bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Dissecting Complexity: The Hidden Impact of Application
Parameters on Bioinformatics Research

Mikaela Cashman'®, Myra B. Cohen?, Alexis L. Marsh?, Robert W. Cottingham®

1 Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
2 Dept. of Computer Science, lowa State University, Ames, A, USA

* cashmanmm®@ornl.gov

Abstract

Biology is a quest; an ongoing inquiry about the nature of life. How do the different
forms of life interact? What makes up an ecosystem? How does a tiny bacterium work?
To answer these questions biologists turn increasingly to sophisticated computational
tools. Many of these tools are highly configurable, allowing customization in support of
a wide range of uses. For example, algorithms can be tuned for precision, efficiency,
type of inquiry, or for specific categories of organisms or their component subsystems.
Ideally, configurability provides useful flexibility. However, the complex landscape of
configurability may be fraught with pitfalls. This paper examines that landscape in
bioinformatics tools. We propose a methodology, SOMATA, to facilitate systematic
exploration of the vast choice of configuration options, and apply it to three different
tools on a range of scientific inquires. We further argue that the tools themselves are
complex ecosystems. If biologists explore these, ask questions, and experiment just as
they do with their biological counterparts, they will benefit by both finding improved
solutions to their problems as well as increasing repeatability and transparency. We end
with a call to the community for an increase in shared responsibility and communication
between tool developers and the biologists that use them in the context of complex
system decomposition.

Introduction

Scientific investigation in biology has become increasingly dependent on computational
discovery. Modern research workflows rely on the use of various evolving bioinformatics
software applications which has led to a sophisticated computational ecosystem that
accommodates increasingly diverse and integrated data sets along with their associated
experimental probes, as well as comprehensive conceptual models of scientific
understanding. As an example, consider an investigation of the mechanisms of
promoting growth related to plant and microbe interactions as described in Finkel et
al. [1]. They found a trait — such as the inhibition of root growth — can be
significantly reversed by interaction with a single operon found in the bacteria

This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-ACO05-
000R22725 with the U.S. Department of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government purposes. The Department
of Energy will provide public access to these results of federally sponsored research in accordance with
the DOE Public Access Plan (https://energy.gov/downloads/doe-public-access-plan).

December 20, 2022

https://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Variovoraz. The fact that Variovoraz is involved is not surprising as it had previously
been observed, but that such an important function is provided in a relatively simple
way within a complex biological system, by a single operon, is unexpected. This
investigation involved the use of multiple software tools to support data driven discovery
and model based hypothesis generation [2].

A conceptual approach to reproducing their workflow might start with microbiome
sequencing (performed in the wet lab), recovering metagenome assembled genomes or
MAGs (using an assembly computational tool), annotation of the MAGs (using an
annotation computational tool that performs alignment), followed by a taxonomic
classification (using another computational tool), and followed by an analysis of
associated biochemical pathways 3] (using a tool such as a flux balance analysis). Thus,
this novel result required four different computational tools. As we demonstrate later,
each of these tools may be considered almost as complex as the biological subsystems
being explored.

The above example illustrates a single software workflow. Different research
questions will require different workflows with different algorithmic parameters. This
has led to the inclusion of many different parameters (or configuration options) in
bioinformatics tools. For instance, BLAST (Basic Local Alignment Search Tool) [4], one
of the most commonly used tools to study DNA and protein sequences, has
approximately 50 parameters a user can modify and customize. Changing these can
impact core functionality such as increasing the string match length, or modifying the
output format. Users can simply leave the default settings, or modify a few settings
based on their laboratory norms, but this practice may result in the full power of these
tools not being leveraged with less than optimal results or missed observations.

However, modifying parameters without a full understanding of their purpose can
also be problematic. For example, in a letter to the editor of Bioinformatics by Shah et
al. [5], they discuss a misunderstanding of a commonly used BLAST parameter
(max_target_seqs) by another researcher. BLAST documentation states the following
definition of max_target_seqs [6]:

Number of aligned sequences to keep. Use with report formats that do not
have separate definition line and alignment sections such as tabular (all
outfmt > 4). Not compatible with num_descriptions or num_alignments.
Ties are broken by order of sequences in the database.

Instead of this parameter filtering at the end as this may be commonly interpreted,
it actually filters results during the algorithm’s iterative search. Thus it may not be
clear to a user how it impacts their results. The authors of the referenced paper stated
their explicit reason for limiting max_target_seqs to a value of 1, under the assumption
it filtered out only the best (top) result at the end of the BLAST search. However, they
misunderstood the parameter’s purpose. In a response from the NCBI team [7], they
acknowledge that Shah discovered a bug (which they fixed) and that they have updated
their documentation.

In addition, several studies have examined how users interact with common
bioinformatics tools. Morrison-Smith et al. noted that users are unsure of how to select

the correct parameters and have to trust a tool’s correctness without real confidence [§].

For example participants have said “At the end of the day, you just have faith that the
program’s working or not.” Others have examined how changing parameters impacts
system performance [9] or correctness [10], however, there is a lack of research on how to
train scientists to efficiently leverage the potential of parameters. We argue that if
scientific software is viewed as a magic box, the community loses scientific potential.
Instead, the bioscience user community needs to peel away the covers and develop
techniques that explore the impact these parameters have on their results, managing

December 20, 2022

2,29

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

them using a controlled and scientific approach. Reading documentation alone may not
be sufficient.

Without a set of systematic techniques, it can be difficult to manage this software
complexity. Since scientists use these tools to help form the basis of their conclusions, a
lack of understanding of how parameters change the outcome of the results is both a
missed opportunity and potentially problematic. In fact, it has already led to
publication retractions [11,/12]. Biologists, hence, often develop a laboratory-specific
routine protocol of what to change and leave the rest of the options alone. In this article
we present a systematic and exploratory protocol (SOMATA) to work with scientific
software. We also argue for more interaction between tool developers and end-users to
build a shared body of knowledge. This will aid the advancement of computational
methods to match the rigor that already exists in the documentation of lab work.

In the following sections, we first present an example and approach for working with
bioinformatics software that matches the rigor and practice that already exists in the
documentation and execution of laboratory work. Then we discuss background on
software configurability and the bioinformatics tools used in this work. Next, we
propose a systematic protocol (SOMATA) for breaking down the complexity of software
tools. We then apply this protocol in a series of experimental studies with one study
focused on empirically measuring the effect of configurations, and a second study
demonstrating an approach to managing configurability. Finally, we end with a
discussion mapping out three key takeaways.

Systems View - A Motivating Example

A systems view in the biological context is a useful approach to study complex and

potentially interacting systems. In this paper we take a systems view of software itself.

Instead of using software as a single tool, we demonstrate how users can approach
software with the same mindset as the organisms they study; as a complex system that
can be optimized based on one’s environment and goals. We demonstrate this idea with
an example showing how parameters can change how a researcher perceives and
interacts with bioinformatics tools while conducting a common experimental scenario.
In this scenario we are trying to understand how different chemical compounds in a
growth media change the metabolic pathways utilized in Escherichia coli (E. coli). For
our growth medium we use the minimal media formulation Carbon-D-Glucose.

Before running extensive laboratory experiments we might want to exploit a common
computational method simulating an organism’s growth using a genome-scale metabolic
network [13]. We can run a Flux Balance Analysis (FBA) which calculates the flow of
metabolites through the metabolic network in a specific growth media to optimize for
growth (measured by flux through the biomass reaction) using a linear programming
algorithm. The FBA tool used here (further discussed in experimental study
methodology) provides input options such as the FBA model and the media, as well as
algorithmic options such as the reaction to maximize, custom flux bounds, expression
thresholds, and maximum uptakes of different nutrient sources. One output of this tool
is the objective value (OV) which represents the maximum flow through the biomass
reaction as a measurement of growth |14]. If we do not change any of the settings (i.e.
run the default configuration) E. coli produces an OV of 0.164692 mmol/g CDW hr.

For the purpose of this example we will explore the effect of the max oxygen
uptake option which is described in the documentation as the “maximum number of
moles of oxygen permitted for uptake (default uptake rates varies from 0 to 100 for all
nutrients)”. This option has no fixed default value since the maximum is constrained by
the media input. We will change this to a value of 0 to see what the behavior is. Under
this new configuration, E. coli no longer grows (OV of 0 is returned). Next we increase

December 20, 2022

329

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

this value in increments of 10 to observe how the OV changes. Results for values from 0 12
to 100 can be seen in Table[l} We see the OV increases linearly until it reaches the 13
maximum (also the default growth) of 0.164692 when max oxygen is set to 40. If we set 1w
this value past 40, there is no added effect. We will explore why this is in a later study.

