

Can the Insect Path Integration Memory be a Bump Attractor?

Ioannis Pisokas^{1*} and Matthias H. Hennig¹

¹School of Informatics, University of Edinburgh, United Kingdom

Abstract

Many animal species are able to return to their nest after a foraging excursion without using familiar visual cues to guide them. They accomplish this by using a navigation competence known as path integration, which is vital in environments that do not have prominent visual features. To perform path integration, an animal maintains an estimate of the distance and direction to its origin as it moves. The distance and direction information needs to be maintained in memory for the duration of the trip so that the animal can return to its nest. However, the neural substrate of this memory remains unclear. A common hypothesis is that the information is maintained in a bump attractor's state. We test the bump attractor hypothesis and find that its predictions do not match behavioural data from ants, thus falsifying the bump attractor hypothesis and raising the need for alternative models of path integration memory.

1 Introduction

When a foraging ant of the species *Cataglyphis fortis*, inhabiting the Saharan desert, embarks in search of food, it typically follows a circuitous path. However, once it finds a food item, it readily returns to its nest, travelling along a straight path, even though there are no visual cues to guide its trip (Müller and Wehner, 1988; Collett, 2019; Menzel and Muller, 1996). To do this, the animal maintains at all times an estimate of its relative position in respect to its origin, using a navigational competence known as 'path integration' or 'dead-reckoning' (Darwin, 1873; von Frisch, 1967; Mittelstaedt and Mittelstaedt, 1980; Müller and Wehner, 1988). This relative position estimate is believed to be maintained by continuously updating a vectorial representation pointing to its origin as it moves in its environment (Heinze et al., 2018; Collett, 2019). This vectorial representation is commonly referred to as a 'home vector'¹ (Collett, 2019).

To update its home vector, the insect has to have access to two pieces of information at every instant in time, its current heading and an estimate of the distance it has travelled along this direction. These displacement estimates are accumulated continuously updating the home vector (Heinze et al., 2018; Collett, 2019). This procedure is similar to that employed by sea navigators in the past who used a magnetic compass to gauge their heading and vector addition to track their position on a map.

Path integration has been described in several species, including desert ants of the genus *Cataglyphis*, the honey bee *Apis mellifera*, the sweat bee *Megalopta genalis*, the fruit fly *Drosophila melanogaster*, as well as in rodents (Müller and Wehner, 1988; Collett, 2019; Menzel and Muller, 1996; Heinze and Homberg, 2007; Heinze et al., 2013; Stone et al., 2017; Kim and Dickinson, 2017; McNaughton et al., 2006). The spatial scale of path integration varies between species. For instance, fruit flies

¹The home vector is a conceptual vector with direction parallel to the line connecting the current animal location and its nest and length corresponding to the current distance of the animal from its nest.

34 (*Drosophila melanogaster*) employ path integration for returning to a previously visited drop of sugar
35 a few centimetres away (Kim and Dickinson, 2017), while other insect species use path integration
36 to return to their nest over much larger distances, for instance, hundreds of meters in the case of
37 the desert ant *Cataglyphis fortis*, or several kilometres in the case of the honey bee *Apis mellifera*
38 (Sommer and Wehner, 2004; Cheng et al., 2005; Huber and Knaden, 2015).

39 At the end of its excursion, a path integrating animal can return to its nest by travelling in the
40 direction and for the distance indicated by its accumulated home vector (Müller and Wehner, 1988;
41 Menzel and Müller, 1996; Collett, 2019). To do this, the animal needs to be able to maintain its
42 home vector in memory for the duration of its excursion, even if it is interrupted and prohibited from
43 returning to its nest for several hours (Ziegler and Wehner, 1997; Cheng et al., 2005). Therefore,
44 a memory mechanism that can be updated quickly and maintain its state long enough is required.
45 However, the substrate of the employed memory remains unknown.

46 Most path integration models leave the memory substrate unspecified, while some authors have
47 suggested that the home vector memory might be maintained through reverberating neural activity
48 and more specifically, in a bump attractor network (McNaughton et al., 1996; Samsonovich and
49 McNaughton, 1997; Conklin and Eliasmith, 2005; McNaughton et al., 2006; Burak and Fiete, 2009;
50 Vickerstaff and Di Paolo, 2005; Haferlach et al., 2007; Kim and Lee, 2011; Goldschmidt et al., 2015;
51 Webb and Wystrach, 2016; Stone et al., 2017; Goldschmidt et al., 2017).

52 Bump attractors are recurrent neural networks that maintain a localised peak of neural activity.
53 A bump attractor can be used to encode an agent's spatial position as the location of the peak of
54 neural activity ('activity bump') in the network (Fig 1A). If we imagine that the neurons of the bump
55 attractor are organised topologically (if not spatially) on a line, the higher the represented spatial
56 value, the further along the line the most active neurons will be located (Fig 1A). This constitutes
57 a positional encoding of value along a line of neurons.

58 In bump attractor networks, the activity bump is maintained through specific synaptic connec-
59 tivity with short-range excitation and long-range inhibition (Fig 1B). The location of the activity
60 bump can be changed by an external input that breaks the balance between excitation and inhibi-
61 tion to move the bump towards a particular direction. With appropriate connectivity, the amount
62 of the bump's movement along the neural network can be proportional to the integral of the input
63 stimulus over time (Skaggs et al., 1995). In this case, bump attractor networks can be used as neural
64 integrators that encode the integral of the input signal as the location of the activity bump along
65 the network.

66 Bump attractor networks have been used to model systems that gradually accumulate velocity
67 signals, such as angular velocity for tracking the head direction of rodents (Zhang, 1996; Redish
68 et al., 1996; Goodridge and Touretzky, 2000; Boucheny et al., 2005) or translational velocity in
69 path integration models of rodent place and grid cells to track the spatial position of the animal
70 (McNaughton et al., 1996; Samsonovich and McNaughton, 1997; Conklin and Eliasmith, 2005; Burak
71 and Fiete, 2009).

72 In insects, the computations pertaining to path integration are believed to occur in the cen-
73 tral complex, a brain structure conserved among insect species (Heinze et al., 2013; Pfeiffer and
74 Homberg, 2013; Seelig and Jayaraman, 2015; Weir and Dickinson, 2015; Heinze, 2015; Turner-Evans
75 and Jayaraman, 2016; el Jundi et al., 2018; Franconville et al., 2018). Neurons that encode the
76 animal's heading and speed have been identified in the central complex (Heinze and Homberg, 2007;
77 Homberg et al., 2011; Seelig and Jayaraman, 2015; Green et al., 2017; Stone et al., 2017) and its
78 characteristic columnar structure and regular projection patterns have been hypothesised to provide
79 a plausible substrate for the required path integration computations (Stone et al., 2017).

80 The existence of the necessary anatomical connectivity for the formation of a bump attractor
81 has been demonstrated in the head direction circuit of insects (Seelig and Jayaraman, 2015; Kim

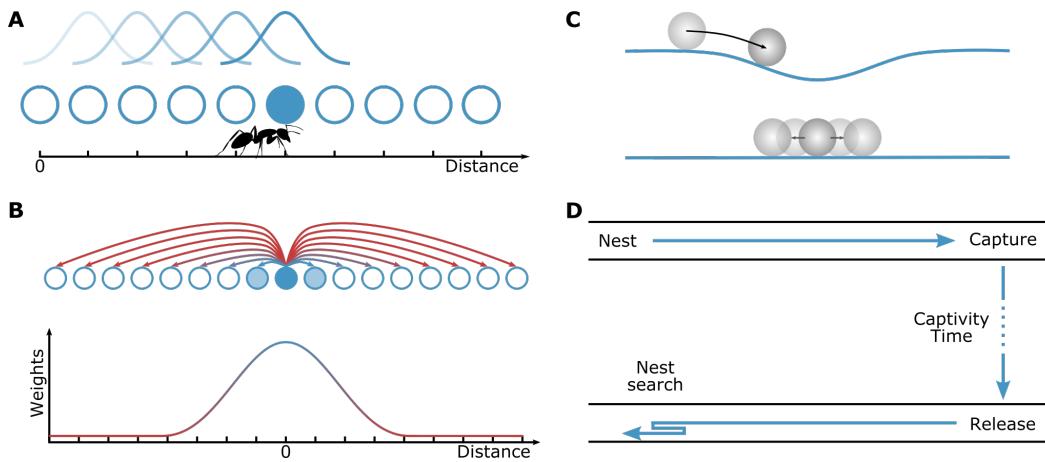


Figure 1: Bump attractor networks as spatial location memory. (A) The state of a bump attractor is encoded in the position of the most active neuron in the network. In a bump attractor that integrates an animal's velocity, the location of the activity bump would encode the spatial position of the animal. (B) In a bump attractor network, the synaptic connectivity weights pattern results in the formation of one activity bump. The synaptic weights of one exemplar neuron are shown; the same pattern is repeated for all neurons. The synaptic connections (arrows) are colour-coded by their strength, with blue denoting excitatory synapses and red inhibitory synapses. The synaptic strength is a function of the distance from the emanating neuron. (C) Inhomogeneities in the biophysical and synaptic properties of the network cause a systematic drift in the bump's location (top of panel), while neuronal noise causes an unbiased stochastic drift of the bump's location (bottom of panel). (D) For measuring the homing accuracy of path integration, ants were captured once they reached a feeder, held in captivity for different amounts of time, and then released in a remote unfamiliar location (Ziegler and Wehner, 1997). Upon release, ants that have not been kept in prolonged captivity would typically run towards their expected nest location, not finding it since they are displaced, and perform a focused search for the entrance of their nest. The distance at which ants start searching for their nest is a measure of the memorised home vector distance. The spread of this distance over trials is a measure of the homing accuracy.

82 et al., 2017; Turner-Evans et al., 2017; Kakaria and de Bivort, 2017; Green et al., 2017; Su et al.,
 83 2017; Green and Maimon, 2018; Pisokas et al., 2020; Turner-Evans et al., 2020), but no direct
 84 connectomic evidence of bump attractor synaptic structure for encoding translational displacement
 85 has been identified in the underlying neural substrate.

86 Current bump attractor models exhibit limited state stability over time (Brody et al., 2003), while
 87 insects can maintain the memory of their home vector for hours (Ziegler and Wehner, 1997). This
 88 is an important discrepancy and it is, therefore, imperative to investigate whether bump attractors
 89 are an ecologically plausible underlying memory mechanism for path integration. To address this
 90 question, we compare the dynamics of bump attractors with those of the path integration memory of
 91 the desert ant *Cataglyphis fortis*. If the ant's memory mechanism indeed employs a bump attractor
 92 network, its dynamics should be consistent with the ant's behaviour dynamics.

