

Article

1 **Identification of a Non-Canonical Ciliate Nuclear Genetic 2 Code Where UAA and UAG Code for Different Amino 3 Acids**

4

5 **Authors:**

6 Jamie McGowan¹, Estelle S. Kilias², Elisabet Alacid², James Lipscombe¹, Benjamin H.
7 Jenkins², Karim Gharbi¹, Gemy G. Kaithakottil¹, Iain C. Macaulay¹, Seanna McTaggart¹,
8 Sally D. Warring¹, Thomas A. Richards², Neil Hall^{1,3}, David Swarbreck¹

9

10 **Affiliations:**

11 ¹ Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK

12 ² Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK

13 ³ School of Biological Sciences, University of East Anglia, Norwich, UK

14

15 **Correspondence:**

16 thomas.richards@biology.ox.ac.uk, Neil.Hall@earlham.ac.uk,

17 David.Swarbreck@earlham.ac.uk

18

19 **Keywords:** Genetic code, stop codon reassignment, Ciliophora, Oligohymenophorea,

20 suppressor tRNA, phylogenomics

21 **Abstract**

22 The genetic code is one of the most highly conserved features across life. Only a few lineages
23 have deviated from the “universal” genetic code. Amongst the few variants of the genetic
24 code reported to date, the codons UAA and UAG virtually always have the same translation,
25 suggesting that their evolution is coupled. Here, we report the genome and transcriptome
26 sequencing of a ciliate, belonging to the Oligohymenophorea class, where the translation of
27 the UAA and UAG stop codons have changed to specify different amino acids. Genomic and
28 transcriptomic analyses revealed that UAA has been reassigned to encode lysine, while UAG
29 has been reassigned to encode glutamic acid. We identified multiple suppressor tRNA genes
30 with anticodons complementary to the reassigned codons. We show that the retained UGA
31 stop codon is enriched in the 3'UTR immediately downstream of the coding region of genes,
32 suggesting that there is functional drive to maintain tandem stop codons. Using a
33 phylogenomics approach, we reconstructed the ciliate phylogeny and mapped genetic code
34 changes, highlighting the remarkable number of independent genetic code changes within the
35 Ciliophora group of protists. According to our knowledge, this is the first report of a genetic
36 code variant where UAA and UAG encode different amino acids.

37 **Introduction**

38 The genetic code is one of the most conserved features across life, emerging before
39 the last universal common ancestor (Knight et al. 2001). Virtually all organisms use the
40 canonical genetic code which has three stop codons (UAA, UAG, and UGA) and 61 sense
41 codons that specify one of 20 amino acids, including a translation start codon (AUG).
42 Variants of the genetic code, while rare, have been reported in several lineages of bacteria,
43 viruses, and eukaryotic organellar and nuclear genomes (Ivanova et al. 2014; Keeling 2016).
44 Ciliate nuclear genomes are a particular hotspot for genetic code variation. The phylum
45 Ciliophora is a large group of single-celled eukaryotes (protists) that diverged from other
46 Alveolates more than one billion years ago (Parfrey et al. 2011). Ciliates are highly unusual
47 in that they exhibit nuclear dimorphism whereby each cell has two types of nuclei, the
48 germline micronucleus (MIC) and the somatic macronucleus (MAC), each of which contains
49 its own distinct genome structure and function (Prescott 1994). The MIC genome functions as
50 the germline genome and is exchanged during sexual reproduction. MIC genomes are
51 typically diploid and are transcriptionally inactive during vegetative growth. The MIC
52 genome undergoes rearrangement and excision of non-coding sequences to serve as a
53 template to generate the transcriptionally active MAC genome (Arnaiz et al. 2012). MAC
54 genomes typically contain short, fragmented, gene-dense chromosomes that are present at
55 high ploidy levels (up to tens of thousands of copies) (Swart et al. 2013).

56 Known genetic code changes in ciliates involve reassignment of one or more stop
57 codons to specify for amino acids. Most reported ciliate genetic code changes involve
58 reassignment of both the UAA and UAG codons to specify glutamine as in *Tetrahymena*,
59 *Paramecium*, and *Oxytricha* (Lozupone et al. 2001), or glutamic acid in *Campanella*
60 *umbellaria* and *Carchesium polypinum* or tyrosine in *Mesodinium* species (Heaphy et al.
61 2016). Other known modifications include reassignment of the UGA stop codon to specify

62 tryptophan in *Blepharisma* (Lozupone et al. 2001), or cysteine in *Euplotes* (Meyer et al.
63 1991). The most extreme example of genetic code remodelling is found in *Condylostoma*
64 *magnum* where all three UAA, UAG, and UGA stop codons have been reassigned and can
65 specify either an amino acid (glutamine for UAA and UAG, and tryptophan for UGA) or
66 signal translation termination depending on their proximity to the mRNA 3' end (Swart et al.
67 2016; Heaphy et al. 2016). Not all ciliates use non-canonical genetic codes. For example,
68 *Fabrea salina*, *Litonotus pictus*, and *Stentor coeruleus* use the canonical genetic code
69 (Heaphy et al. 2016; Slabodnick et al. 2017).

70 Changing the meaning of codons from stop to sense requires modifications to the
71 translational apparatus. In eukaryotes, the eukaryotic release factor 1 (eRF1) protein
72 recognises the three standard stop codons in mRNA and triggers translation termination.
73 Studies have shown that mutations in the N-terminus of eRF1 can alter stop codon specificity
74 (Kryuchkova et al. 2013; Lekomtsev et al. 2007; Eliseev et al. 2011; Lozupone et al. 2001).
75 eRF1 specificity to recognise only the UGA codon has evolved independently via different
76 molecular mechanisms at least twice in ciliates with reassigned UAA and UAG codons
77 (Lekomtsev et al. 2007). Acquisition of tRNA genes with anticodons that recognise canonical
78 stop codons (suppressor tRNAs), via mutations, base modifications or RNA editing enables
79 translation of canonical stop codons into amino acids (Hanyu et al. 1986; Koonin &
80 Novozhilov 2009).

81 Tandem stop codons are additional stop codons located in the 3'-UTR within a few
82 positions downstream of a gene in the same reading-frame (Liang et al. 2005). They are
83 thought to act as “back-up” stop codons in the event of readthrough, minimising the extent of
84 erroneous protein elongation. For example, in yeast there is a statistical excess of stop codons
85 in the third in-frame codon position downstream of genes with a UAA stop codon (Liang et
86 al. 2005). Tandem stop codons have been shown to be overrepresented in ciliates that only

87 use UGA as a stop codon, compared to eukaryotes that use the canonical genetic code
88 (Fleming & Cavalcanti 2019). The level of overrepresentation is greater in highly expressed
89 genes (Adachi & Cavalcanti 2009). Tandem stop codons are thought to be particularly
90 important in ciliates where, following stop codon reassignment, readthrough events might
91 occur at a higher frequency due to mutations in eRF1 (Adachi & Cavalcanti 2009).

92 Several models have been proposed to describe genetic code changes. Under the
93 “codon capture” model, a codon that is rarely used (e.g., due to GC content) is gradually
94 eliminated from the genome followed by loss of the corresponding unused tRNA (Osawa et
95 al. 1992). Due to random genetic drift the codon could reappear and be captured by a
96 noncognate tRNA charged with a different amino acid, thus changing the genetic code. Such
97 a process would be essentially neutral, not resulting in mistranslated protein products as the
98 codon is eliminated from genes before the change in meaning occurs (Koonin & Novozhilov
99 2009). Alternatively, under the “ambiguous intermediate” model (Schultz & Yarus 1994),
100 reassignment of a codon takes place via an intermediate stage, where a codon is ambiguously
101 translated via competing tRNAs charged with different amino acids, or in the context of stop
102 codon reassignment, a suppressor tRNA competing with a release factor. This process would
103 be driven by selection and result in the elimination of the cognate tRNA if the new meaning
104 is advantageous. The “genome streamlining” model is more relevant to small genomes (e.g.,
105 organellar genomes or parasites) where there is pressure to minimise translational machinery
106 (Andersson & Kurland 1995). More recently the “tRNA loss driven codon reassignment”
107 mechanism was proposed to describe codon reassessments whereby tRNA loss, or alteration
108 of release factor specificity, results in an unassigned codon that can be captured by another
109 tRNA gene (Mühlhausen et al. 2016; Kollmar & Mühlhausen 2017).

110 In virtually all genetic code changes reported to date, the codons UAA and UAG have
111 the same meaning, i.e., they are either both used as canonical stop codons or are both

112 reassigned to the same amino acid (Kollmar & Mühlhausen 2017). This suggests that
113 evolutionary or mechanistic constraints couple the meaning of these two codons (Pánek et al.
114 2017). One such constraint is wobble binding of a suppressor tRNA gene with a UUA
115 anticodon, where uracil in the first anticodon position can bind to either adenine or guanine in
116 the third codon position of mRNA (Crick 1966). Thus, acquiring a suppressor tRNA gene
117 with a UUA anticodon could potentially change the meaning of both the UAA and UAG
118 codons. Wobble binding has been experimentally demonstrated in *Tetrahymena thermophila*,
119 where tRNA-Sup(UUA) was shown to suppress both the UAA and UAG codons, whereas
120 tRNA-Sup(CUA) suppressed only the UAG codon (Hanyu et al. 1986). The first report of
121 nuclear genetic code variants where UAA and UAG have different meanings were reported in
122 transcriptomics analyses where a Rhizarian species (Rhizaria sp. exLh) was shown to use
123 UAG to encode leucine and in a Fornicate (*Iotanema spirale*) where UAG has been
124 reassigned to glutamine (Pánek et al. 2017). However, in both cases, the UAA codon was
125 retained as a stop codon, thus avoiding the problem of genetic code ambiguity due to wobble
126 binding.

127 Here, we report the discovery of a novel variant of the genetic code in a ciliate
128 belonging to the Oligohymenophorea class, where the meaning of the UAA and UAG codons
129 have changed to specify different amino acids. Using G&T-Seq (Macaulay et al. 2015), we
130 performed parallel genome and transcriptome sequencing of small pools of ciliate cells.
131 Combining genome and transcriptome sequencing data from multiple independently
132 amplified samples enabled co-assembly of a highly complete macronuclear genome assembly
133 and annotation. Genomic and transcriptomic analysis revealed that the UAA codon has been
134 reassigned to specify lysine, while the meaning of the UAG codon has changed to specify
135 glutamic acid. We identified multiple suppressor tRNA genes of both types in the genome,
136 supporting the genetic code changes. We show that UGA codons are significantly enriched in

137 the 3'-UTR of genes suggesting that there is selective pressure to maintain tandem stop
138 codons, which may play a role in minimising erroneous protein elongation in the event of
139 translational readthrough. To our knowledge, this is the first report of a genetic code variant
140 where UAA and UAG specify different amino acids.

141 **Results & Discussion**

142 **Genome Assembly of an Oligohymenophorean Ciliate**

143 We isolated a ciliate species Oligohymenophorea sp. PL0344 from a freshwater pond
144 at Oxford University Parks, Oxford, UK. Attempts to establish a stable long-term culture
145 were unsuccessful so we applied low input single-cell based approaches to generate genomic
146 and transcriptomic data. Small pools of cells (5 – 50 cells) were sorted into a microplate
147 using fluorescence-activated cell sorting (FACS). Parallel genome and transcriptome
148 sequencing was performed using G&T-Seq, which relies on whole genome amplification
149 using multiple displacement amplification (MDA) and transcriptome analysis using a
150 modified Smart-seq2 protocol (Macaulay et al. 2015).

151 A *de novo* genome assembly was generated by co-assembling reads from 10 samples
152 (totalling approximately 6 Gb). Following removal of contaminant sequences, the resulting
153 macronuclear genome assembly was 69.8 Mb in length, contained in 3671 scaffolds with an
154 N50 of 59.6 Kb (**Table 1**). Approximately 89% of the corresponding RNA-Seq reads mapped
155 to the genome assembly, indicating high completeness. GC content of the genome is low at
156 30.58% (**Table 1**), which is similar to previously sequenced ciliate genomes (Slabodnick et
157 al. 2017). The mitochondrial genome was also recovered which is a linear molecule 35,635
158 bp in length with GC content of 25.33% and capped with repeats. The mitochondrial genome
159 contains the small subunit (SSU) and large subunit (LSU) ribosomal RNA (rRNA) genes, 5
160 tRNA genes, 19 known protein-coding genes, and 13 open reading frames.

161 The nuclear encoded SSU rRNA gene sequence is 99.81% identical to an
162 environmental sequence ([AY821923](#)) in the GenBank database, isolated from Orsay, France
163 (Šlapeta et al. 2005). Maximum-likelihood phylogenetic analysis of the SSU rRNA gene
164 placed it within a clade containing four unnamed ciliate species ([AY821923](#), [HQ219368](#),
165 [LR025746](#), [HQ219418](#)) and *Cinetochilum margaritaceum* ([MW405094](#)) with 100%

166 bootstrap support (**Supplementary Figure 1**). Thus, based on the SSU rRNA gene, *C.*
167 *margaritaceum* is the closest related named species. The SSU rRNA gene of *C.*
168 *margaritaceum* is 96.03% identical to that of Oligohymenophorea sp. PL0344. *C.*
169 *margaritaceum* belongs to the Loxocephalida order (Class Oligohymenophorea; Subclass
170 Scuticociliatia), which is considered a controversial order due to its non-monophyly
171 (Poláková et al. 2021; Gao et al. 2013). Our phylogenetic analysis places *C. margaritaceum*
172 as a divergent branch relative to other members of Loxocephalida (**Supplementary Figure**
173 **1**), which is congruent with previous analyses (Poláková et al. 2021; Gao et al. 2013),
174 suggesting taxonomic revision is required.

