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Abstract  

A recent fMRI study found that the patterns of fMRI co-fluctuations within V1 changed with 

variations in the perceptual organization of observed stimuli. Intra-V1 correlation matrices 

associated with modified Global and Local Navon letters (that allowed dissociation of levels 

over time) were examined with univariate tests. Links between left/right V1 areas were found 

for Global letters, whereas links for Local letters were concentrated within the left dorsal V1. 

Here we used multivariate pattern analysis on the same data to predict the level and shape of 

the observed Navon letter from V1 correlation matrices to ascertain the stability across 

subjects of network topologies and if they contained invariant information about shape or 

level. We found that inter-subject classification was accurate for both level and letter shape. 

Intra-participant cross-classification of levels across shape was accurate but failed for shape 

across levels. Furthermore, cross-classification weight maps evinced asymmetries of link 

strengths across the visual field that mirrored perceptual asymmetries. These results indicate 

that the association of V1 topologies and perceptual states is stable across participants. We 

hypothesize that feedback (that differs between level and shape) to V1 drives the intra-V1 

networks and that the topology of intra-V1 networks can shed light on the neural basis of 

perceptual organization. 

 

Keywords: V1, fMRI, functional networks, SVM-classifier, Navon task, weight-maps 
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Introduction 

The function of cortical areas is determined not only by their input/output connections 

but also by their internal neural circuitry. Therefore, much information is missed when the 

functional magnetic resonance imaging (fMRI) time series of a region are averaged. This 

averaging is common in several studies of brain-wide networks, in which cortical areas are 

seen as unitary nodes in networks and represented by the mean of fMRI activity of all voxels 

or vertices inside the region (Schaefer et al., 2018; Sporns & Betzel, 2016). By collapsing 

voxels, we overlook potential signs of neural cooperation -indexed by co-fluctuations of 

neuronal activity- within cortical regions. Also, many studies of functional connectivity use 

resting state fMRI. However, task-fMRI connectivity is gaining increased attention, which is 

more sensitive to behaviour and allows better mapping of specific cognitive functions (Finn, 

2021). The primary visual cortex (V1) is a good candidate for studying its internal 

connectivity during tasks since much is known about its internal specialization and neural 

circuitry (Saenz & Fine, 2010; Seidemann & Geisler, 2018). There is also a close 

correspondence between its macroscopic anatomy and retinotopic organization (Benson et al., 

2012; Benson & Winawer, 2018), simplifying comparisons across individuals. Furthermore, 

given the small size of its population receptive fields (pRFs, Wandell & Winawer, 2015), 

synchronization of neural activity in V1 over long visual field distances would imply either 

internal lateral interactions (Chen et al., 2014) or feedback from high-order visual areas 

(Lamme & Roelfsema, 2000; Liang et al., 2017). 

Therefore, it seems worthwhile to search for associations between patterns of intra-V1 

fMRI connectivity and cognitive processes. To our knowledge, only two studies have 

attempted to address this directly, both focusing on the perceptual organization of visual 

scenes. These works (Nasr et al., 2021; Valdes-Sosa et al., 2022) found that fMRI co-

fluctuations in V1 change over a large spatial scale as the perceptual organization of observed 
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stimuli varies. Previous work on intra-V1 connectivity with resting-state fMRI had focused 

on structural (task-invariant) factors as the geodesic distance between cortical sites (Dawson 

et al., 2016). Although fMRI probably reflects only a subset of the interactions within V1 

(due to spatial and temporal resolution restrictions), it has been applied to study medium-

scale (intra-nodal) interactions between different visual areas (Baldassano et al., 2012; Haak 

et al., 2013). 

Valdes-Sosa et al. reported that V1 network topologies associated with Global and 

Local Navon letters were strikingly different. They used a novel stimulation approach 

(Iglesias-Fuster et al., 2014). In traditional Navon figures, both hierarchical levels are 

presented simultaneously. In the modified Navon figures, each level emerges from a 

background mask at different times (see Figure 1). This temporal segregation allows 

measuring distinct fMRI responses for the two levels and permits orthogonality with letter 

shape in the design. A higher number of links (connections) were found between the left/right 

V1 areas for Global, compared to Local letters. Congruently, Nasr et al. also found stronger 

connectivity between regions of interest (ROIs) in the left/right V1 when they mapped parts 

of the same object instead of pieces of different objects. In both studies, these 

interhemispheric links were stronger in the dorsal V1 region (corresponding to the lower 

visual hemifield), which is consistent with an advantage for global perception in the lower 

visual field in psychophysical studies (Levine & McAnany, 2005). Valdes-Sosa et al. also 

found that links associated with Local letters were concentrated in the left dorsal V1 (lower 

right visual quadrant), which mirrors a left hemisphere superiority for Local Navon letters 

found in neuropsychological and psychophysical reports (Flevaris & Robertson, 2016). 

