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Abstract1

Many animal species are able to return to their nest after a foraging excursion without using2

familiar visual cues to guide them. They accomplish this by using a navigation competence3

known as path integration, which is vital in environments that do not have prominent visual4

features. To perform path integration, an animal maintains an estimate of the distance and5

direction to its origin as it moves. The distance and direction information needs to be maintained6

in memory for the duration of the trip so that the animal can return to its nest. However, the7

neural substrate of this memory remains unclear. A common hypothesis is that the information8

is maintained in a bump attractor’s state. We test the bump attractor hypothesis and find that9

its predictions do not match behavioural data from ants, thus falsifying the bump attractor10

hypothesis and raising the need for alternative models of path integration memory.11

1 Introduction12

When a foraging ant of the species Cataglyphis fortis, inhabiting the Saharan desert, embarks in13

search of food, it typically follows a circuitous path. However, once it finds a food item, it readily14

returns to its nest, travelling along a straight path, even though there are no visual cues to guide15

its trip (Müller and Wehner, 1988; Collett, 2019; Menzel and Muller, 1996). To do this, the animal16

maintains at all times an estimate of its relative position in respect to its origin, using a naviga-17

tional competence known as ‘path integration’ or ‘dead-reckoning’ (Darwin, 1873; von Frisch, 1967;18

Mittelstaedt and Mittelstaedt, 1980; Müller and Wehner, 1988). This relative position estimate is19

believed to be maintained by continuously updating a vectorial representation pointing to its origin20

as it moves in its environment (Heinze et al., 2018; Collett, 2019). This vectorial representation is21

commonly referred to as a ‘home vector’1 (Collett, 2019).22

To update its home vector, the insect has to have access to two pieces of information at every23

instant in time, its current heading and an estimate of the distance it has travelled along this24

direction. These displacement estimates are accumulated continuously updating the home vector25

(Heinze et al., 2018; Collett, 2019). This procedure is similar to that employed by sea navigators26

in the past who used a magnetic compass to gauge their heading and vector addition to track their27

position on a map.28

Path integration has been described in several species, including desert ants of the genus Cataglyphis,29

the honey bee Apis mellifera, the sweat bee Megalopta genalis, the fruit fly Drosophila melanogaster,30

as well as in rodents (Müller and Wehner, 1988; Collett, 2019; Menzel and Muller, 1996; Heinze and31

Homberg, 2007; Heinze et al., 2013; Stone et al., 2017; Kim and Dickinson, 2017; McNaughton32

et al., 2006). The spatial scale of path integration varies between species. For instance, fruit flies33

1The home vector is a conceptual vector with direction parallel to the line connecting the current animal location
and its nest and length corresponding to the current distance of the animal from its nest.
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(Drosophila melanogaster) employ path integration for returning to a previously visited drop of sugar34

a few centimetres away (Kim and Dickinson, 2017), while other insect species use path integration35

to return to their nest over much larger distances, for instance, hundreds of meters in the case of36

the desert ant Cataglyphis fortis, or several kilometres in the case of the honey bee Apis mellifera37

(Sommer and Wehner, 2004; Cheng et al., 2005; Huber and Knaden, 2015).38

At the end of its excursion, a path integrating animal can return to its nest by travelling in the39

direction and for the distance indicated by its accumulated home vector (Müller and Wehner, 1988;40

Menzel and Muller, 1996; Collett, 2019). To do this, the animal needs to be able to maintain its41

home vector in memory for the duration of its excursion, even if it is interrupted and prohibited from42

returning to its nest for several hours (Ziegler and Wehner, 1997; Cheng et al., 2005). Therefore,43

a memory mechanism that can be updated quickly and maintain its state long enough is required.44

However, the substrate of the employed memory remains unknown.45

Most path integration models leave the memory substrate unspecified, while some authors have46

suggested that the home vector memory might be maintained through reverberating neural activity47

and more specifically, in a bump attractor network (McNaughton et al., 1996; Samsonovich and48

McNaughton, 1997; Conklin and Eliasmith, 2005; McNaughton et al., 2006; Burak and Fiete, 2009;49

Vickerstaff and Di Paolo, 2005; Haferlach et al., 2007; Kim and Lee, 2011; Goldschmidt et al., 2015;50

Webb and Wystrach, 2016; Stone et al., 2017; Goldschmidt et al., 2017).51

Bump attractors are recurrent neural networks that maintain a localised peak of neural activity.52

A bump attractor can be used to encode an agent’s spatial position as the location of the peak of53

neural activity (‘activity bump’) in the network (Fig 1A). If we imagine that the neurons of the bump54

attractor are organised topologically (if not spatially) on a line, the higher the represented spatial55

value, the further along the line the most active neurons will be located (Fig 1A). This constitutes56

a positional encoding of value along a line of neurons.57

In bump attractor networks, the activity bump is maintained through specific synaptic connec-58

tivity with short-range excitation and long-range inhibition (Fig 1B). The location of the activity59

bump can be changed by an external input that breaks the balance between excitation and inhibi-60

tion to move the bump towards a particular direction. With appropriate connectivity, the amount61

of the bump’s movement along the neural network can be proportional to the integral of the input62

stimulus over time (Skaggs et al., 1995). In this case, bump attractor networks can be used as neural63

integrators that encode the integral of the input signal as the location of the activity bump along64

the network.65

Bump attractor networks have been used to model systems that gradually accumulate velocity66

signals, such as angular velocity for tracking the head direction of rodents (Zhang, 1996; Redish67

et al., 1996; Goodridge and Touretzky, 2000; Boucheny et al., 2005) or translational velocity in68

path integration models of rodent place and grid cells to track the spatial position of the animal69