175

176 **Oligohymenophorea sp. PL0344 Uses a Novel Genetic Code**

177 Preliminary analysis of the genome sequence revealed that many coding regions
178 contained in-frame UAA and UAG codons. Consistent with codon reassessments in other
179 ciliate species, this suggested that the UAA and UAG stop codons have been reassigned to
180 code for amino acids. Surprisingly however, the meanings of these codons do not match any
181 known genetic code. An example gene (tubulin gamma chain protein), showing six in-frame
182 UAA codons and six in-frame UAG codons, translated and aligned to orthologous protein
183 sequences with representatives from across Eukaryota is displayed in **Figure 1**. Five in-frame
184 UAA codons correspond to highly conserved columns in the alignment where lysine is the
185 consensus amino acid (**Figure 1**). Four in-frame UAG codons correspond to highly
186 conserved columns in the alignment where glutamic acid is the consensus amino acid, and
187 another corresponds to a column with a mix of glutamic acid and aspartic acid (**Figure 1**).

188 We used two complementary tools to analyse the genetic code further. First, we used
189 the “genetic_code_examiner” utility from the PhyloFisher package (Tice et al. 2021), which
190 predicts the genetic code by comparing codon positions in query sequences to highly

191 conserved (> 70% conservation) positions in amino acid alignments from a database of 240
192 orthologous protein sequences. PhyloFisher identified 58 genes with 87 in-frame UAA
193 codons that correspond to highly conserved amino acid sites. Of these, 74 UAA codons
194 (85%) correspond to highly conserved lysine residues (**Figure 2A**). The second most
195 numerous match was to arginine, another positively charged amino acid, with 9 (10%) hits.
196 PhyloFisher identified 46 genes with 63 in-frame UAG codons that correspond to highly
197 conserved amino acid sites. Of these, 56 UAG codons (89%) correspond to highly conserved
198 glutamic acid residues (**Figure 2B**). The second most numerous match was to aspartic acid,
199 another negatively charged amino acid, with 4 (6%) of hits.

200 We also analysed the genetic code using Codetta (Shulgina & Eddy 2021). Codetta
201 predicts the genetic code by aligning profile hidden Markov models (HMMs) from the Pfam
202 database against a six-frame translation of the query genome assembly. The meaning of each
203 codon is inferred based on emission probabilities of the aligned HMM columns. From the
204 whole genome sequence, 14,633 UAA codons and 10,160 UAG codons had a Pfam position
205 aligned. Based on these alignments, Codetta also predicted that the UAA codon is translated
206 as lysine and UAG translated as glutamic acid, each with a log decoding probability of zero
207 (**Figure 2C**).

208 Thus, these results indicate that Oligohymenophorea sp. PL0344 uses a novel genetic
209 code where UAA is translated as lysine and UAG is translated as glutamic acid. This is the
210 first time this genetic code variant has been reported. Furthermore, according to our
211 knowledge, this is the first report of a genetic code variant where UAA and UAG have been
212 reassigned to specify different amino acids. Genetic code variants were previously reported
213 where UAG was reassigned to specify an amino acid (either leucine or glutamine) but UAA
214 was retained as a stop codon in both cases (Pánek et al. 2017). This is significant as it

215 suggests that the genetic code variant reported herein has overcome mechanistic constraints
216 linking the translation of these two codons.

217 **Suppressor tRNA Genes**

218 tRNA genes were annotated using tRNAscan (Chan et al. 2021), resulting in the
219 annotation of 320 tRNA genes, including 15 that are predicted to be pseudogenes. Amongst
220 the annotated tRNA genes are 23 putative suppressor tRNA genes. These are tRNA genes
221 with anticodons complementary to canonical stop codons (UAA, UAG, or UGA). The
222 annotated suppressor tRNA genes include 12 tRNA-Sup(UUA) genes and 10 tRNA-
223 Sup(CUA) genes. tRNAscan also predicted a single tRNA-Sup(UCA) gene, however this was
224 low scoring and was not predicted by ARAGORN (Laslett 2004), an alternative tool to
225 identify tRNA genes. tRNAscan also predicts the function of tRNAs. Many of the tRNAscan
226 isotype predictions were consistent with the predicted genetic code (i.e., UAA = lysine and
227 UAG = glutamic acid), however several putative tRNA genes had low-scoring or inconsistent
228 isotype predictions. To better characterise the suppressor tRNA genes, we compared their
229 sequences to the non-suppressor tRNA genes. Eight of the twelve predicted tRNA-Sup(UUA)
230 genes were most similar to tRNA-Lys genes with UUU or CUU anticodons (68.49% to
231 80.95% identical) (**Supplementary Table 1**), consistent with the genetic code prediction that
232 UAA has been reassigned to specify lysine. An example tRNA-Sup(UUA) predicted to
233 function as a lysine tRNA is shown in **Figure 3A**. All ten tRNA-Sup(CUA) genes were most
234 similar to tRNA-Glu genes with CUC or UUC anticodons (69.44% to 93.06% identical)
235 (**Supplementary Table 1**), consistent with the genetic code prediction that UAG has been
236 reassigned to specify glutamic acid. An example tRNA-Sup(CUA) predicted to function as a
237 glutamic acid tRNA is shown in **Figure 3B**. We also identified a tRNA gene for
238 selenocysteine, tRNA-SeC(UCA) (**Figure 3C**), suggesting that the UGA codon is used both

239 as a stop codon and to encode selenocysteine. Thus, all 64 codons can specify amino acids as
240 has been reported in other ciliate genomes (Eisen et al. 2006).

241 UAA and UAG codons differ only in the wobble position. According to wobble-
242 binding rules, uracil in the first tRNA anticodon position (“wobble position”) (**Figure 3A**)
243 can bind to either adenine or guanine in the third codon position of mRNA (Crick 1966),
244 allowing tRNA with a UUA anticodon to recognise both UAA and UAG codons. It has been
245 experimentally demonstrated that *T. thermophila* tRNA-Sup(UUA) can recognise both UAA
246 and UAG codons (Hanyu et al. 1986). It has been suggested that wobble binding is a possible
247 explanation as to why UAA and UAG virtually always have the same meaning (Heaphy et al.
248 2016). Considering that Oligohymenophorea sp. PL0344 has tRNA-Sup(UUA) genes for
249 lysine and tRNA-Sup(CUA) genes for glutamic acid, this raises the question: are UAG
250 codons ambiguously translated as both glutamic acid and lysine? If not, how has it overcome
251 the mechanistic and evolutionary constraints that appear to couple the translation of these two
252 codons? Presumably, if wobble binding allows tRNA-Sup(UUA) to recognise the UAG
253 codon, it would be less efficient than tRNA-Sup(CUA) and outcompeted, possibly resulting
254 in some degree of stochastically translated protein products with glutamic acid residues
255 substituted by lysine at UAG codon positions. Attempts to establish a stable culture were
256 unsuccessful, and while we can overcome this problem to generate a genome assembly using
257 low-input sequencing methods designed for single-cell analysis, such low-input approaches
258 are not available for proteomics. Without proteomics data, it is not possible to determine if
259 UAG is ambiguously translated. Furthermore, from suppressor tRNA gene sequences alone,
260 it is not possible to determine if they incorporate modified nucleotides which could alter
261 codon-anticodon binding specificity.

262

263 **Genome Annotation and Codon Usage Analysis**

264 Genome annotation incorporating RNA-Seq data and protein alignments from other
265 ciliates resulted in the annotation of 22,048 transcripts from 20,141 gene models (**Table 1**).
266 BUSCO analysis estimates that the genome annotation is highly complete with 94.7% of
267 BUSCO genes recovered as complete, which compares favourably to other high quality
268 ciliate genomes (**Supplementary Table 2**). The median intron size of 57 bp (**Table 1**) is
269 similar to previously sequenced ciliate genomes, such as *Tetrahymena thermophila* and
270 *Oxytricha trifallax* (Eisen et al. 2006; Swart et al. 2013) but not as short as the extremely
271 short introns (15 – 25 bp) found in *Stentor coeruleus* or *Paramecium tetraurelia* (Slabodnick
272 et al. 2017; Aury et al. 2006). Lysine, leucine, and glutamic acid are the three most used
273 amino acids at 10.67%, 9.06% and 8.62%, respectively (**Supplementary Table 3**). Codon
274 usage is biased towards using codons with lower GC content. This bias is reduced in highly
275 expressed genes which have higher GC content compared to all genes (38.51% versus
276 34.12%), similar to previous reports in *Paramecium* and *Tetrahymena* (Eisen et al. 2006;
277 Salim et al. 2008). The reassigned UAA and UAG codons are the 7th and 13th most used
278 codons at 3.25% and 2.10% respectively. Their usage is reduced in highly expressed genes to
279 1.87% (21st most used) and 0.98% (40th most used) respectively. Among lysine codons
280 (UAA, AAA, and AAG), UAA usage is 30.42% across all genes, but reduced to 20.49% in
281 highly expressed genes. For glutamic acid codons (UAG, GAA, and GAG), codon usage of
282 UAG is 24.41% across all genes but is also reduced in highly expressed genes to 13.21%.
283 98.6% of genes have at least one UAA codon, which is reduced to 89.1% for highly
284 expressed genes. For UAG, 96.4% of genes have at least one UAG codon compared to just
285 75.2% of highly expressed genes. Reduced codon usage in highly expressed genes could
286 indicate translational inefficiency, or that selective pressure to retain canonical lysine and
287 glutamic acid codons is higher in highly expressed genes.

288 We analysed tandem stop codons by counting UGA codons in the first 20 in-frame
289 codon positions downstream of genes. Our results show that UGA codons are significantly
290 overrepresented (chi-squared test, p-value < 0.05) in the first four in-frame codons
291 downstream of genes (**Figure 4**). 12.3% of genes have at least one UGA codon within the
292 first six in-frame codon positions downstream of genes, similar to the proportion reported for
293 *T. thermophila* (11.5%) where UAA and UAG have also been reassigned to encode amino
294 acids (Fleming & Cavalcanti 2019). For comparison, the reassigned UAA and UAG codons
295 are not overrepresented in this region. The frequency of UGA codons at these positions is
296 greater for highly expressed genes whereby 13.6% of highly expressed genes have at least
297 one UGA codon within the first six in-frame codon positions downstream of genes (**Figure**
298 **4**). These data add support that there is selective pressure for ciliates with reassigned UAA
299 and UAG codons to maintain tandem UGA stop codons at the beginning of the 3'-UTR. It is
300 tempting to speculate that these additional UGA stop codons play a role in minimising
301 deleterious consequences of readthrough events.

302

303 **Phylogenomics Analysis of Genetic Code Changes in the Ciliophora**

304 We carried out phylogenomics analyses to map genetic code changes onto the ciliate
305 phylogeny. A phylogenomic dataset consisting of genomic and transcriptomic data from 46
306 ciliate species and 9 outgroup species was constructed (**Supplementary Table 2**).
307 Phylogenomic reconstruction was performed on a concatenated alignment of 89 single-copy
308 BUSCO proteins (40,289 amino acid sites) using maximum-likelihood (IQ-TREE under
309 LG+F+I+R7 model) and Bayesian (PhyloBayes-MPI under CAT-GTR model) approaches.
310 We also conducted a partitioned analysis on the same dataset using IQ-TREE, with a
311 partitioning scheme which merged the 89 proteins into 14 partitions. The three resulting
312 phylogenies were largely in agreement with each other and with previously published

313 analyses, with full or high support from all three methods at most branches (**Figure 5**).
314 Oligohymenophorea sp. PL0344 was robustly placed within the Oligohymenophorea class in
315 a clade containing Hymenostomatida and *Pseudocohnilembus persalinus* with full support
316 from all three methods (**Figure 5**).