The two studies described above used repeated-measures univariate statistical 

hypothesis testing. In one case (Nasr et al., 2021), a small number of V1 ROIs were selected. 

In the other study (Valdes-Sosa et al., 2022), massive edgewise tests or network-based 
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statistics were employed (followed by multiple-comparisons corrections). It would be 

interesting to examine if multivariate characterizations of V1 network topology also vary 

with, or are even more sensitive to, the effects of perceptual organization. Since univariate 

testing ignores systematic associations between different features, more complex patterns are 

possibly missed. Moreover, significant within-subject effects -although informative- do not 

address the stability of network topologies across individuals, which is especially relevant in 

studies with a small number of participants (Calhoun, 2022). Finally, hypothesis testing (by 

itself) does not enable predictions (diagnosis) for individual cases (Bzdok & Ioannidis, 2019). 

We speak to these issues using MVPA techniques on the fMRI connectivity matrices 

from the Valdes-Sosa et al. study. MVPA examines differences between conditions (Davis & 

Poldrack, 2013; Haynes & Rees, 2006) by combining information across measurement units 

(in our case, network links). Inter-subject MVPA (Wang et al., 2020)  can answer the 

question about the stability of network topology across individuals. In this procedure, training 

data from some individuals are used to build a classifier to test data from other individuals. 

Above-chance accuracy in inter-subject classification bolsters conclusions from small sample 

studies and explores the possibility of predictions for new individuals. Despite some 

limitations of the inter-subject MVPA methodology, its use is facilitated for intra-V1 data, 

given the excellent inter-subject registration of the retinotopic mapping for this region 

(Benson & Winawer, 2018). 

We also used MVPA to examine which visual attributes are related to V1 network 

topology while exhibiting tolerance for changes in other attributes. On the one hand, V1 

network topology could reflect the spatial scale used to integrate the relevant stimuli. For 

example, Global letters integrate across bigger chunks of the visual field than Local letters, 

which could be independent of their shape (Han & Humphreys, 1999, 2002). On the other 

hand, V1 network topology could reflect the specific arrangement of contours defining the 
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letter's shape, perhaps at more than one spatial scale. Scale-free shape information is 

available in areas coding shapes with size invariance (such as the lateral occipital complex or 

LOC; Grill-Spector, 2003). The invariance of neural patterns associated with one feature with 

respect to another can be tested with MVPA cross-classification (Kaplan et al., 2015). Cross-

classifiers are trained to discriminate for attribute A at one Level of feature B (e.g., shape at 

the Global Level), then are tested to discriminate for attribute A at another value of B (e.g., 

shape at the Local Level). The success of this learning transfer implies that neural 

representations for A are tolerant to changes in B (that is, shape information is invariant to 

level, which is more abstract). 

Additionally, the retinotopic organization of V1 allows meaningful interpretation of 

the feature weight maps underlying successful classifiers in the visual field. V1 network 

edges connect cortical sites for which population receptive fields (pRFs) have been mapped 

(Wandell & Winawer, 2011, 2015). The weight of each link can thus be plotted in the visual 

field as a line connecting the positions (defined by the pRFs) corresponding to two nodes. 

The network edges contributing most to the predictions should have a characteristic spatial 

pattern, corresponding to the stimulus properties, in the visual field.  

To sum up, here we re-analyzed data from our previous work (Valdes-Sosa et al. 

2022) to answer the following questions: 1) Is it possible to train inter-subject classifiers 

based on V1 correlation matrices to accurately predict in new subjects the hierarchical level 

and shape of observed Navon letters? 2) Is it possible to perform accurate intra-subject cross-

classification of observed letter shapes tolerant to changes in level and presented levels 

tolerant to changes in letter shape? 3) What is the retinotopic distribution of the features that 

contribute most to the accuracy of the classifiers in the previous questions? 
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Materials and Methods 

The data used here have been previously described in other publications. A summary 

description is provided below; see Valdés-Sosa et al., 2020 and Valdés-Sosa et al., 2022, for a 

full explanation. 