93 2 Results

94 2.1 Homing accuracy

95 The way the homing accuracy of an animal degrades over time could provide crucial information
 96 about its spatial memory characteristics. The state of a bump attractor is subject to two phe-
 97 nomena: systematic and stochastic drift. The systematic drift is due to inhomogeneities in network
 98 parameters, while the stochastic drift is due to neuronal noise. Both of these would affect the bump's
 99 location (Fig 1C). In bump attractors, when no input signal is provided, stochastic neuronal noise

100 causes the activity bump's location to stochastically drift over time (Compte et al., 2000; Burak and
101 Fiete, 2012). Due to the stochastic drift, the bump increasingly deviates from its original location
102 with a constant rate over time (Fig 2A). Therefore, if the ant's home vector memory were based on
103 a bump attractor network, we would expect a constant increase in the animal's home vector memory
104 error and accordingly a constant deterioration rate in its homing distance accuracy over time.

105 Two studies have attempted to quantify how the homing accuracy of path integrating ants
106 (*Cataglyphis fortis*) degrades with time (Ziegler and Wehner, 1997; Cheng et al., 2005). The
107 *Cataglyphis fortis* ants are endemic in the salt pans of Tunisia and Algeria, where the skyline is
108 flat, providing no prominent visual cues the animals can use for navigation, so the ants are known
109 to resort to path integration for their navigation (Müller and Wehner, 1988). Therefore, this ant
110 species is a suitable candidate for studying path integration in isolation from other navigational
111 competencies. In the aforementioned studies, the ants were captured once reaching a feeder, away
112 from their nest, and were kept confined in a dark box for different amounts of time before being
113 released at an unfamiliar location. Once released, these ants typically run towards their expected
114 nest location (Fig 1D). The authors measured the distance the ants ran before they started searching
115 for their nest's entrance.

116 Even though the typical foraging excursion of a *Cataglyphis fortis* ant in its natural habitat
117 lasts no more than one hour, Ziegler and Wehner (1997) found that the ants maintained their home
118 vector memory for several hours, a finding that was confirmed by Cheng et al. (2005) in a similar
119 experiment. We analysed the data reported by these authors and observed that the homing distance
120 error (absolute deviation) increases with a constant rate over time (Fig 2B). This is in accordance
121 with what one would expect from a bump attractor based memory because stochastic drift causes a
122 constant increase in the bump's location deviation and thus does not contradict the bump attractor
123 memory hypothesis.

124 2.2 Required neuron number

125 In principle, a bump attractor could reproduce the constant increase of error in homing accuracy, but
126 we see from the behavioural data that the homing accuracy of *Cataglyphis fortis* ants deteriorates
127 over time with a rate of 0.034 m/h (Fig 2B). In bump attractor networks, the bump's location drift
128 rate is inversely proportional to the number of neurons in the network as well as the neuronal time
129 constant (Compte et al., 2000; Burak and Fiete, 2012). Fig 2A, depicts the bump's drift for networks
130 of different sizes. One can notice that the time scales in the abscissa of plots Fig 2A and 2B differ
131 by three orders of magnitude. Thus the question arises, how many neuronal units are required to
132 reproduce the drift rate observed in the ant behavioural experiments?

133 Since the exact number of neurons depends on the assumptions about the circuit structure and
134 the biophysical properties of the neurons, there is no unique solution. We, therefore, provide as
135 example an indicative solution for a bump attractor implementation with reasonable assumptions
136 about the biophysical neuronal parameters (see Materials and Methods). The result provides an
137 indication of the order of magnitude of required neurons. By plotting the relationship between the
138 network size and the drift rate of the bump's location and extrapolating the fitted curve (Fig 2D,
139 dashed line), we find that the bump attractor network requires a minimum of around 47000 neuronal
140 units for exhibiting a drift rate comparable with that observed in the ants' behaviour (3.4 cm/h).
141 In reality, each neuronal unit in a bump attractor might consist of several neurons, and the circuit
142 would require additional neuronal resources for controlling the bump's shift in response to input
143 signals as well as a population of inhibitory neurons. This means that the actual number of required
144 neurons would be a multiple of 47000.

145 In insects, this home vector memory has been speculated to lie in the fan-shaped body (also
146 known as the upper central body) of the central complex (Stone et al., 2017; Collett, 2019). The

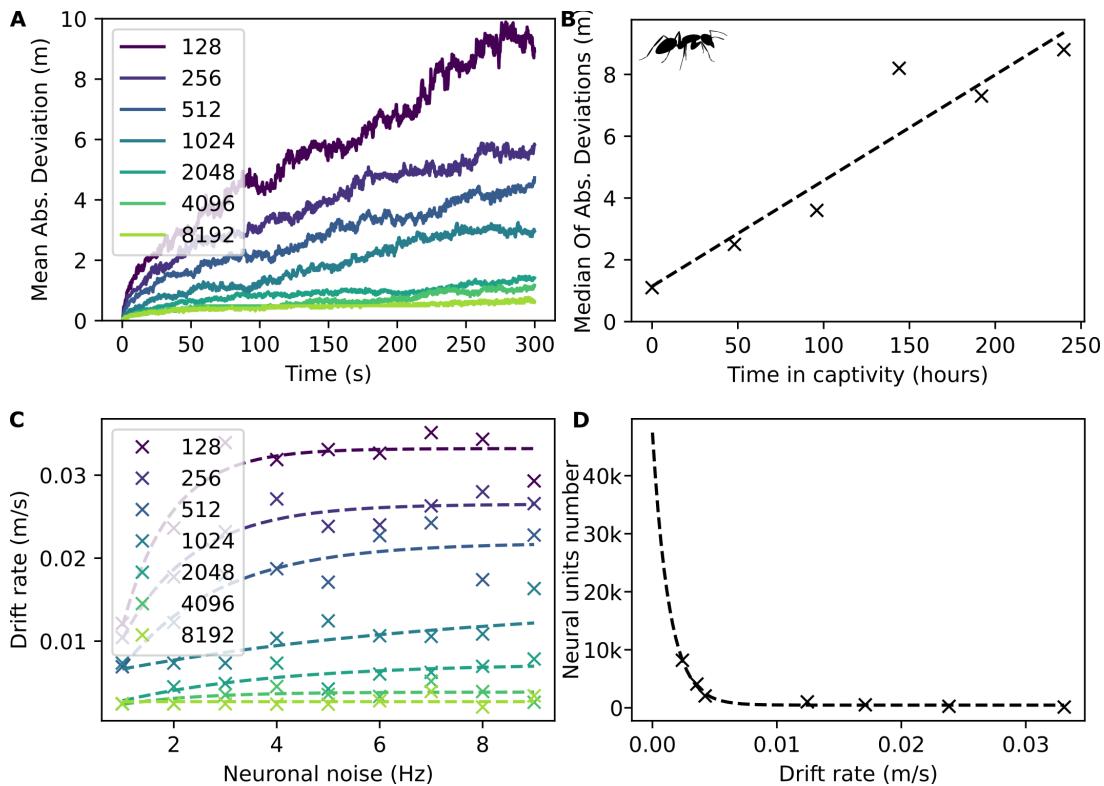


Figure 2: Path integration error accumulation over time. (A) Simulation results of the error accumulation in the attractor’s activity bump location over time for networks of different sizes. Since homogeneous neuron biophysics and synaptic properties were used, the accumulated error was due to neuronal noise. The error accumulates with a constant rate over time, resulting in a constant increase of the mean absolute deviation of the bump’s location from its initial location. An increased number of neuronal units in the bump attractor results in a decreased error accumulation rate. (B) The ants’ homing distance accuracy degenerates with captivity duration (Data from Ziegler and Wehner (1997)). The line $y = ax + b$ was fitted to the data with parameters $a = 0.034$ and $b = 1.143$ ($R^2 = 0.891$) showing that the homing distance error accumulated with a rate of 0.034 m/h . (C) Error accumulation rate (drift rate) in the activity bump’s location for different attractor network sizes. (D) The required number of neurons increases exponentially as the required error accumulation rate decreases. The fitted exponential function (dashed curve) $y = ae^{(-bx)} + c$ has parameters $a = 46969.253$, $b = 746.378$, and $c = 458.977$ ($R^2 = 0.985$). Solving by extrapolation for drift rate 0.034 m/h gives a minimal required network size of 47000 neural units.

147 exact number of neurons in the ant’s brain is not known, but the comparable central complex of
 148 *Drosophila melanogaster* is estimated to have no more than 5000 neurons, while the whole brain is
 149 estimated to have 200,000 neurons (Raji and Potter, 2021). Current models and neuroanatomical
 150 evidence suggest the existence of 8 or 16 independent distance integrators, one for each represented
 151 cardinal direction (Stone et al., 2017), and independent distance integrators might exist for path
 152 integrating based on optical flow and stride counting self-movement estimation, further increasing
 153 the required number of neurons (Collett, 2019). The insect brain does not have enough neurons to
 154 accommodate a memory circuit that requires so many neurons to reproduce the drift rate observed
 155 in the animals.

156 2.3 Required neuronal time constant

157 In the previous section, we assumed that neurons have a typical membrane and synaptic time
 158 constant. However, the bump’s drift rate also depends on the neuronal time constant and decreases
 159 as the time constant increases (Fig 3). If we assume a network of a plausible size, i.e. a few
 160 hundreds of neurons (256 neuronal units were used in the simulations), we find that to achieve a

¹⁶¹ bump attractor with a drift rate of approximately 3.4 cm/h, we would need a neuronal time constant
¹⁶² of around $\tau = 60\,000$ s (Fig 3), that is approximately 17 h. This is beyond the time constants range
¹⁶³ of typical neurons.