(McNaughton et al., 1996; Samsonovich and McNaughton, 1997; Conklin and Eliasmith, 2005; Burak70

and Fiete, 2009).71

In insects, the computations pertaining to path integration are believed to occur in the cen-72

tral complex, a brain structure conserved among insect species (Heinze et al., 2013; Pfeiffer and73

Homberg, 2013; Seelig and Jayaraman, 2015; Weir and Dickinson, 2015; Heinze, 2015; Turner-Evans74

and Jayaraman, 2016; el Jundi et al., 2018; Franconville et al., 2018). Neurons that encode the75

animal’s heading and speed have been identified in the central complex (Heinze and Homberg, 2007;76

Homberg et al., 2011; Seelig and Jayaraman, 2015; Green et al., 2017; Stone et al., 2017) and its77

characteristic columnar structure and regular projection patterns have been hypothesised to provide78

a plausible substrate for the required path integration computations (Stone et al., 2017).79

The existence of the necessary anatomical connectivity for the formation of a bump attractor80

has been demonstrated in the head direction circuit of insects (Seelig and Jayaraman, 2015; Kim81
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Figure 1: Bump attractor networks as spatial location memory. (A) The state of a bump
attractor is encoded in the position of the most active neuron in the network. In a bump attractor
that integrates an animal’s velocity, the location of the activity bump would encode the spatial
position of the animal. (B) In a bump attractor network, the synaptic connectivity weights pattern
results in the formation of one activity bump. The synaptic weights of one exemplar neuron are
shown; the same pattern is repeated for all neurons. The synaptic connections (arrows) are colour-
coded by their strength, with blue denoting excitatory synapses and red inhibitory synapses. The
synaptic strength is a function of the distance from the emanating neuron. (C) Inhomogeneities
in the biophysical and synaptic properties of the network cause a systematic drift in the bump’s
location (top of panel), while neuronal noise causes an unbiased stochastic drift of the bump’s
location (bottom of panel). (D) For measuring the homing accuracy of path integration, ants were
captured once they reached a feeder, held in captivity for different amounts of time, and then released
in a remote unfamiliar location (Ziegler and Wehner, 1997). Upon release, ants that have not been
kept in prolonged captivity would typically run towards their expected nest location, not finding it
since they are displaced, and perform a focused search for the entrance of their nest. The distance
at which ants start searching for their nest is a measure of the memorised home vector distance.
The spread of this distance over trials is a measure of the homing accuracy.

et al., 2017; Turner-Evans et al., 2017; Kakaria and de Bivort, 2017; Green et al., 2017; Su et al.,82

2017; Green and Maimon, 2018; Pisokas et al., 2020; Turner-Evans et al., 2020), but no direct83

connectomic evidence of bump attractor synaptic structure for encoding translational displacement84

has been identified in the underlying neural substrate.85

Current bump attractor models exhibit limited state stability over time (Brody et al., 2003), while86

insects can maintain the memory of their home vector for hours (Ziegler and Wehner, 1997). This87

is an important discrepancy and it is, therefore, imperative to investigate whether bump attractors88

are an ecologically plausible underlying memory mechanism for path integration. To address this89

question, we compare the dynamics of bump attractors with those of the path integration memory of90

the desert ant Cataglyphis fortis. If the ant’s memory mechanism indeed employs a bump attractor91

network, its dynamics should be consistent with the ant’s behaviour dynamics.92

2 Results93

2.1 Homing accuracy94

The way the homing accuracy of an animal degrades over time could provide crucial information95

about its spatial memory characteristics. The state of a bump attractor is subject to two phe-96

nomena: systematic and stochastic drift. The systematic drift is due to inhomogeneities in network97

parameters, while the stochastic drift is due to neuronal noise. Both of these would affect the bump’s98

location (Fig 1C). In bump attractors, when no input signal is provided, stochastic neuronal noise99
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causes the activity bump’s location to stochastically drift over time (Compte et al., 2000; Burak and100

Fiete, 2012). Due to the stochastic drift, the bump increasingly deviates from its original location101

with a constant rate over time (Fig 2A). Therefore, if the ant’s home vector memory were based on102

a bump attractor network, we would expect a constant increase in the animal’s home vector memory103

error and accordingly a constant deterioration rate in its homing distance accuracy over time.104

Two studies have attempted to quantify how the homing accuracy of path integrating ants105

(Cataglyphis fortis) degrades with time (Ziegler and Wehner, 1997; Cheng et al., 2005). The106

Cataglyphis fortis ants are endemic in the salt pans of Tunisia and Algeria, where the skyline is107

flat, providing no prominent visual cues the animals can use for navigation, so the ants are known108

to resort to path integration for their navigation (Müller and Wehner, 1988). Therefore, this ant109

species is a suitable candidate for studying path integration in isolation from other navigational110

competencies. In the aforementioned studies, the ants were captured once reaching a feeder, away111

from their nest, and were kept confined in a dark box for different amounts of time before being112

released at an unfamiliar location. Once released, these ants typically run towards their expected113

nest location (Fig 1D). The authors measured the distance the ants ran before they started searching114

for their nest’s entrance.115

Even though the typical foraging excursion of a Cataglyphis fortis ant in its natural habitat116

lasts no more than one hour, Ziegler and Wehner (1997) found that the ants maintained their home117