Participants 

Twenty-six human volunteers (ages 23 to 28 years; 9 females) participated in the 

study. All had normal, or corrected-to-normal, vision, did not present any medical condition 

and were right-handed except for two cases. The procedures were approved by the ethics 

committee of the University for Electronic Science and Technology of China (UESTC), and 

participants gave written informed consent in compliance with the Helsinki declaration. 

Stimuli and tasks  

Modified Navon figures (Figure 1) were presented in the experiment. Two letters, E 

and U, were presented at both levels in a blocked stimulus paradigm. The 1 s letter 

presentation alternated with a background mask also flashed for 1 s. The letters were made 

from white lines on a black background (about 2.0° wide and 5.3° high). This matrix was 

built out of smaller placeholder elements shaped like '8's (with visual angles about 40' wide 

and 1° 3' high). Only one letter was shown in each block, in which participants were required 

to report the number of minor deviations in letter shape. The stimuli were projected on a 

screen at the subject's feet, viewed through an angled mirror fixed to the MRI head-coil, and 

were generated using the Cogent Matlab toolbox (http://www.vislab.ucl.ac.uk/cogent.php).  

Blocks had 44 sec of duration and consisted of an initial cue ('Global' or 'Local') (1 s), 

followed by a 19-sec baseline, 20 s of the same letter (1-sec repetition) and were ended with a 

4 sec wait period where the number of shape deviations was reported. Five runs were 

presented in 24 participants and four runs in two, each consisting of 12 blocks (3 blocks for 

each letter: EG, EL, UG, and UL). 
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Figure 1: Navon figures. A) Modified figures used in the experiment. Two letters (E 

and U), and two levels (Global and Local). B) Example of traditional Navon figure. 

Data acquisition and Image pre-processing 

Recordings were carried out with a GE Discovery MR750 3T scanner (General 

Electric Medical Systems, Milwaukee, WI, USA) using an eight-channel receiver head coil. 

Functional images were obtained with a T2*- weighted echo planar imaging sequence 

(TR=2.5s; TE=40 ms; flip angle=90○) with a spatial resolution of 1.875 x 1.875 x 2.9 and 135 

images per run. A T1-weighted image was also obtained with 1 x 1 x 0.5 mm resolution. 

 Initial pre-preprocessing of functional data included discarding the first five volumes 

of fMRI in all runs, artifact correction (using ArtRepair toolbox 

(http://cibsr.stanford.edu/tools/ArtRepair/ArtRepair.htm), followed by slice-timing, head 

motion correction (with the extraction of motion parameters) and unwarping with SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/). The T1 Image was segmented and normalized to MNI 

space using SPM12 to extract nuisance parameters from fMRI activity in white matter (WM), 

and cerebrospinal fluid (CSF) that were included in the general linear model described below. 

For each subject, these masks were created using a threshold of tissue probability greater than 

0.9. The CSF mask was also restricted to the ventricles using a template in MNI space 

(https://sites.google.com/site/mrilateralventricle/template). 

Cortical surfaces (white and pial) were reconstructed from the T1 Image for each 

subject using Freesurfer (http://surfer.nmr.mgh.harvard.edu), registered to the FsAverage 

template, and subsampled to 81924 vertices. The mid-gray cortical surface was co-registered 
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with the functional data. Then the fMRI time series were interpolated to each mid-gray 

cortical surface and high-pass filtered with a time constant of 128 s. Also, for subsequent 

spatial smoothing of the functional data in V1, discs with 5mm radii were defined over the 

FsAverage surface using the Surfing toolbox (http://surfing.sourceforget.net). 

Estimation of fMRI background activity connectivity matrices  

Background activity (BA) was defined as the residual time series of each surface 

vertex after regressing out the effects of the stimuli (evoked response) and 64 nuisance 

parameters (a standard set of nuisance variables to eliminate the effects of noise, artifacts, and 

physiological contaminants) applying a general linear model (GLM). The nuisance regressors 

included the primary motion parameters, their derivatives, and the quadratics of both these 

sets (24 motion regressors in total). Physiologic noise was modeled using the aCompCor 

method (Behzadi et al., 2007) on the time series extracted separately from the masks of WM 

and CSF in ventricles in volume space. The first five principal components from each set of 

time series, the derivatives of these components, and the quadratics of all these parameters 

were obtained (40 regressors in total). For the GLM, each stimulation block was modeled as a 

square wave convolved with the canonical hemodynamic function. 