317 The position of *Paramecium* (order Peniculida) is unstable in our phylogenomic
318 analyses. Both the LG+F+I+R7 and partitioned phylogeny group *Paramecium* as sister to the
319 Peritrichia clade with 89% and 82% bootstrap support respectively (**Figure 5**). This is
320 congruent with some previous phylogenomic analyses which recover Peniculida as sister to
321 Peritrichia species (Feng et al. 2015; Jiang et al. 2019; Gentekaki et al. 2017). However, the
322 Bayesian phylogeny places *Paramecium* as sister to Hymenostomatida and Philasterida
323 (**Supplementary Figure 2**). This grouping has been recovered in some previous
324 phylogenomic analyses (Wang et al. 2021; Rotterová et al. 2020). The correct placement of
325 Peniculida is unclear based on the current datasets available. The *Paramecium* species
326 included in our analysis have a high proportion of missing data (**Figure 5**). We anticipate that
327 differences in topology may be influenced by varying levels of sensitivity to missing data in
328 the models used. *Mesodinium rubrum* is another problematic taxon which is thought to be
329 prone to long branch attraction (LBA) artefacts. Furthermore, existing *Mesodinium*
330 transcriptomes are contaminated with sequences from their prey (Lasek-Nesselquist &
331 Johnson 2019). Some previous phylogenomic and phylogenetic analyses place it as an early
332 branching ciliate (Lynn & Kolisko 2017; Chen et al. 2015), however these may have been
333 influenced by contamination (Lasek-Nesselquist & Johnson 2019). Here, we account for
334 contamination by removing any sequences from the *M. rubrum* transcriptome with best
335 BLAST hits outside of the Ciliophora (n = 3,574). Both the LG+F+I+R7 and partitioned
336 phylogeny group *M. rubrum* with *Litonotus pictus*, another member of the Litostomatea class,
337 with 85% and 93% bootstrap support respectively (**Figure 5**), while our Bayesian analysis

338 places it as a deep branching ciliate branching before *Protocruzia* (**Supplementary Figure**
339 **2B**). The grouping of *M. rubrum* with *L. pictus* agrees with a recent phylogenomics analysis
340 of *Mesodinium* species that accounts for LBA and contamination (Lasek-Nesselquist &
341 Johnson 2019).

342 Where genome or transcriptome assemblies were available, or raw sequencing reads
343 deposited in public databases, we validated the known genetic codes using Codetta and
344 PhyloFisher. All species had the expected genetic code except for *Plagiopyla frontata*.
345 Codetta and PhyloFisher both predicted that UAA and UAG are translated as glutamine in *P.*
346 *frontata*, which is not surprising given how many ciliate species use this genetic code (**Figure**
347 **5**). Interestingly however, both methods predict that UGA has also been reassigned to specify
348 tryptophan in *P. frontata*. From the PhyloFisher dataset of 240 query proteins, 3 (1.25%)
349 contain internal UGA codons that correspond to highly conserved tryptophan residues in
350 other species (**Supplementary Figure 3**). This suggests that *P. frontata* may use UGA both
351 as a stop codon and also rarely as a sense codon to specify tryptophan, similar to the
352 *Condylostoma* genetic code (**Figure 5**) (Swart et al. 2016; Heaphy et al. 2016).

353 We mapped genetic code reassessments onto the ciliate phylogeny, highlighting the
354 remarkable number of independent genetic code changes within the ciliates (**Figure 5**). Based
355 on our phylogeny, and assuming a non-canonical genetic code doesn't revert to the canonical
356 genetic code, the translation of UAR (UAA and UAG) codons to glutamine is the most
357 common genetic code variant and has independently evolved at least five times. From our
358 analysis, translation of UGA to tryptophan has independently evolved at least three times in
359 ciliate nuclear genomes. However, it has recently been reported that Karyorelict ciliates (not
360 included in this analysis) use a context-dependent genetic code similar to *Condylostoma*,
361 where UAR has been reassigned to glutamine and UGA specifies either tryptophan or stop
362 depending on context, indicating a fourth independent origin of UGA being translated as

363 tryptophan and a sixth independent origin of UAR being translated to glutamine in ciliates
364 (Seah et al. 2022). The translation of UGA to cysteine in *Euplates*, UAR to tyrosine in
365 *Mesodinium* and UAR to glutamic acid in Peritrichia have all evolved once. The
366 Oligohymenophorea sp. PL0344 genetic code appears to be a relatively recent phenomenon
367 and is unique in that the two codons have different meanings. The Oligohymenophorea class
368 contains at least three different genetic code variants, and no sampled species which have
369 retained usage of UAA or UAG as a stop codon. Our phylogeny suggests that the stop codons
370 UAA and UAG were reassigned to glutamine in the ancestor of Oligohymenophorea (**Figure**
371 **5**). These codons were then reassigned to glutamic acid in the Peritrichs, or to lysine (UAA)
372 and glutamic acid (UAG) in Oligohymenophorea sp. PL0344.

373 It remains unclear why Ciliate genomes are such a hotspot for stop codon
374 reassessments. Our study shows that even within the Oligohymenophorea class, which is
375 relatively well sampled compared to other ciliate clades, there remain novel genetic code
376 reassessments to be discovered. Further sequencing of under-sampled ciliate lineages and
377 other microbial eukaryotes may reveal more variant genetic code changes and help to better
378 understand the evolution and mechanisms of genetic code changes.

379 **Materials and methods**

380 **Sampling, Ciliate isolation, Culturing, and Cell-sorting**

381 Surface water was collected from a margin of an artificial freshwater pond at Oxford
382 University Parks (51°45'51.0"N 1°15'04.5"W), Oxford (UK) by directly submerging a 1L-
383 autoclaved glass collection bottle. 200 mL of the water sample were concentrated using a 5-
384 μ m filter into a final volume of 20 mL. Oligohymenophorea sp. PL0344 was identified using
385 an inverted microscope (Olympus CKX41) and single cells were isolated manually using a
386 glass micropipette by transferring them into successive drops of 0.2 μ m pre-filtered and
387 autoclaved environmental source water. When cells were free of any other contaminant, they
388 were transferred into a 96 well-plate containing filtered and autoclaved environmental source
389 water. In order to obtain a clonal culture, isolated cells were incubated during a week at 20°C
390 with a 12h:12h light:dark photo-cycle with a photon flux of 32 μ moles \cdot m $^{-2}$ \cdot s $^{-1}$. When ciliate
391 cells divided and a dense culture was observed in the well, the mini-culture was scaled-up
392 during a month by successively transferring the cells into larger volumes until a non-axenic
393 dense ciliate culture of 20 mL of volume was established. Pools of ciliate cells (5 – 50 cells)
394 were then sorted into a 384-well plate containing 5 μ L of autoclaved source water using
395 FACS (BD FACSMelodyTM Cell Sorter, BD Biosciences). 10uL of RLT+ lysis buffer
396 (Qiagen) was then added to each well and the plate was sealed and centrifuged (2000xg, 4°C,
397 1min) to remove bubbles and to ensure that the lysis buffer was at the bottom of each well.
398 The sorted plate was stored at -80°C until processed.

399

400 **G&T-Seq, Library Preparation, and Sequencing**

401 Using a magnetic separator, DynabeadsTM MyOneTM Streptavidin C1 (Invitrogen) beads were
402 washed according to the manufacturer's guidance and then incubated with 2 \times Binding
403 & Wash buffer (10mM Tris-HCl pH7.5, 1mM EDTA, 2M NaCl) and Biotynilated Oligo-dT

404 primer (IDT, 5’-/BiotinTEG/AAG CAG TGG TAT CAA CGC AGA GTA CTT TTT TTT
405 TTT TTT TTT TTT TTT TTT TVN-3’) at 100μM for 30 minutes at room temperature
406 on a rotator. The oligo-treated beads were washed four times in 1 × Binding & Wash buffer
407 (5mM Tris-HCl pH7.5, 0.5mM EDTA, 1M NaCl) and then suspended in 1 × SuperScript II
408 First Strand Buffer (Invitrogen) supplemented with SUPERase•In™ RNase Inhibitor
409 (Invitrogen) to a final concentration of 1U/μl. The lysate was thawed on ice. 10μl of prepared
410 oligo-dT beads was added to each well containing 12μl cell lysate. The lysate plate was
411 sealed and incubated on a ThermoMixer C (Eppendorf) at 21°C for 20 minutes shaking at
412 1000rpm. Using a Fluent 480 liquid handling robot (Tecan) and a Magnum FLX magnetic
413 separator (Alpaqua), the lysate supernatant was transferred to a new plate and the beads were
414 washed twice in a custom wash buffer (50mM Tris-HCl pH8.3, 75mM KCl, 3mM MgCl2,
415 10mM DTT, 0.5% Tween-20). The supernatant from the washes was added to the left-over
416 cell lysate - containing the genomic DNA - which was stored at -20°C overnight. The washed
417 beads were suspended in a reverse transcription mastermix of 1mM dNTPs, 0.01M MgCl2, 1
418 × SuperScript II First Strand Buffer, 1M Betaine, 5.4M DTT, 1μM Template-Switching
419 Oligo (5'-AAGCAGTGGTATCAACGCAGAGTACrGrG+G-3', where "r" indicates a
420 ribonucleic acid base and "+" indicates a locked nucleic acid base, Qiagen) then incubated
421 using a ThermoMixer C with the following conditions: 42°C for 2 minutes at 200rpm, 42°C
422 for 60 minutes at 1500rpm, 50°C for 30 minutes at 1500rpm, 60°C for 10 minutes at
423 1500rpm. The cDNA was amplified using HiFi Hotstart Ready Mix (KAPA) and IS Primers
424 to a final concentration of 0.1μM (IDT, 5’-AAG CAG TGG TAT CAA AGA GT-3’) with the
425 following thermocycling conditions: 98°C for 3 minutes, then 21 cycles of 98°C for 15
426 seconds, 67°C for 20 seconds, 72°C for 6 minutes and finally 72°C for 5 minutes. The cDNA
427 was then purified using 0.8 × vols Ampure XP (Beckman Coulter) and 80% ethanol on the
428 Fluent 480 liquid handling robot and eluted in 10mM Tris-HCl. The remaining cell lysate

429 was thawed and subjected to a $0.6 \times$ vols Ampure XP clean-up with 80% ethanol. The bead-
430 bound gDNA was isothermally amplified for 3 hours at 30°C then 10 minutes at 65°C using a
431 miniaturised (1/5 vols) Repli-g Single-Cell assay (Qiagen). The amplified gDNA was cleaned
432 up with $0.8 \times$ vols Ampure XP and 80% ethanol, then eluted in 10mM Tris-HCl. The cDNA
433 and gDNA were quantified by fluorescence (Quant iT HS-DNA, Invitrogen) on an Infinite
434 Pro 200 plate reader (Tecan) then normalised to a final concentration of $0.2\text{ng}/\mu\text{l}$ in 10mM
435 Tris-HCl. Dual-indexed sequencing libraries (Nextera XT, Illumina) were prepared using
436 Mosquito and Dragonfly liquid handling instruments (SPT Labtech). The libraries were
437 pooled and cleaned up using $0.8\times$ vols Ampure XP and 80% ethanol. The libraries were
438 eluted in 10mM Tris-HCl and assessed using a Bioanalyzer HS DNA assay (Agilent), HS
439 DNA Qubit assay (Invitrogen) and finally an Illumina Library Quantification Kit assay
440 (KAPA). Sequencing was conducted on a NovaSeq 6000 with a 300 cycle Reagent kit v1.5
441 (Illumina) to produce 150bp paired-end, dual-indexed reads.

442

443 **Genome Assembly**

444 Adapter and quality trimming were carried out using BBduk (<https://jgi.doe.gov/data-and-tools/bbtools>). Reads which mapped to a database of common lab contaminants (human
445 and mouse) were removed using BBMap. A co-assembly of genomic DNA reads from 10
446 samples was generated using SPAdes (v3.15.3) (Bankevich et al. 2012) with default settings
447 except -k 21, 33, 55, 77 and single-cell mode (--sc) was enabled. Contaminant contigs were
448 removed using a combination of metagenomic binning with MetaBAT2 (Kang et al. 2019)
449 based on tetra-nucleotide frequencies and taxonomic classification with CAT (v5.2) (Von
450 Meijenfeldt et al. 2019) and Tiara (v1.0.1) (Karlicki et al. 2022). Assembly statistics were
451 calculated using Quast (Gurevich et al. 2013). Genome completeness was assessed using
452 BUSCO (v4.1.2) (Manni et al. 2021) with the Alveolata_obd10 dataset.

454 **Genome Annotation**

455 The genetic code was predicted using Codetta (v2.0) (Shulgina & Eddy 2021) and
456 also using the “Genetic Code Examiner” utility from the PhyloFisher package, with the
457 included database of 240 orthologs (Tice et al. 2021).

458 Gene models were annotated via the Robust and Extendable eukaryotic Annotation
459 Toolkit (REAT, <https://github.com/EI-CoreBioinformatics/reat>) and Minos
460 (<https://github.com/EI-CoreBioinformatics/minos>) using a workflow incorporating repeat
461 identification, RNA-Seq mapping / assembly, alignment of protein sequences from related
462 species and evidence guided gene prediction with AUGUSTUS (Stanke et al., 2006).

463 A de novo repeat annotation was created using the RepeatModeler (Hubley et al.
464 2008) v1.0.11 -RepeatMasker v4.07 (Hubley et al. 2008) pipeline with defaults settings and
465 the --gff output option enabled. To ensure high copy number ‘bonafide’ genes were excluded
466 from repeat masking, the RepeatModeler library was hard masked using protein coding genes
467 from 11 ciliate species (detailed below). The protein coding genes were first filtered to
468 remove any genes with descriptions indicating "transposon" or "helicase". TransposonPSI
469 (r08222010) <http://transposonpsi.sourceforge.net> was then run to remove any transposon hits
470 by hard-masking them and using the filtered gene set to mask the RepeatModeler library.
471 RepeatMasker v4.0.7 was run with the Repbase Alveolata library
472 (RepBaseRepeatMaskerEdition-20170127.tar.gz) and additionally with the filtered
473 RepeatModeler library. The interspersed repeats were combined and used as evidence in the
474 gene build.

