

Single-cell genomics datasets offer vast new resources with which to study cells, but their
potential to inform parameter inference of cell dynamics has yet to be realized. Here we develop
methods for Bayesian parameter inference with data that jointly measure gene expression
and fluorescent reporter dynamics in single cells. By ordering cells by their transcriptional
similarity, the posterior distribution of one is used to inform the prior distribution of its neighbor
via transfer learning along a cell chain. In application to Ca2+ signaling dynamics, we fit the
parameters of thousands of models of variable single-cell responses. We show that transfer
learning accelerates inference, although constructing cell chains by gene expression does not
improve over randomly ordered cells. Clustering cell posterior distributions reveals that only
using similarity-based chains – and not randomly sampled chains – can we distinguish Ca2+
dynamic profiles and associated marker genes. Both at the global and the individual-gene level,
transcriptional states predict features of the Ca2+ response. We discover complex and competing
sources of cell heterogeneity: parameter covariation can diverge between the intracellular and
intercellular contexts. Single-cell parameter inference thus offers broad means to quantify
relationships between transcriptional states and the dynamic responses of cells.
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1 Introduction

Models in systems biology span systems from the scale of protein/DNA interactions to cellular,
organ, and whole organism phenotypes. Their assumptions and validity are assessed through
their ability to describe biological observations, often accomplished by simulating models and
fitting them to data [1, 2, 3, 4]. Under the framework of Bayesian parameter inference and
model selection, the available data is used along with prior knowledge to infer a posterior
parameter distribution for the model [5]. The posterior distribution characterizes the most
likely parameter values to give rise to the data as well as the uncertainty that we have regarding
those parameters. Thus, parameter inference provides a map from the dynamic phenotypes
that we observe in experiments to the parameters of a mathematical model.

Single-cell genomics technologies have revealed a wealth of information about the states of
single cells that was not previously accessible [6]. This ought to assist with the characterization
of dynamic phenotypes. However, it is much less clear how to draw maps between dynamic
phenotypes of the cell and single-cell states as quantified via genomic measurements. The
challenge in part lies in the combinatorial complexity: even if a small fraction of genes contain
information regarding the phenotype of interest, say a few hundred, this remains more than
enough to characterize any feasible number of states of an arbitrarily complex dynamical
process.

This leads us to the central question of this work: can the integration of single-cell gene
expression data into a framework for modeling and inference improve our understanding of
the cellular phenotypes of interest? We address this question below by developing methods for
single-cell data-informed parameter inference using data that jointly measure dynamics and
gene expression in the same single cells [7]. We apply this framework to study Ca2+ signaling
dynamics and signal transduction in response to adenosine triphosphate (ATP) in human breast
MCF10A cells.

Ca2+ signaling is a highly conserved pathway that regulates a host of cellular responses
in epithelial cells: from death and division to migration and molecular secretion, as well as
collective behaviors from organogenesis to wound healing [8]. In response to ATP binding to
purinergic receptors, a signaling cascade is initiated whereby phospholipase C (PLC) is activated
and in turn hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2), producing inositol 1,4,5-
trisphosphate (IP3) and diacylglycerol (DAG). The endoplasmic reticulum (ER) responds to
IP3 by the activation of Ca2+ channels: the subsequent release of calcium from the ER into the
cytosol produces a spiked calcium response. To complete the cycle and return cytosolic calcium
levels to steady state, the sarco/ER Ca2+-ATPase (SERCA) channel pumps the Ca2+ from the
cytosol back into the ER [9, 10]. This dynamic Ca2+ response to ATP stimulus occurs quickly:
on a timescale that is almost certainly faster than gene transcription, enabling the study of links
between the dynamic Ca2+ responses to ATP and the transcriptional state of the cell.

Our ability to measure gene expression in thousands of single cells per experiment has
not only led to new discoveries but has also fundamentally changed how we identify and
characterize cell states [11]. Technologies used to quantify gene expression in single cells
include sequencing and fluorescent imaging. The latter permits the measurement of hundreds
of genes in spatially-resolved populations of single cells. Small molecule fluorescence in situ
hybridization (smFISH) can be multiplexed to achieve this high resolution by protocols such as
MERFISH [12] and seqFISH [13]. Moreover, by coupling multiplexed smFISH with fluorescent
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imaging of Ca2+ dynamics using a GFP reporter in MCF10A cells, we are able to jointly capture
the dynamic cell responses and the single-cell gene expression in the same single cells [7].
These data offer new potential to study the relationships between transcriptional states of cells
and the dynamic phenotypes these may produce.

Models of gene regulatory networks and cellular signaling pathways described by ordinary
differential equations (ODEs) capture the interactions between gene transcripts, proteins, or
other molecular species and their impact on cellular dynamics. Well-established dynamical
systems theory offers a wide range of tools with which to analyze the transient and equilibrium
behavior of ODE models [14]. Although it remains to some extent under investigation whether
or not such equilibrium approximations of behavior are appropriate for cells [15]. Here, we
model Ca2+ dynamics via ODEs based on previous work [16, 17] to study the relationships
between single-cell transcriptional states and dynamic cell responses. We develop a parameter
inference scheme to fit the single-cell Ca2+ dynamics using information from cell predecessors
as captured through the construction of a cell chain. We use this framework to assess the extent
to which transcriptionally similar cell states inform dynamic cellular responses.