The residual time series in V1 vertices, obtained after GLM, were smoothed by 

averaging with the time series of its neighbours in the 5 mm discs mentioned above. The 

studied V1 region was restricted to the central 8 degrees of eccentricity in a probabilistic a 

priori map (Benson & Winawer, 2018). Next, the time series were segmented into blocks 

considering the time shift introduced by the hemodynamic function. These segments were 

linearly detrended, and segments corresponding to the same stimulus were concatenated.  

Finally, the internal V1 connectivity matrices of BA were estimated by calculating the 

Pearson correlation coefficient between the time series for each vertex of V1 and segregated 

by stimulus condition (EG, EL, UG, UL) in all participants. For the classification analysis, all 
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matrices were vectorized. The correlation values were converted to z-values using the Fisher 

transformation, negative values were set to zero, and missing values in each subject's vector 

were substituted by the median value of the other participants without missing values. These 

missing values could have been due to noise or BOLD signal dropout at specific cortical 

vertices. However, they were few and concentrated in restricted areas of the visual field (see 

Figure 10 in Valdes-Sosa et al., 2022). 

Classification analysis 

Intersubject MVPA (to assess stability across participants) and within-subject cross-

classification MVPA (to assess discrimination invariance) were performed, in which the 

possibility of predicting observed stimuli from the intra-V1 connectivity matrices was 

measured. In all tests, the connection strengths between all node pairs were used as features, 

and a support vector machine (SVM) was used as the classifier (with the default parameter 

C=1). Feature selection was performed to eliminate some irrelevant connections by applying 

a two-tailed t-test between conditions on the training data and retaining links with significant 

t-values (p <0.01). Prediction accuracy (Acc) and the area under the ROC curve (AUC) were 

used to assess the performance of each classifier. The statistical significance of deviation 

from a random classification (0.5 for Acc and AUC) was estimated by permutation testing 

(nperm=1000), in which stimulus labels were randomly changed (Valente et al., 2021). 

Intersubject-classification 

Specific inter-subject classification tests were performed to evaluate if the pattern of 

association between stimulus conditions and V1 network topology was stable across 

participants. These tests were carried out with cross-validation in a leave-one-subject-out 

(LOSO). Thus, training was based on the data of n-1 participants and testing on the data of 

the remaining participant. The four discriminations tested were Level (Global vs Local), 

separately for the 'E' and the 'U' stimuli, and letter shape ('E' vs 'U'), separately for the Global 
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and the Local stimuli. Each iteration of the LOSO consisted of 50 training samples and two 

testing samples. 

Cross-classification 

Cross-classification tests were employed to see if models built for one relevant feature 

(e.g., level) were invariant to changes in another irrelevant feature (e.g., letter identity). The 

data from all subjects were divided into two sets of pairs (each with 52 observations) to test 

the invariance of level discrimination with respect to letter identity: those associated with 

EG-EL, and with UG-UL. The data was also divided into matrices associated with EG-UG 

and EL-UL to test the invariance of letter discrimination with respect to level. The classifier 

was trained alternating which pair was used for training and which for testing, and the two 

accuracies and AUCs were averaged and reported. Thus, two instances of the cross-classifier 

were always calculated (e.g., Level for 'E' and 'U'). Note that cross-validation was 

unnecessary in these tests since the classifier was trained with data from one pair of 

conditions and tested with independent data from the other pair. Permutation tests were based 

on randomizing the labels of the training data in both directions of the test, with the resulting 

p-values combined with Fisher's method.  

Analysis of weight maps in the Cross-classifications 

The weight maps of the SVM cross-classifiers were examined to determine which 

regions of V1 contributed most to classification tests. This analysis was not carried out for the 

specific intersubject tests since their weight maps are necessarily different, reflecting the 

retinotopic pattern of stimulation. In contrast, the invariance of weight maps for one attribute 

despite changes in another implies a generalization beyond the precise pattern of retinotopic 

stimulation.  

