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1 Abstract

2 Many animal species are able to return to their nest after a foraging excursion without using
3 familiar visual cues to guide them. They accomplish this by using a navigation competence
a known as path integration, which is vital in environments that do not have prominent visual
5 features. To perform path integration, an animal maintains an estimate of the distance and
6 direction to its origin as it moves. The distance and direction information needs to be maintained
7 in memory for the duration of the trip so that the animal can return to its nest. However, the
s neural substrate of this memory remains unclear. A common hypothesis is that the information
° is maintained in a bump attractor’s state. We test the bump attractor hypothesis and find that
10 its predictions do not match behavioural data from ants, thus falsifying the bump attractor
11 hypothesis and raising the need for alternative models of path integration memory.

- 1 Introduction

13 When a foraging ant of the species Cataglyphis fortis, inhabiting the Saharan desert, embarks in
1 search of food, it typically follows a circuitous path. However, once it finds a food item, it readily
15 returns to its nest, travelling along a straight path, even though there are no visual cues to guide
16 its trip (Miiller and Wehner, 1988; Collett, 2019; Menzel and Muller, 1996). To do this, the animal
17 maintains at all times an estimate of its relative position in respect to its origin, using a naviga-
18 tional competence known as ‘path integration’ or ‘dead-reckoning’ (Darwin, 1873; von Frisch, 1967;
10 Mittelstaedt and Mittelstaedt, 1980; Miiller and Wehner, 1988). This relative position estimate is
20 believed to be maintained by continuously updating a vectorial representation pointing to its origin
21 as it moves in its environment (Heinze et al., 2018; Collett, 2019). This vectorial representation is
22 commonly referred to as a ‘home vector’! (Collett, 2019).

23 To update its home vector, the insect has to have access to two pieces of information at every
22 instant in time, its current heading and an estimate of the distance it has travelled along this
2s direction. These displacement estimates are accumulated continuously updating the home vector
26 (Heinze et al., 2018; Collett, 2019). This procedure is similar to that employed by sea navigators
27 in the past who used a magnetic compass to gauge their heading and vector addition to track their
28 position on a map.

20 Path integration has been described in several species, including desert ants of the genus Cataglyphis,
30 the honey bee Apis mellifera, the sweat bee Megalopta genalis, the fruit fly Drosophila melanogaster,
a1 as well as in rodents (Miiller and Wehner, 1988; Collett, 2019; Menzel and Muller, 1996; Heinze and
2 Homberg, 2007; Heinze et al., 2013; Stone et al., 2017; Kim and Dickinson, 2017; McNaughton

;3 et al.,; 2006). The spatial scale of path integration varies between species. For instance, fruit flies

1The home vector is a conceptual vector with direction parallel to the line connecting the current animal location
and its nest and length corresponding to the current distance of the animal from its nest.
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sa  (Drosophila melanogaster) employ path integration for returning to a previously visited drop of sugar
s a few centimetres away (Kim and Dickinson, 2017), while other insect species use path integration
3s  to return to their nest over much larger distances, for instance, hundreds of meters in the case of
37 the desert ant Cataglyphis fortis, or several kilometres in the case of the honey bee Apis mellifera
s (Sommer and Wehner, 2004; Cheng et al., 2005; Huber and Knaden, 2015).

30 At the end of its excursion, a path integrating animal can return to its nest by travelling in the
20 direction and for the distance indicated by its accumulated home vector (Miiller and Wehner, 1988,;
an Menzel and Muller, 1996; Collett, 2019). To do this, the animal needs to be able to maintain its
a2 home vector in memory for the duration of its excursion, even if it is interrupted and prohibited from
a3 returning to its nest for several hours (Ziegler and Wehner, 1997; Cheng et al., 2005). Therefore,
aa a memory mechanism that can be updated quickly and maintain its state long enough is required.
s  However, the substrate of the employed memory remains unknown.

a6 Most path integration models leave the memory substrate unspecified, while some authors have
«z suggested that the home vector memory might be maintained through reverberating neural activity
s and more specifically, in a bump attractor network (McNaughton et al., 1996; Samsonovich and
s McNaughton, 1997; Conklin and Eliasmith, 2005; McNaughton et al., 2006; Burak and Fiete, 2009;
so  Vickerstaff and Di Paolo, 2005; Haferlach et al., 2007; Kim and Lee, 2011; Goldschmidt et al., 2015;
51 Webb and Wystrach, 2016; Stone et al., 2017; Goldschmidt et al., 2017).

52 Bump attractors are recurrent neural networks that maintain a localised peak of neural activity.
s3 A bump attractor can be used to encode an agent’s spatial position as the location of the peak of
s« neural activity (‘activity bump’) in the network (Fig 1A). If we imagine that the neurons of the bump
ss  attractor are organised topologically (if not spatially) on a line, the higher the represented spatial
ss value, the further along the line the most active neurons will be located (Fig 1A). This constitutes
sz a positional encoding of value along a line of neurons.

58 In bump attractor networks, the activity bump is maintained through specific synaptic connec-
so  tivity with short-range excitation and long-range inhibition (Fig 1B). The location of the activity
so bump can be changed by an external input that breaks the balance between excitation and inhibi-
e1 tion to move the bump towards a particular direction. With appropriate connectivity, the amount
ez of the bump’s movement along the neural network can be proportional to the integral of the input
63 stimulus over time (Skaggs et al., 1995). In this case, bump attractor networks can be used as neural
ea integrators that encode the integral of the input signal as the location of the activity bump along
es the network.

o6 Bump attractor networks have been used to model systems that gradually accumulate velocity
ez signals, such as angular velocity for tracking the head direction of rodents (Zhang, 1996; Redish
es et al., 1996; Goodridge and Touretzky, 2000; Boucheny et al., 2005) or translational velocity in
eo path integration models of rodent place and grid cells to track the spatial position of the animal
70 (McNaughton et al., 1996; Samsonovich and McNaughton, 1997; Conklin and Eliasmith, 2005; Burak
= and Fiete, 2009).