Table 1. Flux Balance Analysis (FBA) in E. coli in a Carbon-D-Glucose media.
Objective Value (OV) is reported under various values of the max oxygen parameter.

Parameter ov
Default 0.164692
Max O 0 0

Max O 10 0.0536659
Max O 20 0.107332
Max O 30 0.160998
Max O 40 0.164692
Max O 50 0.164692
Max O 60 0.164692
Max O 70 0.164692
Max O 80 0.164692
Max O 90 0.164692
Max O 100 | 0.164692

115
This example demonstrates changes in the measured result (OV), but there are also 1

changes occurring to the internal model of E. coli — specifically — the flows or fluxes 17
of each reaction in the metabolic network. The resulting flux can be positive meaning s
the net flow of metabolites occurs from left to right in the reaction equation, negative 19
meaning the net flow occurs right to left, or zero indicating the flux is equal on both 120
sides resulting in a net of zero. For more information on FBA within this tool please 121
refer to [14]. The metabolic model used in this example has a total of 1,591 reactions. 12
In modifying the level of oxygen, for example changing from the default to a value of 10, 12
431 reactions (27.09%) result in different fluxes. Most reactions either stayed the same 12
(72.91%), or increased or decreased in flux but their direction stayed the same (26.34%). 12
However 12 reactions had a significant change as seen in Table 2] Five reactions change 1
from a negative flux to a flux of zero, three from zero to negative, two zero to positive, 1
and two changed from positive to zero. These 12 reactions represent significant changes 12
that occur to metabolism of E. coli when oxygen levels are varied by means of the tool 12
parameter. 130

We can observe these changes to the reactions and corresponding pathways directly
in the KEGG pathway maps as seen in Fig[I] which depicts Pyruvate Metabolism. The 1z
reaction through EC 1.1.5.4 changes from a negative net flux (left) to a net flux of zero 13
(right). We also see reactions change in the magnitude of their flux. For example ECs 1
2.3.1.54, 2.7.1.40, and 2.7.2.1 change from a higher net negative flux (left) to a lower net 13
flux (right). EC 2.3.1.8 changes from a higher net positive flux (left) to a lower net flux 13

(I‘ight). 137

These configuration changes can be considered as a “state change” to the system. 138
Consider the state diagram in Fig In the initial state (before running FBA) we have 1
a static model with no defined fluxs through its reactions. After running the default 140
configuration through, we arrive at a state with a growth of 0.164692 with fluxes 141

through its 1,591 reactions. But if we take a different transition, for example through 12
max oxygen of 10 then we arrive a different state with a growth of 0.0536659 where the 1
flux through 431 reactions differ leading to changes in the pathways. The same occurs if 14
we set max oxygen to 30 with a growth of 0.160998 resulting again in different reactions s
and paths. Hence, the configuration has a direct impact on the individual reaction fluxes 14

December 20, 2022 4

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 2. Change in individual reaction fluxes after setting the max oxygen parameter to a value of 10 versus the default of

unset.
KBase ID KEGG ID/ Effect on Associated Pathways
EC Number Flux
RO0722 rn00230 Purine metabolism
rxn00515_c0 27 4.6 neg to zero | rn01100 Metabolic pathways
T rn01232 Nucleotide metabolism
R00848 rn00564 Glycerophospholipid metabolism
rxn00616.c0 1.1.99.5 neg to zero rn01110 Biosynthesis of secondary metabolites
rxn00715_c0 5(;019 Z% neg to zero | rn00240 Pyrimidine metabolism
rxn00935_c0 ??1925 71 6 neg to zero | rn00620 Pyruvate metabolism
rn00680 Methane metabolism
R06983 rn01100 Metabolic pathways
rxn04792-c0 1.1.1.284 neg to zero rn01120 Microbial metabolism in diverse environments
rn01200 Carbon metabolism
R00842 rn00564 Glycerophospholipid metabolism
rxn00611-c0 1.1.1.8, 1.1.1.94, 1.1.1.261 zero to neg rn01110 Biosynthesis of secondary metabolites
RO2326 rn00240 Pyrimidine metabolism

rxn01673_c0 27 4.6 zero to neg | rn01100 Metabolic pathways
T rn01232 Nucleotide metabolism
rn00330 Arginine and proline metabolism
R10507 rn00332 Carbapenem biosynthesis
mxn09188-c0 | 5 g9 g 2610 10 1eg | 10100 Metabolic pathwayys
rn01110 Biosynthesis of secondary metabolites
rn00330 Arginine and proline metabolism

x000931 0 R01251 Zero to pos rn01100 Metabolic pathways
- 1.5.1.2 rn01110 Biosynthesis of secondary metabolites
rn01230 Biosynthesis of amino acids
ec00630 Glyoxylate and dicarboxylate metabolism
ec01100 Metabolic pathways
rxn08657-c0 | 1.1.3.15 2€10 t0 pos ec01110 Biosynthesis of secondary metabolites
ec01120 Microbial metabolism in diverse environments
rn00480 Glutathione metabolism
x1n04938_c0 RO7140 pos to zero rn00680 Methane' metabolism
1.1.1.284 rn01100 Metabolic pathways
rn01120 Microbial metabolism in diverse environments
ec00630 Glyoxylate and dicarboxylate metabolism
rxn08656_¢0 | 1.1.3.15 pos to zero ec01100 Metabolic pathways

ec01110 Biosynthesis of secondary metabolites
ec01120 Microbial metabolism in diverse environments

and the pathways through the network which leads to different behavior (e.g. growth). 1

By approaching this software tool with a systems view, we have demonstrated that 14
not only can the ultimate objective change based on the parameters used (e.g. objective 10
value), but the internal biological state (the direction and magnitude of the internal 150
metabolic reactions) can change in significant ways as well. In the rest of this paper we 1
demonstrate via case studies how using a systems mindset allows the scientist to explore 1
and understand dependencies between input parameters and the final scientific result. 153
This improved understanding can build confidence and lead to better science. 154

December 20, 2022 5

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

PYRUVATE METABOLISM LLa PYRUVATE METABOLISM
O‘—_—’.H.ZS 3 O———
1131 ! 41131
| p L
[a1132 L @5 Loyt 2122 41132 Tt
41138 o] 41138
2-H o thyle: o
 Hydroxyethylene- 2 Hydroxyethylene-
u&’fﬁyﬁ% fre sy
1.1.1.28

1.11.28

Nicotinate and nicotinaride p—
metabolisra .
~
Veline, lewineand Jg——
isoleucine biosyrihesis

————_

[
I
|
I
|
I
|
I
|
I
|
|

Malongi-Coh

z
1M Q4517 T0—fi354 1O
Fumarate Succinate
- 2339 o
e ey
() - . —
2. m (R)-2-Ethyhrualate O 2 3. Catboxy.3-hydroxy- Leucine biosynhesis
Acetoacetyl-Coh 4
Oy o) oo Yo (i)
omsei
S ynthesis and degradation Yo — — — — — S ymthesis and degradation Yo — — — — —)
ofketone bodies® < O — & Fatty acid biosynthesis ofketone bodw e R f o a Ma.lc?rl_C_A____ &{ Fatty acid biosynthesis
2-Propyiralate nCol

00620 81914
(c) Ranehisa Laboratories

00620 819/14
(c) Kanehisa Laboratories

Fig 1. KEGG map for Pyruvate Metabolism under the default configuration (left) and with max oxygen set to 10 (right).
Green represents a positive net flux, red is a negative net flux, and blue means the enzyme is present but the net flux is zero.

The shade of the color represents the magnitude of the flux (a darker color represents a larger value).

MaxOxygen 10

OV =0.0536659

¢ 431 Reaction
fluxes change

* KEGG map

* OV =0.164692

e 1,591
Reactions

* KEGG map

¢ Media
* Gapfilled
Model

Default

OV =0.160998

¢ 431 Reaction
fluxes change

KEEG map

Fig 2. State change of FBA under different conditions.

Next we present some background on configurability to lay the groundwork for our 1ss

case studies. 156

December 20, 2022

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Enter Query Sequence

Enter accession number(s), gi(s), or FASTA sequence(s) &

available under aCC-BY 4.0 International license.