The stability of the weight maps was estimated by bootstrapping (nboot=1000). In 

each bootstrap iteration, new data was created by resampling with replacement across 
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participants. The SVM was re-trained in each replication to obtain multiple models (for both 

instances of the irrelevant attribute). The estimated model coefficients were transformed into 

forward models ("activation" maps) as proposed by Haufe  (Haufe et al., 2014) to enhance 

the interpretability of these transformed maps (HTW) and allow assessment of their stability.  

We then calculated the concordance of HTW map feature rankings between the two 

instances of the invariant cross-classifications. If the classifiers trained separately for two 

instances yield similar weight maps, then the features guiding the generalization of learning 

across the two situations are equivalent. Concordance was measured between the two 

instances for each bootstrap replicate using Kendall's W index (which ranges from 0 for no 

concordance to 1 for perfect concordance). If the classifiers contain invariant information 

(tolerant to changes in the irrelevant feature), the ranking of activations in the two HTW 

maps should be highly concordant. The 95 % bias-corrected and accelerated percentile 

confidence intervals were calculated with the W bootstrapped samples. 

The HTW maps from the two cross-classification instances were averaged to enhance 

features that were relevant in both. This average HTW map was transformed into a robust 

pseudo-zscore (https://github.com/cvnlab/knkutils), obtained by dividing the median of the 

feature by one-half the width of the central 68% range (an analog of a standard error) of the 

bootstrap values. This Z-transformed HTW map was split into positive and negative portions 

(e.g., each favouring one level). The absolute values of these maps were fit with two models: 

a gaussian distribution and the mixture of a null gaussian and gamma distribution. The model 

with the lowest Bayesian information criterion (BIC) was used to estimate the respective 

false discovery rates (q=0.00001). Finally, the pseudo-zscores (representing edges in a 

connectivity matrix) surviving the FDR threshold were projected onto the visual field and 

shown as graph plots in visual field coordinates, using the mean polar angles and 
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eccentricities for V1 vertices extracted from a population retinotopy prior map (Benson & 

Winawer., 2018).  

We also calculated the 95 % percentile confidence intervals for each feature in the 

average HTW map. Significant features (links for which the confidence interval did not 

include zero) were plotted within the original correlation matrix space. Median HTW values 

were projected as graph plots onto the visual field as indicated above. 

 

Results 

The results of accuracy and AUC for all classification tests are shown in Figure 2. In 

the inter-subject classification, it was possible to accurately decode both specific instances of 

the classifier level (Acc: 0.79, AUC: 0.89 for ‘E’ and Acc: 0.75, AUC: 0.85 for ‘U’) and for 

letter identity (Acc: 0.73, AUC: 0.83 for Global and Acc: 0.69, AUC: 0.74 for Local). In all 

cases, the permutation tests were highly significant. Thus, significant inter-subject 

classification showed that the V1 topologies associated with each stimulus condition were 

stable across subjects. Note that the retinotopic shape representations in this test are 

ultimately scale-specific (i.e., global and local instances of the same shape stimulate different 

retinal sites), and the retinotopic representation of level is letter specific. 

Invariant Level cross-classification was highly significant (Acc: 0.70, AUC: 0.82). In 

contrast, invariant letter cross-classification was at a chance level (Acc: 0.54, AUC: 0.52) and 

not significant. These results indicate that the spatial scale (invariant to shape) is well 

reflected in the topology of intra-V1 networks, whereas letter shape independent from spatial 

scale is not. 
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Figure 2: Classifier performance. The upper panel shows accuracy values in the bars. 

The lower panel shows AUC values in the bars. A vertical dotted line represents the chance 

level (0.5). Probabilities values from the permutation tests are shown in the numerical insets.  
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Since accuracy in the cross-classifier for letter identity was at chance, we only show 

HTW results for level. A comparison of the HTW maps for the classifiers discriminating the 

Global/Local 'E' and for the Global/Local letter 'U' shows that they were very similar. The 

observed W values between the two intra-subject SVM classifiers for level was 0.77, with a 

95% BCa confidence interval [0.65-0.83], which was well above zero (see the histogram in 

Figure 3). This result is congruent with the accurate learning transfer between the two 

instances of level cross-classifiers. 

Figure 3: Distribution of bootstrapped Kendall W values. The resampling was over 

the 26 participants.  