72 In insects, the computations pertaining to path integration are believed to occur in the cen-
73 tral complex, a brain structure conserved among insect species (Heinze et al., 2013; Pfeiffer and
72 Homberg, 2013; Seelig and Jayaraman, 2015; Weir and Dickinson, 2015; Heinze, 2015; Turner-Evans
7s and Jayaraman, 2016; el Jundi et al., 2018; Franconville et al., 2018). Neurons that encode the
ze animal’s heading and speed have been identified in the central complex (Heinze and Homberg, 2007;
zz  Homberg et al., 2011; Seelig and Jayaraman, 2015; Green et al., 2017; Stone et al., 2017) and its
7s characteristic columnar structure and regular projection patterns have been hypothesised to provide
7o a plausible substrate for the required path integration computations (Stone et al., 2017).

80 The existence of the necessary anatomical connectivity for the formation of a bump attractor

s1  has been demonstrated in the head direction circuit of insects (Seelig and Jayaraman, 2015; Kim
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Figure 1: Bump attractor networks as spatial location memory. (A) The state of a bump
attractor is encoded in the position of the most active neuron in the network. In a bump attractor
that integrates an animal’s velocity, the location of the activity bump would encode the spatial
position of the animal. (B) In a bump attractor network, the synaptic connectivity weights pattern
results in the formation of one activity bump. The synaptic weights of one exemplar neuron are
shown; the same pattern is repeated for all neurons. The synaptic connections (arrows) are colour-
coded by their strength, with blue denoting excitatory synapses and red inhibitory synapses. The
synaptic strength is a function of the distance from the emanating neuron. (C) Inhomogeneities
in the biophysical and synaptic properties of the network cause a systematic drift in the bump’s
location (top of panel), while neuronal noise causes an unbiased stochastic drift of the bump’s
location (bottom of panel). (D) For measuring the homing accuracy of path integration, ants were
captured once they reached a feeder, held in captivity for different amounts of time, and then released
in a remote unfamiliar location (Ziegler and Wehner, 1997). Upon release, ants that have not been
kept in prolonged captivity would typically run towards their expected nest location, not finding it
since they are displaced, and perform a focused search for the entrance of their nest. The distance
at which ants start searching for their nest is a measure of the memorised home vector distance.
The spread of this distance over trials is a measure of the homing accuracy.

sz et al., 2017; Turner-Evans et al., 2017; Kakaria and de Bivort, 2017; Green et al., 2017; Su et al.,
s3 2017; Green and Maimon, 2018; Pisokas et al., 2020; Turner-Evans et al., 2020), but no direct
sa connectomic evidence of bump attractor synaptic structure for encoding translational displacement
ss has been identified in the underlying neural substrate.

86 Current bump attractor models exhibit limited state stability over time (Brody et al., 2003), while
sz insects can maintain the memory of their home vector for hours (Ziegler and Wehner, 1997). This
ss is an important discrepancy and it is, therefore, imperative to investigate whether bump attractors
se are an ecologically plausible underlying memory mechanism for path integration. To address this
90 question, we compare the dynamics of bump attractors with those of the path integration memory of
o1 the desert ant Cataglyphis fortis. If the ant’s memory mechanism indeed employs a bump attractor

o2 network, its dynamics should be consistent with the ant’s behaviour dynamics.

» 2 Results

o 2.1 Homing accuracy

os The way the homing accuracy of an animal degrades over time could provide crucial information
se about its spatial memory characteristics. The state of a bump attractor is subject to two phe-
oz nomena: systematic and stochastic drift. The systematic drift is due to inhomogeneities in network
os parameters, while the stochastic drift is due to neuronal noise. Both of these would affect the bump’s

9o location (Fig 1C). In bump attractors, when no input signal is provided, stochastic neuronal noise
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10 causes the activity bump’s location to stochastically drift over time (Compte et al., 2000; Burak and
101 Fiete, 2012). Due to the stochastic drift, the bump increasingly deviates from its original location
102  with a constant rate over time (Fig 2A). Therefore, if the ant’s home vector memory were based on
103 a bump attractor network, we would expect a constant increase in the animal’s home vector memory
10a error and accordingly a constant deterioration rate in its homing distance accuracy over time.

108 Two studies have attempted to quantify how the homing accuracy of path integrating ants
we (Cataglyphis fortis) degrades with time (Ziegler and Wehner, 1997; Cheng et al., 2005). The
w7 Cataglyphis fortis ants are endemic in the salt pans of Tunisia and Algeria, where the skyline is
18 flat, providing no prominent visual cues the animals can use for navigation, so the ants are known
100 to resort to path integration for their navigation (Miiller and Wehner, 1988). Therefore, this ant
110 Species is a suitable candidate for studying path integration in isolation from other navigational
111 competencies. In the aforementioned studies, the ants were captured once reaching a feeder, away
112 from their nest, and were kept confined in a dark box for different amounts of time before being
13 released at an unfamiliar location. Once released, these ants typically run towards their expected
ua  nest location (Fig 1D). The authors measured the distance the ants ran before they started searching
us  for their nest’s entrance.