(5 Algerithm parameters

Clear Query subrange &

General Parameters

L —

Max target
sequences

Or, upload file | Choose File | No file chosen

Job Title ‘

Enter a descriptive title for your BLAST search @

[J Align two or more sequences &

Choose Search Set

Database @sStandard databases (nr etc.):

Select the maximum number of aligned sequences to display &)

4 Short queries B4 Automatically adjust parameters for short input sequences &

\ Nucleotide collection (nr/nt)

Organism
Optional [

Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown &

Exclude
Optional
Limit to
Optional

[Sequences from type material

[JModels (XM/XP) L] Uncultured/environmental sample sequences

Expect threshold 7]
Word size @
Max matches in a \:I Q@
rRNA/ITS databases (JGenomic + transcript databases (JBetacoronavirus query range =

vie

Oexclude CF Scoring Parameters
Match/Mismatch)
Scores B
Gap Costs [Linear ~|@

Entrez Query

‘ YoulfiT Create custom database Filters and Masking

Optional Enter an Entrez query to limit search &

Program Selection
Optimize for

® Highly similar sequences (megablast)

Filter Low complexity regions &
[Species-specific repeats for

\ Home sapiens (Human) v @

O More dissimilar sequences (discontiguous megablast)

() Somewhat similar sequences (blastn)

Choose a BLAST algorithm &

Mask Mask for lookup table only @

[Mask lower case letters (@

Fig 3. The Nucleotide BLAST (BLASTn) Graphical User Interface (GUI) environment from NCBI. The left shows the
default input options, and the right shows the additional algorithmic parameters [18].

Background

Software Configurability

Many software tools are designed with flexibility to satisfy a variety of use cases by
supporting different facets of a user task. For instance, tools may handle different input
data formats, various data sizes, and algorithms can be selected or customized
depending on the user’s goal. A common example of configurability is a web browser,
such as Firefox or Chrome. A user can select menu options that change the security
settings, or configure how windows and tabs open and close. Some users may want
explicit warnings before exiting a window or tab, and others may prefer to close
windows without confirmation. Which levels of security are chosen or the ability to
embed JavaScript (or not) are all options that can be customized. Current versions of
Firefox have more than 2,000 different options a user can manipulate [15}/16].

Configurability benefits developers by allowing them to create software for a broad
audience through building on reusable components, of which the cost of development
can be amortized over the full software development lifecycle [17]. It also has been
demonstrated to lead to higher quality of individual components since these are tested
and used in multiple systems [17]. This type of development stands in contrast to
building many unique specialized programs, each with individual code, and only slight
variations in behaviors. From a user’s perspective, this would require them to switch
between different software tools as their goals change.

A configuration of a software system is the set of choices, one for each of the system
parameters (or configuration options). For instance, in Firefox a configuration would be
defined by the set of choices for all 2,000+ options. Most will have a default value that
is assigned when the application starts, hence the user rarely changes more than a few
of these on their own; in theory any combination of parameter options can be used
together. Hence, the complete configuration space of a configurable system is the set of
all possible unique sets of parameter values (or the Cartesian product of the options for
the individual values). In the simplest case, where all options are binary (turn the
option on/off), the full configuration space would be 2/P| where |p| represents the
number of parameters of the system. Returning to the Firefox example, assuming 2,000

December 20, 2022

/29

157

158

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

parameters, this would be 22090,

By design, changing parameters modifies how an application behaves. The possible
space of behavior of a configurable software system is usually infeasible to exhaustively
enumerate [10,/15,19]. The range of system behaviors can lead to unexpected failures
(both in outcome and performance) when interactions occur between configuration
options. For instance, one option might reduce the amount of memory for caching and
another might increase some data that is being cached. When the new data is cached it

might overflow the internal structures for caching which have now been reduced in size.

There has been a large body of research that has identified efficient ways to sample a
configurable software system’s configuration space and discover a large portion of the
possible behavior [15,20,[21]. We do not attempt to survey that literature here.

In this paper we focus on configurable software in the bioinformatics domain. We
consider a software parameter (herein shortened to parameter) to be an option that can

be specified by the user and then used by the program or application when it is running.

As noted previously, users have highlighted difficulties understanding parameters, and
this has even led to retracted articles [11,/12]. For a concrete biological example of a
parameter, consider the graphical user interface of NCBI’s BLASTn implementation
(Figure [3). This interface has more than 15 parameters for a user to adjust. In fact,
BLASTn actually has over 50 parameters that can be modified thus not all are exposed
in the NCBI GUI. Some of the parameters are in the form of a drop-down menu or a set
of options such as Max target sequences and gap costs. Others are check boxes or
binary parameters such as short queries and Mask lower case letters. Others are
open text fields such as Expect threshold which can be set to a numeric value. Any
parameter that is not explicitly defined will use the default value as determined by the
program. While many laboratories have their own custom set of options they regularly
choose, there is no one best configuration that is best for all research questions, hence,
understanding ways to navigate and explore these, is an important part of scientific

discovery.

N EE mmm

EEE s

OrgA OrgB OrgA
GeneA GeneB GeneC

(3) Annotation -~ o—o—e :I

-\ s Flux Balance
Analysis

Fig 4. Methods overview of a common bioinformatics workflow.

(4) Metabolic FR ST
Modeling bo-

Erowth @ 165 mol/CDG /hr

December 20, 2022

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Bioinformatics Methods

A common bioinformatics workflow, as shown in Figure [] starts with read files output
from a DNA sequencer that are then assembled (1) into reconstructions of the
underlying original source genome DNA sequence. These are then aligned (2) against
known DNA sequences to find regions of similarity with known genes and their
functions. This provides a basis for identifying genes and annotation (3) of the original
source genomes. The gene annotations then provide the basis for establishing
genome-scale metabolic models (4) and doing flux balance analysis.

In this work we consider three different exemplars of bioinformatics techniques
commonly used in the workflow described: genome assembly, genome alignment, and
metabolic modeling. The following subsections provide brief background on these
techniques including a description of the biological functional objective of each. The
term functional objective is used here referring to the biological output of the methods
relative to the user’s biological query.

DNA Assembly

The read file output from a DNA sequencer contains a set of short sequences of
base-pairs. Each of the short sequences is called a read, and are each an exact copy of a
short segment of genomic DNA. Depending on the sequencing technology and methods,
each read ideally overlaps with many others. Assembly is the computational method to
align and recombine reads to reconstruct the original genome sequence. When this is
not fully accomplished due to sequencing error or lack of sufficient coverage, and
especially with metagenomic samples containing genomes of many different species, the
result is a set of assembled contigs, longer contiguous sequences reflecting the
underlying genomes with hopefully high fidelity. A common functional objective of
DNA assembly is to obtain a few long contigs, ideally a complete one, per species. For
metagenomics there can be a trade off between completeness of individual species

genomes and a more comprehensive representation of most species in the sample [22}/23].

Here we will focus on and optimize for the first.

DNA Alignment

Given a newly discovered or unknown DNA sequence, DNA Alignment (or Sequence
Alignment) is a procedure for finding the most similar or homologous sequence in a
database of known sequences. The unknown sequence is often referred to as the query
sequence. The alignment algorithm compares the query with all other sequences in the
database, and calculates the significance of each match. We investigate a common use
case, searching for the most similar known sequences in order to infer the likely
evolutionary source or biological function of the unknown query sequence. The matches
or hits found in the database to the query sequence are returned with a variety of
quality scores that indicate how confident the alignment is with respect to each possible
match. Two common metrics are the percentage identity (how identical two sequences
are) and the expected value (or e-value) which is a measure of how likely the hits would
be found in the database by chance. The functional objective of DNA alignment can
vary by use case. We define one such objective that covers a range of use cases as the
“number of quality hits” where the exact definition of quality may vary by use case, but
typically involves a combination of several of the quality metrics such as percentage ID
and e-value.

December 20, 2022

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Metabolic Modeling

Metabolic modeling aims to reconstruct and simulate metabolic pathways of an
organism to study its metabolism and gain further insight into its cellular biology. A
metabolic network is a graphical representation of the set of chemical reactions where
nodes represent chemical compounds and edges represent chemical reactions between
those compounds. A path in these networks is a biological pathway. For example, the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database contains numerous
metabolic networks for various model organisms [24]. One common type of analysis
performed on metabolic networks is to estimate the flow of metabolites through the
network under specific environmental conditions. A popular type of algorithm to
perform this is known as flux balance analysis (FBA) [13]. FBA optimizes reaction
fluxes (flows) through an organism’s metabolic reaction network to predict the
organism’s growth or other objective function. As one example of a functional objective,
a user might provide an FBA algorithm one environmental condition, and want to
observe how much the organism grows. This can then be assessed by an objective value
such as a measurement of biomass. Other examples of use cases include observing how
pathways change under different environmental conditions, identifying what
environmental conditions are needed for organism growth, and identifying how much an
organism grows in a specific environment. The functional objective of FBA varies by
use case. Herein we follow one of the most common; to determine the optimum flux over
the metabolic network that maximizes growth.