475 The REAT transcriptome workflow was run with RNA-Seq (total 77 million read
476 pairs) from 28 samples. As transcriptome assembly is sensitive to depth of RNA-Seq
477 coverage samples were combined into sets of 28, 10, 10 and 8 samples to ensure reasonable
478 coverage but also allow alternative assemblies to be created. Illumina RNA-seq reads were

479 mapped to the genome with HISAT2 v2.2.1 (Kim et al., 2019) and high-confidence splice
480 junctions identified by Portcullis (Mapleson et al., 2018). The aligned reads were assembled
481 for each set of samples with StringTie2 v2.1.5 (Kovaka et al., 2019) and Scallop v0.10.5
482 (Shao and Kingsford, 2017). From the combined set of RNA-Seq assemblies a filtered set of
483 non-redundant gene-models were derived using Mikado (Venturini et al., 2018). The REAT
484 homology workflow was used to generate gene models based on alignment of proteins from
485 11 ciliate species (**Supplementary Table 2**). These together with the transcriptome derived
486 models were used to train the AUGUSTUS v3.4.0 gene predictor, with transcript and protein
487 alignments plus repeat annotation provided as hints in evidence guided gene prediction using
488 the REAT prediction workflow. Six alternative AUGUSTUS gene builds were generated
489 using different evidence inputs or weightings for the protein, transcriptome and repeat
490 annotation. The Minos pipeline was run to generate a consolidated set of gene models from
491 the transcriptome, homology, projected and AUGUSTUS predictions. The pipeline utilises
492 external metrics to assess how well supported each gene model is by available evidence,
493 based on these and intrinsic characteristics of the gene models a final set of models is
494 selected. For each gene model a confidence and biotype classification were determined based
495 on the type and extent of supporting data.

496 Annotation completeness was assessed using BUSCO (v4.1.2) (Manni et al. 2021)
497 with the Alveolata_obd10 dataset. tRNA genes were annotated using tRNAscan (v2.0.7)
498 (Chan et al. 2021). rRNA genes were annotated using barrnap (v0.9)
499 (<https://github.com/tseemann/barrnap>).

500

501 **Tandem Stop Codon Analysis**

502 To investigate if UGA stop codons are enriched in the 3'-UTR of genes, codon usage
503 of the first 20 in-frame codons downstream of each gene's stop codon was calculated.

504 Expected frequencies were determined by counting codons in all six reading frames in the 60
505 bp region downstream of each gene's stop codon. We also carried out this analysis for highly
506 expressed genes which we defined as the 10% of genes with the highest transcripts per
507 million (TPM) values, calculated using Kallisto (Bray et al. 2016). Statistical significance
508 was assessed using the chi-squared test.

509

510 **Phylogenetic Analysis of SSU rRNA Genes**

511 Small subunit ribosomal RNA sequences from related species were retrieved from
512 GenBank (**Supplementary Figure 1**). Sequences were aligned using MAFFT (v7.490) with
513 the G-INS-I algorithm (Katoh & Standley 2013). Maximum-likelihood phylogenetic analysis
514 was performed using IQ-TREE (v2.2.0) (Minh et al. 2020) under the GTR+F+R5 model,
515 which was the best fit model according to ModelFinder (Kalyaanamoorthy et al. 2017), with
516 100 non-parametric bootstrap replicates.

517

518 **Phylogenomic Analyses**

519 A phylogenomic dataset of 55 species was assembled including previously published
520 ciliate genomes and transcriptomes with outgroup species from the Alveolata, retrieved from
521 databases and published phylogenomics analyses (Irwin et al. 2021; Richter et al. 2022)
522 (**Supplementary Table 2**). *De novo* transcriptome assemblies were generated for two species
523 – *Campanella umbellaria* and *Carchesium polypinum*. RNA-Seq reads were retrieved from
524 the sequence read archive (SRR1768423 and SRR1768437) (Feng et al. 2015).
525 Transcriptome assemblies were generated using Trinity (Grabherr et al. 2011), redundancy
526 was reduced using CD-HIT-EST (Fu et al. 2012) with an identity cut-off of 98% and protein
527 coding transcripts were predicted using Transdecoder (Haas et al. 2013). Coding sequences
528 were translated into amino acids using the correct genetic code (UAR = E). The

529 transcriptome assembly of *Mesodinium rubrum* is contaminated with sequences from its prey.

530 We excluded any *M. rubrum* proteins with a best BLAST hit outside of the Ciliophora to

531 account for this contamination which resulted in the removal of 3,574 (22%) proteins.

532 BUSCO analysis using the Alveolata_obd10 dataset identified 89 proteins that are

533 present and single copy in at least 65% of species, i.e., at least 36 out of 55 species. Each

534 BUSCO family was individually aligned using MAFFT (v7.490) (Katoh & Standley 2013)

535 and then trimmed using trimAl (v1.4) with the “gappyout” parameter (Capella-Gutierrez et al.

536 2009). The trimmed alignments were concatenated together resulting in a supermatrix

537 alignment of 40,289 amino acid sites. Maximum-likelihood phylogenetic reconstruction was

538 performed using IQ-TREE (v2.2.0) (Minh et al. 2020) under the LG+F+I+R7 model, which

539 was the best fitting model according to ModelFinder (Kalyaanamoorthy et al. 2017), and 100

540 non-parametric bootstrap replicates were used to assess branch support. We also conducted a

541 partitioned analysis using IQ-TREE (Chernomor et. al 2016) with a partitioning scheme that

542 merged the 89 proteins into 14 partitions with model selection performed by ModelFinder,

543 with 100 non-parametric bootstrap replicates. Bayesian analyses were also performed on the

544 supermatrix alignment using PhyloBayes-MPI (v1.8c) (Lartillot et al. 2013) under the CAT-

545 GTR model. Constant sites (n = 3,299) were removed. Two independent Markov chain

546 Monte Carlo (MCMC) chains were run for approximately 12,000 generations. Convergence

547 was assessed using bpcomp and tracecomp with a burn-in of 20%.

548 **Acknowledgements**

549 This work was funded by Wellcome though the Darwin Tree of Life Discretionary Award
550 (218328) and supported by the Biotechnology and Biological Sciences Research Council
551 (BBSRC), part of UK Research and Innovation, through the Core Capability Grant
552 BB/CCG1720/1 at the Earlham Institute. Part of this work was delivered via the BBSRC
553 National Capability in Genomics and Single Cell Analysis (BBS/E/T/000PR9816) at Earlham
554 Institute by members of the Genomics Pipelines, Single-Cell and Core Bioinformatics
555 Groups, the authors, note the specific contributions of Tom Barker, Vanda Knitlhofer and
556 Chris Watkins. Additional work was delivered via the BBSRC National Capability in
557 e-Infrastructure (BBS/E/T/000PR9814) at the Earlham Institute by members of the
558 e-Infrastructure group. The authors would like to acknowledge the Scientific Computing
559 group, as well as support for the physical HPC infrastructure and data centre delivered via the
560 NBI Research Computing group. TAR is supported by a Royal Society University Research
561 Fellowship (URF/R/191005).

562

563 **Data Availability**

564 All sequencing data and the genome assembly of Oligohymenophorea sp. PL0344 have been
565 deposited to the European Nucleotide Archive under the study accession PRJEB58266.
566 Additional supporting data have been deposited on Zenodo (10.5281/zenodo.7373057).

567 **Figure Legends**

568 **Figure 1: Genetic code change in Oligohymenophorea sp. PL0344.** Example multiple
569 sequence alignment of a tubulin gamma chain protein and orthologous sequences spanning
570 Eukaryota. The alignment has been trimmed for visualisation purposes to remove poorly
571 conserved regions and highlight internal UAA and UAG codons.

572

573 **Figure 2: Genetic code prediction for Oligohymenophorea sp. PL0344.** PhyloFisher
574 genetic code prediction for the **(A)** UAA and **(B)** UAG codons using the PhyloFisher
575 database of 240 orthologs. Only well conserved (>70%) amino acids are considered. Colours
576 correspond to amino acid properties and match the multiple sequence alignment in Figure 1.
577 **(C)** Codetta genetic code prediction. Log decoding probabilities for the UAA and UAG
578 codons are shown for each of the 20 standard amino acids.

579

580 **Figure 3: Example tRNA Genes.** **(A)** Predicted secondary structure of an example tRNA-
581 Sup(UUA) predicted to function as a lysine tRNA. The wobble position is highlighted.
582 According to wobble-binding rules, uracil at this position can bind to either adenine or
583 guanine in the third codon position of mRNA, allowing the suppressor tRNA to recognise
584 both UAA and UAG stop codons. **(B)** Predicted secondary structure of an example tRNA-
585 Sup(CUA) predicted to function as a glutamic acid tRNA. **(C)** Predicted secondary structure
586 of the tRNA-SeC(UCA) for selenocysteine.

587

588 **Figure 4: Enrichment of tandem stop codons.** The proportion of codon positions occupied
589 by UGA in the 20 in-frame codon positions immediately downstream of all genes and highly
590 expressed genes. Positions where UGA is significantly overrepresented (chi-squared test, p-
591 value < 0.05) are indicated with an asterisk.

592 **Figure 5: Phylogenomic analysis of genetic code changes in the Ciliophora.** Maximum-
593 likelihood phylogeny of 46 ciliate species and 9 outgroup species from the Alveolata, based
594 on a concatenated alignment of 89 BUSCO proteins (40,289 amino acid sites) under the
595 LG+F+I+R7 model using IQ-TREE. The values at branches represent statistical support from
596 100 non-parametric bootstraps with the LG+F+I+R7 model, 100 non-parametric bootstraps
597 from the IQ-TREE partitioned analysis, and Bayesian posterior probabilities determined
598 under the CAT-GTR model in PhyloBayes-MPI. Branches with full support from all three
599 approaches (i.e., 100/100/1) are indicated with solid black circles. Hyphens indicate branches
600 that weren't recovered. Stop codon reassessments are shown (*, STOP; Q, glutamine; W,
601 tryptophan; K, lysine; E, glutamic acid; Y, tyrosine; C, cysteine). The percentage of proteins
602 included in the concatenated alignment is shown in the bar plot, highlighting the amount of
603 missing data per species.

604

605 **Supplementary Figure 1:** Maximum-likelihood phylogeny of small subunit ribosomal RNA
606 genes under the GTR+F+R5 model using IQ-TREE with 100 non-parametric bootstraps.

607

608 **Supplementary Figure 2:** Bayesian phylogenomic analysis of 46 ciliate species and 9
609 outgroup Alveolata species, based on a concatenated alignment of 89 BUSCO proteins under
610 the CAT-GTR model using PhyloBayes-MPI.

611

612 **Supplementary Figure 3:** Example multiple sequence alignments of *Plagiopyla frontata*
613 genes with internal UGA codons identified by PhyloFisher with orthologous sequences
614 spanning Eukaryota. **A)** TM9SF1. **B)** PIK3C3. **C)** CRNL1.

615 **Table Captions**

616 **Table 1:** Genome assembly and annotation statistics

617

618 **Supplementary Table 1:** tRNA genes pairwise identities

619

620 **Supplementary Table 2:** Datasets used for phylogenomics and genome annotation

621

622 **Supplementary Table 3:** Amino acid and codon usage

Table 1. Genome Assembly and Annotation Statistics

Genome Assembly	
Total length	69,783,056 bp
Contigs	3671
N50	59,570 bp
GC content	30.58%
RNA-Seq mapping rate	89%
BUSCO completeness¹	Complete: 84.8% Complete and single copy: 80.1% Complete and duplicated: 4.7% Fragmented: 3.5% Missing: 11.7%
Genome Annotation	
Number of genes	20,141
Number of transcripts	22,084
Number of monoexonic genes	7,080
Exons per transcript	3.76
GC content (CDS)	34.12%
% of genome covered by CDS	63.8%
BUSCO completeness¹	Complete: 94.74% Complete and single copy: 87.72% Complete and duplicated: 7.02% Fragmented: 1.75% Missing: 3.51%

	Median	Mean
CDS size (bp)	1,506	2,014.12
Intron size (bp)	57	80.39
5'UTR size (bp)	65	96.74
3'UTR size (bp)	95	137.61
Intergenic distances	156	574.43

¹BUSCO completeness assessed using V4 with the Alveolata_obd10 dataset

References

Adachi M, Cavalcanti ARO. 2009. Tandem stop codons in ciliates that reassign stop codons. *J. Mol. Evol.* 68:424–431.

Andersson SGE, Kurland CG. 1995. Genomic evolution drives the evolution of the translation system. *Biochem. Cell Biol.* 73:775–787.

Arnaiz O et al. 2012. The Paramecium Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences. *PLoS Genet.* 8:e1002984.

Aury J-M et al. 2006. Global trends of whole-genome duplications revealed by the ciliate *Paramecium tetraurelia*. *Nature*. 444:171–178.

Bankevich A et al. 2012. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. *J. Comput. Biol.* 19:455–477.

Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. *Nat. Biotechnol.* 34:525–527.

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*. 25:1972–1973.

Chan PP, Lin BY, Mak AJ, Lowe TM. 2021. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. *Nucleic Acids Res.* 49:9077–9096.

Chen X et al. 2015. Phylogenomics of non-model ciliates based on transcriptomic analyses. *Protein Cell.* 6:373–385.

Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices. *Syst. Biol.* 65:997–1008.

Crick FHC. 1966. Codon—anticodon pairing: The wobble hypothesis. *J. Mol. Biol.* 19:548–555.

Eisen JA et al. 2006. Macronuclear genome sequence of the ciliate *Tetrahymena thermophila*,

a model eukaryote. *PLoS Biol.* 4:e286.

Eliseev B, Kryuchkova P, Alkalaeva E, Frolova L. 2011. A single amino acid change of translation termination factor eRF1 switches between bipotent and omnipotent stop-codon specificity †. *Nucleic Acids Res.* 39:599–608.

Feng J-M et al. 2015. Phylogenomic analyses reveal subclass Scuticociliatia as the sister group of subclass Hymenostomatia within class Oligohymenophorea. *Mol. Phylogen. Evol.* 90:104–111.

Fleming I, Cavalcanti ARO. 2019. Selection for tandem stop codons in ciliate species with reassigned stop codons Kapler, GM, editor. *PLoS One.* 14:e0225804.

Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. *Bioinformatics.* 28:3150–3152.

Gao F, Katz LA, Song W. 2013. Multigene-based analyses on evolutionary phylogeny of two controversial ciliate orders: Pleuronematida and Loxocephalida (Protista, Ciliophora, Oligohymenophorea). *Mol. Phylogen. Evol.* 68:55–63.

Gentekaki E, Kolisko M, Gong Y, Lynn D. 2017. Phylogenomics solves a long-standing evolutionary puzzle in the ciliate world: The subclass Peritrichia is monophyletic. *Mol. Phylogen. Evol.* 106:1–5.

Grabherr MG et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 29:644–652.

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. *Bioinformatics.* 29:1072–1075.

Haas BJ et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. *Nat. Protoc.* 8:1494–1512.

Hanyu N, Kuchino Y, Nishimura S, Beier H. 1986. Dramatic events in ciliate evolution: alteration of UAA and UAG termination codons to glutamine codons due to anticodon

mutations in two *Tetrahymena* tRNAs Gln. *EMBO J.* 5:1307–1311.

Heaphy SM, Mariotti M, Gladyshev VN, Atkins JF, Baranov P V. 2016. Novel Ciliate Genetic Code Variants Including the Reassignment of All Three Stop Codons to Sense Codons in *Condylostoma magnum*. *Mol. Biol. Evol.* 33:2885–2889.

Hubley, R. & Smit A.F.A. 2008. RepeatModeler at <http://www.repeatmasker.org/RepeatModeler/>

Hubley, R., Green, P. & Smit A.F.A. 2008. RepeatMasker at <http://repeatmasker.org>

Irwin NAT et al. 2021. The Function and Evolution of Motile DNA Replication Systems in Ciliates. *Curr. Biol.* 31:66-76.e6.

Ivanova NN et al. 2014. Stop codon reassessments in the wild. *Science* (80-). 344:909–913.

Jiang C-Q et al. 2019. Insights into the origin and evolution of Peritrichia (Oligohymenophorea, Ciliophora) based on analyses of morphology and phylogenomics. *Mol. Phylogenet. Evol.* 132:25–35.

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods.* 14:587–589.

Kang DD et al. 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. *PeerJ.* 7:e7359.

Karlicki M, Antonowicz S, Karnkowska A. 2022. Tiara: deep learning-based classification system for eukaryotic sequences Birol, I, editor. *Bioinformatics*. 38:344–350.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* 30:772–780.

Keeling PJ. 2016. Genomics: Evolution of the Genetic Code. *Curr. Biol.* 26:R851–R853.

Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nature Biotechnology*, 37(8), 907–915.

Knight RD, Freeland SJ, Landweber LF. 2001. Rewiring the keyboard: evolvability of the genetic code. *Nat. Rev. Genet.* 2:49–58.

Kollmar M, Mühlhausen S. 2017. Nuclear codon reassessments in the genomics era and mechanisms behind their evolution. *BioEssays*. 39:1–12.

Koonin E V., Novozhilov AS. 2009. Origin and evolution of the genetic code: The universal enigma. *IUBMB Life*. 61:99–111.

Kovaka, S., Zimin, A. V., Pertea, G. M., Razaghi, R., Salzberg, S. L., & Pertea, M. 2019. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. *Genome Biology*, 20(1), 1–13.

Kryuchkova P et al. 2013. Two-step model of stop codon recognition by eukaryotic release factor eRF1. *Nucleic Acids Res.* 41:4573–4586.

Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MPI: Phylogenetic Reconstruction with Infinite Mixtures of Profiles in a Parallel Environment. *Syst. Biol.* 62:611–615.

Lasek-Nesselquist E, Johnson MD. 2019. A Phylogenomic Approach to Clarifying the Relationship of Mesodinium within the Ciliophora: A Case Study in the Complexity of Mixed-Species Transcriptome Analyses Zufall, R, editor. *Genome Biol. Evol.* 11:3218–3232.

Laslett D. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. *Nucleic Acids Res.* 32:11–16.

Lekomtsev S et al. 2007. Different modes of stop codon restriction by the Stylonychia and Paramecium eRF1 translation termination factors. *Proc. Natl. Acad. Sci.* 104:10824–10829.

Liang H, Cavalcanti ARO, Landweber LF. 2005. Conservation of tandem stop codons in yeasts. *Genome Biol.* 6:R31.

Lozupone CA, Knight RD, Landweber LF. 2001. The molecular basis of nuclear genetic code change in ciliates. *Curr. Biol.* 11:65–74.

Lynn DH, Kolisko M. 2017. Molecules illuminate morphology: phylogenomics confirms convergent evolution among ‘oligotrichous’ ciliates. *Int. J. Syst. Evol. Microbiol.* 67:3676–3682.

Macaulay IC et al. 2015. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. *Nat. Methods.* 12:519–522.

Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes Kelley, J, editor. *Mol. Biol. Evol.* 38:4647–4654.

Mapleson, D., Venturini, L., Kaithakottil, G., & Swarbreck, D. 2018. Efficient and accurate detection of splice junctions from RNA-seq with Portcullis. *GigaScience*, 7(12).

Von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. 2019. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. *Genome Biol.* 20:217.

Meyer F et al. 1991. UGA is translated as cysteine in pheromone 3 of *Euplotes octocarinatus*. *Proc. Natl. Acad. Sci.* 88:3758–3761.

Minh BQ et al. 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era Teeling, E, editor. *Mol. Biol. Evol.* 37:1530–1534.

Mühlhausen S, Findeisen P, Plessmann U, Urlaub H, Kollmar M. 2016. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes. *Genome Res.* 26:945–955.

Osawa S, Jukes TH, Watanabe K, Muto A. 1992. Recent evidence for evolution of the genetic code. *Microbiol. Rev.* 56:229–264.

Pánek T et al. 2017. Nuclear genetic codes with a different meaning of the UAG and the UAA codon. *BMC Biol.* 15:8.

Parfrey LW, Lahr DJG, Knoll AH, Katz LA. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. *Proc. Natl. Acad. Sci.* 108:13624–13629.

Poláková K, Čepička I, Bourland WA. 2021. Phylogenetic Position of Three Well-known Ciliates from the Controversial Order Loxocephalida Jankowski, 1980 (Scuticociliatia, Oligohymenophorea) and Urozona buetschlii (Schewiakoff, 1889) with Improved Morphological Descriptions. *Protist.* 172:125833.

Prescott DM. 1994. The DNA of ciliated protozoa. *Microbiol. Rev.* 58:233–67.

Richter DJ et al. 2022. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. *bioRxiv.* 2020.06.30.180687.

Rotterová J et al. 2020. Genomics of New Ciliate Lineages Provides Insight into the Evolution of Obligate Anaerobiosis. *Curr. Biol.* 30:2037-2050.e6.

Salim, H., Ring, K. and Cavalcanti, A., 2008. Patterns of Codon Usage in two Ciliates that Reassign the Genetic Code: *Tetrahymena thermophila* and *Paramecium tetraurelia*. *Protist,* 159(2), pp.283-298.

Schultz DW, Yarus M. 1994. Transfer RNA Mutation and the Malleability of the Genetic Code. *J. Mol. Biol.* 235:1377–1380.

Seah B, Singh A, Swart E. 2022. Karyorelict ciliates use an ambiguous genetic code with context-dependent stop/sense codons. *Peer Community Journal 2.*

Shao, M., & Kingsford, C. 2017. Accurate assembly of transcripts through phase-preserving graph decomposition. *Nature Biotechnology,* 35(12), 1167–1169.

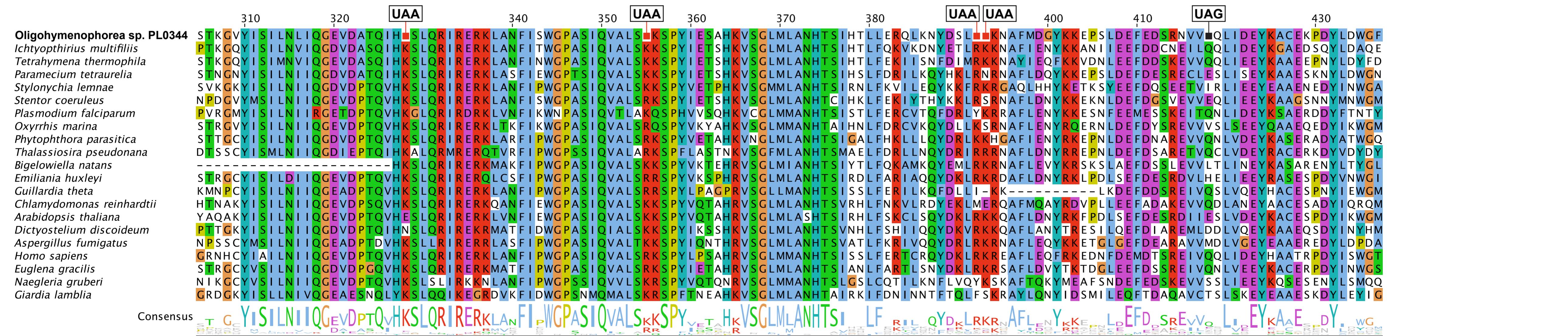
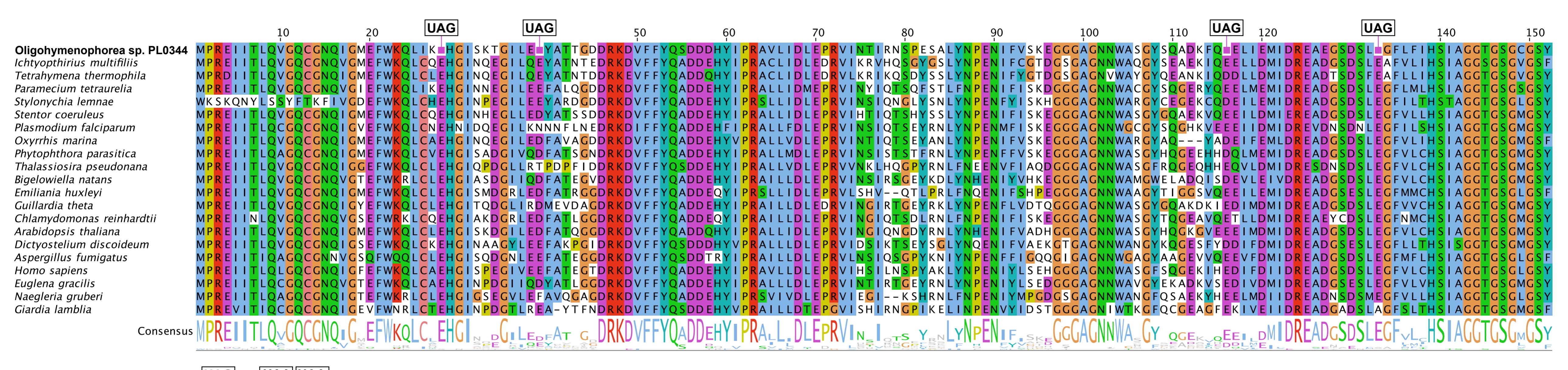
Shulgina Y, Eddy SR. 2021. A computational screen for alternative genetic codes in over 250,000 genomes. *Elife.* 10:1–25.