116 Even though the typical foraging excursion of a Cataglyphis fortis ant in its natural habitat
117 lasts no more than one hour, Ziegler and Wehner (1997) found that the ants maintained their home
us vector memory for several hours, a finding that was confirmed by Cheng et al. (2005) in a similar
110 experiment. We analysed the data reported by these authors and observed that the homing distance
120 error (absolute deviation) increases with a constant rate over time (Fig 2B). This is in accordance
122 with what one would expect from a bump attractor based memory because stochastic drift causes a
122 constant increase in the bump’s location deviation and thus does not contradict the bump attractor

123 memory hypothesis.

w2 2.2 Required neuron number

12s  In principle, a bump attractor could reproduce the constant increase of error in homing accuracy, but
126  we see from the behavioural data that the homing accuracy of Cataglyphis fortis ants deteriorates
127 over time with a rate of 0.034m/h (Fig 2B). In bump attractor networks, the bump’s location drift
128 rate is inversely proportional to the number of neurons in the network as well as the neuronal time
120 constant (Compte et al., 2000; Burak and Fiete, 2012). Fig 2A, depicts the bump’s drift for networks
130 of different sizes. One can notice that the time scales in the abscissa of plots Fig 2A and 2B differ
131 by three orders of magnitude. Thus the question arises, how many neuronal units are required to
132 reproduce the drift rate observed in the ant behavioural experiments?

133 Since the exact number of neurons depends on the assumptions about the circuit structure and
13a the biophysical properties of the neurons, there is no unique solution. We, therefore, provide as
135 example an indicative solution for a bump attractor implementation with reasonable assumptions
13 about the biophysical neuronal parameters (see Materials and Methods). The result provides an
137 indication of the order of magnitude of required neurons. By plotting the relationship between the
138 network size and the drift rate of the bump’s location and extrapolating the fitted curve (Fig 2D,
130 dashed line), we find that the bump attractor network requires a minimum of around 47000 neuronal
10 units for exhibiting a drift rate comparable with that observed in the ants’ behaviour (3.4 cm/h).
11 In reality, each neuronal unit in a bump attractor might consist of several neurons, and the circuit
12 would require additional neuronal resources for controlling the bump’s shift in response to input
13 signals as well as a population of inhibitory neurons. This means that the actual number of required
1aa neurons would be a multiple of 47000.

145 In insects, this home vector memory has been speculated to lie in the fan-shaped body (also

16 known as the upper central body) of the central complex (Stone et al., 2017; Collett, 2019). The
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Figure 2: Path integration error accumulation over time. (A) Simulation results of the error
accumulation in the attractor’s activity bump location over time for networks of different sizes. Since
homogeneous neuron biophysics and synaptic properties were used, the accumulated error was due
to neuronal noise. The error accumulates with a constant rate over time, resulting in a constant
increase of the mean absolute deviation of the bump’s location from its initial location. An increased
number of neuronal units in the bump attractor results in a decreased error accumulation rate. (B)
The ants’ homing distance accuracy degenerates with captivity duration (Data from Ziegler and
Wehner (1997)). The line y = ax + b was fitted to the data with parameters a = 0.034 and b = 1.143
(R%=0.891) showing that the homing distance error accumulated with a rate of 0.034m/h. (C) Error
accumulation rate (drift rate) in the activity bump’s location for different attractor network sizes.
(D) The required number of neurons increases exponentially as the required error accumulation
rate decreases. The fitted exponential function (dashed curve) y = ae'=%") 4 ¢ has parameters
a = 46969.253, b = 746.378, and ¢ = 458.977 (R2=0.985). Solving by extrapolation for drift rate
0.034m/h gives a minimal required network size of 47000 neural units.

147 exact number of neurons in the ant’s brain is not known, but the comparable central complex of
1s  Drosophila melanogaster is estimated to have no more than 5000 neurons, while the whole brain is
a0 estimated to have 200,000 neurons (Raji and Potter, 2021). Current models and neuroanatomical
10 evidence suggest the existence of 8 or 16 independent distance integrators, one for each represented
11 cardinal direction (Stone et al., 2017), and independent distance integrators might exist for path
12 integrating based on optical flow and stride counting self-movement estimation, further increasing
153 the required number of neurons (Collett, 2019). The insect brain does not have enough neurons to

1sa  accommodate a memory circuit that requires so many neurons to reproduce the drift rate observed

155 in the animals.

s 2.3 Required neuronal time constant

157 In the previous section, we assumed that neurons have a typical membrane and synaptic time
158 constant. However, the bump’s drift rate also depends on the neuronal time constant and decreases
150 as the time constant increases (Fig 3). If we assume a network of a plausible size, i.e. a few

1e0 hundreds of neurons (256 neuronal units were used in the simulations), we find that to achieve a


https://doi.org/10.1101/2022.04.05.487126
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.487126; this version posted April 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

161

162

163

made available under aCC-BY-NC-ND 4.0 International license.

bump attractor with a drift rate of approximately 3.4 cm/h, we would need a neuronal time constant
of around 7 = 60000s (Fig 3), that is approximately 17h. This is beyond the time constants range

of typical neurons.
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Figure 3: Effect of time constant on error accumulation. (A) Simulation results of error
accumulation in the bump’s location for different neuronal time constants (300 trials for each con-
dition). The error accumulation rate decreases with an increased time constant. A network of 256
neuronal units was used for the simulations. Note the higher error accumulation rate than in Fig 2A
due to the use of higher Poisson neuronal noise for the attractor network to sustain a bump at higher
neuronal time constants (1400Hz Poisson noise). As the time constant is varied towards lower and
higher values its effect is progressively reduced until the model breaks. (B) Dependence of error
accumulation rate on the neuronal time constant. The fitted exponential function (dashed curve)
y = ael=) 4 ¢ has parameters a = 62284375, b = 283.941, and ¢ = 10.277 (R?>=0.761). Solving
by extrapolation for drift rate 3.4 cm/h gives a minimum required neuronal time constant of around

60000s (17h).