Experimental Protocol: SOMATA

We propose a process SOMATA, a core methodology to analyze any complex software
systems and systematically break it down. SOMATA involves Selecting tools and data,
identifying Objective metrics, Modeling the parameter space, choosing a sample design
Approach, Testing, and Analyzing. SOMATA includes techniques from the field of
software testing as its foundation. The details of each step are as follows:

1. Select tool and data for exploration

e The first step is to select the tool or software of interest. In our motivating
example the tool of interest was an implementation of Flux Balance Analysis,
and the data was a metabolic model of E. coli along with a compatible
definition of the Carbon-D-Glucose media.

2. Define an outcome metric based on user Objective

e The metric to evaluate is an effect or output of the tool. The metric should
be related to the user’s objective of interest. This could be a functional
output such as a measurement associated with growth, as in our motivating
example, or a non-functional output such as runtime. Several metrics may be
selected depending on what is important in a particular use case. In our
example the objective metric was the OV (a measurement of growth).

3. Model the parameter space of the tool

e This involves identifying possible parameters of interest, defining their valid
choices and range of options, and determining default values. Parameters can
be environmental or functional parameters that have a known direct effect on
the biology of the system, or they can be algorithmic parameters that are
known to impact the underlying algorithmic method. In the example, a

December 20, 2022

10/126

260

261

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

single biological parameter — Max0 — was varied since that is intuitively
related to growth, the output objective of interest.

4. Choose sample design Approach

e Next, choose from the constructed model in Step 3 which options to
experimentally evaluate. A discrete range or set of options for each
parameter must be chosen. Furthermore, the user must decide if they want
to test the parameters individually, in combination, or some mixture of the
two. In the example, we chose 11 choices for the parameter (values of Max0
between 0 and 100 in steps of 10) and explored these individually.

5. Execute the experimental Test evaluation

e Given the chosen model and sample design approach, run the selected
parameters against the tool with respect to the selected data. Often this
process can be automated to allow for large search spaces. Our example runs
an FBA analysis for each of the 11 parameter choices.

6. Observe results and Analyze effects

e Once complete, observe the effect of changing the model parameters given by
Step 3, and conduct deeper analysis if desired. Given the results, to gain
further insight, it may be beneficial to return to a previous step and alter the
sections. For our example we examine the differences in OVs of growth and
the impact on various associated pathways.

We want to emphasize the highly customizable nature of this process. For instance,
in Step 4 there are several sampling design approaches that can be used. We can use
techniques from software testing and design of experiments, or simply use a random
method of investigation. In Step 5, simulation can replace experimentation. Finally, in
Step 6 we could add in additional methods of analysis such as tools from machine
learning. We follow this methodology in our Experimental Evaluation.

This process does not in itself contain any unprecedented elements individually.
However as we argue in the Introduction, the bioinformatics and biology community
would benefit from a clear approach to dissecting the complex software systems on
which their research and science rely. Therefore, we present this as a formal
methodology along with several experimental demonstrations of its application, and the
real scientific impact that follow from the examples.

Experimental Evaluation

In this section we expand on the scenarios in our motivating example, and ask how
much of an impact changing parameters have on scientific results. For this we measure
the behavioral impact of modifying parameters in several commonly used bioinformatics
tools, which can lead to different scientific conclusions. We then ask if a systematic
investigation of parameter settings can lead to any insights that can assist a user in
navigating the parameter space. This would allow scientists to infer information to help
them navigate the parameter space. We formally ask the following research questions:

e Experiment 1: What is the impact on a tool’s behavior when
changing parameters?

e Experiment 2: Can we use an experimental approach to explore the
parameter space and infer the internal behavior of the software
system?

December 20, 2022

1126

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

We further split up Experiment 2 into two studies (Experiment 2a and Experiement 2b).

We followup our study by sharing several lessons learned during this work that can lead
to a set of best practices for users of highly configurable scientific software tools. Please
refer to our supplementary website for study details and dataﬂ

Software Subjects (tools)

In Experiment 1 we leverage prior work which explored a set of four bioinformatics
tools [25]. That work demonstrated the effect of parameters on various objectives, and
identified software failures, but did not analyze the impact on the scientific outcome in
depth. In this work, we provide an alternative analysis of the data and focus on the

extent of the changes in the results, and whether they conform to scientific expectations.

We use an exemplar tool for each of the three bioinformatics applications described
in the Background. For one of these applications we use two different versions of a tool
resulting in four subjects in total. Criteria for choosing the tool subjects include: (1)
the tool is frequently used in the community, (2) has a set of modifiable parameters, (3)
can be run using automated scripts, and (4) includes a tutorial (or sample data) and
documentation. We explicitly use data from others to avoid biasing our findings, and
use tool documentation to guide parameter settings and ranges. For several of the
subjects we utilize implementations from the U.S. Department of Energy’s System
Biology Knowledgebase (KBase) which is a software and data science platform for
researchers to analyze, integrate and model plant and microbial physiology and
community dynamics [26].

The exemplar DNA alignment subject is the Nucleotide BLAST Basic Local
Alignment Search Tool (BLASTn), a popular bioinformatics tool developed by the
National Center for Biotechnology Information (NCBI) [4,27]. We use the command line
implementation of nucleotide BLAST (BLASTn), referred to simply as BLAST from
here on [28]. The second subject is a DNA assembly tool. We chose the MEGAHIT
algorithm [29,|30], and use a version implemented within KBase (version 2.2.8) [31].

The last two subjects perform Flux Balance Analysis (FBA). The first subject is the
graphical user interface (GUI) app, Run Flux Balance Analysis [32], from within
KBase’s main interface (herein referred to as FBA-GUI). It exposes only a limited set of
all the possible parameters available in the underlying algorithm of FBA to be more
tractable for new KBase users. Alternatively users may also adopt the the command
line interface (CLI) implementation of FBA (herein referred to as FBA-CLI). This FBA
subject exposes many more parameters which can be manipulated. We utilize the open
source standalone version (toolkit) of the FBA version 1.7.4 in this work [33].

Public KBase narratives demonstrating all experimentation discussed here are

providecﬂ
Experiment 1: Impact of Changing Configurations

This first study aims to answer the first research question: how does a tool’s behavior
changes when parameter settings are modified.

Methodology

The methodology here follows the experimental approach previously outlined: SOMATA:
Select tool and data, choose Objective metric, Model parameter space, choose sample

1Released upon publication
2Released upon publication

December 20, 2022

12/26

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

design Approach, Test, and Analyze. Starting with step 1 we Select the tools to be
evaluated, we chose four subjects: BLAST, FBA-GUI, FBA-CLI, and MEGAHIT.

In step 2 we define a set of functional outputs as Objective metrics for each tool.
For BLAST we use the number of quality hits using a strict definition of 100% identity
value and and e-value of 0.0. This is a common measurement used to determine how
well the query has performed. For FBA-GUI and FBA-CLI we use an objective metric
that represents growth or biomass called the objective value. For MEGAHIT we selected
four different metrics. The first two metrics count the number of contigs after a filter is
applied. The metric gt1kbp is the number of contigs of length greater than one thousand
base pairs, and the metric gt10kbp is the count greater than 10 thousand base pairs.
Metric N50 is the N50 score provided by MEGAHIT which is a weighted median
statistic on the contig length. The last metric, Maz-bp, is the length of the longest
contig found. Note that these metrics can be adjusted to suit multiple use-cases. In this
work we are simply restricting that choice.

Next in step 3, we define a Model of the parameter space for each subject tool by
selecting a sample of its parameters to test as seen in Table|3] For each tool we show
the number of parameters, and for each parameter we list the type (i.e. Boolean,
integer, float, or string) and state the number of choices used. For instance, we have two
choices for Boolean options, three for strings and five each for integers or floats. As an
example, if we examine BLAST we can see the model has three Boolean, three floats,
and one string option for a total of seven options. This results in a combinatorial
parameter space of 23 x 53 x 3 or 3,000 different configurations. Please refer to our
supplementary data for the exact parameters tested.

In step 4 we design an Approach for sampling the parameter space. For BLAST,
MEGAHIT, FBA-GUI we exhaustively test all combinations of their configuration
options. For FBA-CLI the total configuration space is 1.28 x 10'6 which is too many to
exhaustively test. Thus we took a random sample of 125,000 configurations. Note that
the configuration space for MEGAHIT of size 260 has been reduced from the full space
of 625 due to constraints between parameters. Please refer to our supplementary data
for more information.

To measure the impact of changing parameters we measure several data points to
observe the number of configurations that change the output (for better or for worse).
We can also look at the entire configuration space given our input data and research
objective, and ask how hard it is to find a better, or even the best result compared to
the default value.