In the next section we present the model and the methods implemented for parameter
inference using HamiltonianMonte Carlo in Stan [18]. We go on to study the results of inference:
we discover that priors informed by cell predecessors accelerate parameter inference, but that
cell chains with randomly sampled predecessors perform as well as those with transcriptional
similarity-informed predecessors. Analysis of hundreds of fitted single cells reveals that cell-
intrinsic vs. cell-extrinsic posterior parameter relationships can differ widely, indicative of
fundamentally different sources of underlying variability. The analysis of posterior distributions
offers an intuitive way to assess parameter sensitivities in response to Ca2+ dynamics. We show
that variability in single-cell gene expression is associated with variability in posterior parameter
distributions, both by analysis of individual gene-parameter pairs and globally, by dimensionality
reduction of the posterior space. We cluster cells using their posterior parameters, and discover
that for cell chains derived from transcriptional similarity there are pronounced relationships
between single-cell gene expression states and the dynamic cell phenotypes. Beyond the insight
gained into the dynamics of the Ca2+ pathway, the modeling and inference framework we
present is broadly applicable to other contexts in which one seeks to quantify relationships
between dynamic phenotypes and single-cell gene expression states.

2 Materials and Methods

2.1 A model of Ca2+ dynamics in response to ATP

We model Ca2+ signaling pathway responses in MCF10A human epithelial cells using nonlinear
ordinary differential equations (ODEs), as previously developed [16, 17]. The model consists
of four state variables: phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3), the fraction
of IP3-activated receptor (h), and cytoplasmic Ca2+. The four variables are associated with
a system four nonlinear ODEs describing the rates of change of the Ca2+ pathway species
following ATP stimulation, to characterize dynamic responses in MCF10A cells. The equations
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are given by:
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The equations describe a chain of responses following ATP binding to purinergic receptors: the
activations of PLC, IP3, the IP3R channel on the surface of the ER, and finally the release of Ca2+
from the ER into the cytoplasm [17]. Ca2+ may also enter the ER through the IP3R channel
and the SERCA pump [17]. Our model differs Yao et al. [17] in that we combine the product
of two parameters in the previous model, Kon, ATP and ATP, into a single parameter, ATP. This
reduction of the model parameter space removed the redundancy that would otherwise exist in
the distributions of Kon, ATP and ATP. A description of each of the parameters in the model is
given in (Table 1), where reference values for each of the model parameters are found in Lemon
et al. [16] and Yao et al. [17].

2.2 Data collection and preprocessing

The data consist of a joint assay measuring Ca2+ dynamics and gene expression via multiplexed
error-robust fluorescence in situ hybridization (MERFISH) [12]. Ca2+ dynamics in a total of
5128 human MCF10A cells are measured via imaging for 1000 seconds (ATP stimulation at 200
seconds) using a GCaMP5 biosensor. Immediately following this step, 336 genes are measured
by MERFISH [7]. The Ca2+ trajectories are smoothed using a moving average filter with a
twenty-second window size. After smoothing, data points occurring before ATP stimulation are
removed. Data points for each Ca2+ trajectory after t=300 are downsampled by a factor of 10;
the trajectories are at or close to steady state by this time. Single-cell gene expression data is
collected using MERFISH after the Ca2+ imaging as previously described [7, 12].

2.3 Generating cell chains via cell-cell similarity

Cell-cell similarity is quantified via single-cell transcriptional states, i.e. by comparing xim and
xjm, the expression ofm genes in cells i and j. We obtain a symmetric cell-cell similarity matrix,
W , from the log-transformed MERFISH expression data via optimization in SoptSC [20]: entries
Wi,j denote the similarity between cells i and j. To create a chain of cells linked through their
similarity in gene expression space, we:
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Name Description Prior distribution
ATP Concentration of ATP that activates PLC N (5, 4)
KATP ATP decay rate N (0.0083, 0.0025)
Koff, ATP PLC degradation rate N (1.25, 1)
VPLC Maximum velocity for IP3 generation N (1, 1)
KIP3 Equilibrium constant for IP3 generation

through PLC
N (0.5, 0.01)

Koff, IP3 IP3 degradation rate N (1.25, 1)
a Time constant of IP3 channel N (1, 1)
dinh Dissociation constant for IP3 channel calcium

inhibiting subunit
N (0.4, 0.01)

Ke Dissociation constant for calcium buffer N (10, 4)
Be Concentration of calcium buffer N (150, 25)
d1 Dissociation constant for IP3 channel IP3

activating subunit
N (0.13, 0.01)

d5 Dissociation constant for IP3 channel calcium
activating subunit

N (0.0823, 0.01)

ε ER to cytosolic volume N (0.185, 0.01)
η1 IP3 channel permeability constant N (575, 625)
η2 ER leak permeability constant N (5.2, 1)
η3 Ca2+ pump permeability constant N (45, 25)
c0 Concentration of free Ca2+ in the ER N (4, 1)
k3 SERCA pump dissociation constant N (0.4, 0.01)

Table 1: Definition and description of the ODE model parameters. Prior distributions are derived
from [16, 19, 17].