2.4 Neurons with a long time constant

One way to increase the time constant of neurons is to replace each neuron with a recurrent neural
circuit with positive feedback (Cannon et al., 1983; Seung, 1996). Such recurrent networks may
exhibit time constants higher than those of their constituent neurons, however, at the expense of an
even larger number of neurons, so they are not a viable solution.

On the other hand, principal neurons in Layer V of the entorhinal cortex (EC) and the lateral
nucleus of the lateral amygdala (LA), are able to generate action potentials that are sustained at a
constant frequency for prolonged periods of time (Egorov et al., 2002, 2006). These single-neuron
oscillators are not dependent on reverberating activity in recurrent circuits, and their spike rate can
be gradually increased or decreased with appropriate synaptic input (Egorov et al., 2002; Fransén
et al., 2006).

This mechanism, which depends on a non-specific calcium-sensitive cationic current, introduces
dynamics operating at a time scale that is many times larger than the time constants of the neuronal
membrane and synapses. We, therefore, replaced the neurons in our bump attractor model with
a model that included this conductance to investigate whether the prolonged activity phenomenon
would result in more stable bump attractor dynamics. Indeed this replacement resulted in a signif-
icantly lower bump location drift rate (Fig 4), making such a bump attractor network model seem
to be a plausible solution even in the face of the limited number of neurons in an insect’s brain. If
such neurons exist in insect brains, the required drift rate of 3.4 cm/h could be achievable even with
as few as 256 neuronal units. However, so far, graded persistent activity has only been reported
in the mammalian brain in vitro under very specific non-physiological conditions, and it is unclear
whether it is expressed under realistic physiological in vivo conditions. It is also unknown if this

conductance is expressed in insect neurons.
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Figure 4: Bump attractor error accumulation using neurons with a persistent non-
specific cation conductance. Simulation results of error accumulation in the activity bump’s

location over time for networks of different sizes. Homogeneous neuron biophysics and synaptic

properties were used. The median drift rate was less than 0.0001 ms~".

1z 2.5 Homing distance decay regime

1ss  There is an additional aspect of the ants’ distance memory dynamics that we should consider. In
18 bump attractors, the bump may drift isotropically and equally likely towards higher and lower values
10 (Fig 5A). Therefore, another prediction of the bump attractor hypothesis is that the deterioration of
101 the animal’s homing distance accuracy due to memory drift would be equally likely to result in longer
102 or shorter homing distances than the actual distance to the nest. However, the homing distance
103 of the ants systematically and monotonically decreases with time (Fig 5B). This is a fundamental
10a difference between the ant’s behaviour and the predicted state loss of bump attractors, rendering
105 the vanilla bump attractor hypothesis an insufficient explanation of the observed behaviour.

106 It is, however, conceivable that the monotonic decay of the homing distance over time might be
107 due to a systematic bias in the bump attractor network. This systematic bias could be caused by a
18 structural bias in the synaptic weights that would shift the activity bump in one direction over time.
100 We, therefore, tested the effect of introducing bias to the synaptic weights of the bump attractor
200 by replacing the Gaussian synaptic profile (Fig 1B) with a skewed Gaussian synaptic profile (see
200 Materials and Methods Section 4.2). This resulted in systematic biased drift in the bump’s location.
202 However, this manipulation produced a constant decay rate (Fig 5C,D) that cannot account for the
203 accelerating decay rate seen in ants (Fig 5B). This suggests that a different process causes homing
20a  distance degradation in the animals.

205 Altering the synaptic bias to produce the accelerating decay regime observed in the animals
206 would require that the biased synaptic profile dynamically changes depending on the initial homing
207 distance. Such dynamic adaptation of the synaptic weights is unrealistic, and would require a

208 substantial neuronal apparatus to manage it, raising the number of required neurons once more.

20 2.6 Effect of bump drift on agent homing

210 In animals, memory does not exist in isolation but in the context of a behaving agent. We, therefore,
211 investigated the bump attractor memory model as part of a simulated agent producing behaviour.
212 This allowed us to test whether the agent behaviour would resemble that of the animals. After
213 travelling away from its origin (nest), the agent was held in ‘captivity’ for different waiting times,
214 and then released for returning to its nest.

215 Theoretical analysis, neuroanatomical evidence, and modelling work indicate that the insect
216 home vector is stored as a Cartesian vectorial representation with individual memory units storing

217 the coordinate values along each cardinal axis (Fig 6) (Cheung and Vickerstaff, 2010; Vickerstaff and
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Figure 5: Loss of state value over time. (A) Dispersion in the bump attractor’s state over time
for 200 simulation trials starting from the same initial state of the bump attractor. The initial bump
location disperses due to stochastic neuronal noise resulting in increased mean absolute deviation
from the original value with a constant rate. During individual trials, the bump is equally likely
to move towards higher or lower location values. The median across trials is shown in red. (B)
The homing distance of ants monotonically decays with captivity time. Data points in black x’s are
from Ziegler and Wehner (1997), while data points in grey o’s are from Cheng et al. (2005). The
actual distance between nest and capture point is 12m in Ziegler and Wehner (1997) and 6 m in
Cheng et al. (2005). The inverse logistic function (Boltzmann function) y = j—zf—; was fitted
to the data points with parameter values a = 12.791, 7o = 219.699, and k = 0.022 (R?=0.848) for
Ziegler and Wehner (1997) and a = 11.744, x¢ = 115.961, and k = 0.040 (R?=0.866) for Cheng et al.
(2005). (C) Effect of systematic anisotropy in synaptic weights of the bump attractor. Anisotropy
was introduced by changing the synaptic strength pattern from Gaussian to skewed Gaussian with
parameter a=-0.0005, resulting in a constant bump drift rate. Data of 200 simulation trials are shown
(the median across trials is shown in red). The bump location changes because of the combination
of systematic drift due to the structural bias and stochastic drift due to neuronal noise. (D) Median
bump location of the data shown in C with the starting value set to 15m for comparison with B.
Unlike the ants, the bump’s location drifts with a constant rate.