Table 3. Subjects. For each subject we show the number of total parameters followed
by the number chosen for testing broken down by parameter type. The number in
parenthesis is the number of choices for that type. Constraints on options are not
reflected here, please refer to our supplementary website for more information.

BLAST | MEGAHIT | FBA-GUI | FBA-CLI
Parameters 58 7 17 52

Parameters Selected for Model
Boolean (2) 3 - 3 21
Integer (5) - 4 - -
Float (5) 3 - 5 14
String (3) 1 - - -
Total 7 4 8 35
Config. Space 3,000 260 25,000 | 1.28 x 1016

December 20, 2022

13/126

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Results

After executing the experiment (Test in step 5), Table [4| presents the results for our
Analysis of the effects in step 6. Each row represents one subject tool and objective
metric combination. Table [4a] reports the number of configurations tested, the number
of unique output metrics, and a summary of the range of output metrics (default, best,
worst, and most common). This demonstrates the impact on the raw objective metric
demonstrating the effect the configuration space has on the scientific output. Table [4D]
breaks down the percentage variation to give an idea of the landscape of the outputs.
In Table [4a] we can see the number of unique objective values is low compared with
the total number of configurations tested in most subjects, suggesting random sampling
may be very helpful. However in MEGAHIT, for the N50 and gt1kbp metrics, we see
about half of the configurations leading to unique objective values. This may suggest we

need to create larger samples to fully explore all potential behaviors of those objectives.

Looking at the range of the objective metrics (last four columns), we can see in some
cases there is a large increase in the result comparing the default output to the best
(BLAST, FBA-CLI, MEGAHIT gtlkbp). Other subjects show a smaller range. However
all subjects have a substantially lower worst metric, and all except BLAST have an
output of zero as their most common output metric.

In Table [Ib] we can see the landscape of the distribution of the scores varies greatly
on the subject and objective. For BLAST 72% of the configurations improve over the
default, but the best result is only seen in 13.33% of the configurations. In FBA-GUI
the default is the best value, but that is only achievable by 18.43% of configurations. In
FBA-CLI - the largest configuration space - only 1.58% of the random configurations
improve over the default’s output, and 0.05% result in the best output value. In fact
most of the time (in 95.14% of configurations) the worst value (0 or no growth) is
achieved. For MEGAHIT the odds of improving over the default range from 2.69% (for
N50 score) to 66.15% for the number of contigs greater than 1,000 base-pairs. Finding
the optimal value for any MEGAHIT metric is low across all subjects ranging from a
0.38% to 1.54%. We see that the number of configurations that achieve the same result
as the default ranges across subjects, as low as 0.38% for MEGAHIT (measured by
maximum base pairs) and as high as 18.43% for FBA-CLI. In all subjects more than
80% of the results are different from the default.

December 20, 2022

14/26

428

429

430

431

432

433

437

438

439

440

442

443

444

445

447

448

449

450

451

452

453

455

456

457

458

459

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 4. Analysis of objective metric impacts.
(a) Objective Metric Impacts. Model is the tool (and objective metric) used. The No. Configs Tested column shows the number of
configurations tested. The No. Unique column is the number of unique output values from all configurations tested as an indication of
the diversity of output. The next four columns are the raw objective metric output values for the default, best, worst, and most
common output values.

Objective Metric
Model A (O3 No. Unique Default Best Worst | Most Common
Tested
fOB\//*)'GUI 25,000 1 0.508 | 0.508 0 0
(Fg\z/x)-cm 125,000 39 0.508 1171 0 0
?ggiﬁsm 260 122 284 656 2 0
1(\1/£IE50%AHIT 260 147 17,227 | 17,593 0 0
?ﬁ/i(if;)m 260 88 64,476 | 70,112 0 0

(b) Percentage Variation Summary. Model is the tool (and objective metric) used. The No. Configs Tested column shows the number
of configurations tested. The remaining columns represent the percentage of configurations tested with respect to the default value. For
example Better represents the percentage of configurations that returned an objective metric better than the default. The final column
is the percentage of configurations that resulted in an error by the software.

Model No,.I‘:SJ::dﬁgs Default | Better Best Worse | Worst | Most Common | Errors
}(BnI;.AzIality hits) 3,000 17.33% 72.00% | 13.33% | 10.67% | 2.00% 17.33% 0.00%
fOB\%_GUI 25,000 18.43% 0.00% 18.43% | 81.57% | 67.23% 67.23% 0.06%
?(1)3\//&)-@1 125,000 0.56% 1.58% 0.05% | 97.60% | 95.14% 95.14% 1.03%
l(ﬁgi]?;)HT 260 1.15% 66.15% 0.38% 9.62% 0.38% 23.08% 0.00%
?;g%ﬁg;rf 260 8.46% 17.69% 0.38% | 50.77% | 7.31% 30.38% 0.00%
l(\/1£IE5§)AHIT 260 2.31% 2.69% 0.38% 95.00% 0.38% 23.08% 0.00%
?/;/E(iilg)rf 260 0.38% 13.46% 1.54% | 63.08% | 0.38% 23.08% 0.00%

December 20, 2022 15

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Summary

These results show that the default configuration does not always provide the
best objective value, and that instead of randomly choosing configurations, a
more systematic method of investigation is needed. For example in all subjects
except BLAST, if a user randomly chooses a configuration, most often the
worst value (0) will be obtained. The variation in the value of the result
also demonstrates the importance of reporting the exact configuration
used in any documentation or publications; otherwise the results are
not reproducible.

The ranges in the configuration distributions in MEGAHIT tell us several things.
We can see that the odds of improving over the default N50 score is significantly
less than the other use cases. This signals that MEGAHIT may be optimized for
the N50 score over other use cases. However, if a user is more concerned with
achieving more contigs with sizes greater than 1,000 base-pairs they may need
to consider other configurations. Configurations are not one-size-fits-all. This
demonstrates how essential it is for the user to understand their particular use
case, have an effective metric that is representative of the objective value, and
consider how different parameters may affect it.

Experiment 2: Experimental exploration approach

Motivated by the results of Experiment 1 demonstrating tool configurations can have a
large impact on the scientific conclusion, in this next study we ask how a user might use
an experimental approach to explore the parameter space and infer the internal
behavior of the system. We do so through two studies. In Experiment 2a, we focus on a
single parameter to explore in depth how this parameter affects an objective. In the
process we uncover some unexpected behavior. In Experiment 2b we explore the overlap
in functionality between multiple parameters. We noticed that some parameters can be
changed from either setting a single parameter within the GUI interface, or alternative
sources. We wanted to understand the interplay between these choices. Experiment 2a
demonstrates how a user can systematically probe a software tool to verify and learn
the impact of single parameters. Experiment 2b provides a method to explore the
interaction between multiple parameters.

Experiment 2a: In-Depth Study of Single Parameter

We extend the experiment from our motivating example on two additional subjects to
observe if the effect is the same or different.

Methodology

Following step 1 of our protocol we Select the KBase GUI implementation of FBA as
the subject tool and select three subject organisms that come from tutorial or public
data in KBase. We tested both Escherichia coli (E. coli) and Rhodobacter sphaeroides
(R. sphaeroides) growing in the standard Carbon-D-Glucose media. We also tested
Shewanella oneidensis (S. oneidensis) in the Lactate media. Please refer to our
supplementary material for an in-depth description of the experimental design. Per
step 2, we use the same Objective metric to evaluate as Experiment 1, growth
measured by the objective value, in all cases. For our Model of the parameter space

December 20, 2022

16/126

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

(step 3), we investigate the use of a single parameter the Max Oxygen parameter
(maximum number of moles of oxygen permitted for uptake) which according to the
specifications can be set between 0 and 100. The default has no explicit set value. We
determine the sample design Approach (step 4) by systematically testing a range of
values (from 0 to 100 in steps of 10) for max oxygen. In order to test the bounds of the
parameter, we also tested values larger than the maximum according to the
documentation (100), thus we also tested values of 101, 250, 500, and 1000.

We consider a use case where the user may want to identify what setting for the max
flux of oxygen results is the highest growth. However they do not want to oversupply
the levels of oxygen, so they want to identify the minimal value of the flux of oxygen to
achieve the highest OV.

Results

After executing the experimental Test in step 5, Table [5| presents our results for all
three organisms for Analysis in step 6. F. coli and R. sphaeroides both showed similar
behavior. The growth for each starts at 0 when max oxygen is set to zero, then
increases to the default growth at a max oxygen value of 40 for E. coli and 50 for R.
sphaeroides. Any value higher results in no additional growth.

S. oneidensis also grows at a linear rate starting from 0 growth at a max oxygen

value of 0. However it does not reach the default growth at the maximum value of 100.