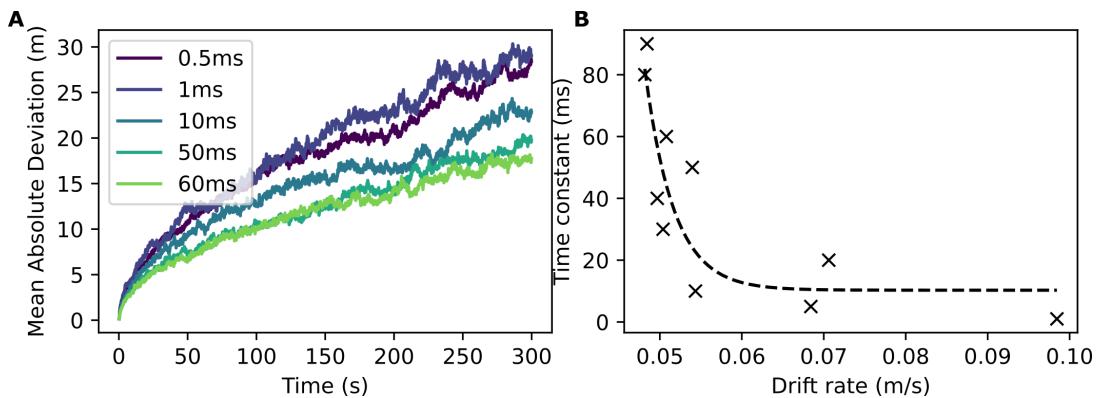


Figure 3: Effect of time constant on error accumulation. (A) Simulation results of error accumulation in the bump's location for different neuronal time constants (300 trials for each condition). The error accumulation rate decreases with an increased time constant. A network of 256 neuronal units was used for the simulations. Note the higher error accumulation rate than in Fig 2A due to the use of higher Poisson neuronal noise for the attractor network to sustain a bump at higher neuronal time constants (1400Hz Poisson noise). As the time constant is varied towards lower and higher values its effect is progressively reduced until the model breaks. (B) Dependence of error accumulation rate on the neuronal time constant. The fitted exponential function (dashed curve) $y = ae^{-bx} + c$ has parameters $a = 62284375$, $b = 283.941$, and $c = 10.277$ ($R^2 = 0.761$). Solving by extrapolation for drift rate 3.4 cm/h gives a minimum required neuronal time constant of around 60 000 s (17 h).

¹⁶⁴ 2.4 Neurons with a long time constant

¹⁶⁵ One way to increase the time constant of neurons is to replace each neuron with a recurrent neural
¹⁶⁶ circuit with positive feedback (Cannon et al., 1983; Seung, 1996). Such recurrent networks may
¹⁶⁷ exhibit time constants higher than those of their constituent neurons, however, at the expense of an
¹⁶⁸ even larger number of neurons, so they are not a viable solution.

¹⁶⁹ On the other hand, principal neurons in Layer V of the entorhinal cortex (EC) and the lateral
¹⁷⁰ nucleus of the lateral amygdala (LA), are able to generate action potentials that are sustained at a
¹⁷¹ constant frequency for prolonged periods of time (Egorov et al., 2002, 2006). These single-neuron
¹⁷² oscillators are not dependent on reverberating activity in recurrent circuits, and their spike rate can
¹⁷³ be gradually increased or decreased with appropriate synaptic input (Egorov et al., 2002; Fransén
¹⁷⁴ et al., 2006).

¹⁷⁵ This mechanism, which depends on a non-specific calcium-sensitive cationic current, introduces
¹⁷⁶ dynamics operating at a time scale that is many times larger than the time constants of the neuronal
¹⁷⁷ membrane and synapses. We, therefore, replaced the neurons in our bump attractor model with
¹⁷⁸ a model that included this conductance to investigate whether the prolonged activity phenomenon
¹⁷⁹ would result in more stable bump attractor dynamics. Indeed this replacement resulted in a signif-
¹⁸⁰ icantly lower bump location drift rate (Fig 4), making such a bump attractor network model seem
¹⁸¹ to be a plausible solution even in the face of the limited number of neurons in an insect's brain. If
¹⁸² such neurons exist in insect brains, the required drift rate of 3.4 cm/h could be achievable even with
¹⁸³ as few as 256 neuronal units. However, so far, graded persistent activity has only been reported
¹⁸⁴ in the mammalian brain *in vitro* under very specific non-physiological conditions, and it is unclear
¹⁸⁵ whether it is expressed under realistic physiological *in vivo* conditions. It is also unknown if this
¹⁸⁶ conductance is expressed in insect neurons.

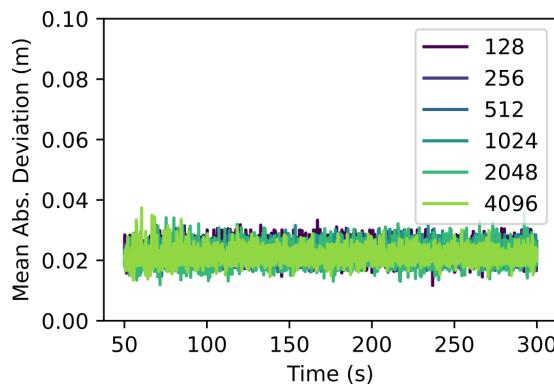


Figure 4: **Bump attractor error accumulation using neurons with a persistent non-specific cation conductance.** Simulation results of error accumulation in the activity bump’s location over time for networks of different sizes. Homogeneous neuron biophysics and synaptic properties were used. The median drift rate was less than 0.0001 m s^{-1} .

2.5 Homing distance decay regime

There is an additional aspect of the ants’ distance memory dynamics that we should consider. In bump attractors, the bump may drift isotropically and equally likely towards higher and lower values (Fig 5A). Therefore, another prediction of the bump attractor hypothesis is that the deterioration of the animal’s homing distance accuracy due to memory drift would be equally likely to result in longer or shorter homing distances than the actual distance to the nest. However, the homing distance of the ants systematically and monotonically decreases with time (Fig 5B). This is a fundamental difference between the ant’s behaviour and the predicted state loss of bump attractors, rendering the vanilla bump attractor hypothesis an insufficient explanation of the observed behaviour.

It is, however, conceivable that the monotonic decay of the homing distance over time might be due to a systematic bias in the bump attractor network. This systematic bias could be caused by a structural bias in the synaptic weights that would shift the activity bump in one direction over time. We, therefore, tested the effect of introducing bias to the synaptic weights of the bump attractor by replacing the Gaussian synaptic profile (Fig 1B) with a skewed Gaussian synaptic profile (see Materials and Methods Section 4.2). This resulted in systematic biased drift in the bump’s location. However, this manipulation produced a constant decay rate (Fig 5C,D) that cannot account for the accelerating decay rate seen in ants (Fig 5B). This suggests that a different process causes homing distance degradation in the animals.

Altering the synaptic bias to produce the accelerating decay regime observed in the animals would require that the biased synaptic profile dynamically changes depending on the initial homing distance. Such dynamic adaptation of the synaptic weights is unrealistic, and would require a substantial neuronal apparatus to manage it, raising the number of required neurons once more.

2.6 Effect of bump drift on agent homing

In animals, memory does not exist in isolation but in the context of a behaving agent. We, therefore, investigated the bump attractor memory model as part of a simulated agent producing behaviour. This allowed us to test whether the agent behaviour would resemble that of the animals. After travelling away from its origin (nest), the agent was held in ‘captivity’ for different waiting times, and then released for returning to its nest.

Theoretical analysis, neuroanatomical evidence, and modelling work indicate that the insect home vector is stored as a Cartesian vectorial representation with individual memory units storing the coordinate values along each cardinal axis (Fig 6) (Cheung and Vickerstaff, 2010; Vickerstaff and

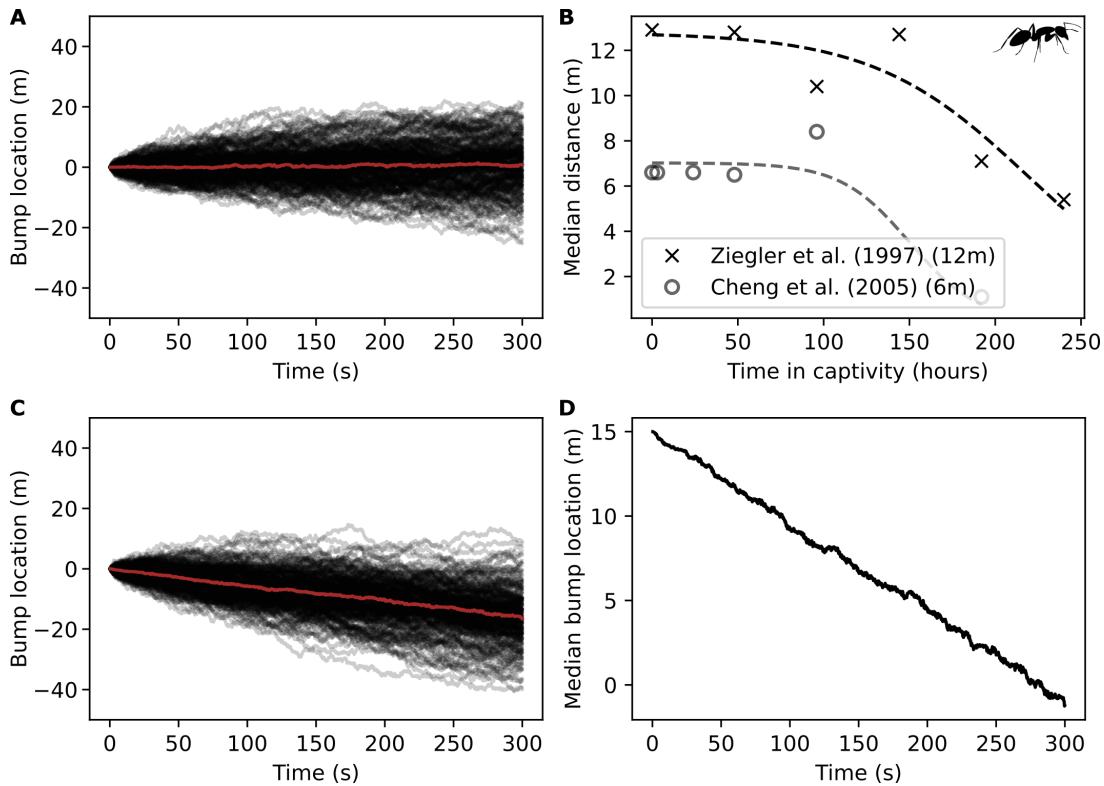


Figure 5: Loss of state value over time. (A) Dispersion in the bump attractor's state over time for 200 simulation trials starting from the same initial state of the bump attractor. The initial bump location disperses due to stochastic neuronal noise resulting in increased mean absolute deviation from the original value with a constant rate. During individual trials, the bump is equally likely to move towards higher or lower location values. The median across trials is shown in red. (B) The homing distance of ants monotonically decays with captivity time. Data points in black x's are from Ziegler and Wehner (1997), while data points in grey o's are from Cheng et al. (2005). The actual distance between nest and capture point is 12 m in Ziegler and Wehner (1997) and 6 m in Cheng et al. (2005). The inverse logistic function (Boltzmann function) $y = \frac{a}{1+e^{k(x-x_0)}}$ was fitted to the data points with parameter values $a = 12.791$, $x_0 = 219.699$, and $k = 0.022$ ($R^2 = 0.848$) for Ziegler and Wehner (1997) and $a = 11.744$, $x_0 = 115.961$, and $k = 0.040$ ($R^2 = 0.866$) for Cheng et al. (2005). (C) Effect of systematic anisotropy in synaptic weights of the bump attractor. Anisotropy was introduced by changing the synaptic strength pattern from Gaussian to skewed Gaussian with parameter $a = -0.0005$, resulting in a constant bump drift rate. Data of 200 simulation trials are shown (the median across trials is shown in red). The bump location changes because of the combination of systematic drift due to the structural bias and stochastic drift due to neuronal noise. (D) Median bump location of the data shown in C with the starting value set to 15 m for comparison with B. Unlike the ants, the bump's location drifts with a constant rate.

