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Abstract

DNA-binding proteins (DBPs) and in particular transcription factors interact with enhancers and
their target genes through enhancer-promoter (E-P) interactions. Technological advancements
such as chromosome conformation capture allow to identify E-P interactions, but the protein
networks involved have not yet been characterized. Most importantly, the role of nuclear protein
networks in human diseases has been so far poorly investigated. Prostate cancer (PrCa)
heritability is associated with variations in enhancers that affect specific gene expression. Here,
we introduce a novel approach, called Promoter-ENhancer-GUided Interaction Networks
(PENGUIN), to identify protein-protein interactions (PPI) in E-P interactions and apply it to our
PrCa dataset. PENGUIN integrates chromatin interactions between a promoter and its
enhancers defined by high-coverage H3K27ac-HiChIP data, with a tissue-specific PPI network
inferred from DNA-binding motifs and refined with gene expression. Among a total of 4,314 E-P
networks, PENGUIN performed unsupervised clustering. We functionally validated this
clustering procedure by searching for enrichments of specific biological features. We first
validated PENGUIN structural classification of E-P networks by showing a clear differential
enrichment of the architectural protein CTCF. Next, and directly related to our PrCa case study,
we observed that one of our 8 main clusters, containing 273 promoters, is particularly enriched
for PrCA associated single nucleotide polymorphisms (SNPs) and oncogenes. Our approach
proposes a mechanistic explanation for 208 PrCa SNPs falling either inside the binding sites of
DNA-binding proteins (DBPs) or within genes encoding for intermediate proteins bridging E-P
contacts. PENGUIN not only confirmed the relevance of key regulators in PrCa, but also
identified new candidates for intervention, opening up new directions to identify molecular
targets for disease treatment.
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Introduction

Prostate cancer (PrCa) is the 2nd most common cancer in men (Rebello et al. 2021). Its distinct
hormone-dependent nature is characterized by high expression and frequent genetic
amplification of AR, regulator of homeostasis and proteases transcription, such as KLK3
encoding PSA (Prostate-Specific Antigen), and principal therapeutically targeted oncogene in
PrCa (Tan et al. 2015). Increased genetic instability resulting in chromosomal rearrangements
and high frequency of mutations are deemed indicative of PrCa aggressiveness (Cancer
Genome Atlas Research Network 2015) for which there is need of ad hoc treatments (de Bono
et al. 2020). Recurrent mutations in FOXA1, involved in prostate organogenesis and regulator of
AR transcription, have been observed in several populations (Adams et al. 2019; Parolia et al.
2019). Hundreds of PrCa-associated single nucleotide polymorphisms (SNPs) have been
identified by genome-wide association studies (GWAS), including genomic regions within tumor
suppressor genes and oncogenes, such as MYC (Ahmadiyeh et al. 2010). However, the
functional relationship between most of these SNPs and PrCa pathophysiology is unknown.
This missing part of the picture, together with the growing evidence of abnormal transcriptional
programs driven by genetic instability, led us to investigate the role of chromatin architecture in
PrCa. In particular we studied the nuclear proteins potentially involved in transcriptional
regulation through the interaction of promoters and non-coding regulatory elements, enhancers.

Enhancer-promoter (E-P) interactions have an important role in gene regulation. DNA-binding
proteins (DBPs), such as transcription factors (TFs), regulate gene expression by binding
promoters to enhancers sometimes through intermediate proteins. This chromatin interaction
between E-P can be mediated by co-activators (e.g., mediators), chromatin structural proteins
(e.g., cohesin), noncoding RNA-binding proteins, and others. Disruption of these interactions
centered in a single promoter (either protein-protein or protein-DNA interactions), which we
collectively call E-P protein-protein Interaction Networks (EPIN), is increasingly linked to
diseases such as cancer (Dekker and Misteli 2015; Norton and Phillips-Cremins 2017; Krumm
and Duan 2019). Enhancers are often the target of sequence and structural variation in cancer,
specifically deregulation of TFs and chromatin modifiers (Sur and Taipale 2016), and represent
promising pharmacological targets in PrCa (Chen et al. 2020). To date, techniques such as HiC
or, more specifically, its recent derivative HiChIP (Mumbach et al. 2016), HiC combined with
ChIP-seq, are able to identify specific chromatin interactions between a promoter and its
enhancers. For instance, H3K27ac-HiChIP is designed to specifically detect and amplify E-P
interactions and it has been recently employed by our lab to uncover susceptibility genes in
PrCa (Giambartolomei et al. 2021).

Although both protein-protein and protein-DNA interactions play central roles in E-P interactions,
previous analyses focused on one or the other aspect. Indeed, a number of studies have
focused on DBPs networks (Zhang et al. 2016; Wang et al. 2019). A more recent analysis
exploited PPIs with chromosome conformation capture assays to facilitate prioritization of
functional interactions (N. Liu et al. 2021). At present, the characterization of context specific
intermediate protein-protein interactions (PPIs) involved in disease pathways and their
association with DBPs remains largely unanswered (Deng and Blobel 2014).
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To characterize protein interactions that take place at the E-P contacts in PrCa, we developed
the Promoter-ENhancer-GUided Interaction Networks (PENGUIN) approach. For each promoter
annotated in the genome and covered by at least one HiChIP interaction, PENGUIN builds an
EPIN by integrating several sources of information: (1) high-resolution chromatin interaction
maps enriched for a marker of active promoter-enhancer activity (H3K27ac-HiChiP); (2) gene
expression (RNA-sequencing); (3) tissue-specific physical nuclear PPIs; (4) high-quality curated
binding motifs of protein-DNA interactions. The PrCa specificity of this dataset is given by the
H3K27ac-HiChiP of androgen-sensitive human prostate adenocarcinoma cells (LNCaP) and
RNA-seq in the same cell line, and prostate-specific PPIs and DNA binding motifs extracted from
publicly-available datasets (Methods).

PENGUIN is a software that can be also applied to other diseases. The method can identify
clusters of PPI networks dependent on the potential binding proteins in promoters and enhancers,
that are enriched for particular annotations like GWAS and CTCF. It offers a comprehensive
framework to integrate disease data and provides insights into protein networks found in E-P
interactions for further molecular validation. For instance, PENGUIN can be used to identify
trans-acting factors (e.g., interaction cascades of TFs and chromatin regulators) that could be
targeted by drugs, or cis-acting factors (e.g., DBPs with binding motifs in regulatory elements)
whose DNA binding affinity could be modified through knock-outs via CRISPR for therapeutic
intervention. Moreover, unlike traditional TF enrichment analysis which detects general
enrichments of particular proteins, PENGUIN can help identify the specific protein cascade
potentially disrupted at enhancer loci for the disease under study. This methodology identifies
new directions in the molecular characterization of chromatin interactions as well as in the
definition of potential targets for molecular screening towards disease treatment.