However, if we go beyond the documentation specified range, the default growth can be
achieved by setting max oxygen to 500. Surprised by this behavior we asked the
developers of this tool for further information where we learned that the documentation
was misleading and that 100 is not a hard maximum value.

Table 5. FBA varying MaxO

ot E. coli S. oneidensis | R. sphaeroides
(CDG) (Lactate) (CDG)
Default 0.164692 3.271000 0.545390
Max O 0 0 0 0
Max O 10 0.053666 0.113570 0.120263
Max O 20 0.107332 0.227139 0.240526
Max O 30 0.160998 0.340709 0.360790
Max O 40 0.164692 | 0.454278 0.481053
Max O 50 0.164692 0.567848 0.545390
Max O 60 0.164692 0.681418 0.545390
Max O 70 0.164692 0.794987 0.545390
Max O 80 0.164692 0.908557 0.545390
Max O 90 0.164692 1.007780 0.545390
Max O 100 0.164692 1.099590 0.545390
Max O 101 0.164692 1.108690 0.545390
Max O 250 0.164692 2.123170 0.545390
Max O 500 0.164692 3.271000 0.545390
Max O 1000 0.164692 3.271000 0.545390

December 20, 2022

17/26

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Summary

Using a systematic approach we were able to verify the expected behavior that
increasing the maximum allowed oxygen flux would allow for an increase in
organism growth. This increases the user trust in the tool and verifies
our understanding is in line with the tool’s functionality. We were also
able to identify the smallest value of this setting that results in the best scientific
output (40 for E. coli, 50 R. sphaeroides, and 500 for S. oneidensis). This answers
our use case question. Furthermore, we identified some unexpected behavior that
was not in line with the documentation. Tools are not without bugs or mis-
takes in documentation and it is useful for users to be equipped with
alternative methods to be able to identify any unexpected behaviors
on their own data and use case, and clarify them with developers.

Experiment 2b: Interaction between parameters and the
environment

As previously noted, we identified the flux limits can be altered in more than one
manner. In this experiment we further investigate how these different methods interplay.
One way to control flux is within the media input file via a field for maz uptake of each
compound with units “mol/per CDW hr”. As a second method, from the GUI the
carbon fluxes can be constrained via an application parameter. There are five key
nutrients that can be restricted: carbon (C), nitrogen (N), phosphate (P), sulfur (S),
and oxygen (O). We will refer to these as MaxC, MaxN, MaxP, MaxS, and Max0
respectively. The description of these options is “Maximum number of moles of
[C/N/P/S/O] permitted for uptake (default uptake rates varies from 0 to 100 for all
nutrients)”. There is yet a third way to constrain the fluxes. We can also set individual
limits on either compounds or reactions using a different (string) parameter (Custom
Flux Bounds). We will explore the first two methods. The third method can be
explored using a similar approach.

This experiment investigates how changing different parameters affects the final
scientific result. For example if there is a limit of 10 on Max0 through the application
parameter, and a limit of 40 for HyO specified by the media, what is the resulting limit
for the exchange flux of HyO? Does one supersede another? Or is the minimum or
maximum taken as the limit? How is the flux of multiple compounds affected if they all
share common nutrients? The impact of such changes may be non-trivial to understand
without a systematic exploration. Furthermore, the output of the FBA tool produces
multiple values for exchange fluxes including upper bound, mazx exchange fluz, and
exchange flux. It may not be obvious to a user what precisely each of these fields mean
and where the limits are coming from. Two specific questions we investigate in this
study include:

1. If the mazx flur GUI options are left as unset, what source does FBA use to
determine the limits on the uptake of the different carbon?

2. How can we identify the minimal, required uptake rate for each nutrient?

Methodology

Following step 1 we Select as the subject tool Flux Balance Analysis with E.coli in the
Carbon-D-Glucose media as the base media. The outcome metric (step 2) remains as
the Objective value. In order to explore the sources of the flux constraints, the first

December 20, 2022

18/126

509

510

511

512

5.

iy

3

514

515

516

518

519

520

521

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

step was to identify what compounds in the media the important nutrients could be
coming from. For carbon, nitrogen, phosphate, and sulfur there is only one source for
each: D-Glucose (C6H1206), NH3 (H4N), Phosphate (HO4P), and Sulfate (0O4S)
respectively. Oxygen has several sources: Dioxide (02), Sulfate (O4S), Phosphate
(HO4P), H20, Molybdate (H2Mo00O4), D-Glucose (C6H1206). For simplicity, we chose
two cases where there was only one source: carbon (MaxC) with source D-Glucose and
nitrogen (MaxN) with source NH3. We left the media limits fixed (5 for D-Glucose and
100 for NH3), and then varied the max flux limits of carbon and nitrogen respectively.
This defines our Model of the parameter space (step 3).

For the sample design Approach in step 4 we take a different approach than the
previous studies. We take a more iterative exploratory approach by starting with the
default settings (unset in this case), altering them by a value of 10, and reassessing
based on the results. In this type of a design, we started with an initial model (default
as well as increments of 10), experimentally Tested (step 5), then observed and
Analysed (step 6) and went back to add to the Model (step 3) and re-evaluate. Since
there was no change as the Max uptake of N was increased from 10 to 20 and the max
exchange flux was observed to be 1.5551, further exploration was performed by limiting
the max uptake of N at values between 1 and 2.

Results

Results for exploring the MaxC option can be seen in Table[6] The rows upper bound,
mazx exchange flux, exchange flux, and OV are all output values of the FBA object.
Based on these results we can extrapolate about how the tool is working.

Table 6. Max Uptake C Exploration - D-Glucose (C6H1206)

Max Uptake C | Default 10 20 30

Upper bound 5 5 5 5 | + media defined limit
Max exchange flux 5| 1.667 | 3.333 5 | < parameter defined
Exchange flux 5| 1.667 | 3.333 5 limit

ov 0.675 | 0.225 | 0.450 | 0.675

We can see that the upper bound is consistently at a value of 5, this must mean the
upper bound is set by the media file. The field for maz exchange flux however varies.
Under the default parameter we see it is identical to the upperbound. However when we
constraint the amount of MaxC this value varies. It is reduced in MaxC=10 and MaxC=20,
but at MaxC=30 we see it is again equal to the default of 5. When E.coli has at least 5
units of carbon, it will grow at is maximum amount (0.675). Furthermore, we can see
both the uptake and the OV increase linearly. At a MaxC of 10 the uptake is 1/3rd of
the uptake under the default, and the OV is also 1/3rd of the OV under the default. At
MaxC of 20 the uptake and OV are 2/3rds of the corresponding values under the default.

Table 7. Max Uptake N Exploration - NH3 (H4N)

Max Uptake N Default 1 1.5 1.5551 2 10 20
Upper bound 100 100 100 100 100 100 100
Max Exchange flux 12.9392 1 1.5 1.5551 2 10 20
Exchange flux 1.55528 1 1.5 1.5551 1.55528 1.55528 1.55528
ov 0.164692 | 0.116501 | 0.164269 | 0.16469 | 0.164692 | 0.164692 | 0.164692

We repeat this process for nitrogen seen in Table |7l In this case we vary the nitrogen
supplying compound (NH3) initially at levels of 10 and 20. In follow-up exploration, we
also used levels of 1, 1.5, 1.5551, and 2. At 2 units and above, FE.coli grows at is
maximum (default) amount.

December 20, 2022

19/126

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

562

563

564
565

566

567

568

569

570

571

572

573

574

575

576

577

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

We observe that the exchange flux for NH3 is limited to 1.55528 as this is the
amount of uptake for 2 through 20 units of nitrogen as well as the default case. Further,
E.coli grows at its maximum (default) amount for these amounts of NH3. If we set a
value slightly smaller than that as our MaxN (e.g. 1.5551) we see that it now grows at
just 0.000002 less than its maximum potential. Further, at MaxN=1 it grows at 70.74%

of its maximum amount while at MaxN=1.5 it grows at 99.74% of its maximal potential.

Summary

This experiment reverse engineered the effect of changing max flux options in FBA,
and investigated how the application parameter interacts with the media options.
We were able to extract the meaning of two of the output values that
were unclear from documentation. We found that upper bound is the flux
bound by the media and maz exchange flux is bound by the app parameter. We
found that the maz exchange flux is correlated with which compounds in the
media contain those nutrients, and that the minimum value between the two is
used as the limiting value. We can also identify the minimal required exchange
flux by looking at the actual exchange flux reported by the output.