218 Cheung, 2010; Wittmann and Schwengler, 1995; Kim and Hallam, 2000; Vickerstaff and Di Paolo,
 219 2005; Haferlach et al., 2007; Stone et al., 2017; Wolff and Rubin, 2018; Hulse and Jayaraman, 2020;
 220 Pisokas et al., 2021). Modelling has shown that the columnar organisation of the central complex
 221 provides a neural basis for potentially encoding and storing the coordinate values along eight columns
 222 of neurons, with each column corresponding to a cardinal axis (Haferlach et al., 2007; Stone et al.,
 223 2017). In this model, the eight memory values form a sinusoidal pattern with its amplitude encoding
 224 the distance the agent has travelled away from its origin and the location of the minimal memory
 225 value (column) corresponding to the direction the agent has mostly travelled away from its origin
 226 (Fig 6C) (Haferlach et al., 2007; Stone et al., 2017). When a homing agent returns to its origin,
 227 the sinusoid's amplitude approaches zero and does not provide the agent with a direction to move
 228 towards. As a result, a homing agent would move in a random pattern around the expected nest
 229 location, resembling the search pattern observed in ants (Stone et al., 2017).

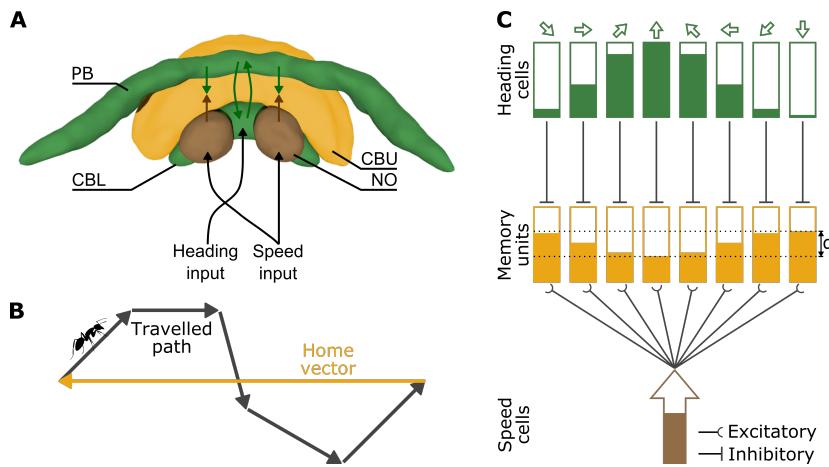


Figure 6: A Cartesian home vector encoding model of insect path integration. (A) The anatomy of the central complex and the main neuronal signal pathways involved in path integration. The brain structures — protocerebral bridge (PB), upper central body (CBU, also fan-shaped body), lower central body (CBL, also ellipsoid body), and noduli (NO) — are colour coded to match the conceptual drawing in (C). The compartment and arrow colours indicate the type of identified signals (heading and speed) and their convergence in the CBU, where the path integration memory is hypothesised to reside (Stone et al., 2017). Image adapted from the insectbraindb.org. (B) Illustration of example outbound path and corresponding accumulated home vector. (C) Conceptual depiction of the path integration model with each of the eight columns encoding one of the cardinal directions in a Cartesian coordinate system (Stone et al., 2017). Rectangular boxes represent neuronal ensembles and shaded portions the activity level or stored value. The inputs are the current insect heading (population coding with eight cardinal directions around the animal, i.e. EPG neurons (Wolff and Rubin, 2018)) and the current insect speed (encoded as the spike rate of TN neurons (Stone et al., 2017)). Both the heading and speed neurons drive the eight speed integrating ‘memory units’. The inhibitory heading signals mask the speed signal, so the lower the heading neuron activity, the more the speed signal is integrated by the corresponding memory unit. The memory unit values form a sinusoidal pattern encoding the distance from the origin in its amplitude (α) and the direction to the origin in the horizontal location of the minimum.

230 In our model, each memory unit consists of a bump attractor encoding the agent’s displacement
 231 in the corresponding cardinal direction. We assumed that the bump attractors have neurons with a
 232 large enough time constant resulting in the homing accuracy decay rate observed in ants (3.4 cm/h).
 233 During the waiting time the bump attractors would accumulate error. As expected, the agent’s
 234 homing distance and direction accuracy degraded with the waiting time before release (Fig 7). We
 235 also observed that the decay of the directional accuracy was similar to the decay of the distance
 236 accuracy (compare 7C and 7D). This is in contrast to the ants’ behaviour, where the distance accu-
 237 racy decays faster than the directional accuracy (Ziegler and Wehner, 1997). Clearly, the animal’s
 238 memory follows dissipation dynamics that do not match the diffusion dynamics of attractor net-
 239 works. Furthermore, the median homing distance of the agent slightly increased with the waiting
 240 time (Fig 7D, non statistically significant change), while in the ants systematically decreased with
 241 an accelerating rate (Fig 5B). These findings show that even in the context of a behaving agent, the
 242 bump attractor dynamics do not produce behaviour resembling that of the animals.

243 3 Discussion

244 We investigated the plausibility of the bump attractor model as a potential mechanism underly-
 245 ing path integration memory in insects. To this end, we compared the temporal dynamics of the
 246 path integration memory of *Cataglyphis fortis* ants with those of bump attractors encoding the
 247 agent’s displacement. While the behaviour of bump attractors depend on the choice of modelling

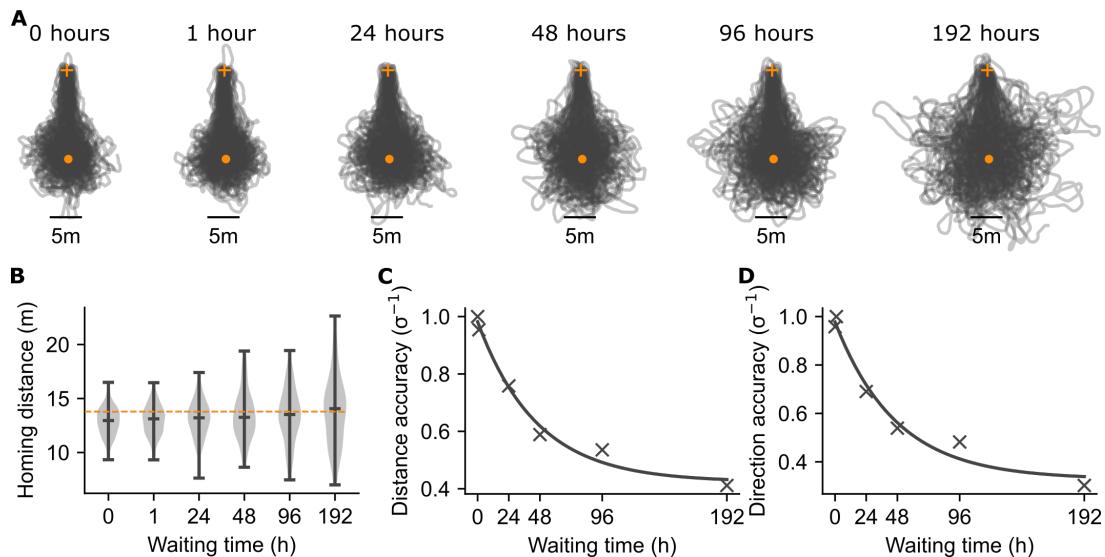


Figure 7: Agent homing accuracy degradation over time. (A) Paths of an agent kept stationary (waiting) for different amounts of time before being released for homing. The release location is indicated with an orange cross and the nest location with an orange disc. During the waiting time the bump attractor's state stochastically drifts accumulating error. Then the agent is released to return to its origin as indicated by its home vector memory (encoded in the state of the bump attractors). Once the agent reaches the location indicated by its memory, it searches following a random looping trajectory resulting in the blob of overlapping paths centered at the expected home location (orange disc). (B) The distribution of the homing distances (distance between the release point and the focus of search) as a function of the waiting time. (C) The median homing distance accuracy as a function of the waiting time. The fitted exponential function (dashed curve) $y = ae^{-bx} + c$ has parameters $a = 0.558$, $b = 0.022$, and $c = 0.424$. (D) The mean homing direction accuracy as a function of the waiting time. Fitted with an exponential function with parameters $a = 0.649$, $b = 0.021$, and $c = 0.328$.

assumptions and parameters, we found that certain properties are robust features of this model class, which we compared to experimental data. We tested the bump attractor hypothesis with respect to the temporal degradation dynamics of homing accuracy, the number of required neurons, and the required neuronal time constants.

The bump attractor hypothesis predicts that the accuracy of the ants' homing distance degrades at a constant rate during the period of time intervening before release. This is indeed the case in *Cataglyphis fortis* ants. The bump attractor hypothesis also predicts that the bump attractor network must consist of a considerable number of neurons or of neurons with adequately high time constants to be stable enough at the ecologically relevant time scale. However, the corporeal reality of the insect brain renders this last prediction inadmissible since it neither contains enough neurons nor are they known to have the high time constants required. But even in the case that these conditions are satisfied by a yet unobserved physiological property substantially increasing the neuronal time constant, we showed that the state value drift dynamics predicted by the bump attractor hypothesis do not match the observed dynamics of the animal's homing distance. Any reasonable attempt to coax the bump attractor into reproducing the animal homing distance dynamics has failed.