In this paper, we propose two main applications of PENGUIN. First, it facilitates the identification
of key factors that may play a role in transcriptional regulation of PrCa. By clustering together
promoters with similar EPINs, we identified 273 promoters whose genes are enriched in PrCa
GWAS, known PrCa oncogenes, and ChIP-validated binding sites of transcriptional repressor
CTCF. The proteins that populate such EPINs constitute putative PrCa-related bioentities, some
of which have not been previously described to be associated with PrCa SNPs or oncogenes.
Second, the EPINs detected by PENGUIN enable the characterization of distinct molecular
cascades potentially affected by PrCa SNPs at E-P contacts. These represent potentially new
molecular targets in PrCa that cannot be identified through conventional analytical procedures,
such as E-P contacts and GWAS overlap. Finally, we provide a dedicated web server to explore
the results at https://penguin.life.bsc.es/.
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Results

PENGUIN identifies clusters of protein interactions based on chromatin contacts

We leveraged 24,547 E-P contacts (30,416 after refinement and prioritization, Methods)
identified using H3K27ac-HiChIP data in LNCaP, 810 binding motifs from 639 DNA-binding
proteins, and 31,944 prostate-specific, experimentally validated, physical and nuclear PPIs
(filtering out proteins from unexpressed genes, Methods) to construct 4,314 EPINs using the
PENGUIN pipeline outlined in Figure 1 (Methods). Each EPIN is centered around one promoter
that we found to be contacted by a median of 4 enhancers, with a maximum of 93 enhancers for
the promoter of the gene CRNDE (Table S1). Altogether, the 4,314 EPINs contain a total of
8,215 interactions (edges) among a total of 885 proteins (nodes) that are expressed in LNCaP
(Methods). A mean of 36% proteins found in these EPINs are encoded by differentially
expressed genes in LNCaP versus LHSAR (Methods and Table S1).

Each EPIN is composed of three types of nodes (Table S2): proteins with DNA binding motifs in
the promoter (promoter-bound nodes), proteins with DNA binding motifs in the enhancers
(enhancer-bound nodes), and proteins interacting with promoter-bound or enhancer-bound
nodes but without DNA binding motifs onto the promoter or the enhancers (intermediate nodes).
Overall, 751 out of the 885 proteins represent intermediate nodes, with 127 of them acting both
as intermediate and as DNA-bound nodes in different EPINs. 261 unique DNA-binding proteins
have predicted binding sites in at least one of the anchors of enhancers and promoters. A mean
of 32.8 (s.d. 11.5) distinct DBPs were identified per promoter anchor with SP1, EGR1, SP2
being the most represented; and a mean of 24.8 (s.d. 7.69) were predicted per enhancer anchor
with SP1, IRF1 and TFAP2A being the most represented.

PENGUIN reconstructs an EPIN by grouping enhancers interacting with the same promoter
based on the well-known partial redundancy of enhancers (Kvon et al. 2021). A mean of 1.43
(normalized) promoters (0.88 s.d.) are shared among enhancers, with a maximum of 15
promoters for the same enhancer. To identify communalities and differences among the 4,314
EPINs in PrCa, we performed an unsupervised, hierarchical clustering based on edge
composition (Ward’s linkage method, Methods). Using this approach, we identified 8 clusters of
promoters with specific networks (Table S1,Table S3, Figure 2 and Figure S1A).

Protein networks of PrCa risk-associated regulatory elements

We characterized the 8 clusters using PrCa specific annotations. We used the 95% credible set
of SNPs (henceforth referred to as PrCa SNPs) across 137 PrCa-associated regions
fine-mapped from the largest publicly available GWAS summary statistics [N=79,148 cases and
61,106 controls (Schumacher et al. 2019)]. By comparing each cluster with all other clusters, we
found a significant enrichment of PrCa SNPs in one specific cluster (cluster 8 or GWAS+
cluster; Fisher’s exact test, Methods, Figures S3 B-C). Interestingly this enrichment is
exclusively due to SNPs in enhancers (Table 1). Our results show that E-P interactions
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containing PrCa SNPs are clustered together (red branches in Figure 2A) indicating that they
have similar characteristics in the way their PPI networks are wired.
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We found that most edges (67.5%, or 5,550 out of 8,215 edges) are shared among all clusters.
We identified the protein interactions that are enriched in each cluster and estimated the
significance of overrepresentation of each edge in a cluster compared to all others (Methods).
GWAS+ cluster (cluster 8 in Figure 2) exhibits the lowest number of promoters and distinctive
network characteristics (Table S3, Figure S1B). But, per promoter, it displays the largest
number of edges (p-value < 1e-16) and intermediate nodes (p-value < 1e-16), in line with its
greater number of enhancers per promoter (p-value < 1e-16), see Figure S2. Moreover, the
EPINs of the GWAS+ cluster have the lowest values of node-level centrality measures, namely
betweenness and degree (Figure S1C). The degree of a node measures the amount of
connections it has, while the betweenness centrality measures the amounts of shortest paths
that pass through it. Low values of betweenness and degree indicate a lower amount of
connections among different components and regions of the network. Betweenness and degree
are significantly different across clusters (Kruskall-Wallis test p-value < 1e-16), but not with
respect to the ensemble of all EPINs, which indicates that, despite the high number of shared
pairwise interactions (67.5% of edges), the wiring of the cluster-specific EPINs are distinctive.

Since CTCF is a major actor in the formation and maintenance of transcriptionally productive
E-P interactions (Zuin et al. 2014; Pugacheva et al. 2020), we tested the clusters identified by
PENGUIN for enrichment in CTCF binding. For this analysis we used CTCF ChIP-seq peaks,
from the same cell line (LNCaP), from the ENCODE project instead of predictions based on
DNA-binding motifs (Methods). We found that the interactions with CTCF peaks, that we call
CTCF+, cluster together (red branches in Figure 2B, Figure S3A) suggesting that the presence
of CTCF in chromatin interactions results in the formation of characteristic PPI networks
between the promoter and its enhancers.

CTCF+ clusters overlap the GWAS+ cluster (Figure 2, Figures S3A to S3C), also suggesting
that CTCF-mediated interactions could be more functionally relevant to PrCa. In particular,
GWAS+ cluster (representing 6% of the total number of promoters considered) is the only one
presenting the unique and significant enrichment in CTCF binding, PrCa SNPs, and oncogenes
(Table 2, Table S3 , Figures S3D and S3E). This cluster is enriched in the Hippo signaling
pathway (KEGG:04390) (Bonferroni-corrected p-value=0.012) and the Signal transduction
pathway (Reactome REAC:R-HSA-162582) with genes such as FOXA1, MYC, FOS
(Bonferroni-corrected p-value = 0.047) (Methods, Table S5).

Interestingly GWAS+ cluster, or any other cluster did not significantly stand out in terms of
overall expression level (Figure S4A) or, particularly in terms of fraction of differentially
expressed genes ( Figure S4B).