This process shows how a user can systematically perturb a scientific
software system in order to reverse engineer pieces of the underlying
algorithm. It was initially unclear from documentation how the interaction
between these options operated, and what the meaning of the different output
fields meant. By using this experimental approach the user was able to discover
the answers on their own. Similar experimental designs could be set up to ask
different types of questions.

Discussion

We have seen using three exemplar experiments that biologists can benefit from
approaching their computational tools the same way they approach their bench
experiments. Instead of using tools as magic boxes, we propose SOMATA, an
exploratory approach that leads to computational understanding and expertise. By
leveraging the configuration options (which were developed for specific use cases), a
biologist can better understand the range of a tool’s application and thereby optimize
the results for their use case. However, this is also a cautionary tale. Modifying
configurations of a tool may change how the tool works in unintended ways, and doing
so in an ad-hoc manner can lead to results that are not reproducible or are potentially
sub-optimal.

We also demonstrated that some parameters, while well documented, provide
inaccurate information. While the tool authors document the valid values, these were in
fact incorrect limits for the tool. We discovered via experimentation, and confirmed
with the developers, that we can use larger values in the application, and that larger
values result in (correct) larger values of growth. Situations like this can lead to a
confusing landscape for biologists. Hence, we suggest using a FAIR-like (Findable,
Accessible, Interoperable and Reusable) approach [34] not only with data collection but
also to using and reporting interactions and final settings with all tools, just as FAIR
has been proposed to be extended to research tools [35].

The FAIR initiative came about in recognition that science was being impeded by
the lack of reproducibility caused by lax data standards. In a similar way, the
advancement of research may also be hampered by ad hoc use of software tools that are

December 20, 2022

20,26}

578

579

580

581

582

583

584

585

586

587

588

589

590

591

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

increasingly becoming an integral part of scientific investigation. As noted in the
original article on FAIR [34] the principles should be applied equally to workflows and
software tools, and data: “All scholarly digital research objects [36] — from data to
analytical pipelines—benefit from application of these principles, since all components
of the research process must be available to ensure transparency, reusability and
reproducibility.” Therefore, it is incumbent on researchers to have a working
understanding of the tools used in the context of their research, and to properly
investigate and communicate their findings in a manner adhering to the principles of the
scientific method.

We now synthesize and discuss some of the takeaways (or key lessons learned) during
this study.

1. Importance of Configuration Options. The key takeaway from this study is

that configuration options can have a direct impact on the output and can
effectively change the biological state of the experiment. Thus, it is essential a
user understand the impact each option has. Furthermore, if a user does not take
advantage of the variety of configuration options, they may be missing out on
functionality. On the flip side, we have also seen that having a limited
understanding (or simplified/incorrect documentation) of different parameters
may cause problems, hence the burden should not be solely on the biologist.
Configurations matter, and the creation, documentation, and experimentation
with them should be a community effort. We envision community resources where
information from both experimentalists and tool developers interact. Rather than
simply FAIR we suggest we also need to adopt a SHARE (Simple, Helpful,
Accessible, Readable with Explanations) principle. First, we need methods that
are easy to implement and understand so that biologists use them. Second, our
systems should provide more hints (or help) to aid users in understanding the
various configuration options. Third, the differences (or impact of) changing
configuration options should be annotated with readable explanations. None of
this can be achieved in isolation, hence we think this is a community effort.

. Mapping Configurations to Behavior May not be Obvious. If we return

to the documented max_target_sequence parameter in BLAST (discussed in the
Introduction), we saw that a user could easily interpret the use of setting that
option to represent an output filter after the search returns some number of hits;
hence setting it to a small number could provide just the best results. But in fact,
this parameter is used internally to filter results early in the algorithm, hence it
may cause the search to perform sub-optimally. Why this parameter exists is out
of the scope of this paper, but it was likely added to improve performance (i.e.
make the search run faster). When that objective is required, then a less than
optimal search may be beneficial. Had the author of that paper used our approach
to explore parameter options they would have seen inconsistent results when
setting this parameter (in fact it would only ‘by chance’ return only a single hit).
The lesson here is that relying on simplified (or only) documentation could be
deceptive.

. We Need Better Tools. While we propose the use of exploration in this paper,

we also see the need for next generation tools which provide explanations and
expose configuration behavior. As science continues to advance, computational
tools are increasingly vital to discovery. In order to maximize their benefit, we
should strive to ensure they perform in an explainable, transparent, and intuitive
way.

December 20, 2022

21/p4

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Conclusion

In biological research, as the variety and resolution of data grows to increasingly reflect
the complexity of biology, so too are the associated computational tools becoming more
comprehensive mirrors of the same complexity. Just as scientists apply methods to
investigate the complexity through laboratory protocols, and shifting approaches not
just through reductionism, but also taking an increasingly more comprehensive systems
approach, we propose through SOMATA here taking a systems view to bioinformatics
research and tool development that mimics how biologists explore organisms in the
laboratory, and therefore provides a common basis for communication and interaction
that would help the research community overall to more productively develop and use
those tools, and thereby advance their research efforts.

We have demonstrated that different results can be obtained using different

algorithm and tool parameters and that this is a potential minefield for the novice user.

Rather than limit exploration, we argue that the community of bioinformatics
researchers should provide open, explainable tools and that this information should be
shared and crowd sourced to provide a more repeatable environment. While the FAIR
principles are of value here, we see a need for a more comprehensive way to view
configurability in software tools.

A systems approach to biology implies the need for this same kind of interchange
within the research community especially as the computational tools are refined to be
more precise reflections of biological elements and the experimental processes
investigating them. Having a common framework for decomposing these increasingly
complex tools that mimics a systems view of biology is the kind of standard that we
believe would substantially advance the overall scientific research effort toward the
future.

Supporting information

Table 8. BLAST configuration model

Parameter Name Category Type Range Tested

dust Query filtering options String | yes, “20 64 17, no
soft_masking Query filtering options | Boolean TRUE, FALSE
lcase_masking Query filtering options Flag TRUE, FALSE
xdrop_ungap Extension options Real | 0, 0.1, 0.5, 20, 100
xdrop_gap Extension options Real | 0, 0.1, 0.5, 30, 100
xdrop_gap_final Extension options Real | 0, 0.1, 0.5, 10, 100
ungapped Extension options Flag TRUE, FALSE

Table 9. MEGAHIT configuration model

Parameter Name Type Range Allowed Range Tested

min-count Numeric [2,10] 2,4,6,8,10
k-min Numeric | odd in range [1,127] | 15, 21, 59, 99, 141
k-max Numeric | odd in range [1,255] | 15, 21, 59, 99, 141
k-step Numeric | even in range [2,28] 2, 6, 12, 20, 28

December 20, 2022

22,26]

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

679

680

681

682

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Table 10. FBA-GUI configuration model

available under aCC-BY 4.0 International license.

Parameter Name

Type Range Tested

flux variability analysis

Boolean TRUE, FALSE

minimize flux

Boolean TRUE, FALSE

simulate all single KOs

Boolean TRUE, FALSE

max Carbon uptake Float 0, 25, 50, 75, 100

max Nitrogen uptake Float 0, 25, 50, 75, 100

max Phosphate uptake | Float 0, 25, 50, 75, 100

max Sulfur uptake Float 0, 25, 50, 75, 100

max Oxygen uptake Float 0, 25, 50, 75, 100

Table 11. FBA-CLI configuration model

Parameter Name Type Range Tested
minimize flux Boolean TRUE, FALSE
simulate all single Kos | Boolean TRUE, FALSE
find_min_media Boolean TRUE, FALSE
allRevMFA Boolean TRUE, FALSE
useVarDrainFlux Boolean TRUE, FALSE
rxnKOSen Boolean TRUE, FALSE
decompDrain Boolean TRUE, FALSE
decompRxn Boolean TRUE, FALSE
tightBounds Boolean TRUE, FALSE
phenoFit Boolean TRUE, FALSE
forceUse Boolean TRUE, FALSE
maxActiveRxn Boolean TRUE, FALSE
newPipeline Boolean TRUE, FALSE
prefMFA Boolean TRUE, FALSE
rxnUseVar Boolean TRUE, FALSE
recMILP Boolean TRUE, FALSE
useDataFields Boolean TRUE, FALSE
simpVar Boolean TRUE, FALSE
LPFile Boolean TRUE, FALSE
varKey Boolean TRUE, FALSE
optimMetabo Boolean TRUE, FALSE
maxDrain Float 0, 250, 500 ,750, 1000
minDrain Float 0, -250, -500 , -750, -1000
deltaGSlack Float 0, 5, 10, 15, 20
maxDeltaG Float 0, 2500, 5000, 7500, 10000
maxFlux Float 0, 250, 500 ,750, 1000
minFluxMulti Float 0,1,2 3,4
minFlux Float 0, -250, -500 , -750, -1000
conObjec Float 0, 0.05, 0.1, 0.15, 0.2
minTarget Flux Float 0, .005, .01, .015, .02
Max O uptake Float 0, 25, 50, 75, 100
Max N uptake Float 0, 25, 50, 75, 100
Max P uptake Float 0, 25, 50, 75, 100
Max S uptake Float 0, 25, 50, 75, 100
Max C uptake Float 0, 25, 50, 75, 100

December 20, 2022

23/126]

https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Acknowledgments

This work has been supported in part by the National Science Foundation grant
#CCF-1909688. The opinions and views presented are that of the authors and not of
the NSF. This research has also been supported by the Plant-Microbe Interfaces
Scientific Focus Area in the Genomic Science Program of the Office of Biological and
Environmental Research (BER) at the U.S. Department of Energy Office of Science
under Contract number DE-AC05-000R22725. This research used resources of the Oak
Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC05-000R22725.