In the present work, we assumed that the homing distance degradation in ants is due to a degradation in the animal's path integration memory. It is not inconceivable that other factors might be involved in the observed behaviour, such as the motivational state of the animals. However, there was no evidence of such an effect in the experiments since the animals continued searching for their nest, indicating that they were motivated to return to it.

A further consideration is that the biophysical parameters used in our models are based on measurements performed on neurons *in vitro*, typically at room temperatures. The desert ants,

Table 1: Ant and bump attractor dynamics comparison.

Parameter	Ants	Bump Attractor
Distance decay type	Monotonic	Random walk
Distance degradation rate	Constant	Constant
Number of neurons	Limited	More than available
Resettable	Yes	Yes

270 *Cataglyphis fortis*, are active at much higher temperatures which unavoidably affect the biophysical
271 properties of their neurons. At higher temperatures, the membrane ion-channels become faster
272 (Frankenhaeuser and Moore, 1963; Tang et al., 2010), their conductance increases (Volgushev et al.,
273 2000), and synaptic transmission is faster (Postlethwaite et al., 2007). The structural properties of
274 the membrane are also affected, resulting in decreased capacitance and time constants (Volgushev
275 et al., 2000), while the neuronal channel noise level decreases (Faisal et al., 2005, 2008). The precise
276 effect of the higher temperature on the neurons is complex and further investigation is needed.
277 However, the magnitude and polarity of the effects of temperature seem unlikely to result in a
278 significant coordinated improvement of the bump attractor’s stability.

279 Despite our attempts to address every one of the model’s limitations, the bump attractor hypothesis
280 failed to withstand all our tests. The model is limited both in the duration of state maintenance
281 and the dynamics of state degradation. Our work falsifies the bump attractor memory hypothesis
282 and rekindles the quest for the memory substrate of path integration.

283 4 Materials and Methods

284 4.1 Data extraction and processing

285 The ant behaviour data were extracted from Ziegler and Wehner (1997) and Cheng et al. (2005). The
286 extracted data points as well as the data produced from simulations in this paper were fitted using
287 the curve_fit function of SciPy’s optimize Python package with curve parametrisation as described
288 in Figs 2, 3, 5, and 7.

289 4.2 Bump attractor network model

290 The bump attractor network model implementation used in our experiments was derived from the
291 code of Gerstner et al. (2014). Our source code is available at https://github.com/johnpi/Pisokas_Hennig_2022_Attractor_Based_Memory. To avoid the effect of boundary conditions at
292 the edges of a line attractor, we used a ring attractor network topology and we made sure our
293 experiments were confined to activity bump shifts less than $\pm 180^\circ$. In this way, for the purposes of
294 our experiments the topology of the circuit was indistinguishable from an actual line attractor.
295

296 The bump attractor network model used in the experiments had uniform global inhibition and
297 structured lateral excitatory synapses with efficacies that followed a Gaussian profile. The skewed
298 Gaussian formulation described below was used for determining synaptic efficacies to allow us to
299 choose between Gaussian and skewed Gaussian profiles. The synaptic efficacies $w(x_i, x_j)$ were there-
300 fore described by the following formulation. Let $\phi(x)$ denote the Gaussian probability density
301 function

$$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x}{\sigma})^2}$$

302 where $\sigma^2 = 20$ is the variance (width) of the Gaussian profile. Let $\Phi(x)$ denote the cumulative
303 distribution function of the Gaussian

$$\Phi(x) = \int_{-\infty}^x \phi(y) dy = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x}{\sigma\sqrt{2}} \right) \right]$$

304 where $\operatorname{erf}(\cdot)$ is the error function. Then the probability density function of the skewed Gaussian
305 and thus the synaptic weights are given by

$$w(x_i, x_j) = 2\phi(x_i - x_j)\Phi(\alpha(x_i - x_j))$$

306 where α is the skewness factor, with $\alpha = 0$ resulting in the Gaussian probability density function.
307 In the case of simulations with systematically biased bump drift we used $\alpha = -0.0005$. x_i and x_j
308 are the positions of the presynaptic and postsynaptic neurons, and $w(x_i, x_j) \in [-1, 1]$ is the synaptic
309 connection weight from neuron x_i to neuron x_j . The values of x_i and x_j are periodic taking values
310 in the range $[0, N - 1]$, where N is the number of excitatory neuronal units in the circuit and the
311 difference $x_i - x_j$ is calculated as a modulo N subtraction, as in Brody et al. (2003). The values
312 of $w(x_i, x_j)$ determined the synaptic efficacy profile of the excitatory synapses while the inhibitory
313 synapses had uniform efficacy.

314 4.3 Neuron model

315 We used two neuronal models in our experiments. The first one, the base model, utilised spiking
316 neurons with AMPA, NMDA and GABA_A receptor channels. The inclusion of NMDA receptors
317 endows the network with regular activity, since a network with only AMPA and GABA_A receptors
318 produces synchronous spiking activity (Compte et al., 2000).

319 The second neuron model, utilised the neurotransmitter receptors of the first model and in addition
320 cholinergic muscarinic receptors (mACh) that metabotropically opened clusters of cooperative
321 non-specific cation channels that provided the graded persistent spiking observed in the entorhinal
322 cortex layer V neurons (Egorov et al., 2002, 2006).

323 The intrinsic neuronal properties for the excitatory neurons of the base model were set to a
324 membrane capacitance $C_m = 0.5nF$, leak conductance $g_L = 25nS$, reversal potential $E_L = -70mV$,
325 threshold potential $V_{th} = -50mV$, reset potential $V_{res} = -60mV$, and absolute refractory period
326 $\tau_{ref} = 2ms$. For the inhibitory neurons of the base model the corresponding values were $C_m =$
327 $0.2nF$, $g_L = 20nS$, $E_L = -70mV$, $V_{th} = -50mV$, $V_{res} = -60mV$, and $\tau_{ref} = 1ms$.

328 The intrinsic neuronal properties for the excitatory neurons with the non-specific cation con-
329 ductance were set to a membrane capacitance $C_m = 0.2nF$, leak conductance $g_L = 0.2nS$, reversal
330 potential $E_L = -63mV$, threshold potential $V_{th} = 10mV$, reset potential $V_{res} = -60mV$, and
331 absolute refractory period $\tau_{ref} = 3ms$. For the inhibitory neurons with the non-specific cation con-
332 ductance the corresponding values were $C_m = 0.2nF$, $g_L = 0.2nS$, $E_L = -63mV$, $V_{th} = 10mV$,
333 $V_{res} = -60mV$, and $\tau_{ref} = 2ms$.

334 For modifying the membrane time constant of the neurons the membrane capacitance was ad-
335 justed accordingly using the equation

$$C_m = \tau_m * g_L$$

336 where τ_m is the desired time constant. The external input that sets the initial bump location
337 consists of synaptic connections formed with the excitatory neurons that are mediated by AMPA
338 receptors. The maximum conductance of AMPA receptors channels for the excitatory cells was
339 $G_{ext,E} = 3.1nS$ and for the inhibitory cells $G_{ext,I} = 2.38nS$.

340 Postsynaptic currents were modeled as

$$I_{post} = sg_{syn}(V_m - E_{syn})$$

341 where s is the gating variable, g_{syn} the synaptic conductance, V_m the membrane potential, and
 342 E_{syn} the synaptic reversal potential (set to 0mV for AMPA, NMDA, and mACh receptor channels
 343 and to -70mV for GABA_A ones). The gating variables were modeled as in Compte et al. (2000). The
 344 decay time constants of the gating variables were set to 2ms for AMPA, 10ms for GABA_A, 65ms for
 345 NMDA, and 5ms for mACh receptor channels.

346 The non-specific cation channels were modelled as clusters of cooperatively opening channels
 347 (Pfeiffer et al., 2020). The cluster opening kinetics were governed by

$$\frac{dO_{coop}}{dt} = \frac{\alpha_o}{\tau_{coop}} s_{mACh} G_{EE} - \frac{\beta_o}{\tau_{coop}} s_{GABA} G_{IE}$$

348 where α_o and β_o are the opening and closing rate factors, respectively. τ_{coop} is the average cluster
 349 transition time constant. s_{mACh} and s_{GABA} are the channel gating variables. G_{EE} and G_{IE} are
 350 synaptic conductances described in Table 2. The number of open clusters was clipped to the range
 351 [0, 100]. The total cluster current was

$$I_{cluster} = G_{coop} O_{coop} (V_m - E_{coop})$$

352 where $G_{coop} = 0.4nS$. The synaptic conductance between neurons i and j was modeled as

$$g_{syn,ij} = w(x_i, x_j) G_{syn}$$

353 The synaptic conductances G_{syn} mediated by the AMPA, NMDA, GABA_A, and mACh (cholin-
 354 ergic muscarinic) receptor channels were determined by following the procedure outlined in Brody
 355 et al. (2003) to obtain the formation of a stable activity bump. Subsequently, starting with the hand
 356 tuned values, the dual_annealing optimiser from SciPy' optimize Python package was utilised to
 357 optimise the synaptic conductances G_{syn} using the objective function

$$\begin{aligned} \underset{\mathbf{G}}{\text{argmin}} \quad & \epsilon_{H1}(\mathbf{G}) + \epsilon_{H2}(\mathbf{G}) + 5(\epsilon_{W1}(\mathbf{G}) + \epsilon_{W2}(\mathbf{G})) + \epsilon_{A1}(\mathbf{G}) + \epsilon_{A2}(\mathbf{G}) + 2\epsilon_S(\mathbf{G}) + W_{diff}(\mathbf{G}) \\ \text{s. t.} \quad & \epsilon_{H1}(\mathbf{G}) = \frac{|H_d(t_1) - H_a(\mathbf{G}, t_1)|}{360^\circ} \\ & \epsilon_{H2}(\mathbf{G}) = \frac{|H_d(t_2) - H_a(\mathbf{G}, t_2)|}{360^\circ} \\ & \epsilon_{W1}(\mathbf{G}) = \frac{|55^\circ - W_a(\mathbf{G}, t_1)|}{360^\circ} \\ & \epsilon_{W2}(\mathbf{G}) = \frac{|55^\circ - W_a(\mathbf{G}, t_2)|}{360^\circ} \\ & A_1(\mathbf{G}) = \frac{1}{1 + (A_{max}(\mathbf{G}, t_1, \Delta t) - A_{min}(\mathbf{G}, t_1, \Delta t))} \\ & A_2(\mathbf{G}) = \frac{1}{1 + (A_{max}(\mathbf{G}, t_2, \Delta t) - A_{min}(\mathbf{G}, t_2, \Delta t))} \\ & W_{diff}(\mathbf{G}) = \frac{|W_a(\mathbf{G}, t_1) - W_a(\mathbf{G}, t_2)|}{360^\circ} \\ & 0 \leq G_{II} \leq 0.01 \\ & 0 \leq G_{IE} \leq 10 \\ & 0 \leq G_{EE} \leq 10 \\ & 0 \leq G_{EI} \leq 10 \end{aligned} \tag{1}$$

358 Where ϵ_{H1} , ϵ_{H2} , ϵ_{W1} , and ϵ_{W2} are the error factors measured as deviations from the desired
 359 values. $H_d(t)$ is the desired activity 'bump' heading at time t , while $H_a(\mathbf{G}, t)$ is the actual measured
 360 activity 'bump' heading at time t given a model with channel efficacies \mathbf{G} . $W_a(\mathbf{G}, t)$ is the actual

Table 2: Ant and bump attractor dynamics comparison.