1. Construct a graph G = (V,E); each node is a cell and an edge is placed between two
cells if they have a similarity score above a given threshold;

2. For a choice of initial (root) cell, traverse G and record the order of cells traversed.

Ideally, each cell would be visited exactly once, however this amounts to finding a Hamiltonian
path in G, an NP-complete problem. Therefore, as a heuristic solution we use a depth-first
search (DFS), which can be completed in linear time. From the current node, randomly select
an unvisited neighbor node and set this as the next current node, recording it once visited
(pre-order DFS). If the current node has no unvisited neighbors, backtracks until a node with
unvisited neighbors is found. When there is no unvisited node left, every node in the graph has
been visited exactly once. Given cases where the similarity matrix is sparse (as we have here),
the DFS generates a tree that is very close to a straight path.

2.4 Bayesian parameter inference with posterior-informed prior distributions

We seek to infer dynamic model parameters in single cells, informed by cell-cell similarity
via the position of a cell in a cell chain. We use the Markov chain Monte Carlo (MCMC)
implementation: Hamiltonian Monte Carlo (HMC) and the No-U-Turn Sampler (NUTS) in
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Stan [21, 18]. HMC improves upon the efficiency of other MCMC algorithms by treating the
sampling process as a physical system and employing conservation laws [22]. From an initial
distribution, the algorithm proceeds through intermediate phase of sampling (warmup) until
(one hopes) convergence to the stationary distribution. During warmup, NUTS adjusts the HMC
hyperparameters automatically [21].

The prior distribution over parameters is a multivariate normal distribution, with dimensions
θj , j = 1, . . . ,m, where m is the number of parameters. Let f be a function characterizing the
interactions between ODE state variables, and y0 be the initial condition. Then, in each single
cell, the Ca2+ response to ATP is generated by the following process:

θj ∼ N (µθj , σθj )

ŷ(t) = f(y0, t; θ)

σ ∼ Cauchy(0, 0.05)
y(t) ∼ N (ŷ(t), σ),

where we truncate the prior so that each θi is bounded by 0 from below.
For the first cell in a chain, we use a relatively uninformative prior, the “Lemon” prior

(Table 1), derived from parameter value estimates in previous work [16, 19, 17]. For the ith
cell in a chain (i > 1), the prior distribution is constructed from the posterior distribution of
the (i− 1)th cell (Section 2.5). For each cell, NUTS is run for four independent chains with the
same initialization. To simulate ŷ(t) during sampling, we use the implementation of fourth and
fifth order Runge-Kutta in Stan [18].

Convergence of NUTS chains is evaluated using the R̂ statistic: the ratio of between-chain
variance to within-chain variance [18, 23]. A typical heuristic used is R̂ between 0.9 and 1.1
indicates that for this set of chains the stationary distributions reached for a given parameter
are well-mixed. There are two caveats on our use of R̂ in practice:

1. For our model, we observe that well-fit (i.e. not overfit) Ca2+ trajectories did not require
R̂ ∈ (0.9, 1.1) for all parameters. Thus we assess R̂ only for the log posterior, using a
more tolerant upper bound of 4.0.

2. There are cases where one chain diverges but 3/4 are well-mixed. In such cases, we
choose to retain the three well-mixed chains as a sufficiently successful run. Thus if
R̂ is above the threshold, before discarding the run, we compute R̂ for all three-wise
combinations of chains, and retain the run if there exist three well-mixed chains.

2.5 Constructing and constraining prior distributions

We construct the prior distribution of the ith cell from the posterior of the (i− 1)th cell. The
prior mean for each parameter θj for the ith cell is set to µ(i−1)j , the posterior mean of θj from
the (i− 1)th cell. The variance of the prior for θj is derived from σ

(i−1)
j , the posterior variance

of θj from the (i − 1)th cell. To a) sufficiently explore the parameter space, and b) prevent
instabilities (rapid growth or decline) in marginal parameter posterior values along the cell
chain, we scale each σ(i−1)j by a factor of 1.5 and clip the scaled value to be between 0.001 and
5. The scaled and clipped value is then set as the prior variance for θj for the ith cell.

Page 6 of 23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2022. ; https://doi.org/10.1101/2022.05.18.492557doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.18.492557
http://creativecommons.org/licenses/by/4.0/


Single-cell Ca2+ parameter inference reveals how transcriptional states inform dynamic cell
responses

2.6 Dimensionality reduction and sensitivity analyses

To compare posterior samples from different cells, we use principal component analysis (PCA).
Posterior samples are projected onto a subspace by first choosing a cell (the focal cell) and
normalizing the posterior samples from other cells against the focal cell, either by min-max
or z-score normalization. Min-max normalization transforms a vector x to x−xmin

xmax−xmin
, where

xmin is the minimum and xmax the maximum of x. z-score normalization transforms x to x−µx
σx

,
where µx is the mean and σx is the standard deviation of x. Normalizing to the focal cell
amounts to setting xmin, xmax, µx, σx to be the values corresponding to the focal cell for all cells
normalized. We perform PCA on the normalized focal cell posterior samples and project them
into the subspace spanned by the first two principal components. The normalized samples from
all other cells are projected onto the PC1-PC2 subspace of the focal cell.