vector memory for several hours, a finding that was confirmed by Cheng et al. (2005) in a similar118

experiment. We analysed the data reported by these authors and observed that the homing distance119

error (absolute deviation) increases with a constant rate over time (Fig 2B). This is in accordance120

with what one would expect from a bump attractor based memory because stochastic drift causes a121

constant increase in the bump’s location deviation and thus does not contradict the bump attractor122

memory hypothesis.123

2.2 Required neuron number124

In principle, a bump attractor could reproduce the constant increase of error in homing accuracy, but125

we see from the behavioural data that the homing accuracy of Cataglyphis fortis ants deteriorates126

over time with a rate of 0.034 m/h (Fig 2B). In bump attractor networks, the bump’s location drift127

rate is inversely proportional to the number of neurons in the network as well as the neuronal time128

constant (Compte et al., 2000; Burak and Fiete, 2012). Fig 2A, depicts the bump’s drift for networks129

of different sizes. One can notice that the time scales in the abscissa of plots Fig 2A and 2B differ130

by three orders of magnitude. Thus the question arises, how many neuronal units are required to131

reproduce the drift rate observed in the ant behavioural experiments?132

Since the exact number of neurons depends on the assumptions about the circuit structure and133

the biophysical properties of the neurons, there is no unique solution. We, therefore, provide as134

example an indicative solution for a bump attractor implementation with reasonable assumptions135

about the biophysical neuronal parameters (see Materials and Methods). The result provides an136

indication of the order of magnitude of required neurons. By plotting the relationship between the137

network size and the drift rate of the bump’s location and extrapolating the fitted curve (Fig 2D,138

dashed line), we find that the bump attractor network requires a minimum of around 47000 neuronal139

units for exhibiting a drift rate comparable with that observed in the ants’ behaviour (3.4 cm/h).140

In reality, each neuronal unit in a bump attractor might consist of several neurons, and the circuit141

would require additional neuronal resources for controlling the bump’s shift in response to input142

signals as well as a population of inhibitory neurons. This means that the actual number of required143

neurons would be a multiple of 47000.144

In insects, this home vector memory has been speculated to lie in the fan-shaped body (also145

known as the upper central body) of the central complex (Stone et al., 2017; Collett, 2019). The146
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Figure 2: Path integration error accumulation over time. (A) Simulation results of the error
accumulation in the attractor’s activity bump location over time for networks of different sizes. Since
homogeneous neuron biophysics and synaptic properties were used, the accumulated error was due
to neuronal noise. The error accumulates with a constant rate over time, resulting in a constant
increase of the mean absolute deviation of the bump’s location from its initial location. An increased
number of neuronal units in the bump attractor results in a decreased error accumulation rate. (B)
The ants’ homing distance accuracy degenerates with captivity duration (Data from Ziegler and
Wehner (1997)). The line y = ax+ b was fitted to the data with parameters a = 0.034 and b = 1.143
(R2=0.891) showing that the homing distance error accumulated with a rate of 0.034 m/h. (C) Error
accumulation rate (drift rate) in the activity bump’s location for different attractor network sizes.
(D) The required number of neurons increases exponentially as the required error accumulation
rate decreases. The fitted exponential function (dashed curve) y = ae(−bx) + c has parameters
a = 46969.253, b = 746.378, and c = 458.977 (R2=0.985). Solving by extrapolation for drift rate
0.034m/h gives a minimal required network size of 47000 neural units.

exact number of neurons in the ant’s brain is not known, but the comparable central complex of147

Drosophila melanogaster is estimated to have no more than 5000 neurons, while the whole brain is148

estimated to have 200,000 neurons (Raji and Potter, 2021). Current models and neuroanatomical149

evidence suggest the existence of 8 or 16 independent distance integrators, one for each represented150

cardinal direction (Stone et al., 2017), and independent distance integrators might exist for path151

integrating based on optical flow and stride counting self-movement estimation, further increasing152

the required number of neurons (Collett, 2019). The insect brain does not have enough neurons to153

accommodate a memory circuit that requires so many neurons to reproduce the drift rate observed154

in the animals.155

2.3 Required neuronal time constant156

In the previous section, we assumed that neurons have a typical membrane and synaptic time157

constant. However, the bump’s drift rate also depends on the neuronal time constant and decreases158

as the time constant increases (Fig 3). If we assume a network of a plausible size, i.e. a few159

hundreds of neurons (256 neuronal units were used in the simulations), we find that to achieve a160
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bump attractor with a drift rate of approximately 3.4 cm/h, we would need a neuronal time constant161

of around τ = 60 000 s (Fig 3), that is approximately 17 h. This is beyond the time constants range162

of typical neurons.163

Figure 3: Effect of time constant on error accumulation. (A) Simulation results of error
accumulation in the bump’s location for different neuronal time constants (300 trials for each con-
dition). The error accumulation rate decreases with an increased time constant. A network of 256
neuronal units was used for the simulations. Note the higher error accumulation rate than in Fig 2A
due to the use of higher Poisson neuronal noise for the attractor network to sustain a bump at higher
neuronal time constants (1400Hz Poisson noise). As the time constant is varied towards lower and
higher values its effect is progressively reduced until the model breaks. (B) Dependence of error
accumulation rate on the neuronal time constant. The fitted exponential function (dashed curve)
y = ae(−bx) + c has parameters a = 62284375, b = 283.941, and c = 10.277 (R2=0.761). Solving
by extrapolation for drift rate 3.4 cm/h gives a minimum required neuronal time constant of around
60 000 s (17 h).