Conductance variable	Corresponding synapse and receptors
G_{II}	From inhibitory to inhibitory neurons (GABA _A)
G_{IE}	From inhibitory to excitatory neurons (GABA _A)
G_{EE}	From excitatory to excitatory neurons (NMDA and mACh)
G_{EI}	From excitatory to inhibitory neurons (NMDA and AMPA)

361 measured width of the activity ‘bump’ at time t (measured as the full width at half maximum).
362 $A_{max}(\mathbf{G}, t, \Delta t)$ and $A_{min}(\mathbf{G}, t, \Delta t)$ are the maximum and minimum neuron spike rates across all
363 excitatory neurons in the attractor network with channel conductances \mathbf{G} , measured for a duration
364 Δt starting at time t . t_1 and t_2 are sampling times located near the beginning and the end of the
365 simulation, respectively. \mathbf{G} is the vector $[G_{II}, G_{IE}, G_{EE}, G_{EI}]$. G_{II} , G_{IE} , G_{EE} , and G_{EI} are the
366 synaptic conductances as described in Table 2. These were optimised separately for the basic model
367 and the model that included the non-specific cation conductances. The synaptic conductances that
368 resulted from multiple runs were manually tested to verify the results.

369 4.4 Neuronal noise

370 All neurons receive excitatory input modeled as uncorrelated Poisson spike trains with average spike
371 rate as specified in the appropriate sections of the text. The neuronal noise used in Figures 2A, 2C,
372 2D, 4, 5A, 5C, and 5D was modeled as Poisson noise with an average spike rate 5 Hz. This noise
373 level was chosen because the attractor’s state drift rate reaches a plateau beyond Poisson neuronal
374 noise with an average spike rate of 4Hz (Fig 2C). In Fig 3, the Poisson neuronal noise was set to an
375 average spike rate 1400 Hz to allow networks with higher neuronal time constants to sustain a bump
376 of activity.

377 4.5 Agent simulations

378 The agent simulations were based on the anatomically constrained model of Stone et al. (2017). The
379 source code of the original work was modified and extended as described below and it is available
380 at https://github.com/johnpi/Pisokas_Hennig_2022_Attractor_Based_Memory. The neurons
381 were modeled as rate-based perceptrons with a sigmoid activation function. Independent Gaussian
382 noise with $\mu = 0$ and $\sigma^2 = 0.01$ was added to the activation of each neuron and the resulting values
383 were clipped to the range $[0, 1]$.

384 To reproduce agent paths resembling those of ants we added motor noise that is parametric to
385 the home vector length, as in Pisokas et al. (2021). This motor noise was modelled as a Gaussian
386 noise factor applied to the steering commands of the agent

$$steering = steering_command \cdot \epsilon \quad (2)$$

387 where $steering_command$ is the steering command generated by the path integration model
388 in homing mode, $steering$ is the actual agent steering, and $\epsilon \sim \mathcal{N}(\mu, \sigma^2)$ is a random variable
389 sampled from the Gaussian distribution with $\mu = 1$ and σ set to the motor noise level. The motor
390 noise level was modelled as a decaying exponential function of the memory amplitude, as in Pisokas
391 et al. (2021). The memory amplitude a_m was defined as the difference between the maximum and
392 minimum value along the sinusoidal pattern of memory unit values (Pisokas et al., 2021).

$$Motor\ noise = \frac{y_{max}}{e^{s_m \cdot a_m}} \quad (3)$$

393 where y_{max} is the maximum motor noise level (corresponding to zero vector ant paths), and s_m
394 is the slope of the exponential function.

395 The translational velocity of the simulated agents during homing was iteratively updated using
396 the formula

$$v(t) = \begin{cases} v(t-1) + a\Delta t - \mu_f v(t-1), & \text{if } |steering| \leq 20^\circ \\ v(t) = 0, & \text{if } |steering| > 20^\circ \end{cases} \quad (4)$$

397 where $v(t)$ is the agent's velocity at time step t , $a = 0.08 \text{ m/s}^2$ is an acceleration constant, Δt
398 is the simulated time step duration, and $\mu_f = 0.15$ is a friction constant. The velocity was reset to
399 0 m/s whenever the agent performed a turn larger than 20° simulating a stop on turning as observed
400 in ants (Pisokas et al., 2021).

401 We performed a grid search following the procedure outlined in Pisokas et al. (2021) to find
402 the combination of maximum motor noise level ($y_{max} = 7$) and slope ($s_m = 9$) of the decaying
403 exponential that produces simulated paths that resemble the paths of both zero vector ants (zero
404 memory amplitude) and full vector ants.

405 The inputs to the path integration model were the allocentric orientation of the agent and the
406 speed of the agent's motion (Figure 6, see also Stone et al. (2017)). Visual landmark cues were
407 not used in either the outbound or the homing part of the simulations; thus, path integration was
408 the sole navigation mechanism utilised. The simulations had two stages, an outbound trip and a
409 homing trip. For generating the outbound trip, the agent began from a designated nest location and
410 moved following a path generated by a filtered (smoothed) noise process, as previously described
411 by Stone et al. (2017), until it reached a designated food location. Outbound agent simulations
412 that did not result in the agent reaching the designated food location after 1500 simulation steps
413 were disregarded. During the outbound trip, a home vector was accumulated that was encoded as
414 the states of the eight memory units. Subsequently, an intervening waiting period was simulated
415 during which stochastic memory state drift continued to occur, and then the simulation proceeded
416 with the agent release in homing mode. The simulated homing paths were cut at 1500 steps from
417 release allowing a sufficiently long observation period of the search behaviour to estimate the centre
418 of search.

419 4.6 Agent memory model

420 For computational efficiency, the bump attractor memory dynamics were introduced in the agent
421 simulations as variables with Brownian noise that replicated the stochastic drift exhibited by the
422 bump attractors. The states of the memory units were updated by

$$mem(t) = mem(t) + b \quad (5)$$

423 where

$$b \sim \mathcal{N}(\mu, \sigma^2) \quad (6)$$

424 There were eight such variables one for each cardinal direction (Fig 6C). We set $\mu = 0$ and σ
425 to appropriate values corresponding to the effect of stochastic bump location drift for the different
426 waiting periods. We experimentally determined that $\sigma = 0.0055$ produces the nearest approximation
427 to the 3.4 cm/h drift rate observed in the ant behaviour. For different waiting periods the required
428 σ value is given by $\sigma = \sqrt{t_w} 0.0055$, where t_w is the waiting period in seconds.

429 5 Acknowledgements

430 We would like to thank Barbara Webb for early discussion of the ideas developed in this paper
431 and her comments on the draft. We would also like to thank Eve Marder and Stanley Heinze for
432 early discussion of this work. Part of this work was funded by the Principal's Career Development
433 Scholarship, University of Edinburgh.

434 References

435 Christian Boucheny, Nicolas Brunel, and Angelo Arleo. A continuous attractor network model
436 without recurrent excitation: Maintenance and integration in the head direction cell system.
437 *Journal of Computational Neuroscience*, 18(2):205–227, March 2005. ISSN 0929-5313. doi: 10.
438 1007/s10827-005-6559-y.

439 Carlos D Brody, Ranulfo Romo, and Adam Kepecs. Basic mechanisms for graded persistent activity:
440 Discrete attractors, continuous attractors, and dynamic representations, 2003. ISSN 0959-4388.
441 URL <http://www.sciencedirect.com/science/article/pii/S0959438803000503>.

442 Yoram Burak and Ilia R. Fiete. Accurate Path Integration in Continuous Attractor Network Models
443 of Grid Cells. *PLoS Computational Biology*, 5(2):e1000291, February 2009. ISSN 1553-7358. doi:
444 10.1371/journal.pcbi.1000291.

445 Yoram Burak and Ilia R. Fiete. Fundamental limits on persistent activity in networks of noisy
446 neurons. *Proceedings of the National Academy of Sciences*, 109(43):17645–17650, October 2012.
447 ISSN 0027-8424. doi: 10.1073/PNAS.1117386109. URL <https://www.pnas.org/content/109/43/17645>.

449 Stephen C. Cannon, David A. Robinson, and Shihab Shamma. A proposed neural network for the
450 integrator of the oculomotor system. *Biological Cybernetics*, 49(2):127–136, 1983. ISSN 0340-1200.
451 doi: 10.1007/bf00320393.

452 Ken Cheng, Ajay Narendra, and Rüdiger Wehner. Behavioral ecology of odometric memories in
453 desert ants: Acquisition, retention, and integration. *Behavioral Ecology*, 17(2):227–235, December
454 2005. ISSN 1045-2249. doi: 10.1093/beheco/arj017.

455 Allen Cheung and Robert Vickerstaff. Finding the way with a noisy brain. *PLoS Computational
456 Biology*, 6(11):e1000992, 2010. ISSN 1553-734X. doi: 10.1371/journal.pcbi.1000992.

457 T.S. Collett. Path integration: how details of the honeybee waggle dance and the foraging strategies
458 of desert ants might help in understanding its mechanisms. *Journal of Experimental Biology*, 222,
459 May 2019. ISSN 1477-9145. doi: 10.1242/jeb.205187. URL <http://www.ncbi.nlm.nih.gov/pubmed/31152122>.

461 A. Compte, Nicolas Brunel, Patricia S. Goldman-Rakic, and Xiao-Jing Wang. Synaptic Mechanisms
462 and Network Dynamics Underlying Spatial Working Memory in a Cortical Network Model.
463 *Cerebral Cortex*, 10(9):910–923, September 2000. ISSN 1460-2199. doi: 10.1093/cercor/10.9.910.