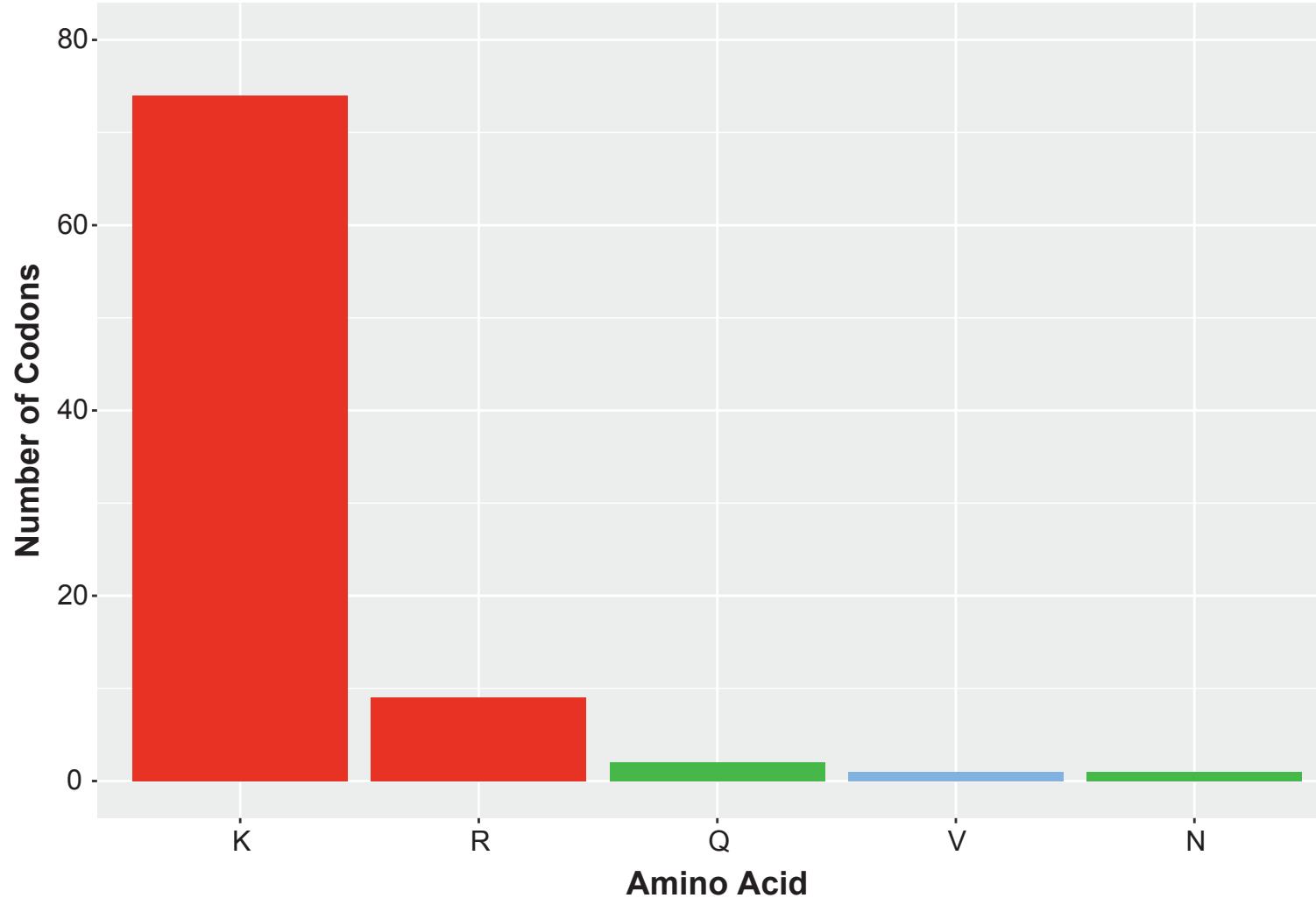
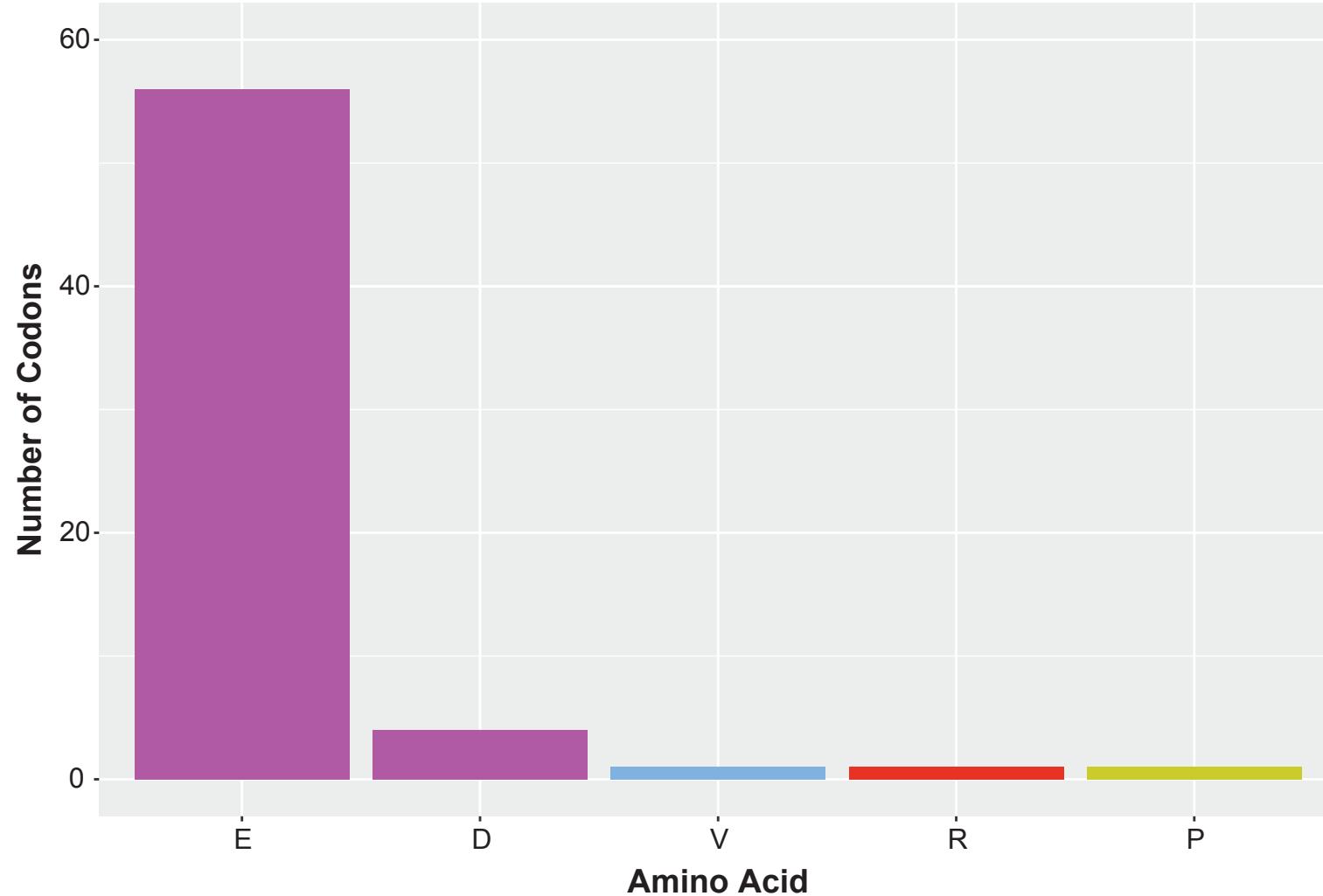
Slabodnick MM et al. 2017. The Macronuclear Genome of *Stentor coeruleus* Reveals Tiny Introns in a Giant Cell. *Curr. Biol.* 27:569–575.

Šlapeta J, Moreira D, López-García P. 2005. The extent of protist diversity: insights from

molecular ecology of freshwater eukaryotes. *Proc. R. Soc. B Biol. Sci.* 272:2073–2081.

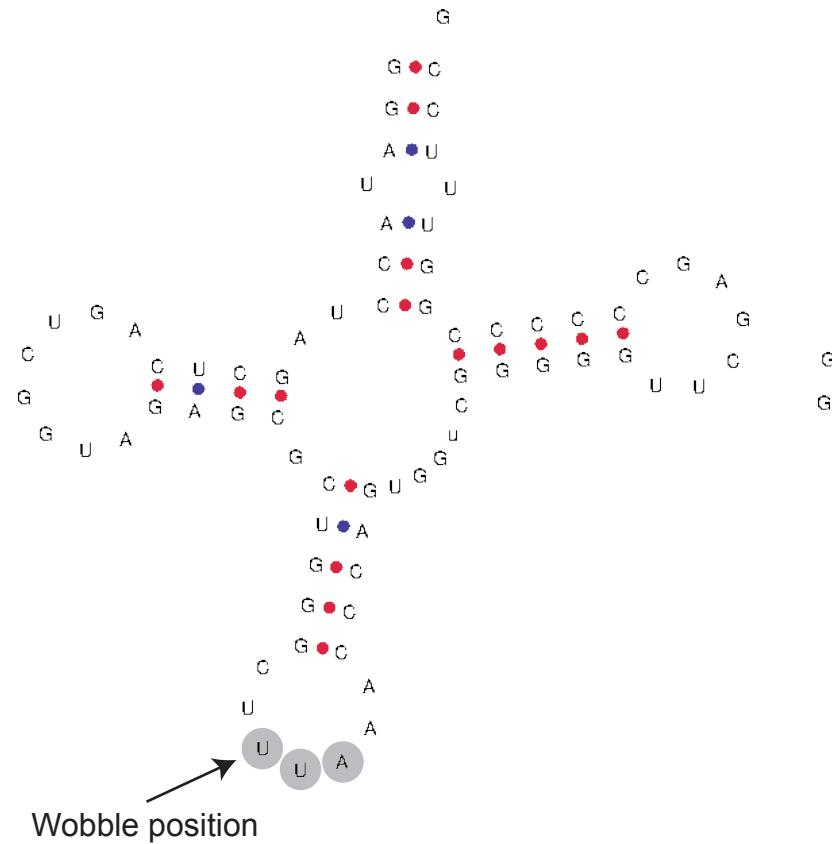
Stanke, M., & Morgenstern, B. 2005. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. *Nucleic Acids Research*, 33(Web Server), W465–W467.

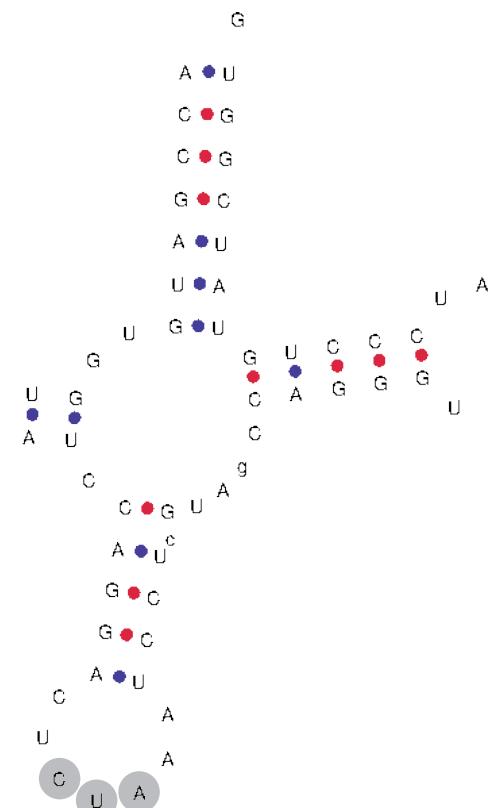


Swart EC et al. 2013. The *Oxytricha trifallax* Macronuclear Genome: A Complex Eukaryotic Genome with 16,000 Tiny Chromosomes Eisen, JA, editor. *PLoS Biol.* 11:e1001473.



Swart EC, Serra V, Petroni G, Nowacki M. 2016. Genetic Codes with No Dedicated Stop Codon: Context-Dependent Translation Termination. *Cell.* 166:691–702.

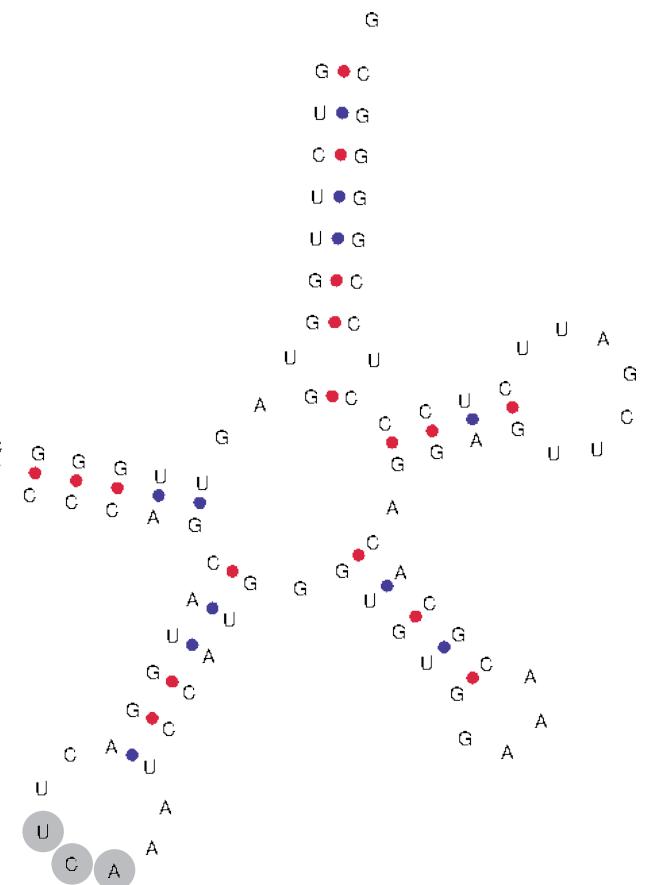
Tice AK et al. 2021. PhyloFisher: A phylogenomic package for resolving eukaryotic relationships Hejnol, A, editor. *PLOS Biol.* 19:e3001365.