2.4 Neurons with a long time constant164

One way to increase the time constant of neurons is to replace each neuron with a recurrent neural165

circuit with positive feedback (Cannon et al., 1983; Seung, 1996). Such recurrent networks may166

exhibit time constants higher than those of their constituent neurons, however, at the expense of an167

even larger number of neurons, so they are not a viable solution.168

On the other hand, principal neurons in Layer V of the entorhinal cortex (EC) and the lateral169

nucleus of the lateral amygdala (LA), are able to generate action potentials that are sustained at a170

constant frequency for prolonged periods of time (Egorov et al., 2002, 2006). These single-neuron171

oscillators are not dependent on reverberating activity in recurrent circuits, and their spike rate can172

be gradually increased or decreased with appropriate synaptic input (Egorov et al., 2002; Fransén173

et al., 2006).174

This mechanism, which depends on a non-specific calcium-sensitive cationic current, introduces175

dynamics operating at a time scale that is many times larger than the time constants of the neuronal176

membrane and synapses. We, therefore, replaced the neurons in our bump attractor model with177

a model that included this conductance to investigate whether the prolonged activity phenomenon178

would result in more stable bump attractor dynamics. Indeed this replacement resulted in a signif-179

icantly lower bump location drift rate (Fig 4), making such a bump attractor network model seem180

to be a plausible solution even in the face of the limited number of neurons in an insect’s brain. If181

such neurons exist in insect brains, the required drift rate of 3.4 cm/h could be achievable even with182

as few as 256 neuronal units. However, so far, graded persistent activity has only been reported183

in the mammalian brain in vitro under very specific non-physiological conditions, and it is unclear184

whether it is expressed under realistic physiological in vivo conditions. It is also unknown if this185

conductance is expressed in insect neurons.186
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Figure 4: Bump attractor error accumulation using neurons with a persistent non-
specific cation conductance. Simulation results of error accumulation in the activity bump’s
location over time for networks of different sizes. Homogeneous neuron biophysics and synaptic
properties were used. The median drift rate was less than 0.0001 m s−1.

2.5 Homing distance decay regime187

There is an additional aspect of the ants’ distance memory dynamics that we should consider. In188

bump attractors, the bump may drift isotropically and equally likely towards higher and lower values189

(Fig 5A). Therefore, another prediction of the bump attractor hypothesis is that the deterioration of190

the animal’s homing distance accuracy due to memory drift would be equally likely to result in longer191

or shorter homing distances than the actual distance to the nest. However, the homing distance192

of the ants systematically and monotonically decreases with time (Fig 5B). This is a fundamental193

difference between the ant’s behaviour and the predicted state loss of bump attractors, rendering194

the vanilla bump attractor hypothesis an insufficient explanation of the observed behaviour.195

It is, however, conceivable that the monotonic decay of the homing distance over time might be196

due to a systematic bias in the bump attractor network. This systematic bias could be caused by a197

structural bias in the synaptic weights that would shift the activity bump in one direction over time.198

We, therefore, tested the effect of introducing bias to the synaptic weights of the bump attractor199

by replacing the Gaussian synaptic profile (Fig 1B) with a skewed Gaussian synaptic profile (see200

Materials and Methods Section 4.2). This resulted in systematic biased drift in the bump’s location.201

However, this manipulation produced a constant decay rate (Fig 5C,D) that cannot account for the202

accelerating decay rate seen in ants (Fig 5B). This suggests that a different process causes homing203

distance degradation in the animals.204

Altering the synaptic bias to produce the accelerating decay regime observed in the animals205

would require that the biased synaptic profile dynamically changes depending on the initial homing206

distance. Such dynamic adaptation of the synaptic weights is unrealistic, and would require a207

substantial neuronal apparatus to manage it, raising the number of required neurons once more.208

2.6 Effect of bump drift on agent homing209

In animals, memory does not exist in isolation but in the context of a behaving agent. We, therefore,210

investigated the bump attractor memory model as part of a simulated agent producing behaviour.211

This allowed us to test whether the agent behaviour would resemble that of the animals. After212

travelling away from its origin (nest), the agent was held in ‘captivity’ for different waiting times,213

and then released for returning to its nest.214

Theoretical analysis, neuroanatomical evidence, and modelling work indicate that the insect215

home vector is stored as a Cartesian vectorial representation with individual memory units storing216

the coordinate values along each cardinal axis (Fig 6) (Cheung and Vickerstaff, 2010; Vickerstaff and217
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Figure 5: Loss of state value over time. (A) Dispersion in the bump attractor’s state over time
for 200 simulation trials starting from the same initial state of the bump attractor. The initial bump
location disperses due to stochastic neuronal noise resulting in increased mean absolute deviation
from the original value with a constant rate. During individual trials, the bump is equally likely
to move towards higher or lower location values. The median across trials is shown in red. (B)
The homing distance of ants monotonically decays with captivity time. Data points in black x’s are
from Ziegler and Wehner (1997), while data points in grey o’s are from Cheng et al. (2005). The
actual distance between nest and capture point is 12 m in Ziegler and Wehner (1997) and 6 m in
Cheng et al. (2005). The inverse logistic function (Boltzmann function) y = a

1+ek(x−x0) was fitted
to the data points with parameter values a = 12.791, x0 = 219.699, and k = 0.022 (R2=0.848) for
Ziegler and Wehner (1997) and a = 11.744, x0 = 115.961, and k = 0.040 (R2=0.866) for Cheng et al.
(2005). (C) Effect of systematic anisotropy in synaptic weights of the bump attractor. Anisotropy
was introduced by changing the synaptic strength pattern from Gaussian to skewed Gaussian with
parameter a=-0.0005, resulting in a constant bump drift rate. Data of 200 simulation trials are shown
(the median across trials is shown in red). The bump location changes because of the combination
of systematic drift due to the structural bias and stochastic drift due to neuronal noise. (D) Median
bump location of the data shown in C with the starting value set to 15 m for comparison with B.
Unlike the ants, the bump’s location drifts with a constant rate.