464 John Conklin and Chris Eliasmith. A controlled attractor network model of path integration in the
465 rat. *Journal of Computational Neuroscience*, 18(2):183–203, March 2005. ISSN 0929-5313. doi:
466 10.1007/s10827-005-6558-z.

467 Charles Darwin. Origin of Certain Instincts. *Nature*, 7:417–418, 1873. URL <https://www.nature.com/articles/007417a0>.

469 Alexei V. Egorov, Bassam N. Hamam, Erik Fransén, Michael E. Hasselmo, and Angel A. Alonso.
470 Graded persistent activity in entorhinal cortex neurons. *Nature*, 420(6912):173–8, November 2002.
471 ISSN 0028-0836. doi: 10.1038/nature01171. URL <http://www.nature.com/doifinder/10.1038/nature01171> <http://www.ncbi.nlm.nih.gov/pubmed/12432392>.

473 Alexei V. Egorov, Klaus Unsicker, and Oliver Von Bohlen Und Halbach. Muscarinic control of
474 graded persistent activity in lateral amygdala neurons. *European Journal of Neuroscience*, 24(11):
475 3183–3194, 2006. ISSN 0953-816X. doi: 10.1111/j.1460-9568.2006.05200.x.

476 Basil el Jundi, Eric J. Warrant, Keram Pfeiffer, and Marie Dacke. Neuroarchitecture of the dung
477 beetle central complex. *Journal of Comparative Neurology*, 526(16):2612–2630, August 2018. ISSN
478 1096-9861. doi: 10.1002/cne.24520.

479 A. Aldo Faisal, John A. White, and Simon B. Laughlin. Ion-Channel Noise Places Limits on the
480 Miniaturization of the Brain’s Wiring. *Current Biology*, 15(12):1143–1149, 2005. ISSN 0960-9822.
481 doi: 10.1016/j.cub.2005.05.056.

482 A. Aldo Faisal, Luc P. J. Selen, and Daniel M. Wolpert. Noise in the nervous system. *Nature Reviews
483 Neuroscience*, 9(4):292–303, 2008. ISSN 1471-003X. doi: 10.1038/nrn2258.

484 Romain Franconville, Celia Beron, and Vivek Jayaraman. Building a functional connectome of the
485 Drosophila central complex. *eLife*, 7, August 2018. ISSN 2050-084X. doi: 10.7554/elife.37017.
486 URL <https://elifesciences.org/articles/37017>.

487 B. Frankenhaeuser and L. E. Moore. The effect of temperature on the sodium and potassium
488 permeability changes in myelinated nerve fibres of *Xenopus laevis*. *The Journal of Physiology*, 169
489 (2):431–437, 1963. ISSN 1469-7793. doi: 10.1113/jphysiol.1963.sp007269.

490 Erik Fransén, Babak Tahvildari, Alexei V. Egorov, Michael E. Hasselmo, and Angel A. Alonso.
491 Mechanism of Graded Persistent Cellular Activity of Entorhinal Cortex Layer V Neurons.
492 *Neuron*, 49(5):735–746, March 2006. URL <https://www.sciencedirect.com/science/article/pii/S0896627306000924> <http://www.sciencedirect.com/science/article/pii/S0896627306000924>.

495 Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. *Neuronal dynamics: From
496 single neurons to networks and models of cognition*. Cambridge University Press, 2014. ISBN
497 1107060834.

498 Dennis Goldschmidt, Sakyasingha Dasgupta, Florentin Wörgötter, and Poramate Manoonpong. A
499 neural path integration mechanism for adaptive vector navigation in autonomous agents. In
500 *2015 International Joint Conference on Neural Networks (IJCNN)*, pages 1–8, 2015. ISBN
501 9781479919604. doi: 10.1109/IJCNN.2015.7280400.

502 Dennis Goldschmidt, Poramate Manoonpong, and Sakyasingha Dasgupta. A Neurocomputational
503 Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents. *Frontiers in Neurorobotics*,
504 11:1–17, April 2017. ISSN 1662-5218. doi: 10.3389/fnbot.2017.00020.

505 Jeremy P. Goodridge and David S. Touretzky. Modeling Attractor Deformation in the Rodent Head-
506 Direction System. *Journal of Neurophysiology*, 83(6):3402–3410, June 2000. ISSN 0022-3077. doi:
507 10.1152/jn.2000.83.6.3402.

508 Jonathan Green and Gaby Maimon. Building a heading signal from anatomically defined neuron
509 types in the Drosophila central complex. *Current Opinion in Neurobiology*, 52:156–164, October
510 2018. ISSN 1873-6882. doi: 10.1016/j.conb.2018.06.010. URL <https://www.sciencedirect.com/science/article/pii/S0959438818300072>.

512 Jonathan Green, Atsuko Adachi, Kunal K. Shah, Jonathan D. Hirokawa, Pablo S. Magani, and
513 Gaby Maimon. A neural circuit architecture for angular integration in *Drosophila*. *Nature*, 546
514 (7656):101–106, May 2017. ISSN 1476-4687. doi: 10.1038/nature22343.

515 Thomas Haferlach, Jan Wessnitzer, Michael Mangan, and Barbara Webb. Evolving a neural model
516 of insect path integration. *Adaptive Behavior*, 15(3):273–287, September 2007. ISSN 1059-7123.
517 doi: 10.1177/1059712307082080.

518 Stanley Heinze. Neuroethology: Unweaving the senses of direction, November 2015. ISSN 0960-9822.
519 URL <http://linkinghub.elsevier.com/retrieve/pii/S0960982215010829>.

520 Stanley Heinze and Uwe Homberg. Maplike Representation of Celestial E-Vector Orientations
521 in the Brain of an Insect. *Science*, 315(5814):995–997, February 2007. doi: 10.1126/
522 science.1135531. URL [http://science.sciencemag.org.ezproxy.is.ed.ac.uk/content/315/5814/995.full](http://science.sciencemag.org/content/315/5814/995.fullhttp://science.sciencemag.org.ezproxy.is.ed.ac.uk/content/315/5814/995.full).

524 Stanley Heinze, Jeremy Florman, Surainder Asokaraj, Basil El Jundi, and Steven M. Reppert.
525 Anatomical basis of sun compass navigation II: The neuronal composition of the central complex
526 of the monarch butterfly. *Journal of Comparative Neurology*, 521(2):267–298, February 2013.
527 ISSN 0021-9967. doi: 10.1002/cne.23214.

528 Stanley Heinze, Ajay Narendra, and Allen Cheung. Principles of Insect Path Integration. *Current
529 Biology*, 28(17):R1043—R1058, 2018. ISSN 0960-9822. doi: 10.1016/j.cub.2018.04.058.
530 URL <https://www.sciencedirect.com/science/article/pii/S096098221830530Xhttps://linkinghub.elsevier.com/retrieve/pii/S096098221830530X>.

532 Uwe Homberg, Stanley Heinze, Keram Pfeiffer, Michiyo Kinoshita, and Basil El Jundi. Central
533 neural coding of sky polarization in insects. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 366(1565):680–687, 2011. ISSN 1471-2970. doi: 10.1098/rstb.2010.
535 0199. URL <http://rstb.royalsocietypublishing.org/content/366/1565/680.shorthttp://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.2010.0199>.

537 Roman Huber and Markus Knaden. Egocentric and geocentric navigation during extremely long
538 foraging paths of desert ants. *Journal of Comparative Physiology A: Neuroethology, Sensory,
539 Neural, and Behavioral Physiology*, 201(6):609–616, 2015. ISSN 1432-1351. doi: 10.1007/
540 s00359-015-0998-3.

541 Brad K. Hulse and Vivek Jayaraman. Mechanisms Underlying the Neural Computation of Head
542 Direction. *Annual Review of Neuroscience*, 43:31–54, 2020. ISSN 1545-4126. doi: 10.1146/
543 annurev-neuro-072116-031516.

544 Kyobi S. Kakaria and Benjamin L. de Bivort. Ring Attractor Dynamics Emerge from a Spiking
545 Model of the Entire Protocerebral Bridge. *Frontiers in Behavioral Neuroscience*, 11:8, February
546 2017. ISSN 1662-5153. doi: 10.3389/fnbeh.2017.00008.

547 DaeEun Kim and John C.T. Hallam. Neural network approach to path integration for homing
548 navigation. In *From Animals to Animats 6*, pages 228–235. MIT Press, 2000.

549 DaeEun Kim and Jiwon Lee. Path integration mechanism with coarse coding of neurons. *Neural Processing Letters*, 34(3):277–291, December 2011. ISSN 1370-4621. doi: 10.1007/s11063-011-9198-5.

551 Irene S. Kim and Michael H. Dickinson. Idiothetic Path Integration in the Fruit Fly *Drosophila*
552 *melanogaster*. *Current Biology*, 27(15):2227–2238, 2017. ISSN 0960-9822. doi: 10.1016/j.cub.2017.
553 06.026. URL <https://www.sciencedirect.com/science/article/pii/S0960982217307285>.

554 Sung Soo Kim, Hervé Rouault, Shaul Druckmann, and Vivek Jayaraman. Ring attractor dynamics
555 in the *Drosophila* central brain. *Science*, 356(6340):849–853, May 2017. ISSN 1095-9203. doi:
556 10.1126/science.aal4835. URL <http://science.sciencemag.org/content/early/2017/05/03/science.aal4835.full><http://www.ncbi.nlm.nih.gov/pubmed/28473639>.

558 B L McNaughton, C a Barnes, J L Gerrard, K Gothard, M W Jung, J J Knierim, H Kudrimoti,
559 Y Qin, W E Skaggs, M Suster, and K L Weaver. Deciphering the hippocampal polyglot: the
560 hippocampus as a path integration system. *The Journal of experimental biology*, 199(Pt 1):173–
561 185, 1996. ISSN 0022-0949.

562 Bruce L. McNaughton, Francesco P. Battaglia, Ole Jensen, Edvard I Moser, and May-Britt Moser.
563 Path integration and the neural basis of the 'cognitive map'. *Nature Reviews Neuroscience*, 7(8):
564 663–678, August 2006. ISSN 1471-003X. doi: 10.1038/nrn1932. URL <http://www.nature.com/articles/nrn1932><http://www.nature.com/doifinder/10.1038/nrn1932>.

566 R. Menzel and U. Muller. Learning and memory in honeybees: From behavior to neural substrates.
567 *Annual Review of Neuroscience*, 19:379—404, 1996. ISSN 0147-006X. doi: 10.1146/annurev.ne.
568 19.030196.002115.