In conclusion, PENGUIN enabled the identification of a cluster of E-P contacts whose EPINs are
uniquely enriched in PrCa SNPs, ChIP-seq CTCF binding sites, and oncogenes (a.k.a. GWAS+
cluster or cluster 8, Figure 2 and Table 2). We note that using a different set of GWAS for PrCa,
we also identified cluster 8 as enriched (Methods, Table S6).
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​

Comparison with baseline analytical procedures

Among the 273 promoters belonging to the identified GWAS+ cluster (cluster 8 in Figure 2A),
11 belong to known oncogenes, FOXA1, ZFHX3, CDKN1B, KDM6A, BRCA2, CDH1, CCND1,
NKX3-1, BAG4, MYC, GATA2 (Methods). We compared enrichment of PrCa functional
annotations in the reconstructed networks with and without inclusion of intermediate proteins.
Including intermediates allows increasing the number of retrieved PrCa-related oncogenes in
cluster GWAS+ from 6 to 11 and increasing significance of enrichment indicating improved
specificity (Table S4). We then compared our results with the simple overlap of the genomic
regions of E-P contacts and known oncogene promoters. Table S1 also reports on the overlaps
of E-P contacts with CTCF binding sites (in both enhancers and promoters, see Methods), and
PrCa SNPs (in enhancers). Only 30 promoters (12 overlapping the GWAS+ cluster) would be
identified that overlap both PrCa SNPs and CTCF binding sites. Of these, just 3 are promoters
of known oncogenes (and only one, ZMYM3, is not in the GWAS+ cluster). We therefore
conclude that PENGUIN, and the integration of intermediate PPI network, increases the number
of promoters of candidate PrCa-related genes with the additional and unique information on
their specific interactome.

Involvement of E-P protein interactomes in tumor-related functional processes

We analyzed the functional enrichment of the set of 885 proteins composing the universe of
nodes used to create PPI networks in EPINs. 43 out of these 885 proteins are encoded by one
of the 122 known PrCa oncogenes (32 intermediates, 7 DBPs among which MGA, ETV4, ETV1,
GATA2, ETV3, ERF, NKX3-1, and 4 of both types among which TP53, MYC, FOXA1, AR. see
Methods and Table S2). In total, 11 out of 885 have been targeted by PrCa-specific drugs
(source: DrugBank; protein targets: ESR2, ESRRA, AR, PARP1, NFKB2, NFKB1, NCOA2,
NCOA1, AKT1, TOP2A, TOP2B; drugs: Estramustine, Genistein, Flutamide, Nilutamide,
Bicalutamide, Enzalutamide, Olaparib, Custirsen, Amonafide); and 190 out of 885 are targets of
non-prostate drugs indicating the possibility of re-purposing.

Considering 500 out of 885 proteins with annotations for KEGG pathways retrieved using
g:Profiler (Raudvere et al. 2019), 45 were enriched in the prostate cancer pathway
(KEGG:05215) (adjusted p-value = 2.54e-27) (Methods and Table S7). We next studied
specific protein enrichments in the nodes of the EPINs of each identified cluster (Table S8).
Although intermediates are ubiquitous and generally shared among all clusters, we could
identify 22 significantly specific proteins enriched in the GWAS+ cluster (Methods). Functional
enrichment analysis of these 22 proteins revealed significant relationships with tumorigenic
processes (Table S9). KEGG Prostate cancer pathway (KEGG:05215) appears highly enriched
(adjusted p-value = 4.38e-5) together with other pathways related to tumors such as Colorectal
cancer (KEGG:05210, adjusted p-value = 3.45e-9) Pancreatic cancer (KEGG:05212, adjusted
p-value = 1.28e-6) and Breast cancer (KEGG:05224, adjusted p-value = 2.05e-6). KEGG
pathway KEGG:04919 (Thyroid hormone signaling pathway) appears as the third most enriched
pathway (adjusted p-value = 4.02-e-8). Thyroid hormones have been previously described as
modulators of prostate cancer risk (Mondul et al. 2012; Hsieh and Juang 2005; Lehrer et al.
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2005; Hellevik et al. 2009). Pathway KEGG:05200 (called Pathways in cancer) appears as the
fourth most enriched KEGG concept (adjusted p-value= 1.30e-7). Other classical tumorigenic
pathways, such as Wnt signaling pathway (KEGG:04310, adjusted p-value = 3.48e-4) and
TGF-beta signaling pathway (KEGG:04350, adjusted p-value = 3.30e-5) appear also enriched.
In this regard, recent studies analyzed the involvement of Wnt signaling in the proliferation of
prostate cancer cells (Ma et al. 2022; Wei et al. 2022), as well as the involvement and TGF-beta
signaling (Natani et al. 2022; Xi et al. 2022).

SNPs path analysis in the E-P protein interactomes

Next, we sought to perform a SNPs analysis of the paths in an EPIN promoter (Methods). In
this analysis, a path in a network is a sequence of edges joining a sequence of nodes and going
from enhancer to promoter (Figure 1A). We distinguish between two possible scenarios: (1)
PrCa SNPs fall in the DNA binding motifs found in enhancers, indicating a possible
dysregulation of TFs binding and activity (Figure 1B); (2) PrCa SNPs in the genomic regions of
the genes that encode for the intermediate nodes of the EPINs, indicating a possible alteration
of the PPIs (Figure 1C). The first analysis aims to identify the location of enhancers that could
be targeted by genetic perturbation techniques such as CRISPRi. The second analysis aims to
identify the proteins that are potentially affected by mutations so as to enhance our
understanding of prostate cancer biology. Overall, we characterized 188 PrCa SNPs falling
within any path that connects enancers to promoters (rs4962419 is in both categories). In the
following, we discuss the two scenarios and report on the MYC promoter as a unified illustrative
example.

Network paths with PrCa SNPs in enhancer binding motifs

We sought to detect SNPs located in the DNA binding motifs found in the enhancers of the
EPINs. Based on previous evidence (Speedy et al. 2019; S. Zhou et al. 2020), our hypothesis is
that SNPs in enhancers could disrupt the binding of proteins such as TFs having an impact on
their interactome (Figure 3B).

In Table S10 we list the 36 PrCa SNPs falling within 60 DBP motifs in enhancer regions linking
34 different promoters whose EPINs include 5,184 edges. Among these, we identified 17 PrCa
SNPs falling within 16 promoter EPINs (1,894 edges) belonging to the GWAS+ cluster that had
at least one PrCa SNP in their enhancers. Several of these EPINs promoters were also found
differentially expressed (such as DLL1, STOM and SEC11C in the tumor/normal dataset; ID2,
RPS27, SEC11C, CASZ1, CRTC2, C5 and STOM in the LNCaP/LHSAR dataset). Finally, at the
level of intermediate proteins, we also found some encoded by genes reported to be
differentially expressed. We observed that the mean proportion of intermediates that are
differentially expressed is on average 40% (Figure S4). We tested whether promoters belonging
to the GWAS+ cluster were significantly enriched for intermediate protein encoding for
differentially expressed genes (Methods). Among the 16 EPINs belonging to the GWAS+
cluster that had at least one PrCa SNP in their enhancers, 11 contain expression data to study
potential direct effects of the SNPs. In this subset we found 4 EPINs differentially expressed in
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promoters (3 also differentially expressed in intermediates: CASZ1, ID2, SEC11C), and 4 EPINs
only differentially expressed in intermediates: MIIP, MRPL14, MYC, TMEM63B (Table S1). The
differential expression of intermediates makes it easier to identify interesting and potentially
novel cases. For instance, MYC is not differentially expressed but it has differentially expressed
intermediates.