Cheung, 2010; Wittmann and Schwegler, 1995; Kim and Hallam, 2000; Vickerstaff and Di Paolo,218

2005; Haferlach et al., 2007; Stone et al., 2017; Wolff and Rubin, 2018; Hulse and Jayaraman, 2020;219

Pisokas et al., 2021). Modelling has shown that the columnar organisation of the central complex220

provides a neural basis for potentially encoding and storing the coordinate values along eight columns221

of neurons, with each column corresponding to a cardinal axis (Haferlach et al., 2007; Stone et al.,222

2017). In this model, the eight memory values form a sinusoidal pattern with its amplitude encoding223

the distance the agent has travelled away from its origin and the location of the minimal memory224

value (column) corresponding to the direction the agent has mostly travelled away from its origin225

(Fig 6C) (Haferlach et al., 2007; Stone et al., 2017). When a homing agent returns to its origin,226

the sinusoid’s amplitude approaches zero and does not provide the agent with a direction to move227

towards. As a result, a homing agent would move in a random pattern around the expected nest228

location, resembling the search pattern observed in ants (Stone et al., 2017).229
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Figure 6: A Cartesian home vector encoding model of insect path integration. (A) The
anatomy of the central complex and the main neuronal signal pathways involved in path integration.
The brain structures — protocerebral bridge (PB), upper central body (CBU, also fan-shaped body),
lower central body (CBL, also ellipsoid body), and noduli (NO) — are colour coded to match the
conceptual drawing in C. The compartment and arrow colours indicate the type of identified signals
(heading and speed) and their convergence in the CBU, where the path integration memory is hy-
pothesised to reside (Stone et al., 2017). Image adapted from the insectbraindb.org. (B) Illustration
of example outbound path and corresponding accumulated home vector. (C) Conceptual depiction
of the path integration model with each of the eight columns encoding one of the cardinal directions
in a Cartesian coordinate system (Stone et al., 2017). Rectangular boxes represent neuronal ensem-
bles and shaded portions the activity level or stored value. The inputs are the current insect heading
(population coding with eight cardinal directions around the animal, i.e. EPG neurons (Wolff and
Rubin, 2018)) and the current insect speed (encoded as the spike rate of TN neurons (Stone et al.,
2017)). Both the heading and speed neurons drive the eight speed integrating ‘memory units’. The
inhibitory heading signals mask the speed signal, so the lower the heading neuron activity, the more
the speed signal is integrated by the corresponding memory unit. The memory unit values form a
sinusoidal pattern encoding the distance from the origin in its amplitude (α) and the direction to
the origin in the horizontal location of the minimum.

In our model, each memory unit consists of a bump attractor encoding the agent’s displacement230

in the corresponding cardinal direction. We assumed that the bump attractors have neurons with a231

large enough time constant resulting in the homing accuracy decay rate observed in ants (3.4 cm/h).232

During the waiting time the bump attractors would accumulate error. As expected, the agent’s233

homing distance and direction accuracy degraded with the waiting time before release (Fig 7). We234

also observed that the decay of the directional accuracy was similar to the decay of the distance235

accuracy (compare 7C and 7D). This is in contrast to the ants’ behaviour, where the distance accu-236

racy decays faster than the directional accuracy (Ziegler and Wehner, 1997). Clearly, the animal’s237

memory follows dissipation dynamics that do not match the diffusion dynamics of attractor net-238

works. Furthermore, the median homing distance of the agent slightly increased with the waiting239

time (Fig 7D, non statistically significant change), while in the ants systematically decreased with240

an accelerating rate (Fig 5B). These findings show that even in the context of a behaving agent, the241

bump attractor dynamics do not produce behaviour resembling that of the animals.242

3 Discussion243

We investigated the plausibility of the bump attractor model as a potential mechanism underly-244

ing path integration memory in insects. To this end, we compared the temporal dynamics of the245

path integration memory of Cataglyphis fortis ants with those of bump attractors encoding the246

agent’s displacement. While the behaviour of bump attractors depend on the choice of modelling247
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Figure 7: Agent homing accuracy degradation over time. (A) Paths of an agent kept station-
ary (waiting) for different amounts of time before being released for homing. The release location is
indicated with an orange cross and the nest location with an orange disc. During the waiting time
the bump attractor’s state stochastically drifts accumulating error. Then the agent is released to
return to its origin as indicated by its home vector memory (encoded in the state of the bump attrac-
tors). Once the agent reaches the location indicated by its memory, it searches following a random
looping trajectory resulting in the blob of overlapping paths centered at the expected home location
(orange disc). (B) The distribution of the homing distances (distance between the release point and
the focus of search) as a function of the waiting time. (C) The median homing distance accuracy
as a function of the waiting time. The fitted exponential function (dashed curve) y = ae(−bx) + c
has parameters a = 0.558, b = 0.022, and c = 0.424. (D) The mean homing direction accuracy
as a function of the waiting time. Fitted with an exponential function with parameters a = 0.649,
b = 0.021, and c = 0.328.