218 Cheung, 2010; Wittmann and Schwegler, 1995; Kim and Hallam, 2000; Vickerstaff and Di Paolo,
210 2005; Haferlach et al., 2007; Stone et al., 2017; Wolff and Rubin, 2018; Hulse and Jayaraman, 2020;
220 Pisokas et al., 2021). Modelling has shown that the columnar organisation of the central complex
221 provides a neural basis for potentially encoding and storing the coordinate values along eight columns
222 of neurons, with each column corresponding to a cardinal axis (Haferlach et al., 2007; Stone et al.,
223 2017). In this model, the eight memory values form a sinusoidal pattern with its amplitude encoding
224 the distance the agent has travelled away from its origin and the location of the minimal memory
225 value (column) corresponding to the direction the agent has mostly travelled away from its origin
26 (Fig 6C) (Haferlach et al., 2007; Stone et al., 2017). When a homing agent returns to its origin,
227 the sinusoid’s amplitude approaches zero and does not provide the agent with a direction to move
228 towards. As a result, a homing agent would move in a random pattern around the expected nest

220 location, resembling the search pattern observed in ants (Stone et al., 2017).
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Figure 6: A Cartesian home vector encoding model of insect path integration. (A) The
anatomy of the central complex and the main neuronal signal pathways involved in path integration.
The brain structures — protocerebral bridge (PB), upper central body (CBU, also fan-shaped body),
lower central body (CBL, also ellipsoid body), and noduli (NO) — are colour coded to match the
conceptual drawing in C. The compartment and arrow colours indicate the type of identified signals
(heading and speed) and their convergence in the CBU, where the path integration memory is hy-
pothesised to reside (Stone et al., 2017). Image adapted from the insectbraindb.org. (B) Illustration
of example outbound path and corresponding accumulated home vector. (C) Conceptual depiction
of the path integration model with each of the eight columns encoding one of the cardinal directions
in a Cartesian coordinate system (Stone et al., 2017). Rectangular boxes represent neuronal ensem-
bles and shaded portions the activity level or stored value. The inputs are the current insect heading
(population coding with eight cardinal directions around the animal, i.e. EPG neurons (Wolff and
Rubin, 2018)) and the current insect speed (encoded as the spike rate of TN neurons (Stone et al.,
2017)). Both the heading and speed neurons drive the eight speed integrating ‘memory units’. The
inhibitory heading signals mask the speed signal, so the lower the heading neuron activity, the more
the speed signal is integrated by the corresponding memory unit. The memory unit values form a
sinusoidal pattern encoding the distance from the origin in its amplitude («) and the direction to
the origin in the horizontal location of the minimum.

Speed
cells

— Excitatory
— Inhibitory

230 In our model, each memory unit consists of a bump attractor encoding the agent’s displacement
231 in the corresponding cardinal direction. We assumed that the bump attractors have neurons with a
232 large enough time constant resulting in the homing accuracy decay rate observed in ants (3.4 cm/h).
233 During the waiting time the bump attractors would accumulate error. As expected, the agent’s
23« homing distance and direction accuracy degraded with the waiting time before release (Fig 7). We
235 also observed that the decay of the directional accuracy was similar to the decay of the distance
a3 accuracy (compare 7C and 7D). This is in contrast to the ants’ behaviour, where the distance accu-
237 racy decays faster than the directional accuracy (Ziegler and Wehner, 1997). Clearly, the animal’s
238 memory follows dissipation dynamics that do not match the diffusion dynamics of attractor net-
230 works. Furthermore, the median homing distance of the agent slightly increased with the waiting
200 time (Fig 7D, non statistically significant change), while in the ants systematically decreased with
2a1  an accelerating rate (Fig 5B). These findings show that even in the context of a behaving agent, the

2a2  bump attractor dynamics do not produce behaviour resembling that of the animals.

2« 3 Discussion

2aa  We investigated the plausibility of the bump attractor model as a potential mechanism underly-
2as  ing path integration memory in insects. To this end, we compared the temporal dynamics of the
2a6  path integration memory of Cataglyphis fortis ants with those of bump attractors encoding the

227 agent’s displacement. While the behaviour of bump attractors depend on the choice of modelling
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Figure 7: Agent homing accuracy degradation over time. (A) Paths of an agent kept station-
ary (waiting) for different amounts of time before being released for homing. The release location is
indicated with an orange cross and the nest location with an orange disc. During the waiting time
the bump attractor’s state stochastically drifts accumulating error. Then the agent is released to
return to its origin as indicated by its home vector memory (encoded in the state of the bump attrac-
tors). Once the agent reaches the location indicated by its memory, it searches following a random
looping trajectory resulting in the blob of overlapping paths centered at the expected home location
(orange disc). (B) The distribution of the homing distances (distance between the release point and
the focus of search) as a function of the waiting time. (C) The median homing distance accuracy
as a function of the waiting time. The fitted exponential function (dashed curve) y = ae(=%*) + ¢
has parameters a = 0.558, b = 0.022, and ¢ = 0.424. (D) The mean homing direction accuracy
as a function of the waiting time. Fitted with an exponential function with parameters a = 0.649,
b= 0.021, and ¢ = 0.328.