References

1.

10.

Finkel OM, Salas-Gonzélez I, Castrillo G, Conway JM, Law TF, Teixeira PJPL,
et al. A single bacterial genus maintains root growth in a complex microbiome.
Nature. 2020;587(7832):103-108.

Voit EO. Perspective: Dimensions of the scientific method. PLOS Computational
Biology. 2019;15(9):1-14. d0i:10.1371/journal.pcbi.1007279.

Sun SL, Yang WL, Fang WW, Zhao YX, Guo L, Dai YJ, et al. The Plant
Growth-Promoting Rhizobacterium Variovorax boronicumulans CGMCC 4969
Regulates the Level of Indole-3-Acetic Acid Synthesized from
Indole-3-Acetonitrile. Applied and Environmental Microbiology.
2018;84(16):€00298-18. doi:10.1128/AEM.00298-18.

. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment

search tool. Journal of molecular biology. 1990;215(3):403—410.

Shah N, Nute MG, Warnow T, Pop M. Misunderstood parameter of NCBI
BLAST impacts the correctness of bioinformatics workflows. Bioinformatics.
2018;35(9):1613-1614. doi:10.1093/bioinformatics/bty833.

Bethesda (MD): National Center for Biotechnology Information (US). BLAST
Command Line Applications User Manual; 2008. Available from:
https://www.ncbi.nlm.nih.gov/books/NBK279684/table/appendices.T.
options_common_to_all_blast/t.

Madden T, Busby B, Ye J. Reply to the paper: Misunderstood parameters of
NCBI BLAST impacts the correctness of bioinformatics workflows.
Bioinformatics. 2019;35(15):2699-2700.

Morrison-Smith S, Boucher C, Bunt A, Ruiz J. Elucidating the role and use of
bioinformatics software in life science research. In: Proceedings of the British
HCI Conference. ACM; 2015. p. 230-238.

Jamshidi P, Siegmund N, Velez M, Kastner C, Patel A, Agarwal Y. Transfer
Learning for Performance Modeling of Configurable Systems: An Exploratory
Analysis. In: IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE; 2017. p. 497-508.

Cohen MB, Dwyer MB, Shi J. Constructing Interaction Test Suites for
Highly-Configurable Systems in the Presence of Constraints: A Greedy Approach.
IEEE Transactions on Software Engineering. 2008;34(5):633-650.

December 20, 2022

24/[26]

https://www.ncbi.nlm.nih.gov/books/NBK279684/table/appendices.T.options_common_to_all_blast/t
https://www.ncbi.nlm.nih.gov/books/NBK279684/table/appendices.T.options_common_to_all_blast/t
https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Miller G. Scientific publishing. A scientist’s nightmare: software problem leads to
five retractions. Science (New York, NY). 2006;314(5807):1856.

Ichikawa T, Suzuki Y, Czaja I, Schommer C, Lefinick A, Schell J, et al.
Retraction Note to: Identification and role of adenylyl cyclase in auxin signalling
in higher plants. Nature. 1998;396. doi:10.1038/24659.

Orth JD, Thiele I, Palsson B@. What is flux balance analysis? Nature
Biotechnology. 2010;28(3):1546-1696.

FAQ: Metabolic Modeling; 2022. Available from: https:
//docs .kbase.us/workflows/metabolic-models/fag-metabolic-modeling,

Jin D, Qu X, Cohen MB, Robinson B. Configurations Everywhere: Implications
for Testing and Debugging in Practice. In: International Conference on Software
Engineering, Software in Practice Track. ICSE. ACM; 2014. p. 215-225.

Sayagh M, Hassan AE. ConfigMiner: Identifying the Appropriate Configuration
Options for Config-related User Questions by Mining Online Forums. IEEE
Transactions on Software Engineering. 2020; p. 1-1.
doi:10.1109/TSE.2020.2973997.

Clements P, Northrop L. Software Product Lines: Practices and Patterns.
Addison-Wesley Professional; 2001.

Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL.
NCBI BLAST: a better web interface. Nucleic Acids Research.
2008;36(2):W5-W9. doi:10.1093/nar/gkn201.

Yilmaz C, Cohen MB, Porter AA. Covering Arrays for Efficient Fault
Characterization in Complex Configuration Spaces. IEEE Trans Software Eng.
2006;32(1):20-34. doi:10.1109/TSE.2006.8.

Zhang S, Ernst MD. Which Configuration Option Should I Change? In:
Proceedings of the 36th International Conference on Software Engineering. ICSE
2014. New York, NY, USA: Association for Computing Machinery; 2014. p.
152-163. Available from: https://doi.org/10.1145/2568225.2568251.

Qu X, Cohen MB, Rothermel G. Configuration-aware Regression Testing: An
Empirical Study of Sampling and Prioritization. In: International Symposium on
Software Testing and Analysis. ISSTA. ACM; 2008. p. 75-86.

Wooley JC, Godzik A, Friedberg I. A primer on metagenomics. PLoS
computational biology. 2010;6(2):e¢1000667.

Vollmers J, Wiegand S, Kaster AK. Comparing and evaluating metagenome
assembly tools from a microbiologist’s perspective-not only size matters! PloS
one. 2017;12(1):e0169662.

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
acids research. 2000;28(1):27-30.

Cashman M, Cohen MB, Ranjan P, Cottingham RW. Navigating the Maze: The
Impact of Configurability in Bioinformatics Software. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering. ASE
2018. New York, NY, USA: ACM; 2018. p. 757-767.

December 20, 2022

25/126]

https://docs.kbase.us/workflows/metabolic-models/faq-metabolic-modeling
https://docs.kbase.us/workflows/metabolic-models/faq-metabolic-modeling
https://doi.org/10.1145/2568225.2568251
https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521257; this version posted December 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al.
KBase: the United States department of energy systems biology knowledgebase.
Nature biotechnology. 2018;36(7):566.

Altschul SF, Madden TL, Schéaffer AA, Zhang J, Zhang Z, Miller W, et al.
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic acids research. 1997;25(17):3389-3402.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.
BLAST+: architecture and applications. BMC bioinformatics. 2009;10(1):421.

Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast
single-node solution for large and complex metagenomics assembly via succinct de
Bruijn graph. Bioinformatics. 2015;31(10).

Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT vl. 0:
a fast and scalable metagenome assembler driven by advanced methodologies and
community practices. Methods. 2016;102:3-11.

KBase MEGAHIT SDK Repository; 2017. Available from:
https://github.com/kbaseapps/kb_megahit.

Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Sevens RL.
High-throughput generation, optimization and analysis of genome-scale metabolic
models. Nature Biotechnology. 2010;28(9):977-982.

Henry CS. MFAToolkit GitHub Repository; 2017. Available from:
https://github.com/cshenry/fba_tools/tree/master/MFAToolkit.

Wilkinson MD, Dumontier M, Aalbersberg 1J, Appleton G, Axton M, Baak A,
et al. The FAIR Guiding Principles for scientific data management and
stewardship. Scientific data. 2016;3(1):1-9.

Lamprecht AL, Garcia L, Kuzak M, Martinez C, Arcila R, Martin Del Pico E,
et al. Towards FAIR principles for research software. Data Science.
2020;3(1):37-59.

Bechhofer S, De Roure D, Gamble M, Goble C, Buchan I. Research objects:
Towards exchange and reuse of digital knowledge. Nature Precedings. 2010; p.
1-1.

December 20, 2022

26126

https://github.com/kbaseapps/kb_megahit
https://github.com/cshenry/fba_tools/tree/master/MFAToolkit
https://doi.org/10.1101/2022.12.20.521257
http://creativecommons.org/licenses/by/4.0/