assumptions and parameters, we found that certain properties are robust features of this model class,248

which we compared to experimental data. We tested the bump attractor hypothesis with respect to249

the temporal degradation dynamics of homing accuracy, the number of required neurons, and the250

required neuronal time constants.251

The bump attractor hypothesis predicts that the accuracy of the ants’ homing distance degrades252

at a constant rate during the period of time intervening before release. This is indeed the case253

in Cataglyphis fortis ants. The bump attractor hypothesis also predicts that the bump attractor254

network must consist of a considerable number of neurons or of neurons with adequately high time255

constants to be stable enough at the ecologically relevant time scale. However, the corporeal reality of256

the insect brain renders this last prediction inadmissible since it neither contains enough neurons nor257

are they known to have the high time constants required. But even in the case that these conditions258

are satisfied by a yet unobserved physiological property substantially increasing the neuronal time259

constant, we showed that the state value drift dynamics predicted by the bump attractor hypothesis260

do not match the observed dynamics of the animal’s homing distance. Any reasonable attempt to261

coax the bump attractor into reproducing the animal homing distance dynamics has failed.262

In the present work, we assumed that the homing distance degradation in ants is due to a263

degradation in the animal’s path integration memory. It is not inconceivable that other factors might264

be involved in the observed behaviour, such as the motivational state of the animals. However, there265

was no evidence of such an effect in the experiments since the animals continued searching for their266

nest, indicating that they were motivated to return to it.267

A further consideration is that the biophysical parameters used in our models are based on268

measurements performed on neurons in vitro, typically at room temperatures. The desert ants,269
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Table 1: Ant and bump attractor dynamics comparison.
Parameter Ants Bump Attractor

Distance decay type Monotonic Random walk
Distance degradation rate Constant Constant
Number of neurons Limited More than available
Resettable Yes Yes

Cataglyphis fortis, are active at much higher temperatures which unavoidably affect the biophysical270

properties of their neurons. At higher temperatures, the membrane ion-channels become faster271

(Frankenhaeuser and Moore, 1963; Tang et al., 2010), their conductance increases (Volgushev et al.,272

2000), and synaptic transmission is faster (Postlethwaite et al., 2007). The structural properties of273

the membrane are also affected, resulting in decreased capacitance and time constants (Volgushev274

et al., 2000), while the neuronal channel noise level decreases (Faisal et al., 2005, 2008). The precise275

effect of the higher temperature on the neurons is complex and further investigation is needed.276

However, the magnitude and polarity of the effects of temperature seem unlikely to result in a277

significant coordinated improvement of the bump attractor’s stability.278

Despite our attempts to address every one of the model’s limitations, the bump attractor hypoth-279

esis failed to withstand all our tests. The model is limited both in the duration of state maintenance280

and the dynamics of state degradation. Our work falsifies the bump attractor memory hypothesis281

and rekindles the quest for the memory substrate of path integration.282

4 Materials and Methods283

4.1 Data extraction and processing284

The ant behaviour data were extracted from Ziegler and Wehner (1997) and Cheng et al. (2005). The285

extracted data points as well as the data produced from simulations in this paper were fitted using286

the curve_fit function of SciPy’s optimize Python package with curve parametrisation as described287

in Figs 2, 3, 5, and 7.288

4.2 Bump attractor network model289

The bump attractor network model implementation used in our experiments was derived from the290

code of Gerstner et al. (2014). Our source code is available at https://github.com/johnpi/291

Pisokas_Hennig_2022_Attractor_Based_Memory. To avoid the effect of boundary conditions at292

the edges of a line attractor, we used a ring attractor network topology and we made sure our293

experiments were confined to activity bump shifts less than ±180◦. In this way, for the purposes of294

our experiments the topology of the circuit was indistinguishable from an actual line attractor.295

The bump attractor network model used in the experiments had uniform global inhibition and296

structured lateral excitatory synapses with efficacies that followed a Gaussian profile. The skewed297

Gaussian formulation described below was used for determining synaptic efficacies to allow us to298

choose between Gaussian and skewed Gaussian profiles. The synaptic efficacies w(xi, xj) were there-299

fore described by the following formulation. Let φ(x) denote the Gaussian probability density300

function301

φ(x) =
1

σ
√

2π
e−

1
2 (
x
σ )

2

where σ2 = 20 is the variance (width) of the Gaussian profile. Let Φ(x) denote the cumulative302

distribution function of the Gaussian303
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Φ(x) =

∫ x

−∞
φ(y) dy =

1

2

[
1 + erf

(
x

σ
√

2

)]
where erf(·) is the error function. Then the probability density function of the skewed Gaussian304

and thus the synaptic weights are given by305

w(xi, xj) = 2φ(xi − xj)Φ(α(xi − xj))

where α is the skewness factor, with α = 0 resulting in the Gaussian probability density function.306