Network paths with PrCa SNPs in the genes coding for intermediate proteins

In this analysis, we identify EPINs with PrCa SNPs falling within genes that encode for
intermediate nodes (Table S11), indicating a potential alteration of PPIs involved in E-P
contacts. We found that the GWAS+ cluster has the highest proportion of PrCa SNPs in the
intermediate nodes compared to all other clusters (mean = 53.2, SE = 18.0, p-value <= 0.01,
Table S12). The EPINs of STK40 and GATA2 promoters GWAS+ cluster display the highest
fraction of intermediate proteins with PrCa SNPs in their corresponding genes encoding them
(Table S1).
We use the SNP paths to link 172 PrCa SNPs falling within the gene bodies of 26 genes of
which 7 are known oncogenes (MAP2K1, CHD3, AR, SETDB1, ATM, CDKN1B, USP28). We
identify edges that are most enriched in our GWAS+ cluster which could be pointing to essential
links between the gene encoding for the intermediate and containing a PrCa predisposing SNP
at a particular EPIN. For example, we identify the link between MDM4 containing SNP
rs35946963 (PrCa p-value 1e-24) and TP53 (Mejía-Hernández et al. 2022) and between
KDM2A containing SNP rs12790261 (PrCa p-value 1e-7) and BCL6 (L. Liu, Liu, and Lin 2021)
and ARNT continuing SNP rs139885151 (PrCa p-value 3e-13) and HIF1A (Mandl and Depping
2017).
We integrated information from pQTL associations between the 172 PrCa SNPs and protein
levels (Methods). Two intermediate protein levels (CREB3L4, MAP2K1) were associated with
PrCa SNPs falling within the gene encoding for them (p-value of association with protein levels
were 7.75e-86 for CREB3L4 and 2.40e-5 for MAP2K1). We identified 3 out of 26 promoter
EPINs (TRIM26, MEIS1, POU2F2) with suggestive evidence (p-value < 1e-5) of association
between the PrCa SNP with the PENGUIN-linked promoter EPIN, pointing to the cancer
promoting mechanistic action of these variants: gene with SNPs in POU2F2 linked to the EPIN
promoter of gene PHGDH (SNP with lowest p-value rs113631324 = 3.80e-8); gene with SNPs in
TRIM26 and EPIN promoter of gene RRM2 (SNP with lowest p-value rs2517606 = 2.69e-7);
gene with SNPs in MEIS1 and EPIN promoter of gene STOM (SNP with lowest p-value
rs116172829 = 8.19e-6).

A case study: the SNP paths connected to the MYC promoter

From HiChIP data, the MYC promoter (chr8:128747814-128748813) is in contact with 73
enhancer regions among which one holds the SNP rs10090154 (p-value of association with
PrCa = 1.4e-188). This SNP is located in the binding motif of the transcription factor FOXA1.
The integration of PrCa SNPs information highlights paths in the EPIN of MYC that are
particularly compelling in the context of the disease (red line in Figure 4A). The promoter region
of MYC binds 8 proteins TFAP2C, KLF5, RBPJ, SP1, ZBTB14, ATF6, ZBTB7A, PRDM1 and
contains 17 protein interactors (dots in Figure 4A) that might be affected by the possible
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disruption of its binding motif, namely, FOXA1, HMGA1, RCC1, TFAP4, NFIC, PBX1, HOXB9,
NFIX, NACC1, RARA, PIAS1, RPA2, H2AFY, RECQL, SATB2, CREB1, AR. The gene encoding
for FOXA1 is differentially expressed, along with others of its interactors (Table S10; Methods).
Interestingly, 24 correlated PrCa SNPs fall within the genomic region of AR (marked by an
asterisk next to the gene name), all with p-value of association with PrCa below 1e-11 (Table
S11). AR is targeted by several drugs used in the treatment of prostatic neoplasms, such as
apalutamide, bicalutamide, diethylstilbestrol, enzalutamide, flutamide, and nilutamide (triangle in
the Figure 4A, source: DrugBank).

Notably, mutations in FOXA1 enhancers were previously shown to alter TF bindings in primary
prostate tumors (S. Zhou et al. 2020). And, also in line with our observations, FOXA1 enhancer
region has been previously reported to be coupled to MYC (Sur et al. 2013) and has been
shown to have a strong binding of AR (Jia et al. 2009).
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Discussion

Using PPI networks we uncovered a set of genes implicated in PrCa that could not be identified
otherwise. Intermediate nodes of this PPI network carry the intrinsic properties to be used for
the classification and characterization of E-P chromatin loops. We have shown that, without any
prior information, PENGUIN was able to group genes according to their implication in our case
study, PrCa. Our study opens a new path towards the understanding and identification of new
biological markers in disease. Accordingly, the genes that we identified in the cluster most
enriched in SNP associated to PrCa (GWAS+ cluster) can be regarded as candidate oncogenes
or partners of oncogenes, for example they may be sharing “onco-enhancers” (enhancers
participating in tumorigenic activity).

PENGUIN is based on the assumption that the PPI network structure between a promoter and
its enhancers can be used as a signature to be associated to specific functional profile and to
disease. This assumption is based on previous works showing the relation between loop 3D
topology and chromatin state or expression (Galan, Serra, and Marti-Renom 2022). With
PENGUIN here we propose a molecular explanation to the observed distinct structural features
of loops, and directly relate them to disease. Indeed, we observed that interactions belonging in
the GWAS+ cluster, but not carrying a GWAS SNP, can still be related to PrCa. The core of our
method is agnostic to the presence of specific SNPs or oncogenes; these are used in the
post-processing to label the defined clusters.

Previous methods have combined GWAS hits with PPI networks. For example, Ratnakumar
and colleagues identify proteins enriched for PPI with GWAS hits (Ratnakumar et al. 2020).
Recently, Dey and colleagues have demonstrated advantage in using strategies capturing both
distal and proximal gene regulation to prioritize genes for disease (Dey et al. 2022). On the
other hand, other methods have combined information from 3D chromatin interactions and
GWAS SNPs to relate intergenic SNPs to gene regulation and to cancer (Javierre et al. 2016;
López de Maturana et al. 2021; N. Liu et al. 2021). Our method is completely blind to the
presence of SNPs, and combines information from PPI network and E-P information from
enhancer-promoter conformation (H3K27ac-HiChIP) into one framework.

We have linked paths and identified examples where this could occur. We aimed to identify
specific links that could be disrupted by a PrCa-predisposing variant, such as CTCF sites linking
a promoter to its enhancers, or intermediate structural proteins involved in E-P network. More work
is needed to understand the biology and mechanisms behind these links. To facilitate
investigation of SNPs pathways involved in prostate cancer we provide a web interface at
https://penguin.life.bsc.es/.

Interestingly, although PENGUIN finds clusters of EPINs significantly more related to cancer, our
gene expression analysis did not reveal any significant trend. This observation is in apparent
contradiction with our definition of EPIN clusters or even of our core definition of EPIN. In fact, given
the level of evidence brought by our analysis, we believe that PENGUIN allows the detection of
associations with cancer with a greater sensitivity than a differential expression analysis.
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In this application, we have used intermediate nodes through PPI to inform clustering of E-P into
networks (intermediate = 1 in Table S4). Yet, PENGUIN’s clustering procedure allows the use of
a variety of inputs. First, we can do without grouping the data by promoter into EPINs,
considering only single, pairwise, E-P interactions. Alternatively, using our definition of EPINs,
PENGUIN allows building networks either: providing the E-P interactions, without information
from PPI (intermediate = 0 in Table S4); or only giving the intermediate PPI-network (not
considering DBPs for the clustering) without the DNA-binding proteins bound to enhancer or to
the promoter (data not shown); or increasing the number of intermediates (e.g. intermediates =
2, data not shown). In any of the above mentioned configurations PENGUIN is able to yield a
clustering that significantly segregates CTCF-enriched and GWAS-enriched EPINs. In this
report, we used PPI information (intermediates =1) and observed that the presence of
intermediate PPI networks increases segregation significance compared to not using PPI (Table
S4).