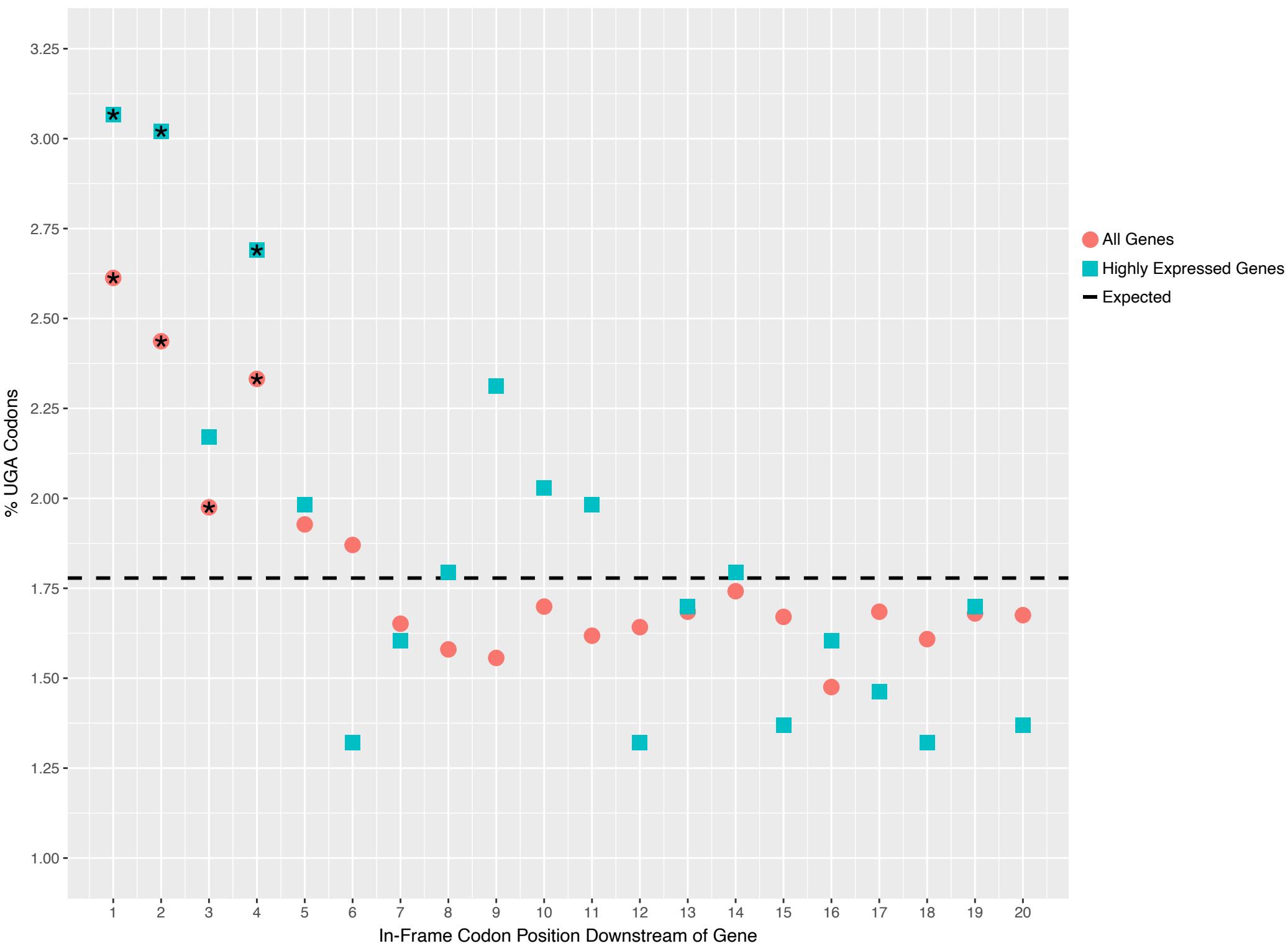
Venturini, L., Caim, S., Kaithakottil, G. G., Mapleson, D. L., & Swarbreck, D. 2018. Leveraging multiple transcriptome assembly methods for improved gene structure annotation. *GigaScience*, 7(8).

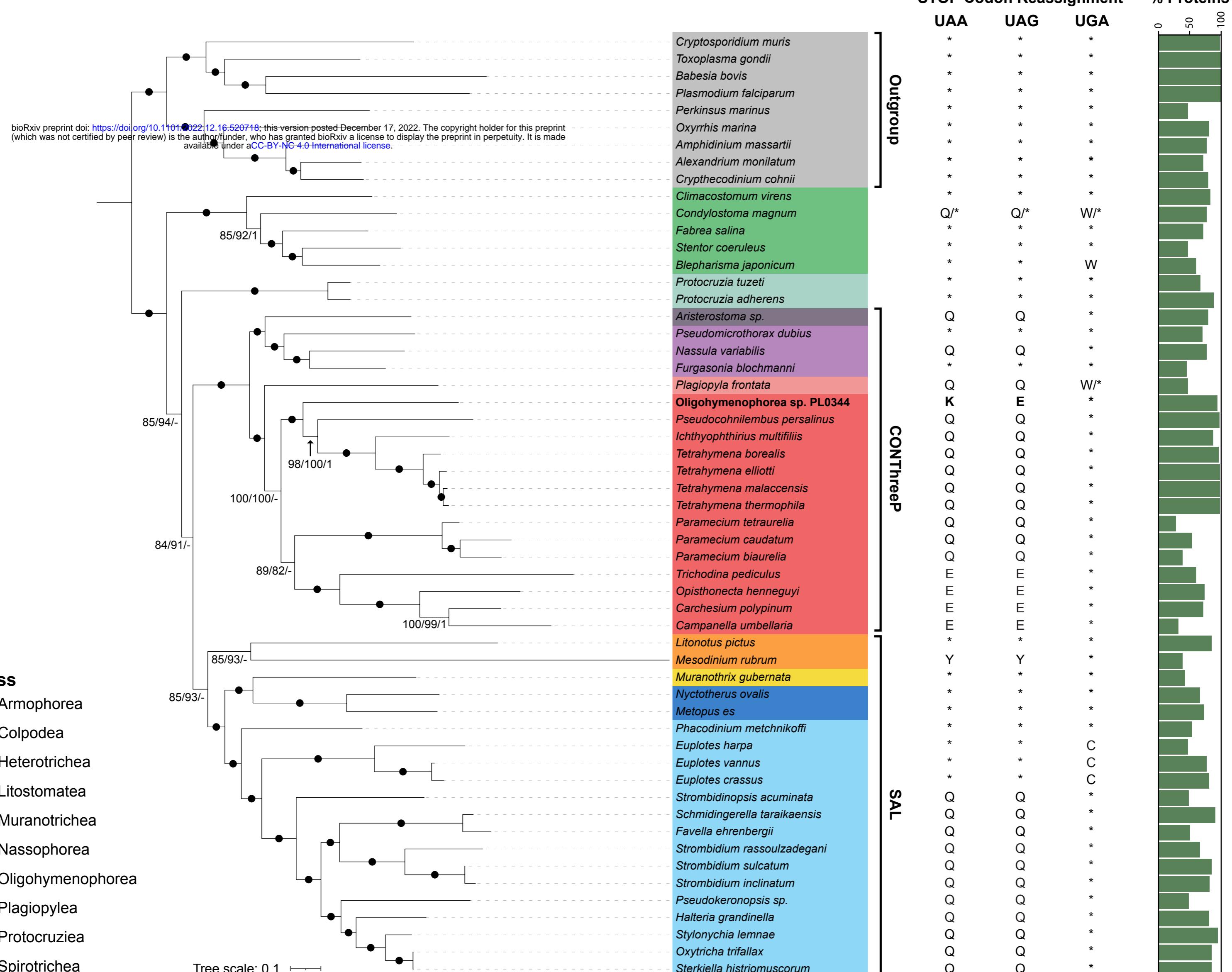

Wang C et al. 2021. Large-scale phylogenomic analysis provides new insights into the phylogeny of the class Oligohymenophorea (Protista, Ciliophora) with establishment of a new subclass Urocentria nov. subcl. *Mol. Phylogen. Evol.* 159:107112.


A.**UAA****B.****UAG****C.****Codetta Log Decoding Probabilities**

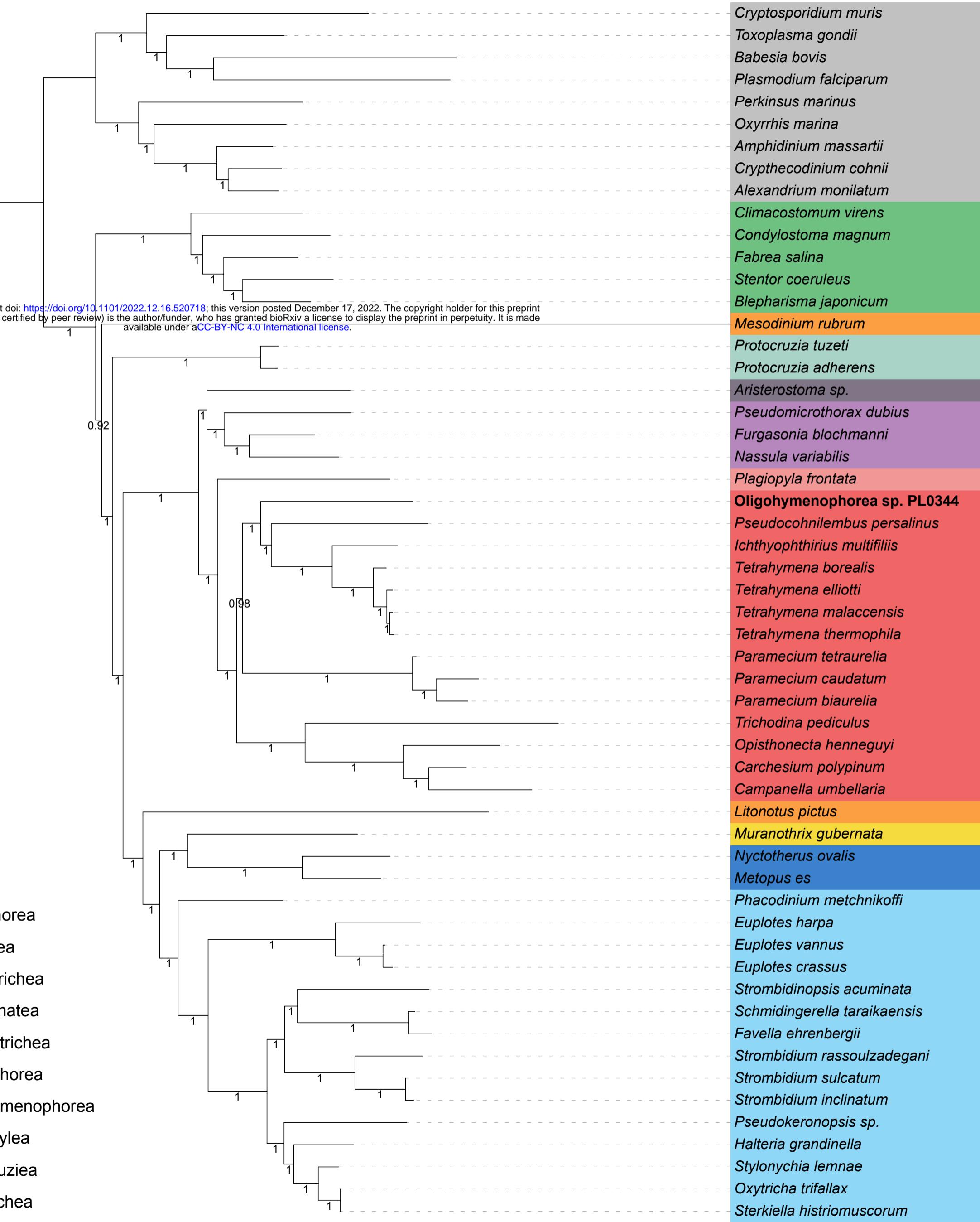
	A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	S	T	V	W	Y	?
UAA	-7247.7	-12835.5	-8178.5	-5787.8	-14432.1	-10288.2	-6864.4	-12385.8	0.0	-10974.3	-10337.2	-6106.2	-11220.1	-4178.8	-3215.4	-6325.0	-6863.7	-10629.3	-15433.8	-11716.0	-3255.1
UAG	-5129.3	-9789.2	-3214.5	0.0	-10447.8	-7064.8	-5266.2	-9348.6	-4089.2	-8450.4	-8002.1	-4528.5	-7525.4	-3136.4	-4933.1	-4482.9	-5141.5	-8054.1	-11143.0	-8505.1	-2540.6