In the case of simulations with systematically biased bump drift we used α = −0.0005. xi and xj307

are the positions of the presynaptic and postsynaptic neurons, and w(xi, xj) ∈ [−1, 1] is the synaptic308

connection weight from neuron xi to neuron xj . The values of xi and xj are periodic taking values309

in the range [0, N − 1], where N is the number of excitatory neuronal units in the circuit and the310

difference xi − xj is calculated as a modulo N subtraction, as in Brody et al. (2003). The values311

of w(xi, xj) determined the synaptic efficacy profile of the excitatory synapses while the inhibitory312

synapses had uniform efficacy.313

4.3 Neuron model314

We used two neuronal models in our experiments. The first one, the base model, utilised spiking315

neurons with AMPA, NMDA and GABAA receptor channels. The inclusion of NMDA receptors316

endows the network with regular activity, since a network with only AMPA and GABAA receptors317

produces synchronous spiking activity (Compte et al., 2000).318

The second neuron model, utilised the neurotransmitter receptors of the first model and in addi-319

tion cholinergic muscarinic receptors (mACh) that metabotropically opened clusters of cooperative320

non-specific cation channels that provided the graded persistent spiking observed in the entorhinal321

cortex layer V neurons (Egorov et al., 2002, 2006).322

The intrinsic neuronal properties for the excitatory neurons of the base model were set to a323

membrane capacitance Cm = 0.5nF , leak conductance gL = 25nS, reversal potential EL = −70mV ,324

threshold potential Vth = −50mV , reset potential Vres = −60mV , and absolute refractory period325

τref = 2ms. For the inhibitory neurons of the base model the corresponding values were Cm =326

0.2nF , gL = 20nS, EL = −70mV , Vth = −50mV , Vres = −60mV , and τref = 1ms.327

The intrinsic neuronal properties for the excitatory neurons with the non-specific cation con-328

ductance were set to a membrane capacitance Cm = 0.2nF , leak conductance gL = 0.2nS, reversal329

potential EL = −63mV , threshold potential Vth = 10mV , reset potential Vres = −60mV , and330

absolute refractory period τref = 3ms. For the inhibitory neurons with the non-specific cation con-331

ductance the corresponding values were Cm = 0.2nF , gL = 0.2nS, EL = −63mV , Vth = 10mV ,332

Vres = −60mV , and τref = 2ms.333

For modifying the membrane time constant of the neurons the membrane capacitance was ad-334

justed accordingly using the equation335

Cm = τm ∗ gL

where τm is the desired time constant. The external input that sets the initial bump location336

consists of synaptic connections formed with the excitatory neurons that are mediated by AMPA337

receptors. The maximum conductance of AMPA receptors channels for the excitatory cells was338

Gext,E = 3.1nS and for the inhibitory cells Gext,I = 2.38nS.339

Postsynaptic currents were modeled as340

Ipost = sgsyn(Vm − Esyn)
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where s is the gating variable, gsyn the synaptic conductance, Vm the membrane potential, and341

Esyn the synaptic reversal potential (set to 0mV for AMPA, NMDA, and mACh receptor channels342

and to -70mV for GABAA ones). The gating variables were modeled as in Compte et al. (2000). The343

decay time constants of the gating variables were set to 2ms for AMPA, 10ms for GABAA, 65ms for344

NMDA, and 5ms for mACh receptor channels.345

The non-specific cation channels were modelled as clusters of cooperatively opening channels346

(Pfeiffer et al., 2020). The cluster opening kinetics were governed by347

dOcoop

dt
=

αo

τcoop
smAChGEE −

βo
τcoop

sGABAGIE

where αo and βo are the opening and closing rate factors, respectively. τcoop is the average cluster348

transition time constant. smACh and sGABA are the channel gating variables. GEE and GIE are349

synaptic conductances described in Table 2. The number of open clusters was clipped to the range350

[0, 100]. The total cluster current was351

Icluster = GcoopOcoop(Vm − Ecoop)

where Gcoop = 0.4nS. The synaptic conductance between neurons i and j was modeled as352

gsyn,ij = w(xi, xj)Gsyn

The synaptic conductances Gsyn mediated by the AMPA, NMDA, GABAA, and mACh (cholin-353

ergic muscarinic) receptor channels were determined by following the procedure outlined in Brody354

et al. (2003) to obtain the formation of a stable activity bump. Subsequently, starting with the hand355

tuned values, the dual_annealing optimiser from SciPy’ optimize Python package was utilised to356

optimise the synaptic conductances Gsyn using the objective function357

argmin
G

εH1(G) + εH2(G) + 5(εW1(G) + εW2(G)) + εA1(G) + εA2(G) + 2εS(G) +Wdiff (G)

s. t. εH1(G) =
|Hd(t1)−Ha(G, t1)|

360◦

εH2(G) =
|Hd(t2)−Ha(G, t2)|

360◦

εW1(G) =
|55◦ −Wa(G, t1)|

360◦

εW2(G) =
|55◦ −Wa(G, t2)|

360◦

A1(G) =
1

1 + (Amax(G, t1,∆t)−Amin(G, t1,∆t))

A2(G) =
1

1 + (Amax(G, t2,∆t)−Amin(G, t2,∆t))

Wdiff (G) =
|Wa(G, t1)−Wa(G, t2)|

360◦

0 ≤ GII ≤ 0.01

0 ≤ GIE ≤ 10

0 ≤ GEE ≤ 10

0 ≤ GEI ≤ 10

(1)
Where εH1, εH2, εW1, and εW2 are the error factors measured as deviations from the desired358

values. Hd(t) is the desired activity ‘bump’ heading at time t, while Ha(G, t) is the actual measured359

activity ‘bump’ heading at time t given a model with channel efficacies G. Wa(G, t) is the actual360

13

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 7, 2022. ; https://doi.org/10.1101/2022.04.05.487126doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.487126
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Ant and bump attractor dynamics comparison.
Conductance variable Corresponding synapse and receptors