The PENGUIN approach used here to study PrCa in LNCaP cells can be applied to study any
other human disease provided similar data, to study other scenarios (cell type/GWAS
combination) of interest for future studies. For example, using an E-P set from another prostate
cancer cell line would identify target genes regulated by enhancers from different cell-types.
These can be prioritized using a genome-wide set of risk SNPs from a disease of interest.

The networks obtained with PENGUIN enable a finer characterization of the molecular
associations at play in cancer chromatin and are suitable to train sophisticated machine learning
models such as graph neural networks (GNN). We propose PrCa intermediates that interact in
E-P networks in cancer cells (LNCaP) and are amenable to therapeutic intervention.
High-throughput functional studies would validate the impact of genetic perturbation of
thousands of enhancers at a time. For example CRISPR-Cas9 technology could allow the
targeted editing of specific genomic regions.

Our analysis has several caveats. We considered E-P interactions from HiChIP technique,
protein-DNA interactions from FIMO, and tissue-specific protein-protein interactions from the
integrated interactions database (IID). The completeness of this information depends on the
limits of the databases and methods used. Additionally, we consider networks that are bound to
proteins (only proteins having edges are considered). Also, for sake of visualization purposes,
we reduced the number of reported proteins and reported one intermediate only (expanded 1
edge away). However, we found that the clustering is even more evident when including three
intermediate proteins (data not shown). Lastly, we considered E-P in a stable environment
(LNCaP cells) representing a snapshot in time. Although this is an area of active research which
requires further exploration, the literature to date supports minimal and quantitative small
changes in E-P interactions.
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Methods

Conformation capture and E-P interactions
We used Hi-C followed by chromatin immunoprecipitation (HiChIP) targeting H3K27Ac in
LNCaP cells (androgen-sensitive prostatic carcinoma cell line) across 5 biological replicates
including 1 billion reads as previously described (Giambartolomei et al. 2021). HiChIP is an
efficient protein-mediated chromatin-conformation assay (Mumbach et al. 2016). H3K27Ac is a
marker of active enhancers and promoters. Briefly, we used HiC-Pro (Servant et al. 2015) to
map HiCHiP reads and extract unique interactions; FitHiChIP (Bhattacharyya et al. 2019) was
used to identify significant interactions with a predefined set of peaks from H3K27ac ChIP-seq
in LNCaP to refine accurate anchor ranges. We used q-value < 0.01 and a 5 kb resolution and
considered only interactions between 5 kb and 3 Mb. In this analysis, we restricted to a stringent
global background estimation to reduce as much as possible the number of false-positive
interactions. The corresponding FitHiChIP specifications used were “IntType=3” (the peak-to-all)
for the foreground, meaning at least one anchor to be in the H3K27 peak, and
“UseP2PBackgrnd=1” (the peak-to-peak (stringent)) for the global background estimation of
expected counts and contact probabilities for each genomic distance for learning the
background and spline fitting. We identified 49,565 significant interactions (FitHiChIP,
FDR<0.01).

We categorized interactions by overlapping anchors with transcription start sites (TSS) and
enhancers identified by H3K27ac ChIP-seq as previously described (Giambartolomei et al.
2021). Briefly, we first extended anchors by 5 kb on either side; we defined promoter regions
around the TSS (+/- 500 bases) using RefSeq hg19 (see Data Availability); we defined
enhancer regions using 49,638 regions from H3K27ac LNCaP in regular media (union of narrow
and broad peaks). Out of the 49,565 significant interactions, we considered only the 24,547 E-P
interactions. Specifically, we labeled the promoters and enhancer regions that overlap either
right or left anchors, and considered E-P if only one anchor overlaps a promoter and the other
an enhancer region. The enhancer anchors at this stage of the analysis are of length 15 kb (5
kb resolution of the HiChIP data analysis and additional 5 kb padding added to anchors on
either side).

We further prioritized E-P interactions to 1 kb regions and discarded from enhancers the 1 kb
bins with fewer HiChIP interactions with the promoter (see E-P HiChIP prioritization section).
The 15 kb original E-P interactions dataset contained a mean of 1.6 (1.3 s.d.) promoter anchors
per enhancer anchor (after prioritization of enhancer anchor to 1 kb region, mean of 1.4 (0.9
s.d.) promoters per enhancer). There were 11,127 (17,683 prioritized 1 kb regions) enhancer
anchors in total; 7,341 (12,385 prioritized 1 kb regions) enhancer anchors are contacted by one
promoter anchor with a maximum of 21 promoter anchors (15 using prioritized enhancer
regions) sharing the same enhancer.
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E-P HiChIP prioritization

In order to reduce experimental artifacts in the context of our EPINs, we developed a specific
prioritization method. This prioritization start by normalizing the data assuming, as most used
capture-C normalizations (ICE (Imakaev et al. 2012), Vanilla, or KR (Rao et al. 2014)) that all
biases (e.g. GC content, number of restriction sites, mappability, or in the case of HiChIP,
immunoprecipitation bias) can be corrected together. For this normalization step, we assume
that there is a specific bias per any 1 kb genomic loci (ꞵx for loci x; see Figures S5A and S5B).
This bias causes the difference between a theoretical expected number of interactions (EXY

between loci X and Y) and the observed number of interactions (OXY between loci X and Y). In
this representation we can define a system of 9 equations involving three 1 kb loci in the
promoter and three 1 kb loci on the enhancer side. This system of equations is then solved
using Sequential Quadratic Programming (SQP) (Virtanen et al. 2020). The procedure is
repeated in an overlapping window manner along the 15 kb of the enhancer, alway against the
target 1 kb of the promoter and its two 1 kb neighboring loci.
Before the normalization step, we observed a different interaction pattern for interactions below
10 kb (Figure S5C) due, in part, to the contiguity of restriction-enzyme fragments or chromatin
persistence length. As these interactions may also be a source of bias in the construction of a
PPI network, we removed them from our study.
We applied the normalization to the remaining interactions and observed a better correlation
between genomic distance and interaction count (Figures S5D and S5E).
The normalized profile of interactions was finally used to prioritize most interacting 1 kb loci on
the 15 kb enhancer (Figure S5F). The selected 1 kb regions are referred to as prioritized
enhancer regions.

DNA binding motifs

DNA binding motifs were retrieved from JASPAR (Fornes et al. 2019), an open-access database
of curated, non-redundant binding profiles of DBPs (a.k.a. motifs) stored as position frequency
matrices (PFMs). To detect the binding motifs, we used FIMO from the MEME-suite software
(Grant et al. 2011), with p-value <= 1e-4 and q-value <= 5e-2 cutoffs. JASPAR contains 810
DNA binding motifs of 640 proteins that overlap the E-P contacts identified with HiChIP.