A. tRNA-Sup(UUA)

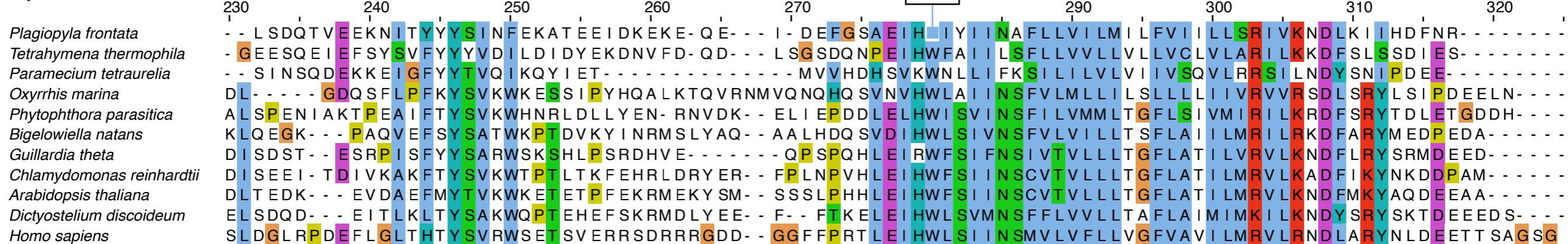



B. tRNA-Sup(CUA)

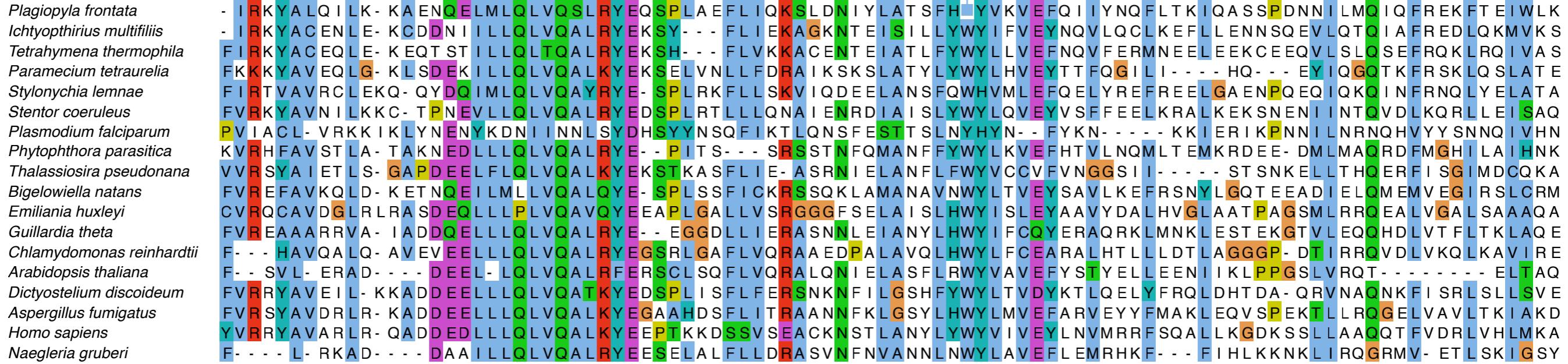
C. tRNA-SeC(UCA)



Tree scale: 0.1


- LC441007 1 *Colpoda cucullus* R2TTYS
- EU264560 1 *Colpodidium caudatum*
- MT253688 1 *Nolandia nolandi* strain CCAP 1613/15
- KC832950 1 *Plagiocampa* sp PHB09022602
- MW405099 1 *Urozona buetschlii* isolate UBBLUFF
- AY102613 1 *Paramecium tetraurelia*
- MT231343 1 *Paramecium bursaria* strain CCAP 1660 23
- MW405094 1 *Cinetochilum margaritaceum* isolate CMAMP
- AY821923 1 Uncultured oligohymenophorid ciliate clone CV1 2A 17
- Oligohymenophorea sp. PL0344**
- HQ219368 1 Uncultured ciliate clone AY2009A9
- LR025746 1 uncultured ciliate
- HQ219418 1 Uncultured ciliate clone AY2009B17
- AY212805 1 *Dexiotrichides pangii*
- AF255357 1 *Urocentrum turbo*
- EF114299 1 *Urocentrum turbo* clone 1
- EF114300 1 *Urocentrum turbo* clone 2
- AF401524 1 *Campanella umbellaria*
- KJ690565 1 *Ichthyophthirius multifiliis* isolate G15/1-1702
- KR778778 1 *Tetrahymena rostrata* clone TR1035
- EF070245 1 *Tetrahymena cosmopolitanis* strain UM913
- X56170 1 *Tetrahymena canadensis*
- X56165 1 *Tetrahymena thermophila*
- MK454743 1 *Haptophrya planariarum* clone RT42/10
- MG819725 1 *Dexiotricha colpidiopsis* strain DEX201707a
- JQ956542 1 *Conchophthirus lamellidens* strain FZ 1
- JQ956543 1 *Conchophthirus cucumis* strain FZ 2
- MN704274 1 *Conchophthirus curtus* isolate CC1
- MN704275 1 *Conchophthirus* sp isolate CM1
- LC466978 1 *Scuticociliatia* sp GW7 2
- LC466984 1 *Scuticociliatia* sp GW7
- JQ956551 1 *Pseudocyclidium longum* strain HN 7
- FJ870103 1 *Cinetochilum ovale* isolate PHB0811304
- FJ876969 1 *Paratetrahymena parawassi* isolate WYG061019
- JX310019 1 *Paratetrahymena wassi* voucher JJM2009121511
- EU744176 1 *Paratetrahymena* sp JJJ
- DQ103858 1 Uncultured marine eukaryote clone M3 18C08
- EF527202 1 Uncultured marine eukaryote clone MA1 2D9
- AY881632 1 *Cardiostomatella vermiciformis*
- MN437529 1 *Platynematum rossellomorai* isolate DEX201608
- KF301567 1 *Platynematum* sp 1 TS 2013
- FJ868188 1 *Sathrophilus holtae* isolate FXP2007102402
- FJ868186 1 *Sathrophilus planus* isolate FXP2008103002 clone 1
- JX310020 1 *Pseudoplatynematum denticulatum* voucher FXP2009042901
- MW405098 1 *Kariphilus muscorum* isolate ZMCOTT
- GQ330628 1 Uncultured Scuticociliatia clone PR2 3E 53
- MW405097 1 *Zitheron hovassei* isolate ZHSMTUB
- HQ446279 1 *Metaradiophrya* sp MCSK 2011
- MN121076 1 *Metaradiophrya varians* isolate BZ 12 EF
- MZ048835 1 *Metaradiophrya chlorotica* isolate JA 2 1M ACH
- MN121071 1 *Metaradiophrya lumbriki* isolate KR 10/1 LT
- HQ446282 1 *Metaracoelophrya* sp 2 MCSK 2011
- MZ048824 1 *Anoplophrya allobophorae* isolate JA 3 37 ACH
- MZ048828 1 *Anoplophrya octolasionis* isolate MU 56 OL
- MN121062 1 *Anoplophrya lumbriki* isolate RZ 6 LT
- KF256816 1 *Cristigera pleuronemoides* isolate FXP2009091801
- FJ868180 1 *Cristigera media* isolate FXP2008103001
- GU479975 1 Uncultured Scuticociliatia clone PR3 4E 59
- KF256822 1 *Protocyclidium sinica* isolate JJM2009113001
- JQ956552 1 *Protophyra ovicola* strain HN 8
- MT649635 1 *Myxophyllum steenstrupi* isolate KR 6 CL
- KY886366 1 *Cyclidium glaucoma* isolate AP4
- MN524102 1 *Cyclidium vorax* isolate PMM 20171026
- KY476313 1 *Cyclidium glaucoma*
- JQ692043 1 Uncultured Scuticociliatia clone 18S 23
- KF256817 1 *Cyclidium varibonneti* isolate JJM2009121504
- JQ956539 1 *Ancistrum crassum* strain HN 2
- JQ956535 1 *Ancistrum mytili* strain HB 1
- JQ956537 1 *Ancistrum crassum* strain HN 4
- JQ956536 1 *Ancistrum japonicum* strain HN 5
- KF256821 1 *Protocyclidium citrullus* isolate JJM2009120301
- MF407350 1 *Boveria labialis* isolate ZZF20170501
- HQ445965 1 *Boveria subcylindrica*
- JX310022 1 *Wilbertia typica* voucher PXM20100628
- JX310021 1 *Eurystomatella sinica* voucher PXM2010102701
- U27816 1 *Cyclidium plouneouri*
- FJ868185 1 *Falcicyclidium fangi* isolate LWW08033003
- JX310012 1 *Hippocomos salinus* voucher FXP2009041402
- FJ868182 1 *Falcicyclidium atractodes* isolate FXP08061106
- JX310017 1 *Pleuronema* sp WS 2012 voucher PHB2009050101
- EF486863 1 *Pleuronema czapikae*
- JX310016 1 *Pleuronema wiackowskii* voucher XY2009113001
- KT033423 1 *Pleuronema parawiackowskii*
- JX310013 1 *Histiobalantium minor* voucher FXP2010042801
- MT886454 1 *Histiobalantium bodamicum* isolate Leo2017050601
- KU665372 1 *Histiobalantium comosa*
- FJ156106 1 *Schizocalyptra sinica* isolate GD 1 WYG2007122002
- EU744177 1 *Schizocalyptra similis*
- EF486864 1 *Pleuronema sinica*
- FJ848874 1 *Pleuronema setigerum* strain PHB08101402
- KF840520 1 *Pleuronema puytoraci* isolate PXM2010122701
- JX310018 1 *Pleuronema coronatum* voucher SZ2007033108
- FJ648350 1 *Philaster apodigitiformis*
- MG581968 1 *Philasterides armata* isolate LMJ2016040602
- FJ848778 1 *Philasterides armata* strain CF2008062601
- JX310019 1 *Philasterides armata* strain G2008062601
- EU831192 1 *Miamensis avidus* strain WD4
- MH574792 1 *Paramesanophrys typica*
- GQ214552 1 *Glauconema trihymene* strain PRA 270
- U51554 1 *Anophyroides haemophila*
- MT982807 1 *Citrithrix smalli* isolate LMJ2016091901
- JQ956547 1 *Myxophyllum magnum* strain QD 3
- EF527121 1 Uncultured marine eukaryote clone SA2 1D1
- KJ760283 1 Uncultured eukaryote clone SGYS698
- JN885085 1 *Mesanophrys carcinii* isolate PXM2010022606
- GU590870 1 *Homalogastra setosa* isolate JI 1
- JQ956549 1 *Paralembus digitiformis* strain QD 4
- MT982808 1 *Homalogastra similis* isolate QZS2017043001
- MG581969 1 *Homalogastra parasetosa* isolate LMJ2016113002
- EF527130 1 Uncultured marine eukaryote clone SA2 1G3
- EF024585 1 *Orchitophryidae* environmental sample clone Elev 18S 904
- EF527130 1 *Homalogastra setosa* isolate GT1 clone 18
- AF527756 1 *Schizocaryum dogielii*
- HM236335 1 *Porpostoma notata* isolate FXP2009050601
- HM030719 1 *Scuticociliatia* sp Acropora/ciliata 2 2/CHN/2009
- FJ648350 1 *Philaster apodigitiformis*
- MG581968 1 *Philasterides armata* isolate LMJ2016040602
- FJ848778 1 *Philasterides armata* strain CF2008062601
- JX310019 1 *Philasterides armata* strain G2008062601
- HM236339 1 *Cohnilembus verminus* isolate FXP2009051101
- FJ858379 1 *Paranophrys marina*
- AY314803 1 *Metanophrys similis*
- AY835669 1 *Pseudocohnilembus persalinus*
- FJ899594 1 *Pseudocohnilembus longisetus*
- MT271860 1 *Pseudocohnilembus* sp isolate U 44
- AY833087 1 *Pseudocohnilembus hargisi*
- HM236338 1 *Parauromema longum*
- AY541685 1 *Plagiopylella pacifica*
- AY541686 1 *Thyrophylax vorax*
- AY541688 1 *Entorhpidium tenuie*
- AY541689 1 *Entorhpidium pilatum*
- AY541690 1 *Entorhpidium triangularis*
- MT271858 1 *Biggaria* sp isolate SK22 24
- JQ956541 1 *Biggaria bermudensis* strain DL 3
- JQ956548 1 *Paranophrys magna* strain KL 1
- KY075872 1 *Metanophrys sinensis* isolate METSIN01
- MT271859 1 *Madseria* sp isolate SK22 23 26
- JQ956550 1 *Madseria indomita* strain HN 6
- KU199245 1 *Uronemella parabinnucleata* isolate LMJ2015080301
- MH574793 1 *Uronemella filiformis*
- HM236337 1 *Uronemella parafiliformis* isolate FXP2009053001
- MK177364 1 Uncultured *Uronema* sp clone DD1259
- JF973324 1 *Uronema nigricans*
- MN524103 1 *Apouronema harbinensis* isolate PMM 20170506
- MF072399 1 *Uronema nigricans* isolate LMJ2016120701
- LN369943 1 *Scuticociliatia* sp al_PN3
- FJ870100 *Uronema heteromarinum*
- AY103190 *Uronema elegans*
- MG581965 1 *Uronema apomarinum* isolate LMJ2016031201
- DQ867074 1 *Uronema marinum* strain JK3
- KC287215 1 *Scuticociliatia* SL 220
- AY541687 1 *Entodiscus borealis*
- FN593313 1 Uncultured *Scuticociliatia*
- JN885087 1 *Parauromema virginianum* isolate PXM2010070302

bioRxiv preprint doi: <https://doi.org/10.1101/2022.12.16.520718>; this version posted December 17, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.



Tree scale: 1

A) TM9SF1

B) PIK3C3

C) CRNL1