We develop methods for within-posterior sensitivity analysis to assess how perturbations of
model parameters within the bounds of the posterior distribution affect Ca2+ responses. Given θ̃,
the posterior distribution of a cell, each parameter θj is perturbed to two extreme values: θ̃(0.01)j ,
the 0.01-quantile of θ̃·,j , and θ̃(0.99)j , the 0.99-quantile of θ̃·,j . Nine “evenly spaced” samples are
drawn from the posterior range of θ̃ for the parameter of interest, θ̃·,j: the kth draw corresponds
to a sample θ̃i,· such that θ̃i,j = θ̃

(0.1k)
j , the 0.1k-quantile of θ̃·,j . For each draw θ̃i,·, we replace

θ̃i,j by either or θ̃(0.01)j or θ̃(0.99)j and then simulate a Ca2+ response. The Euclidean distances
between simulated trajectories and data are used to quantify the sensitivity of each parameter
perturbation.

2.7 Correlation analysis and cell clustering of MERFISH data

Correlations between single-cell gene expression values and posterior parameters from the
Ca2+ pathway model are determined for variable genes. We calculate the z-scores of posterior
means for each parameter of a cell sampled from a population, and remove that cell if any of its
parameters has a posterior mean z-score smaller than−3.0 or greater than 3.0. PCA is performed
on log-normalized gene expression of remaining cells using scikit-learn 0.24 [24], which yields
a loadings matrix A such that Ai,j represents the “contribution” of gene i to component j. We
designate gene i as variable if Ai,j is ranked top 10 or bottom 10 in the jth column of A for any
j ≤ 10. For each variable gene, we calculate the Pearson correlation between its log-normalized
expression value and the posterior means of individual model parameters. Gene-parameter
pairs are ranked by their absolute Pearson correlations and the top 30 are selected for analysis.
Gene-parameter pair relationships are quantified by linear regression using a Huber loss, which
is more robust to outliers than mean squared error.

To cluster cells using their single-cell gene expression, raw count matrices are normalized,
log-transformed, and scaled to zero mean and unit variance before clustering using the Leiden
algorithm at 0.5 resolution [25], implemented in Scanpy 1.8 [26]. Marker genes for each
cluster are determined by a t-test.
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2.8 Clustering of cell posterior parameter distributions

Cells are clustered according to their posterior distributions. For each parameter, the posterior
means for each cell are computed and scaled to [0, 1]. The distance between two cells is defined
as them-dimensional Euclidean distance between their posterior means (wherem is the number
of parameters). Given distances calculated between all pairs of cells, agglomerative clustering
with Ward linkage is performed using SciPy 1.7 [27]. Marker genes for each cluster identified
are determined using a t-test.

3 Results

3.1 Single-cell priors informed by cell predecessors enable computationally
efficient parameter inference

The dynamic responses of Ca2+ to ATP stimulation were modeled via Eqns. (1-4), and fit to
data in single cells using Bayesian parameter inference (Figure 1A). Only those MCF10A cells
classified as “responders” to ATP were studied, i.e. we sought to explain the different levels and
types of response; cells with Ca2+ peak heights less than 1.8 were removed prior to inference.
To assess the use of transfer learning to inform prior distributions — i.e. the cell chain approach
— we fit cells using either informative priors via the cell chain, or using uninformative priors,
i.e. each cell is fit individually using an identical prior each time. For individually fit cells we
used the “Lemon” prior (Table 1), which is also used for the first cell in a cell chain. In studying
the effects of different prior choices, we found that scaling and clipping the prior standard
deviation was necessary for successively stable marginal posterior distributions along a chain
(Figure S1).

Inferring the parameter of the Ca2+ model via a cell chain resulted in more efficient and more
accurate parameter inference, with shorter computational times and higher overall posterior
model probabilities (Figure 1B–C). To investigate further, 500 cells were fit using a similarity-
based cell chain (see Methods) with 500 warmup steps and compared to cells fit independently
using either 500 or 1000 warmup steps; the longer warmup is required to produce fits of
comparable quality to the similarity-based run (see Table S1 for a summary of the chains run
here and below).

The posterior probabilities for models fit to cells from the similarity-based run are higher
than those from individually fitted cells (Figure 1B; Table S2), with sampling times between 2x
to 25x faster than individually fit cells (Figure 1C). Model fits from the similarity-based run
(as quantified by the R̂ statistic) were better overall than those from individually fitted cells
(Table S3). These trends are consistent across multiple runs each consisting of hundreds of
fitted cells (Figure 1D). The use of informative priors (relative to individually fit cells) improves
the efficiency and the accuracy of parameter inference.

We compared inference along chains with priors informed by cell-cell similarity with chains
that are constructed by a random ordering of cells. We discovered that the performance of the
random cell chains – evaluated by computational efficiency (sampling times) and accuracy of
fits (model posterior probabilities) – was not significantly different than that of the similarity-
based chains (Table S4). Therefore, although the use of priors informed by cell predecessors
accelerated inference relative to individually fit cells, the choice of cell predecessors (similarity-
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Figure 1: Cell chains boost performance for single-cell parameter inference. A: Workflow
for single-cell parameter inference along a cell chain. πi and pi respectively denote the prior
and the posterior distributions of cell i. MAP: maximum a posteriori value. B-C: Comparison of
inference in a similarity-based cell chain (first column) vs. individually fitted cells (second two
columns) by the fit quality: mean log posterior (B) and sampling time (C). Each row represents
a single fitted cell. Individually fitted cells run-1 has 500 warmup steps and run-2 has 1000. D:
Runtime comparison of HMC parameters. Accurate inference using cell chains is possible with
fewer warmup steps and lower maximum tree depths, resulting in lower runtimes. Parameters:
(num. warmup steps; max. tree depth) for r1: (500, 10), r2: (1000, 15), r3: (500, 15).
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based vs. randomly assigned) does not affect computational efficiency or the accuracy of
fits.