228 assumptions and parameters, we found that certain properties are robust features of this model class,
2a0  which we compared to experimental data. We tested the bump attractor hypothesis with respect to
250 the temporal degradation dynamics of homing accuracy, the number of required neurons, and the
251 required neuronal time constants.

252 The bump attractor hypothesis predicts that the accuracy of the ants’ homing distance degrades
263 at a constant rate during the period of time intervening before release. This is indeed the case
25 in Cataglyphis fortis ants. The bump attractor hypothesis also predicts that the bump attractor
25 network must consist of a considerable number of neurons or of neurons with adequately high time
256 constants to be stable enough at the ecologically relevant time scale. However, the corporeal reality of
257 the insect brain renders this last prediction inadmissible since it neither contains enough neurons nor
258 are they known to have the high time constants required. But even in the case that these conditions
250 are satisfied by a yet unobserved physiological property substantially increasing the neuronal time
260 constant, we showed that the state value drift dynamics predicted by the bump attractor hypothesis
261 do not match the observed dynamics of the animal’s homing distance. Any reasonable attempt to
262 coax the bump attractor into reproducing the animal homing distance dynamics has failed.

263 In the present work, we assumed that the homing distance degradation in ants is due to a
26a degradation in the animal’s path integration memory. It is not inconceivable that other factors might
265 be involved in the observed behaviour, such as the motivational state of the animals. However, there
266 was no evidence of such an effect in the experiments since the animals continued searching for their
267 nest, indicating that they were motivated to return to it.

268 A further consideration is that the biophysical parameters used in our models are based on

260 measurements performed on neurons in wvitro, typically at room temperatures. The desert ants,

10
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Table 1: Ant and bump attractor dynamics comparison.

Parameter Ants Bump Attractor
Distance decay type Monotonic Random walk
Distance degradation rate Constant Constant

Number of neurons Limited More than available
Resettable Yes Yes

270 Cataglyphis fortis, are active at much higher temperatures which unavoidably affect the biophysical
2;1 properties of their neurons. At higher temperatures, the membrane ion-channels become faster
a2 (Frankenhaeuser and Moore, 1963; Tang et al., 2010), their conductance increases (Volgushev et al.,
a3 2000), and synaptic transmission is faster (Postlethwaite et al., 2007). The structural properties of
a7 the membrane are also affected, resulting in decreased capacitance and time constants (Volgushev
ars et al., 2000), while the neuronal channel noise level decreases (Faisal et al., 2005, 2008). The precise
276 effect of the higher temperature on the neurons is complex and further investigation is needed.
277 However, the magnitude and polarity of the effects of temperature seem unlikely to result in a
278 significant coordinated improvement of the bump attractor’s stability.

279 Despite our attempts to address every one of the model’s limitations, the bump attractor hypoth-
280 esis failed to withstand all our tests. The model is limited both in the duration of state maintenance
2s1  and the dynamics of state degradation. Our work falsifies the bump attractor memory hypothesis

2s2 and rekindles the quest for the memory substrate of path integration.

s 4 Materials and Methods

2« 4.1 Data extraction and processing

2ss  The ant behaviour data were extracted from Ziegler and Wehner (1997) and Cheng et al. (2005). The
286 extracted data points as well as the data produced from simulations in this paper were fitted using
2e7  the curve fit function of SciPy’s optimize Python package with curve parametrisation as described
28 in Figs 2, 3, 5, and 7.

20 4.2 Bump attractor network model

200 The bump attractor network model implementation used in our experiments was derived from the
201 code of Gerstner et al. (2014). Our source code is available at https://github.com/johnpi/
202 Pisokas_Hennig_ 2022_Attractor_Based_Memory. To avoid the effect of boundary conditions at
203 the edges of a line attractor, we used a ring attractor network topology and we made sure our
20 experiments were confined to activity bump shifts less than +180°. In this way, for the purposes of
205 our experiments the topology of the circuit was indistinguishable from an actual line attractor.

206 The bump attractor network model used in the experiments had uniform global inhibition and
207 structured lateral excitatory synapses with efficacies that followed a Gaussian profile. The skewed
20s  Gaussian formulation described below was used for determining synaptic efficacies to allow us to
200 choose between Gaussian and skewed Gaussian profiles. The synaptic efficacies w(x;, z;) were there-
s00 fore described by the following formulation. Let ¢(z) denote the Gaussian probability density
301 function

1

b(z) = e 35
oV 2w

302 where 02 = 20 is the variance (width) of the Gaussian profile. Let ®(z) denote the cumulative

303 distribution function of the Gaussian
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- [ s v )

3 where er f(+) is the error function. Then the probability density function of the skewed Gaussian

o
5

s0s and thus the synaptic weights are given by

w(zi, ) = 2¢(x; — ;)P (a(z; — 75))

306 where « is the skewness factor, with o = 0 resulting in the Gaussian probability density function.
sz In the case of simulations with systematically biased bump drift we used o = —0.0005. z; and z;
s0s  are the positions of the presynaptic and postsynaptic neurons, and w(x;, xj) € [—1,1] is the synaptic
300 connection weight from neuron x; to neuron z;. The values of x; and z; are periodic taking values
s10  in the range [0, N — 1], where N is the number of excitatory neuronal units in the circuit and the
su difference z; — x; is calculated as a modulo N subtraction, as in Brody et al. (2003). The values
sz of w(z;, ;) determined the synaptic efficacy profile of the excitatory synapses while the inhibitory

;13 synapses had uniform efficacy.

s 4.3 Neuron model

s15. We used two neuronal models in our experiments. The first one, the base model, utilised spiking
s1e  neurons with AMPA, NMDA and GABA, receptor channels. The inclusion of NMDA receptors
a1z endows the network with regular activity, since a network with only AMPA and GABA receptors
ais  produces synchronous spiking activity (Compte et al., 2000).