Gene expression data

We assayed RNA sequencing (RNA-seq) in the cell line LNCaP for two replicates using the
VIPER pipeline as previously described (Giambartolomei et al. 2021), and fragments per
kilobase of transcript per million mapped reads (FPKM) values were calculated for 20,114
RefSEQ genes. Genes with expression levels above the threshold of 0.003 in both replicates
were considered in the entire analysis (Figure S4C).

Protein-protein interaction network

We obtained protein-protein interactions (PPIs) from the Integrated Interactions Database (IID)
(Kotlyar et al. 2016). To better contextualize the interactome information, we combined the
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annotations of the PPIs from IID database with the LNCaP gene expression data. As for the IID
annotations, we applied the following selection criteria. First we selected interactions annotated
as “experimental” in the “evidence type” field and identified by at least two independent
biological assays reported in the “methods” field. Then, we filtered only for interactions in the
prostate or in prostate cancer cells and between nuclear proteins. Finally, we retain proteins
whose gene expression levels were FPKM > 0.003 in both replicates (this cut-off removes ~30%
of the genes). In total, 14,221 proteins from a pool of 20,111 human protein coding genes meet
the gene expression criteria. The combination of the above filtering criteria (gene expression,
using only nuclear, prostate cancer or prostate and experimentally by 2 methods) resulted in an
unweighted network of 31,944 prostate-specific nuclear PPIs among 4,295 proteins.(Kotlyar
et al. 2016)

PENGUIN pipeline

We set up graph-based approach, called Promoter-ENhancer-GUided Interaction Networks
(PENGUIN), to reconstruct individual networks of protein interactions that might occur between
one promoter (P) and its contacting enhancers (E), that we call E-P protein-protein Interaction
Networks (EPINs). To reconstruct the EPINs, PENGUIN integrates information about chromatin
contacts, protein-DNA binding, and protein-protein interactions (PPIs). For the case under study
in this work (prostate cancer, PrCa), chromatin contacts information comes from H3K27Ac
HiChIP of LNCaP cells (4,314 promoters and 5,789 enhancer regions; see Methods,
“Conformation capture and E-P interactions''), protein-DNA binding information (Rao et al. 2014;
Virtanen et al. 2020) comes from the JASPAR database (810 DNA binding motifs of 640
proteins; see Methods, “DNA binding motifs”), and PPIs information comes from the IID
database (31,944 prostate-specific nuclear PPIs among 4,295 proteins; see Methods,
“Protein-protein interaction network”).

The reconstruction of EPINs follows these steps: for each E-P contact, (1) DNA binding motifs
are detected in the corresponding sequences of promoter and enhancer regions; (2) a
subnetwork of PPIs is selected containing all promoter-bound proteins, all enhancer-bound
proteins, and all their intermediate interactors, with a maximum of 1 intermediate node between
enhancer and promoter bound DNA binding proteins; (3) intermediate interactors are discarded
if they only connect promoter-bound proteins or enhancer-bound proteins. Using the provided
PrCa information, PENGUIN reconstructed 4,314 EPINs consisting of a total of 9,141 PPIs
among 885 proteins of which 751 are intermediate proteins linking promoter-bound and
enhancer-bound proteins.

Node centrality measures

In several analyses we employed two measures of node centrality, namely betweenness and
degree. Betweenness is a measure of centrality in a graph based on shortest paths. For every
pair of nodes in a connected graph, there exists at least one shortest path between the vertices
such that either the number of edges that the path passes through is minimized. The degree of
a node in a network is the number of connections it has to other nodes and the degree
distribution is the probability distribution of these degrees over the whole network.
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Clustering EPIN

We defined clusters by taking into account their edge content. We collected the full universe of
edges using all existent edges between all promoter EPINs (the union graph) and we performed
clustering using a binary representation that encodes this particular edgelist. Clustering was
performed over the overlap index distance matrix, by calculating Euclidean distance and using
Ward’s linkage method. Each leaf in the obtained cluster is a promoter EPIN.

Identify transcription factors binding directly enhancer to promoter

The TFs binding in the Enhancer region (TFs.E) and the TFs binding in the Promoter region
(TFs.P) were identified. The PPIs networks were then searched to see if there is a path linking
the (TFs.E) and the (TFs.P).

Identifying enriched clusters using functional annotations

We performed fisher tests on the obtained clustering for every single branch of the dendrogram.
We examined if there is an enrichment of any feature (CTCF, GWAS) for the leaves under the
branch interest compared to those in the rest of the tree.
For the CTCF binding feature, we require a CTCF binding (see CTCF ChiP-Seq peaks) to
Promoter and at least one of the Enhancer regions of the promoter EPIN.
For the GWAS feature, we require the presence/overlap of a GWAS SNP (see Genome-wide
association data) in at least one of the Enhancers of the promoter EPIN.
Fisher tests were used to calculate the odds ratio (OR) and enrichment p-values for presence of
PrCa annotations within the identified clusters.

Druggability information

We extracted information for target druggability from DrugBank (Wishart et al. 2018). The use
of each drug was extracted from the Therapeutic Target Database (Y. Zhou et al. 2022). We
annotated as PrCa druggable each protein node that is target for drugs that are assigned as
Approved or under Clinical Trials (Phase 1, 2, 3) or Investigable for Prostate Cancer.

CTCF ChiP-Seq peaks
CTCF ChiP-seq peaks were retrieved from ENCODE project (https://www.encodeproject.org/)
for the same Genome assembly, hg19 (Experiment ID: ENCSR315NAC, file ID:
ENCFF155SPQ). These narrow peaks were mapped on the enhancer regions using the python
package pyranges (see “E-P contacts” section). We found overlaps of the CTCT binding sites
with enhancer and promoter anchors allowing a 10 kb gap between them.

PrCa SNPs

To explore enrichment of GWAS across the identified clusters, and to identify the SNP paths, we
used the 95% credible set from fine-mapping of the largest PrCa genome-wide association
studies (GWAS) collected from Schumacher et al. 2019 (N = 79,148 cases and 61,106 controls),
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which includes 20,370,946 SNPs, as previously described (Schumacher et al. 2018). Briefly, we
fine-mapped 137 GWAS regions using PAINTOR (Kichaev et al. 2014), a Bayesian statistical
method, with no functional annotations and specifying a maximum of 1 causal SNP. We then
constructed a 95% credible set by taking the cumulative sum of the posterior probability until a
cumulative 95% posterior probability was reached. This set was composed of 5412 distinct
SNPs (rsid). We will refer to these 95% credible set SNPs as PrCa SNPs for brevity. Note that
this set also includes SNPs that do not reach genome-wide-filters of p-value significance. We
mapped the SNP location to prioritized enhancer regions anchor locations with a window of
10kb. 518 out of 5412 overlap our prioritized enhancer regions; 18 of them overlap our promoter
regions. In total 218 prioritized enhancers and 14 promoters overlap a PrCa SNP.