We also studied the effects of varying NUTS parameters on the sampling efficiency. We
found that sampling times were much faster overall when we reduced the maximum tree depth
(a NUTS parameter that controls the size of the search space) from 15 to 10, since rarely was
a tree depth > 10 used in practice, so this reduction did not negatively impact the model fits
(Table S5). We also found that a warmup period of 500 steps was sufficient for convergence.
Setting the maximum tree depth to 10 and the number of warmup steps to 500, leading to
much faster sampling times overall (Figure 1D).

3.2 Analysis of single-cell posteriors reveals divergent intracellular and inter-
cellular sources of variability

The posterior distributions of hundreds of cells show interesting differences between marginal
parameters: some are consistent across cells in a chain while others vary widely. To quantita-
tively assess this, we ran two cell chains with the final 100 cells ordered identically but with
different initial cells. We found that while some marginal posterior parameters were similar for
all cells (e.g. Koff, ATP, Figure 2A), others can diverge for the same cells along a chain (e.g. d5,
Figure 2B). Relative changes in marginal posteriors however seemed to be tightly correlated. We
computed the fold changes in mean marginal posterior parameter values between consecutive
cells along the chain (Figure 2A-B, second row): the majority of consecutive cell pairs were
tightly correlated both in direction and magnitude. We obtained similar results for random cell
chains run in parallel with different initial cells (Figure S2).

Further analysis of the marginal posterior distributions revealed two uninformative (“sloppy”
[28]) parameters. The posterior distributions of Be and η1 drifted, i.e. varied along the chain
independent of the particular cell (Figure S3A-B). Given these insensitivities, we studied model
variants where either one or both of these parameters were set to a constant. Comparing chains
of 500 cells each, the reduced models performed as well as the original in terms of sampling
efficiency and convergence (Figure S3C-E, Table S6). Posterior predictive checks of the reduced
models showed no significant differences in simulated Ca2+ trajectories. Thus, for further
investigation into the parameters underlying single-cell Ca2+ dynamics, we analyzed the model
with both Be and η1 set to a constant (chain Reduced-3).

We discovered striking differences between intracellular and intercellular variability through
analysis of the joint posterior distributions of parameters in chain Reduced-3 . Several parameter
pairs were highly correlated, as can be expected given their roles in the Ca2+ pathway, e.g. as
activators or inhibitors of the same species. However, comparison of parameter correlations
within (intra) and between (inter) cells yielded stark differences. Some parameter pairs showed
consistent directions of correlation intercellularly (along the chain) and within single cells. The
Ca2+ pump permeability (η3) and the concentration of free Ca2+ (c0) were positively correlated
both inter- and intracellularly (Figure 2C). Similarly, the ER-to-cytosolic volume (ε) and the
ER permeability (η2) were negatively correlated in both cases (Figure 2D). However, the ATP
decay rate (KATP) and the PLC degradation rate (Koff, ATP) were positively correlated along the
chain (posterior means) but – for many cells – negatively correlated within the cell (Figure 2E).
The distribution of MAP values is well-mixed, i.e. there is no evidence of biases arising due to
a cell’s position in the chain: the variation observed in the posterior distributions represents
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Figure 2: Parameter dependencies revealed by the analysis of marginal posterior distribu-
tions along cell chains. A: Marginal parameter posterior distributions for the PLC degradation
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changes between consecutive cells in the chain (lower). B: As for (A) with the IP3 channel
dissociation constant (d5). C: Left: intercellular variability. Scatter plot of the maximum a
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for (C) with parameters Koff, ATP and KATP.
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biological differences in the population. These differences may be in part explained by the
differences in scale: intercellular parameter ranges are necessarily as large as (and sometimes
many times larger than) intracellular ranges. On these different scales, parameters can be
positively correlated over the large scale but negatively correlated locally, or vice versa. These
divergent sources of variability at the inter- and intracellular levels highlight the complexity of
the dynamics arising from a relatively simple model of Ca2+ pathway activation.

3.3 Quantifying the sensitivity of Ca2+ responses in a population of heteroge-
neous single cells

We conducted analysis of the sensitivity of Ca2+ responses to the model parameters within
a population of cells. Typically, one defines a parameter sensitivity as the derivative of state
variables with respect to that parameter [29, 30]. Here, we are interested in the sensitivity of
Ca2+ responses to perturbations (small or large) within the confines of the parameter posterior
distribution. I.e. we evaluate the sensitivity of the response to a given parameter by perturbing
it not just locally, but across the distribution that parameter takes for the cell population. To
do so, we sample from the posterior and alter the sample such that the parameter of interest
is set to an extreme value according to its marginal posterior distribution (0.01-quantile or
0.99-quantile). We then simulate trajectories from these altered samples (Figure 3A).