310 The second neuron model, utilised the neurotransmitter receptors of the first model and in addi-
320 tion cholinergic muscarinic receptors (mACh) that metabotropically opened clusters of cooperative
321 non-specific cation channels that provided the graded persistent spiking observed in the entorhinal
;22 cortex layer V neurons (Egorov et al., 2002, 2006).

323 The intrinsic neuronal properties for the excitatory neurons of the base model were set to a
32 membrane capacitance C,, = 0.5nF, leak conductance g;, = 25n.5, reversal potential £, = —70mV,
a5 threshold potential Vi, = —50mV, reset potential V,..s = —60mV, and absolute refractory period
326 Tpof = 2ms. For the inhibitory neurons of the base model the corresponding values were Cp, =
sz 0.2nF, gp = 20nS, Ef, = =70mV, Vi) = —=50mV, Viee = —60mV, and 7,ey = 1ms.

328 The intrinsic neuronal properties for the excitatory neurons with the non-specific cation con-
320 ductance were set to a membrane capacitance C,,, = 0.2nF, leak conductance g;, = 0.2n.5, reversal
30 potential B, = —63mV, threshold potential Vi, = 10mV, reset potential V,..s = —60mV, and
31 absolute refractory period 7.y = 3ms. For the inhibitory neurons with the non-specific cation con-
332 ductance the corresponding values were C),, = 0.2nF, g, = 0.2nS, £, = —63mV, Vi, = 10mV,
333 Vies = —60mV, and 7,.f = 2ms.

334 For modifying the membrane time constant of the neurons the membrane capacitance was ad-

335 justed accordingly using the equation

Cm:Tm*gL

336 where 7,,, is the desired time constant. The external input that sets the initial bump location
337 consists of synaptic connections formed with the excitatory neurons that are mediated by AMPA
s3s  receptors. The maximum conductance of AMPA receptors channels for the excitatory cells was
339 Gegr.p = 3.1nS and for the inhibitory cells Geze,r = 2.38nS.

340 Postsynaptic currents were modeled as
Ipost = Sgsyn(vm - Esyn)

12
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3a1 where s is the gating variable, gsy, the synaptic conductance, V,,, the membrane potential, and
sz Egy, the synaptic reversal potential (set to OmV for AMPA, NMDA, and mACh receptor channels
sz and to -70mV for GABA 4 ones). The gating variables were modeled as in Compte et al. (2000). The
saa  decay time constants of the gating variables were set to 2ms for AMPA, 10ms for GABA s, 65ms for
s3as NMDA, and 5ms for mACh receptor channels.

346 The non-specific cation channels were modelled as clusters of cooperatively opening channels

sar  (Pfeiffer et al., 2020). The cluster opening kinetics were governed by

dOcoop Gy o
= smachGEE — saaBAGIE
dt Tcoop Tcoop
348 where a,, and f3, are the opening and closing rate factors, respectively. 7.0, is the average cluster

a0 transition time constant. s,,acp and sgapa are the channel gating variables. Ggp and G;g are
ss0  synaptic conductances described in Table 2. The number of open clusters was clipped to the range

s [0, 100]. The total cluster current was

Icluster = GcoopOcoap(Vm - Ecoop)

352 where Gcoop = 0.4nS. The synaptic conductance between neurons i and j was modeled as

9syn,ij = ’LU(:L‘Z‘7 xj)Gsyn

383 The synaptic conductances G, mediated by the AMPA, NMDA, GABA,, and mACh (cholin-
ssa  ergic muscarinic) receptor channels were determined by following the procedure outlined in Brody
ss5 et al. (2003) to obtain the formation of a stable activity bump. Subsequently, starting with the hand
e tuned values, the dual annealing optimiser from SciPy’ optimize Python package was utilised to

ss7 - optimise the synaptic conductances Gy, using the objective function

argénin em1(G) + em2(G) + 5(ew1(G) + ew2(G)) + €41(G) + €42(G) + 2e5(G) + Wyir s (G)
_|Hut) — H(G.1)

.t. G
® e (G) 360°
_ |[Hal(t2) — Ho(G, t2)|
en2(G) = 360°
B |55° — W, (G, t1)]
ew1(G) = 360°
‘550 - Wa(GatQ)‘
G =
cw2(G) 360°
1
A(G) =
1( ) 1 + (Amax(Gv tlv At) - Amin(Ga tl; At))
1
A (G) =
Q) = (G 1 AT — Ay (G 2, A1)
[Wa (G, t1) — Wo (G, ta)]
Wairs(G) =
diff(G) 360°
0< G <0.01
0<Grg <10
0<Ggeg <10
0<Ggr<1o
(1)
358 Where €g1, €2, ew1, and ey are the error factors measured as deviations from the desired

3o values. Hy(t) is the desired activity ‘bump’ heading at time ¢, while H, (G, t) is the actual measured

ss0  activity ‘bump’ heading at time ¢ given a model with channel efficacies G. W, (G, ) is the actual

13
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Table 2: Ant and bump attractor dynamics comparison.