SNP paths (PrCa SNPs in enhancer binding motifs)

A path in a network is a sequence of edges joining a sequence of nodes. We detected PrCa
SNPs located in the DNA binding motifs in the enhancers, and identified the corresponding SNP
paths (linked edges and nodes) for each EPIN promoter. For SNP paths analyses and the
web-browser, we used all PrCa SNPs in the 95% credible set. There were 36 PrCa SNPs falling
in enhancer binding motifs across clusters 3, 4, 5, 6, 7, 8. To report the most interesting cases in
the Tables and Results, we used the subset of those passing genome-wide significance of
p-value for PrCa association < 5e-8. There were 15 PrCa SNPs falling in enhancer binding
motifs across clusters 3, 5, 6, 7, 8.

SNP paths (PrCa SNPs in intermediate proteins)

We detected PrCa SNPs falling within genes that encode for intermediate nodes, and identified
the corresponding SNP paths (linked edges and nodes)for each EPIN promoter. For SNP paths
analyses and the web-browser, we used all PrCa SNPs in the 95% credible set. To report the
most interesting cases in the Tables and Results, we used the subset of those passing
genome-wide significance of p-value for PrCa association < 5e-8.

PrCa GWAS enrichment using GWAS Catalog and comparison with other diseases

This analysis had two aims: 1) explore whether we could replicate our finding and identify the
GWAS enriched cluster using a different source for the GWAS; 2) to compare the GWAS signal
for different diseases. We estimated enrichment of SNPs overlapping the enhancers in each of
the identified clusters by exploring the NHGRI GWAS Catalog associations (Buniello et al.
2019). First, we retrieved GWAS data and filtered the traits according to their
“umlsSemanticTypeName” as defined in DisGeNet database (Piñero et al. 2020) to one of the
following: "Mental or Behavioral Dysfunction", "Neoplastic Process", "Disease or Syndrome",
"Congenital Abnormality; Disease or Syndrome", "Disease or Syndrome; Congenital
Abnormality", "Disease or Syndrome; Anatomical Abnormality". We considered only traits with
at least 10 genome-wide-significant SNPs (unadjusted p-value < 5e-8). We mapped the SNP
location to prioritized enhancer anchor locations with a window of 10kb. 104 diseases had SNPs
overlaps and 17 of them have more than 10 SNP overlapping (Table S5). For each cluster, we
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tested enrichment of disease-associated SNPs using Fisher tests and considered significant
p-value < 0.01 and OR > 1.
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Oncogenes Gene list

We used a previously identified list of 122 Genes ("PrCa_GeneList_Used.csv") known to be
somatically mutated in PrCa oncogenesis (37 out of 4,314 promoters considered). As previously
described (Giambartolomei et al. 2021), the 122 oncogenes are a set of prostate cancer–genes
curated from three large-scale PrCa studies that show evidence of somatically acquired
mutations, at both localized and advanced prostate cancer, known and recurrently altered in
localized prostate cancer and metastatic prostate cancer.

Enriched edges within each cluster

Fisher tests were used to compute odds ratios and p-values of the edges and nodes in the eight
different clusters. Specifically, each edge or node was tested for presence/absence in a cluster
compared to all others. Therefore, one edge or node can be enriched in one or more than one
cluster, it cannot be enriched in all clusters.

Enriched intermediate nodes within each cluster

We computed protein importance for each cluster in terms of two network centrality measures:
betweenness and degree. For each protein we obtain both betweenness and degree specificity
ratios in order to equitably quantify internal protein centrality differences between the clusters.
For each of the found clusters we independently estimated the specificity of the observed
protein centrality measures (“Betweenness” and “Degree”). For a given protein (Pi) in a
particular cluster (Cj), we define the specificity as the ratio between the mean centrality value of
Pi inside the fraction of networks belonging to Cj ; divided by the mean centrality value of Pi for
the fraction of networks outside of the cluster Cj.

Specificity ratio (Pi, Cj) = (mean (Pi centrality in Cj networks) + 1) / (mean (Pi centrality in non Cj

networks) + 1)

We assessed protein specificity ratio significance for each cluster upon random network cluster
generation. Aiming to assess the significance of the different specificity ratios for the proteins
within each cluster, we developed a significance analysis test based on random cluster
subsamplings. In order to compute the significance of a given protein specificity ratio (Pi) within
a particular cluster of analysis (Cj), we performed 1000 random network samplings to produce
random network clusters containing the same amount of networks as the real cluster being
analyzed (i.e. if the real cluster contains 100 networks, the random clusters generated will
contain 100 random networks out of the 4,314 clustered networks). Within each of those 1000
random clusters, we compute the corresponding protein specificity ratios, with the p-value
representing the probability of finding the protein specificity ratio to be higher or equal to the real
value computed for the particular cluster of interest (Cj).
We also performed Fisher tests to assess enrichment for the presence of the node in the cluster
(Fisher test p-value < 0.01). EP300 was excluded from the enrichment test as the presence of
that node was not significantly enriched (Fisher test p-value < 0.01). 22 proteins (SMAD2,
KAT5, NCOR2, MAPK8, SMAD4, CREBBP, CTNNB1, PGR, HDAC3, HDAC2, GSK3B, UBA52,
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UBE2I, JUND, PIAS1, XRCC5, CDK6, XRCC6, MAPK1, FOS, HIF1A and MAPK3) were found
to be significantly specific for both betweenness and degree ratios (p-value < 0.01 for both
centrality measures and over-represented in this cluster using Fisher tests).

Functional gene set enrichment analysis

Functional enrichment analysis was performed using the g:GOST module from g:Profiler, a web
tool to perform simultaneous gene set enrichment analysis across multiple biomedical
databases (Raudvere et al. 2019). g:GOST performs cumulative hypergeometric tests of an
input geneset against preprocessed database-specific gene sets. We run the web service
considering only annotated genes for the statistical domain scope. Reported adjusted p-values
correspond to Benjamini-Hochberg correction for multiple testing, with adjusted p-values ≤ 0.05
considered to be significant. Gene set enrichment analysis results are provided for KEGG
pathways, Reactome, Gene Ontology, Wikipathways, TRANSFAC, miRTarBase, Human Protein
Atlas, CORUM and Human Phenotype Ontology.
For the enrichment analysis of significantly specific proteins of the GWAS+ cluster, we provided
as input the 22 previously described proteins. For the enrichment analysis of the GWAS+
cluster, we provided as input all genes associated with the EPIN promoters in cluster GWAS+.

Differential Gene Expression
We integrated data from EPIN promoters with differential gene expression (DE) from two
sources.
DE analysis on prostate cancer tumor versus normal was downloaded from GEPIA:
http://gepia2.cancer-pku.cn/#degenes, which use the TCGA and GTEx projects databases to
compare gene expression between tumor and normal tissues under Limma, both under and
over expressed. We used the default thresholds of log2FC of 1 and qvalue cut-off of 0.01.
These data covered 84 out of 885 genes encoding for intermediates in PENGUIN and 413 out
of 4,314 promoter EPINs.
DE analysis of RNA-Seq on LHSAR (an immortalized prostate epithelial line overexpressing
androgen receptor) versus LNCaP was performed as previously described. Briefly, RNA-seq
data were processed using the VIPER pipeline (Cornwell et al. 2018). Reads were aligned to
the hg19 human genome built with STAR. FPKM values were calculated with Cufflinks for
20,114 RefSEQ genes included in the VIPER repository. Differential expression analysis was
performed with the DESeq2 R package (Love, Huber, and Anders 2014). 15,650 genes with DE
data covered 884 of the 885 genes encoding for intermediates in PENGUIN and 3,286 genes
out of 4,314 promoter EPINs.