The distance between simulated trajectories and the data was used to define the sensitivity
of the Ca2+ response, where we take the mean distance of ten simulated trajectories. From the
distribution of distances, it is clear that Ca2+ responses vary greatly: sensitive to some model
parameters and insensitive to others (Figure 3B). Notably, the distances of the least sensitive
parameters had mean values of close to 1.0: similar to the distances obtained from the best-fit
posterior values (Table S5), i.e. the Ca2+ response is insensitive to these parameters across
the whole posterior range. The insensitive parameters were not simply those which had the
lowest posterior variance: there was little correlation between the inferred sensitivity and the
posterior variance (Table S7), compare, e.g., parameters d1 and d5.

Analysis of the Ca2+ responses to parameter perturbations provides means to quantify how
parameter perturbations affect the signaling pathway dynamics (Figure 3C-E). We compared
an example of an insensitive parameter, dinh (Figure 3C) with two sensitive parameters that
control distinct aspects of the Ca2+ response. d1 inversely controls the Ca2+ peak height: lower
values of d1 lead to consistently higher Ca2+ peaks and vice versa (Figure 3D). In contrast, η2
controls the value of the Ca2+ steady state reached upon decay from the peak (Figure 3E).
Higher values of η2 led to consistently higher Ca2+ steady state values and vice versa. Of the
most sensitive parameters, most control aspects of the Ca2+ dynamics directly, however notable
exceptions include the IP3 degradation rate, Koff, IP3. The importance of IP3 in Ca2+ signal
transduction is in agreement with the results of Yao et al. [17]; here we go further in that we
can quantify the particular properties of the Ca2+ response affected by each parameter. In
the case of Koff, IP3, similar to d1 (although to a lesser extent), the main effect appears to be
differences in the peak height of the Ca2+ response (Figure S4).
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Figure 3: Sensitivity of Ca2+ responses to parameter perturbations. A: Sensitivities of Ca2+
responses with respect to parameters were determined by perturbing each parameter according
to its marginal distribution (set values to 0.01- or 0.99-quantile). B: Parameter sensitivity across
a population of cells from a similarity-induced chain (Reduced-3 model). Sensitivities for the
0.01 and 0.99 quantile are reported as mean distances. std: standard deviation. C: Examples
of simulated trajectories depicting responses to parameter perturbations: the Ca2+ response is
insensitive to dinh. D: Simulated trajectories in response to perturbations in d1: in response the
Ca2+ peak heights were altered. E: Simulated trajectories in response to perturbations in η2: in
response the steady states of Ca2+ were altered.
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3.4 Variability in gene expression is associated with variability in Ca2+ dynam-
ics

We studied variation between pairs of genes and parameters sampled from a cell population to
assess whether relationships between them might exist. We found that several gene-parameter
pairs were correlated. In general, the proportion of variance explained between a gene-
parameter pair was low; this is to be expected given the many sources of variability in both the
single-cell gene expression and the Ca2+ responses.

Analysis of the most highly correlated gene-parameter pairs (see Methods and Table S8)
identified a number of genes that were correlated with multiple parameters, e.g. PPP1CC, as
well as parameters that were correlated with multiple genes, e.g. η3. Pairwise relationships
were quantified via linear regression. The top four correlated gene-parameter pairs from a
similarity-based cell chain are shown in Figure 4A-D. We performed the same analysis on a
randomly ordered cell chain, where the same gene-parameter relationships were recapitulated,
albeit with lower absolute correlation values (Figure 4E-H and Table S9). There is no discernable
influence of a cell’s position in a chain on the gene-parameter relationship, confirming that
these correlations among a cell population reflects the variability in the population rather than
any sampling artefacts.

We compared the top genes ranked by gene-parameter correlations for four populations:
from two randomly sampled and two similarity-informed cell chains. Gene-parameter pairs
were sorted by their absolute Pearson correlation coefficients, and the genes ranked by their
position among sorted pairs. In total we identified 75 correlated gene-parameter pairs for the
Reduced-3 chain, applying a Bonferroni correction for multiple testing (Figure S5). Out of the
top 30 of these, 25 appeared in the top 30 in at least 3/4 of the cell chains studied (Figure 4I).
Of these 25 genes, 20 also appeared as top-10 marker genes from unsupervised clustering (into
3 clusters) of the gene expression data directly (Figure 4I). The high degree of overlap between
these gene sets demonstrates that a subset of genes expressed in MCF10A cells explain not only
their overall transcriptional variability but also their variability in Ca2+ model dynamics. These
results are also suggestive of how information content pertaining to the heterogeneous Ca2+
cellular responses is encapsulated in the parameter posterior distributions.