Maps of the link pseudo-z scores on the SVM Haufe-transformed weights (HTW) for 

the invariant level classifiers are plotted in the visual field in Figure 4. The gaussian+gamma 

mix provided better fits (lower BIC) than the lone gaussian for both positive and negative 

HTWs. The map for negative HTWs (favouring Global), after thresholding with the FDR 
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calculated from the distribution mixture fit, exhibits many links crossing the vertical 

meridian, mainly in the lower visual field. The map for positive HTWs (favouring Local)  

shows many links circumscribed to the lower right and left visual quadrants. 

Figure 4. Analysis of standardized SVM Haufe-transformed weight (HTW) maps for 

the invariant level classifiers. The top row (A, B) corresponds to negative HTWs (indicating 

Global, although absolute values are shown), and the bottom row (C, D) corresponds to 

positive HTWs (indicating Local). The distribution mixture fits are shown on the left side of 

the figure, with data histograms in black, the gaussian component in red, and the gamma 

component in green. On the right side, graph plots in the visual field of the features surviving 

the FDR threshold, with colour representing the magnitude of the pseudo-zscores. The gray 

circle represents the center of gaze, x and y axis represent degrees. Each light-blue dot 

corresponds to the center of a V1 pRF in the visual field. 

Congruent results were obtained for the confidence interval analysis based on the 

HTW bootstrap. The links with confidence intervals that did not include zero are shown in 
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Figure 5 (corresponding to values above chance). In this correlation matrix space, 

interhemispheric links dominate in the Global condition (occupying the block anti-diagonal), 

whereas intrahemispheric links dominate in the Local condition (occupying the block anti-

diagonal). When projected onto the visual space, the median values of significant HWT 

values tend to cross the vertical meridian of the VF in the lower quadrants for the Global 

condition. Significant HWT values in the Local condition tend to stay within single visual 

field quadrants, especially the lower ones. These results are largely congruent with the 

findings in Figure 4. 

Figure 5. Confidence Intervals (95%) analyses of Haufe-transformed weight maps for 

the invariant level classifier. Cases in which the intervals did not contain zero were selected 

and plotted separately for positive activations (top row: A, B) and negative activations 

(bottom row: C, D). On the left, the surviving features are marked in white within the original 

V1 vertex correlation matrices. The numbers on the axis indicate the position in an arbitrary 

list of V1 cortical vertices. The red lines indicate where the list of vertices transitions from 

the left to the right V1. On the right side of the figure, the median HWT of surviving features 
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are displayed in graph plots projected into the visual field, with the same conventions as in 

figure 4.  

 

Discussion 

Prediction of the observed stimuli from intra-V1 correlation matrices (corresponding 

to their associated fMRI time-widows) was highly accurate in the two multivariate analyses 

carried out in this article. First, four types of specific discriminations accurately predicted 

which stimuli one participant had observed after training it on the data from the other 

participants. This classification was accurate when discriminating both stimulus level 

(Global/Local for both the 'E' and the 'U') and letter shape ('E'/'U' for both Global and Local 

levels). This finding implies that the V1 network topologies were very stable across the 

individuals in the experiment. All these specific classifications ultimately depend on the 

patterns of retinotopic stimulation, which were highly distinguishable. 

Second, intra-subject cross-classification was also accurate for the abstract level, 

transferring learning across letters identities. Both cross-classifications depend on 

information not strictly tied to the retinotopic pattern of stimulation (Kaplan et al., 2015; 

Valdés-Sosa et al., 2020); they are somewhat more abstract than for the specific 

discriminations. In the case of invariance for level, this implies that the details of line 

configurations distinguishing 'E' and 'U' were abstracted away (Hübner & Volberg, 2005). 

Shifting attention towards the Local/Global is thought to occur by filtering out high/low 

spatial frequencies from the representation of the retinal input. (Flevaris et al., 2011, 2014). 