We annotated whether the EPIN promoters themselves and the genes encoding the
intermediate proteins in our data were DE using either of the two databases. We considered as
DE those genes passing |log2 fold change| > 1 and adjusted p-value <= 0.01. For the
LNCAP/LHSAR dataset, we could compute a Fisher test of enrichment of differentially
expressed genes encoding for intermediate proteins within each EPIN promoter versus within
the SNP paths (we could not compute this for the GEPIA since we did not have the full dataset
of covered genes). The genes that were not passing these filters were considered non-DE and
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the genes not covered by the two datasets were excluded from the enrichment analysis
described next. For each EPIN we calculated the fraction of DE intermediates within the SNP
paths and we estimated the enrichment of those compared to the fraction of DE intermediates in
the full EPIN network.
To find the enrichment of DE genes in SNP paths (PrCa SNPs in intermediate proteins)
compared to those in the entire EPIN, we computed as enrichment the ratio of Fraction1 /
Fraction2, where:
Fraction1 = (number of DE intermediates within SNP paths) / (number of covered intermediates
within SNP paths), and
Fraction2 = (number of DE intermediates the EPIN) / (number of covered intermediates in the
EPIN).
We report the EPIN genes passing enrichment (“enrichment_DE_deseq_SNP.bs.TF.path”) >
1.

pQTL look-up

We downloaded summary statistics with genome-wide association between SNPs and 4907
proteins reported in the deCODE study (Ferkingstad et al. 2021) and annotated with pQTL
association the SNPs we identified falling in either in enhancer binding sites or in node genomic
locations. The deCODE pQTL summary statistics data contained information on 4,907 proteins
and 186 (201 PrCa SNPs out of the 213 PrCa SNPs we looked up were in the data and 186
also matched by alleles). 808 out of the 4,314 genes promoters ("Gene_network") and 278 out
of the 885 gene intermediates (in total 997 out of 4,918 genes promoters and coding for
intermediates in our networks) have information on associations with their respective coded
proteins covered by the pQTL deCODE data.

Data Availability

RefSeq hg19 from UCSC Genome Browser is available at the following URL:
http://genome.ucsc.edu/cgi-bin/hgTables?hgsid=694977049_xUU5i1QkIJ50dj5miBt9wkAYuxN3
&clade=mammal&org=&db=hg19&hgta_group=genes&hgta_track=knownGene&hgta_table=kn
ownGene&hgta_regionType=genome&position=&hgta_outputType=selectedFields&hgta_outFile
Name=knownGene.gtf
Ensembl hg19 data for overlaps of SNPs with intermediates: biomart / ensembl from bioaRt
package

All EPINs and related statistics can be downloaded through the PENGUIN web service at
https://penguin.life.bsc.es/
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Figure 1. A. Schematic representation of an enhancer-promoter protein-protein interaction network
(EPIN) reconstructed with PENGUIN for a given E-P contact detected by H3K27ac-HiChIP. Promoter and
enhancer DNA binding motifs found in HiChIP regions after enhancer prioritization and the corresponding
bound proteins are indicated in orange; their physical interactions with other factors of the EPIN (in gray)
are represented as gray lines. B. Workflow data processing and reconstruction of the EPINs. We
considered 24,547 HiChIP E-P interactions and built EPINs centered around 4,314 promoters.

Figure 2: Clustering of the promoters originating the PENGUIN reconstructed EPINs (figure generated
using ETE3 (Huerta-Cepas, Serra, and Bork 2016)). In both panels, clustering is based on edge
composition of the EPINs. Leaf radius is proportional to network size. Color code (Fisher’s exact test):
red, enriched; blue, depleted; A: Enrichment of PrCa SNPs in enhancers. We identified one PrCa SNP
enriched cluster (GWAS+; cluster 8), and multiple PrCa SNP depleted (GWAS-; clusters 1, 2) and neutral
(GWAS=; clusters 3, 4, 5, 6, 7) clusters. B: Enrichment of CTCF ChIP-seq binding sites. We identified
multiple CTCF enriched (CTCF+; clusters 3, 7, 8), depleted (CTCF-; clusters 1, 2, 6) and neutral (CTCF=;
clusters 4, 5) clusters.

Figure 3. Schematic representation of different types of network paths found in the EPINs reconstructed
by PENGUIN. In general, a network path is defined by an intermediate protein (gray circle), encoded by a
gene (dark red line; Genei), that interacts with DBPs (orange circles) with binding motifs (orange lines) on
the enhancer (green line) and the promoter (red line) of another gene (dark red line; Genej) (A). If a PrCa
SNP (asterisk) falls in the enhancer binding motif, the interaction between the DBP and the enhancer is
disrupted and possibly its interactions (B). If a PrCa SNP (asterisk) falls in the gene that encodes for the
intermediate protein, the gene product is affected and possibly its interactions (C). Colors are consistent
with Figure 1.

Figure 4. Reconstructed protein interactions between MYC promoter and its enhancers. DBPs with
binding motifs on the promoter region are aligned on the left, while those with binding motifs on the
enhancers are aligned on the right. In the middle, proteins that connect DBPs through a shortest path.
Each dot is a protein. The color of lines represent SNP.bs.TF.path = red; SNP.intermediate.path = green;
other protein interactions are hidden. Color of dot: Fisher test OR for strength of enrichments in GWAS+
cluster (red is strongest odds ratio of enrichment and blue is less specific to the cluster). Size: the degree
of enrichment for intermediates or just the degree for DNA-binding proteins (i.e., big nodes are very
connected and worst for specificity). Shape is triangle if the protein is a druggable target from Drugbank.
The asterisk indicates a PrCa credible SNP falling within the genomic region of the gene encoding for the
intermediate proteins in the network. Names of proteins are specified if the node connects to a PrCa SNP
within the enhancer region, or the node contains a PrCa SNP within the gene encoding for the
intermediate protein. rsID is listed only for PrCa SNP overlapping a TF binding site. Bold text indicates
the 22 enriched proteins identified in cluster GWAS+. The filters for the images and corresponding tables
are the following: no filter for enrichmed nodes; no filter for enriched edges; no filter on expression; panel
A, plot only the tf paths; panel B, plot only the intermediate paths. The user on the web-server
https://penguin-analytics.herokuapp.com/ can choose among other options, including selecting for both
SNP paths, or for only enriched edges in cluster GWAS+ (OR>1 and p-value <= 0.01).

Table 1. Enrichment of PrCa SNPs in cluster 8 (GWAS+) when considering SNPs overlapping enhancers,
promoters, either or both.

Table 2. Enrichment of PrCa SNPs, CTCF ChIP-seq binding sites (“CTCF” in the header), and other PrCa
annotations (oncogene promoters and PrCa SNPs from GWAS Catalog) across the eight clusters
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identified by PENGUIN. Cluster 8 is enriched in CTCF binding, PrCa SNPs, and oncogenes. Symbols
code: +, enriched; -, depleted; =, neutral. OR: Fisher’s exact test Odds Ratio.
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