Next, we turn our attention from the level of individual genes/parameters to that of the
whole: what is the relationship between the posterior parameter distribution of a cell and its
global transcriptional state? We used principal component analysis (PCA) for dimensionality
reduction of the posterior distributions to address this question. We selected a cell (denoted
the “focal cell”) from a similarity-based cell chain (Reduced-3) and decomposed its posterior
distribution using PCA. We projected the posterior distributions of other cells onto the first
two components of the focal cell (Figure 4J-K and Figure S6A-B) to evaluate the overall
similarity between the posterior distributions of cells relative to the focal cell. On PCA projection
plots, posterior samples are colored based on gene expression: samples are derived from
cells that are either transcriptionally similar to the focal cell, or share no transcriptional
similarity. Comparison of similar and dissimilar cells from the same population showed that
cells that were transcriptionally similar were located closer to the focal cell than dissimilar cells
(Figure 4L-M and Figure S6C-D). In contrast, similar analysis of a random cell chain showed
that transcriptionally similar cells were not located closer to the focal cell than dissimilar cells
(Figure S7). Notably, proximity of posterior samples derived from transcriptionally similar cells
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was not driven by a cell’s position along the chain (no block structure observed; Figure S8).
Similarities between posterior distributions of transcriptionally similar cells were thus not driven
by local cell-cell similarity, but rather underlie a global effect and denote a relationship between
the transcriptional states of cells and the Ca2+ pathway dynamics that they produce.

3.5 Similarity-based posterior cell clustering reveals distinct transcriptional
states underlying Ca2+ dynamics

To characterize the extent to which we can predict Ca2+ responses from knowledge of the
model dynamics, we clustered 500 cells from a similarity-based cell chain (Reduced-3) based on
the single-cell posterior distributions using hierarchical clustering (see Methods). Three clusters
were obtained (Figure 5A). Each cluster showed distinct Ca2+ dynamics: “low-responders”
exhibited lower overall Ca2+ peaks in response to ATP (Figure 5B); “early-responders” exhibited
earlier overall Ca2+ peaks in response to ATP; and “late-high-responders” exhibited robust Ca2+
responses with peaks that were later and higher than cells from other clusters (Figure S9).

The distinct dynamic profiles can be explained by the parameter sets that give rise to them:
low-responders are characterized by high concentration of free Ca2+ in the ER (c0) and low
activation rates of IP3R (Figure S9, Figure S10, Figure S12). Early-responders are characterized
by parameters leading to faster and earlier IP3 and PLC dynamics, and late-high-responders
are characterized by small values of d1 (Figure S12).

Comparison of posterior parameter clustering with that performed by Yao et al. [17] shows
that in both cases one of the three clusters obtained was characterized by stronger responses
to ATP and correspondingly higher values of dinh (Figure S12) [17]. In Yao et al., both d1 and
d5 were smaller in cells with stronger Ca2+ responses. We found that d1 was smaller in the
late-high-responder cluster, but not in the early responders. In our results, d5 was higher for
the early-responders, in contrast with Yao et al. (Figure S12). We note that we set a stringent
threshold for minimum peak Ca2+ response, i.e. we excluded non-responding cells, unlike
Yao et al., thus in a direct comparison most of the cells in our population would belong to the
“strong positive” cluster in [17].

To understand the distinct Ca2+ dynamic profiles in light of single-cell gene expression,
we performed two additional analyses. We clustered the same 500 cells based solely on
their gene expression using community detection (Leiden algorithm in Scanpy [25]); we also
clustered 500 cells from a randomly ordered cell chain using the same approach for hierarchical
posterior clustering. For the cell clustering based on gene expression, as for the similarity-based
cell clustering, distinct Ca2+ profiles are observed: in the case of the gene expression-based
clustering these consist of “Ca-low”, “Ca-mid”, and “Ca-high” responses (Figure 5C). In contrast,
no distinct Ca2+ dynamic responses could be observed for the posterior clustering based on the
random cell chain (Figure 5D and Figure S11).

We performed differential gene expression analysis on each set of clusters (from the
similarity-based chain, the randomly ordered chain, and from the gene expression-based
clustering; Figure 5E-G). Distinct markers for each cluster were obtained for the similarity-
based clustering and the gene expression-based clustering, but were not discernible for the
random chain-based clustering. Clustering of cell posteriors from the randomly ordered chain
was thus unable to distinguishable Ca2+ dynamic profiles nor gene expression differences. On
the other hand, clustering posteriors from a similarity-based chain identified distinct gene
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Figure 5: Clustering of cell posterior distributions reveals marker genes for Ca2+ states.
A: Agglomerative clustering on posterior means from a similarity-based chain (Reduced-3) using
Ward linkage (k = 3 clusters). B: Kernel density estimate of Ca2+ peak height from posterior
clustering of a similarity-based chain. C: Kernel density estimate of Ca2+ peak height from
gene expression clustering of the same cell population as in (A–B). D: Kernel density estimate
of Ca2+ peak height from posterior clustering of a randomly ordered cell chain (Random-2). E:
Top ten marker genes per cluster from similarity-based posterior clustering. F: Top ten marker
genes per cluster from gene expression clustering of cells. G: Top ten marker genes per cluster
from posterior clustering of randomly ordered cell chain.
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expression profiles. Moreover, these overlapped with the marker gene profiles obtained by
clustering on the gene expression directly. I.e. parameter inference of single-cell Ca2+ dy-
namics from a similarity-based chain enables the identification of cell clusters with distinct
transcriptional profiles and distinct responses to ATP stimulation.