In a prior study by our group using activation-based MVPA (Valdés-Sosa et al., 2020), 

information about level (independent from shape) was found in scene-selective cortex 

(medial ventral occipitotemporal and middle occipital areas). This area could be a source of 

feedback contributing to the intra-V1 network effect of level.  
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Transfer of learning did not occur for the invariant shape across different levels: 

cross-classification for letter identity failed. However, coding of shape that is tolerant to 

changes in size is present in higher-order-visual areas such as LOC (Grill-Spector, 2003). In 

our previous study, information about shape invariant with respect to level was found in these 

same object-selective cortices (lateral ventral occipitotemporal and lateral occipital regions, 

including LOC) (Valdés-Sosa et al., 2020). So why did the invariant classification of letter 

identity fail? One explanation of our results is that these size-invariant representations do not 

influence intra-V1 networks by feedback. However, this idea contradicts several studies 

showing robust functional connectivity between the foveal region of V1 and LOC (e.g., 

Baldassano et al., 2016). However, since the coupling between early and higher-order visual 

areas is selectively switched on or off according to task requirements (e.g., Al-aidroos et al., 

2012), this would imply that in our task connections of V1 to areas controlling the spatial 

scale of attention would be enhanced on and those implicated with shape attenuated. When 

processing Navon figures, the control of spatial scale is essential (Flevaris & Robertson, 

2016).  

Edge HTW maps of this cross-classifier for level had different topologies when 

'weighing in' for each level. For weights indicating Global stimuli, many links crossed the 

vertical meridian in the lower visual field. For weights indicating Local stimuli links were 

limited to single quadrants (especially the lower ones), with only a few crossings of the 

horizontal meridian. These results provide converging evidence for the previous work of our 

group using the same data but based on hypothesis testing using mass univariate edgewise 

and network-based statistics. Again we conclude that feedback influences are probable 

drivers of the intra-V1 networks since examination of these HTW shows that most 

discriminative links are longer than 4 degrees of visual angle, which exceeds the size of V1 

receptive fields in the stimulated region. 
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The fact that the classifier weight maps described here and the significant links of our 

previous study both show stronger interhemispheric connections associated with Global 

stimuli in the lower visual field is consistent with evidence that Global visual perception is 

more accurate in the lower compared to the upper VF (Christman, 1993; Levine & McAnany, 

2005; Previc, 1990). This advantage could be explained by greater sensitivity in the lower 

visual field to lower spatial frequency components (Niebauer & Christman, 1998), which are 

needed to extract Global shapes, including those in Navon figures (Flevaris & Robertson, 

2016).  

The demonstration that network patterns cross-validate across participants is not a 

trivial result, given the current concern about the reliability of hypothesis testing based on 

small samples (Calhoun, 2022). However, surviving this additional test is not enough, and 

higher-powered replications are needed, given the possibility of false positive results and 

inflated effect sizes in results from small samples (Button et al., 2013). Another limitation of 

this study is the lack of control of eye movements. Eye movements produce uncontrolled 

blurring of the retinotopic stimulus representation, which could weaken the correspondence 

of topologies across participants. Also, a small range of stimulus shapes was used. These 

problems must be addressed in replication studies with a larger number of stimuli and 

participants and with the measurement of eye movements. 

Despite these limitations, this study bolsters our previous report based on hypothesis 

testing by using MVPA. Testing invariance of cortical information with simple hypothesis 

testing is impossible and can only be achieved by the cross-classification technique used here 

or by more sophisticated and recently developed multivariate analysis of variance methods 

(Allefeld & Haynes, 2014). The visual pathways are essentially machines for extracting 

important attributes disregarding other less critical features. Therefore, it is crucial to 

determine their possible feedback influence on V1. The cross-classification results indicate 
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that the relative weight of feedback influences from different higher-order visual regions on 

intra-V1 networks will shift according to the task. This hypothesis could be tested with 

mediation analyses using time series from higher-order visual areas as control variables. 

Intersubject classification based on functional connectivity is promising for possible 

applications in medical diagnosis (Finn & Rosenberg, 2021; Serin et al., 2021; Tian & 

Zalesky, 2021). Intersubject cross-classifiers (e.g., for level) can be used to characterize 

individuals. In several neuropsychiatric disorders, global/local attention breaks down (Slavin 

et al., 2002; White et al., 2009). Would atypical intra-V1 networks emerge in patients 

affected when observing our modified Navon stimuli? This research could perhaps help 

characterize their neural physiopathology.  

As a final point, we underline that our results are congruent with studies using MVPA 

on fMRI activations, revealing that V1 carries visual information with a spatial range more 

extensive than its pRFs (Smith & Muckli, 2010; Williams et al., 2008). Together, they 

support the hypothesis of V1 as a "cognitive blackboard" V1 (Roelfsema & de Lange, 2016), 

which could play an essential role in cognitive processes such as perceptual organization, 

attention, and memory.  
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