Conductance variable Corresponding synapse and receptors

Grr From inhibitory to inhibitory neurons (GABA,)
Gre From inhibitory to excitatory neurons (GABA,)
GEEr From excitatory to excitatory neurons (NMDA and mACh)
Ggr From excitatory to inhibitory neurons (NMDA and AMPA)

s measured width of the activity ‘bump’ at time ¢ (measured as the full width at half maximum).
362 Amaz(G,t, At) and A (G, t, At) are the maximum and minimum neuron spike rates across all
3e3  excitatory neurons in the attractor network with channel conductances G, measured for a duration
sea At starting at time ¢. t; and to are sampling times located near the beginning and the end of the
ses  simulation, respectively. G is the vector [Grr,Grg,Ggr,Gr1l. Gir, Gig, Geg, and Ggr are the
ses  Synaptic conductances as described in Table 2. These were optimised separately for the basic model
se7  and the model that included the non-specific cation conductances. The synaptic conductances that

ses  resulted from multiple runs were manually tested to verify the results.

;o 4.4 Neuronal noise

s7o  All neurons receive excitatory input modeled as uncorrelated Poisson spike trains with average spike
1 rate as specified in the appropriate sections of the text. The neuronal noise used in Figures 2A, 2C,
sz 2D, 4, 5A, 5C, and 5D was modeled as Poisson noise with an average spike rate 5 Hz. This noise
373 level was chosen because the attractor’s state drift rate reaches a plateau beyond Poisson neuronal
s7a  noise with an average spike rate of 4Hz (Fig 2C). In Fig 3, the Poisson neuronal noise was set to an
a5 average spike rate 1400 Hz to allow networks with higher neuronal time constants to sustain a bump

376 of activity.

s7 4.5 Agent simulations

s7s  The agent simulations were based on the anatomically constrained model of Stone et al. (2017). The
s7o  source code of the original work was modified and extended as described below and it is available
sso at https://github.com/johnpi/Pisokas_Hennig_ 2022_Attractor_Based_Memory. The neurons
;1 were modeled as rate-based perceptrons with a sigmoid activation function. Independent Gaussian
se2 noise with 4 = 0 and 62 = 0.01 was added to the activation of each neuron and the resulting values
ss3  were clipped to the range [0, 1].

384 To reproduce agent paths resembling those of ants we added motor noise that is parametric to
sss  the home vector length, as in Pisokas et al. (2021). This motor noise was modelled as a Gaussian

sss  noise factor applied to the steering commands of the agent

steering = steering _command - € (2)

387 where steering command is the steering command generated by the path integration model
sss  in homing mode, steering is the actual agent steering, and € ~ N(u,0?) is a random variable
sso  sampled from the Gaussian distribution with ;4 = 1 and o set to the motor noise level. The motor
30 noise level was modelled as a decaying exponential function of the memory amplitude, as in Pisokas
301 et al. (2021). The memory amplitude a,, was defined as the difference between the maximum and

302 minimum value along the sinusoidal pattern of memory unit values (Pisokas et al., 2021).

Motor noise = —2mae_ (3)

esSm am
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303 where Y4, 1S the maximum motor noise level (corresponding to zero vector ant paths), and s,
sea is the slope of the exponential function.
305 The translational velocity of the simulated agents during homing was iteratively updated using

96 the formula

v(t — 1)+ aAt — ppo(t — 1), if |steering| < 20°
o(t) = , . (4)
v(t) =0, if |steering| > 20°
397 where v(t) is the agent’s velocity at time step ¢, a = 0.08 m/s? is an acceleration constant, At

s0s is the simulated time step duration, and py = 0.15 is a friction constant. The velocity was reset to
3e  0m/s whenever the agent performed a turn larger than 20° simulating a stop on turning as observed
a0 in ants (Pisokas et al., 2021).

401 We performed a grid search following the procedure outlined in Pisokas et al. (2021) to find
202 the combination of maximum motor noise level (Ymqe = 7) and slope (s, = 9) of the decaying
a3 exponential that produces simulated paths that resemble the paths of both zero vector ants (zero
«0s memory amplitude) and full vector ants.

405 The inputs to the path integration model were the allocentric orientation of the agent and the
206 speed of the agent’s motion (Figure 6, see also Stone et al. (2017)). Visual landmark cues were
w07 1ot used in either the outbound or the homing part of the simulations; thus, path integration was
w08 the sole navigation mechanism utilised. The simulations had two stages, an outbound trip and a
a0 homing trip. For generating the outbound trip, the agent begun from a designated nest location and
a0 moved following a path generated by a filtered (smoothed) noise process, as previously described
a1 by Stone et al. (2017), until it reached a designated food location. Outbound agent simulations
a1z that did not result in the agent reaching the designated food location after 1500 simulation steps
a3 were disregarded. During the outbound trip, a home vector was accumulated that was encoded as
a1a the states of the eight memory units. Subsequently, an intervening waiting period was simulated
a5 during which stochastic memory state drift continued to occur, and then the simulation proceeded
a6 Wwith the agent release in homing mode. The simulated homing paths were cut at 1500 steps from
a7 release allowing a sufficiently long observation period of the search behaviour to estimate the centre

as Of search.

a0 4.6 Agent memory model

s20 For computational efficiency, the bump attractor memory dynamics were introduced in the agent
«z1 simulations as variables with Brownian noise that replicated the stochastic drift exhibited by the

422 bump attractors. The states of the memory units were updated by

mem(t) = mem(t) + b (5)

423 where
b~ N(no?) (6)
424 There were eight such variables one for each cardinal direction (Fig 6C). We set 4 = 0 and o

425 to appropriate values corresponding to the effect of stochastic bump location drift for the different
a2 waiting periods. We experimentally determined that o = 0.0055 produces the nearest approximation
427 to the 3.4 cm/h drift rate observed in the ant behaviour. For different waiting periods the required

s28 0 value is given by o = 1/1,,0.0055, where t,, is the waiting period in seconds.
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