Analysis of the genes that are associated with each Ca2+ profile showed that low-responder
cells were characterized by upregulation of CCDC47 and PP1 family genes (PPP1CC and
PPP2CA). Early-responder cells were characterized by upregulation of CAPN1 and CHP1,
among others. The late-high responder cells were characterized by increased expression CALM3
among others, although the marker genes for this cluster were less evident than the others.
There was considerable overlap in the marker genes identified by posterior clustering vs. by
gene expression clustering: the early-responder signature overlapping with the Ca-mid cluster,
and the low-responder signature overlapping with the Ca-low cluster. The posterior distributions
of cells fit from similarity-based (but not random) cell chains capture information regarding
the transcriptional states of cells that overlaps with the information gained by gene expression
clustering directly. Thus, specific Ca2+ model parameter regimes that characterize distinct Ca2+
responses contain information about distinct single-cell gene expression states.

4 Discussion

We have presented methods for inferring the parameters of a signaling pathway model, given
data describing dynamics in single cells coupled with subsequent gene expression profiling.
We hypothesized that via transfer learning we could use posterior information from a cell to
inform the prior distribution of its neighbor along a “cell chain” of transcriptionally similar
cells. To the best of our knowledge, this was the first parameter inference framework for
dynamic models that incorporates single-cell gene expression information into the inference
framework. Implemented using Hamiltonian Monte Carlo algorithm for MCMC sampling [21],
we discovered that using cell predecessors to construct priors did indeed lead to faster sampling
of parameters. However, these improvements did not rely on the use of gene expression to
construct priors: the performance of randomly sampled cell predecessors was equivalent. In
the case that cell chains were constructed using single-cell gene expression and transcriptional
similarity, the resulting posterior parameter distributions contained more information about
Ca2+ signaling dynamics. Through clustering of the posterior distributions, we were able to
identify important relationships between gene expression and dynamic cell phenotypes, thus
providing mappings from state to dynamic cell fate.

The model studied here is described by ODEs to characterize the Ca2+ signaling pathway,
adapted from [19, 16], consisting of 12 variables and (originally) a 40-dimensional parameter
space. This was reduced to 19 parameters in Yao et al. [17] and 16 parameters in our work.
Analysis of even a single 16-dimensional posterior distribution requires dimensionality reduction
techniques, let alone the analysis of the posterior distributions obtained for populations of
hundreds of single cells. Parameter sensitivity analysis highlighted the effects of specific
parameter perturbations on the Ca2+ dynamic responses. Indeed, we advocate for the use of
sensitivity analysis more generally as means to distinguish and pinpoint the effects of different
parameter combinations for models of complex biochemical signaling pathways.

By unsupervised clustering of the posterior distributions, we found that distinct patterns of
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Ca2+ in response to ATP could be mapped to specific variation in the single-cell gene expression.
In previous work using similar approaches for clustering [17], posterior parameter clusters
predominantly revealed response patterns consisting of responders and non-responders; here
we excluded those cells that did not exhibit a robust response to ATP. We are able to characterize
subtler the Ca2+ response dynamics (described by “early”, “low”, and “late-high” responders)
and predict which transcriptional states give rise to each. This approach is limited since relatively
little gene expression variance is explained by an individual model parameter: it may be possible
to address this in future work by surveying a larger range of cell behaviors, e.g. by including a
wider range of cellular responses or by considering higher-level co-variance in the posterior
parameter space. It also remains to be tested whether the given model of Ca2+ dynamics is
appropriate to describe the signaling responses in cell types other than MCF10A cells.

Our ability to fit to of the single cells tested came potentially at the expense of an unwieldy
model size. With four variables and a 16-dimensional parameter space, the dimension of the
model far exceeds that of the data: time series of Ca2+ responses in single cells. Without
data with which to constrain the three additional model species, we needed to constrain the
model in other way. We used an approach of “scaling and clipping” for construction of the
priors, i.e. setting ad hoc limits to control posterior variance. More effective (and less ad hoc)
techniques could improve inference overall and may become necessary in the case of larger
models. These include (in order of sophistication): tailoring the scaling/clipping choices to
be parameter-specific; tailoring the choice of prior variance based on additional sources of
data; or performing model reduction/identifiability analysis to further constrain the prior space
before inference. Constructing priors from cells with similar gene expression also helped to
curb the curse of dimensionality: sampling cells sequentially places a constraint on the model.
Nonetheless, in the future more directed approaches to tackle model identifiability ought to be
considered.

Connecting dynamic cell phenotypes to transcriptional states remains a grand challenge in
systems biology. The limitations of deriving knowledge from gene expression data alone [31]
have led to the proposal of new methods seeking to bridge the gap between states and fates [32].
Here, making use of technology that jointly measures Ca2+ dynamics and gene expression in
single cells, we have shown that parameter inference informed by transcriptional similarity
enables us to begin to make state-to-fate maps. Dynamic properties of Ca2+ signaling can be
inferred from specific gene expression states. More broadly, we expect the statistical framework
presented here that uses single-cell gene expression to inform priors for Bayesian inference to
be applicable across many domains. As a result, future models can more readily incorporate
global or targeted transcriptional information to learn molecular and cellular dynamics.
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Data Availability

Parameter inference was developed in Python 3.6 and Stan 2.19. Posterior analyses were
developed in Python 3.8. All code developed to simulate models and run parameter inference
is released under an MIT license at: https://github.com/maclean-lab/singlecell-parinf
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