569 M. L. Mittelstaedt and H. Mittelstaedt. Homing by path integration in a mammal. *Naturwissenschaften*,
570 67(11):566–567, November 1980. ISSN 1432-1904. doi: 10.1007/BF00450672.

571 M Müller and R Wehner. Path integration in desert ants, *Cataglyphis fortis*. In *Proceedings of the
572 National Academy of Sciences of the United States of America*, volume 85, pages 5287–5290. National
573 Acad Sciences, 1988. doi: 10.1073/pnas.85.14.5287. URL <http://www.pnas.org/content/85/14/5287.short>.

575 Keram Pfeiffer and Uwe Homberg. Organization and Functional Roles of the Central Complex in
576 the Insect Brain. *Annual Review of Entomology*, 59(1):165–184, January 2013. ISSN 0066-4170.
577 doi: 10.1146/annurev-ento-011613-162031.

578 Paul Pfeiffer, Alexei V Egorov, Franziska Lorenz, Jan-hendrik Schleimer, Andreas Draguhn, and
579 Susanne Schreiber. Clusters of cooperative ion channels enable a membrane-potential-based mech-
580 anism for short-term memory. *eLife*, 9:1–27, 2020. ISSN 2050-084X. doi: 10.7554/eLife.49974.
581 URL <https://elifesciences.org/articles/49974>.

582 Ioannis Pisokas, Stanley Heinze, and Barbara Webb. The head direction circuit of two insect species.
583 *eLife*, 9:e53985, July 2020. ISSN 2050-084X. doi: 10.7554/eLife.53985.

584 Ioannis Pisokas, Wolfgang Rössler, Barbara Webb, Jochen Zeil, and Ajay Narendra. Anesthesia
585 disrupts distance, but not direction, of path integration memory. *Current Biology*, 32(2):445–452,
586 2021. ISSN 0960-9822. doi: 10.1016/j.cub.2021.11.039.

587 Michael Postlethwaite, Matthias H Hennig, Joern R Steinert, Bruce P Graham, and Ian D Forsythe.
588 Acceleration of ampa receptor kinetics underlies temperature-dependent changes in synaptic
589 strength at the rat calyx of held. *The Journal of Physiology*, 579(1):69–84, 2007.

590 Joshua I. Raji and Christopher J. Potter. The number of neurons in *Drosophila* and mosquito brains.
591 *PLOS ONE*, 16(5):e0250381, 2021. doi: 10.1371/journal.pone.0250381.

592 A. David Redish, Adam N. Elga, and David S. Touretzky. A coupled attractor model of the rodent
593 Head Direction system. *Network: Computation in Neural Systems*, 7(4):671–685, January 1996.
594 ISSN 0954-898X. doi: 10.1088/0954-898X_7_4_004. URL https://www.tandfonline.com/doi/full/10.1088/0954-898X_7_4_004.

596 Alexei Samsonovich and Bruce L. McNaughton. Path integration and cognitive mapping in a con-
597 tinuous attractor neural network model. *The Journal of neuroscience : the official journal of the*
598 *Society for Neuroscience*, 17(15):5900–20, 1997. ISSN 0270-6474. URL <http://www.jneurosci.org/content/17/15/5900.full><http://www.ncbi.nlm.nih.gov/pubmed/9221787>.

600 Johannes D. Seelig and Vivek Jayaraman. Neural dynamics for landmark orientation and angu-
601 lar path integration. *Nature*, 521(7551):186–191, May 2015. ISSN 1476-4687. doi: 10.1038/nature14446.

603 H S Seung. How the brain keeps the eyes still. *Proceedings of the National Academy of*
604 *Sciences of the United States of America*, 93(23):13339–44, November 1996. ISSN 0027-
605 8424. URL <http://www.ncbi.nlm.nih.gov/pubmed/8917592><http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=PMC24094>.

607 W E Skaggs, J J Knierim, H S Kudrimoti, and B L McNaughton. A model of the neural basis of
608 the rat’s sense of direction. *Advances in neural information processing systems*, 7(1984):173–80,
609 1995. ISSN 1049-5258. URL <http://www.ncbi.nlm.nih.gov/pubmed/11539168>.

610 S. Sommer and R. Wehner. The ant’s estimation of distance travelled: experiments with desert
611 ants, *Cataglyphis fortis*. *Journal of Comparative Physiology A: Sensory, Neural, and Behavioral*
612 *Physiology*, 190(1):1–6, January 2004. ISSN 0340-7594. doi: 10.1007/s00359-003-0465-4.

613 Thomas Stone, Barbara Webb, Andrea Adden, Nicolai Ben Weddig, Anna Honkanen, Rachel
614 Templin, William Weislo, Luca Scimeca, Eric Warrant, and Stanley Heinze. An Anatomically
615 Constrained Model for Path Integration in the Bee Brain. *Current Biology*, 27(20):3069–3085,
616 2017. ISSN 0960-9822. doi: 10.1016/j.cub.2017.08.052. URL <https://www.sciencedirect.com/science/article/pii/S0960982217310904>.

618 Ta Shun Su, Wan Ju Lee, Yu Chi Huang, Cheng Te Wang, and Chung Chuan Lo. Coupled symmetric
619 and asymmetric circuits underlying spatial orientation in fruit flies. *Nature Communications*, 8
620 (1):1–15, December 2017. ISSN 2041-1723. doi: 10.1038/s41467-017-00191-6. URL <http://dx.doi.org/10.1038/s41467-017-00191-6>www.nature.com/naturecommunications.

622 Lamont S. Tang, Marie L. Goeritz, Jonathan S. Caplan, Adam L. Taylor, Mehmet Fisek, and
623 Eve Marder. Precise Temperature Compensation of Phase in a Rhythmic Motor Pattern. *PLoS*
624 *Biology*, 8(8):e1000469, 2010. ISSN 1544-9173. doi: 10.1371/journal.pbio.1000469.

625 Daniel Turner-Evans, Stephanie Wegener, Hervé Rouault, Romain Franconville, Tanya Wolff,
626 Johannes D Seelig, Shaul Druckmann, and Vivek Jayaraman. Angular velocity integration in a
627 fly heading circuit. *eLife*, 6:2112–2126, May 2017. ISSN 2050-084X. doi: 10.7554/elife.23496.
628 URL <http://www.ncbi.nlm.nih.gov/pubmed/28530551><http://www.ncbi.nlm.nih.gov/articlerender.fcgi?artid=PMC5440168><http://elifesciences.org/lookup/doi/10.7554/eLife.23496>.

631 Daniel B Turner-Evans and Vivek Jayaraman. The insect central complex. *Current Biology*, 26
632 (11):R453–R457, June 2016. ISSN 0960-9822. doi: 10.1016/j.cub.2016.04.006. URL <http://linkinghub.elsevier.com/retrieve/pii/S0960982216303232>.

634 Daniel B. Turner-Evans, Kristopher T. Jensen, Saba Ali, Tyler Paterson, Arlo Sheridan, Robert P.
635 Ray, Tanya Wolff, J. Scott Lauritzen, Gerald M. Rubin, Davi D. Bock, and Vivek Jayaraman.
636 The Neuroanatomical Ultrastructure and Function of a Biological Ring Attractor. *Neuron*, 108
637 (1):145–163, 2020. ISSN 1097-4199. doi: 10.1016/j.neuron.2020.08.006.

638 R. J. Vickerstaff and E. A. Di Paolo. Evolving neural models of path integration. *Journal of Experimental Biology*, 208(17), 2005. URL <http://jeb.biologists.org/content/208/17/3349.full>.

640 Robert J. Vickerstaff and Allen Cheung. Which coordinate system for modelling path integration? *Journal of Theoretical Biology*, 263(2):242–261, 2010. ISSN 0022-5193. doi: 10.1016/j.jtbi.2009.11.021.

643 M. Volgushev, T. R. Vidyasagar, M. Chistiakova, and U. T. Eysel. Synaptic transmission in the neocortex during reversible cooling. *Neuroscience*, 98(1):9–22, 2000. ISSN 0306-4522. doi: 10.1016/s0306-4522(00)00109-3.

646 Karl von Frisch. *The dance language and orientation of bees*. Harvard University Press, 1967. ISBN 9780674418776. URL https://discovered.ed.ac.uk/primo-explore/fulldisplay?docid=44UOE{_}ALMA21123598440002466{&}context=L{&}vid=44UOE{_}VU2{&}lang=en{_}US{&}search{_}scope=default{_}scope{&}adaptor=LocalSearchEngine{&}tab=default{_}tab{&}query=any,contains,The dance language and orientation.

651 Barbara Webb and Antoine Wystrach. Neural mechanisms of insect navigation. *Current Opinion in Insect Science*, 15:27–39, 2016. ISSN 2214-5745. doi: 10.1016/j.cois.2016.02.011. URL <https://www.sciencedirect.com/science/article/pii/S221457451630013X>.

654 Peter T Weir and Michael H Dickinson. Functional divisions for visual processing in the central brain of flying Drosophila. *Proceedings of the National Academy of Sciences of the United States of America*, 112(40):E5523–E5532, October 2015. ISSN 1091-6490. doi: 10.1073/pnas.1514415112. URL <http://www.ncbi.nlm.nih.gov/pubmed/26324910><http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603480/>

659 Thomas Wittmann and Helmut Schwengler. Path integration - a network model. *Biological Cybernetics*, 73(6):569–575, November 1995. ISSN 0340-1200. doi: 10.1007/BF00199549.

661 Tanya Wolff and Gerald M. Rubin. Neuroarchitecture of the Drosophila central complex: A catalog of nodulus and asymmetrical body neurons and a revision of the protocerebral bridge catalog. *Journal of Comparative Neurology*, 526(16):2585–2611, August 2018. ISSN 1096-9861. doi: 10.1002/cne.24512.

665 K Zhang. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. *The Journal of Neuroscience*, 16(6):2112–2126, March 1996. ISSN 0270-6474. doi: 10.1523/jneurosci.16-06-02112.1996. URL <http://www.ncbi.nlm.nih.gov/pubmed/8604055>.

669 P. E. Ziegler and R. Wehner. Time-courses of memory decay in vector-based and landmark-based systems of navigation in desert ants, Cataglyphis fortis. *Journal of Comparative Physiology - A Sensory, Neural, and Behavioral Physiology*, 181(1):13–20, June 1997. ISSN 0340-7594. doi: 10.1007/s003590050088.