GII From inhibitory to inhibitory neurons (GABAA)
GIE From inhibitory to excitatory neurons (GABAA)
GEE From excitatory to excitatory neurons (NMDA and mACh)
GEI From excitatory to inhibitory neurons (NMDA and AMPA)

measured width of the activity ‘bump’ at time t (measured as the full width at half maximum).361

Amax(G, t,∆t) and Amin(G, t,∆t) are the maximum and minimum neuron spike rates across all362

excitatory neurons in the attractor network with channel conductances G, measured for a duration363

∆t starting at time t. t1 and t2 are sampling times located near the beginning and the end of the364

simulation, respectively. G is the vector [GII , GIE , GEE , GEI ]. GII , GIE , GEE , and GEI are the365

synaptic conductances as described in Table 2. These were optimised separately for the basic model366

and the model that included the non-specific cation conductances. The synaptic conductances that367

resulted from multiple runs were manually tested to verify the results.368

4.4 Neuronal noise369

All neurons receive excitatory input modeled as uncorrelated Poisson spike trains with average spike370

rate as specified in the appropriate sections of the text. The neuronal noise used in Figures 2A, 2C,371

2D, 4, 5A, 5C, and 5D was modeled as Poisson noise with an average spike rate 5 Hz. This noise372

level was chosen because the attractor’s state drift rate reaches a plateau beyond Poisson neuronal373

noise with an average spike rate of 4Hz (Fig 2C). In Fig 3, the Poisson neuronal noise was set to an374

average spike rate 1400 Hz to allow networks with higher neuronal time constants to sustain a bump375

of activity.376

4.5 Agent simulations377

The agent simulations were based on the anatomically constrained model of Stone et al. (2017). The378

source code of the original work was modified and extended as described below and it is available379

at https://github.com/johnpi/Pisokas_Hennig_2022_Attractor_Based_Memory. The neurons380

were modeled as rate-based perceptrons with a sigmoid activation function. Independent Gaussian381

noise with µ = 0 and σ2 = 0.01 was added to the activation of each neuron and the resulting values382

were clipped to the range [0, 1].383

To reproduce agent paths resembling those of ants we added motor noise that is parametric to384

the home vector length, as in Pisokas et al. (2021). This motor noise was modelled as a Gaussian385

noise factor applied to the steering commands of the agent386

steering = steering_command · ε (2)

where steering_command is the steering command generated by the path integration model387

in homing mode, steering is the actual agent steering, and ε ∼ N (µ, σ2) is a random variable388

sampled from the Gaussian distribution with µ = 1 and σ set to the motor noise level. The motor389

noise level was modelled as a decaying exponential function of the memory amplitude, as in Pisokas390

et al. (2021). The memory amplitude am was defined as the difference between the maximum and391

minimum value along the sinusoidal pattern of memory unit values (Pisokas et al., 2021).392

Motor noise =
ymax

esm·am
(3)
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where ymax is the maximum motor noise level (corresponding to zero vector ant paths), and sm393

is the slope of the exponential function.394

The translational velocity of the simulated agents during homing was iteratively updated using395

the formula396

v(t) =

v(t− 1) + a∆t− µfv(t− 1), if |steering| ≤ 20o

v(t) = 0, if |steering| > 20o
(4)

where v(t) is the agent’s velocity at time step t, a = 0.08 m/s2 is an acceleration constant, ∆t397

is the simulated time step duration, and µf = 0.15 is a friction constant. The velocity was reset to398

0 m/s whenever the agent performed a turn larger than 20◦ simulating a stop on turning as observed399

in ants (Pisokas et al., 2021).400

We performed a grid search following the procedure outlined in Pisokas et al. (2021) to find401

the combination of maximum motor noise level (ymax = 7) and slope (sm = 9) of the decaying402

exponential that produces simulated paths that resemble the paths of both zero vector ants (zero403

memory amplitude) and full vector ants.404

The inputs to the path integration model were the allocentric orientation of the agent and the405

speed of the agent’s motion (Figure 6, see also Stone et al. (2017)). Visual landmark cues were406

not used in either the outbound or the homing part of the simulations; thus, path integration was407

the sole navigation mechanism utilised. The simulations had two stages, an outbound trip and a408

homing trip. For generating the outbound trip, the agent begun from a designated nest location and409

moved following a path generated by a filtered (smoothed) noise process, as previously described410

by Stone et al. (2017), until it reached a designated food location. Outbound agent simulations411

that did not result in the agent reaching the designated food location after 1500 simulation steps412

were disregarded. During the outbound trip, a home vector was accumulated that was encoded as413

the states of the eight memory units. Subsequently, an intervening waiting period was simulated414

during which stochastic memory state drift continued to occur, and then the simulation proceeded415

with the agent release in homing mode. The simulated homing paths were cut at 1500 steps from416

release allowing a sufficiently long observation period of the search behaviour to estimate the centre417

of search.418

4.6 Agent memory model419

For computational efficiency, the bump attractor memory dynamics were introduced in the agent420

simulations as variables with Brownian noise that replicated the stochastic drift exhibited by the421

bump attractors. The states of the memory units were updated by422

mem(t) = mem(t) + b (5)

where423

b ∼ N (µ, σ2) (6)

There were eight such variables one for each cardinal direction (Fig 6C). We set µ = 0 and σ424

to appropriate values corresponding to the effect of stochastic bump location drift for the different425

waiting periods. We experimentally determined that σ = 0.0055 produces the nearest approximation426

to the 3.4 cm/h drift rate observed in the ant behaviour. For different waiting periods the required427

σ value is given by σ =
√
tw0.0055, where tw is the waiting period in seconds.428
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