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Abstract

Spectrum estimators that make use of averaging across time segments are ubiquitous
across neuroscience. The core of this approach has not changed substantially since the
1960s, though many advances in the field of regression modelling and statistics have
been made during this time. Here, we propose a new approach, the General Linear
Model (GLM) Spectrum, which reframes time averaged spectral estimation as multiple
regression. This brings several benefits, including the ability to do confound modelling,
hierarchical modelling and significance testing via non-parametric statistics.

We apply the approach to a first-level EEG resting-state dataset alternating between
eyes open and eyes closed resting-state. The GLM-Spectrum can model both
conditions, quantify their differences, and perform denoising through confound
regression in a single step. This application is scaled up from a single channel to a
whole-head recording and, finally, applied to quantify age differences across a large
group-level dataset. We show that the GLM-Spectrum lends itself to rigorous modelling
of within- and between-subject contrasts as well as their interactions, and that the use
of model-projected spectra provides an intuitive visualisation. The GLM-Spectrum is a
flexible framework for robust multi-level analysis of power spectra, with adaptive
covariance and confound modelling.
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1 Introduction '
Frequency-domain analyses of oscillations in electrophysiological recordings of brain 2
activity contain information about the underlying neuronal activity. Both the peaks of 3
specific oscillations and the broader spectral shape are informative about brain function
and have inspired a wide literature (Buzsaki and Draguhn), [2004; Kopell et al., |2014). 5
The windowed periodogram is the predominant method for spectrum estimation in 6
neuroscience. It computes the average Fourier spectrum across a set of sliding window 7
segments (Bartlett, 1948, |1950; Welch, |1967) based on the premise that the data are 8
comparable over time and that the effect of noise will be attenuated when averaging °
across segments. This algorithm produces a statistical estimate of a spectrum and has 10
remained largely the same for many decades. Statistical methods have greatly 1
progressed in this time and many newer approaches can be directly applied to the 12
windowed periodogram. 13

Here, we propose the General Linear Model Spectrum (GLM-Spectrum) framework 1
for analysing Fourier spectra. This reframes the method of averaged periodograms asa s
regression problem by modelling frequency spectra over successive windows as a linear 16
mixture of a set of user-specified regressors. This links linear spectrum estimation to the 17
GLM analyses that have been developed for a broad range of neuroimaging applications s

including structural and functional MRI (Friston et al., [1994; Woolrich et al.,|2009), 10
event related fields (Smith and Kutas, [2014)) and induced responses (Litvak et al., 20
2013)). Specifically, we apply a General Linear Modelling approach to frequency 21
spectrum estimation and demonstrate the utility of multi-level models (Friston, 2007 22
Woolrich et al., 2004)), non-parametric permutation testing (Nichols and Holmes, |2001; 23
Winkler et al.,|2014), contrast coding and confound regression in this context. 20

We illustrate the utility and flexibility of the GLM-Spectrum by analysing EEG 25

recordings alternating between eyes open and eyes closed resting-state conditions from 26
a freely available dataset (Babayan et al.,[2019). First, the GLM-Spectrum is illustrated =7

in detail with data from a single channel of one individual. The spectrum for the two 28
resting conditions and their difference are computed, whilst a set of covariate and 20
confound regressors account for linear trends over time and a diverse set of potential 30
artefact sources. This approach is generalised to the whole-head recording of a single 31
subject to describe the spatial patterns associated with each regressor. Finally, a 32
group-level, whole-head analysis explores the GLM-Spectra of specific regressors and 33
contrasts before quantifying how they differ between younger and older participants. 34
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2 Methods "
2.1 Time-Averaged Periodogram Estimation 36
We start by reviewing the definition of the established method for windowed 37
periodogram estimation. The discrete Fourier transform (DFT) can be used to map a 38
series of data points from the time domain into the frequency domain. The frequency 30
domain representation is known as a spectrum and describes how the variance in the 40
data is distributed across frequencies according to a linear basis set. The DFT computes
the frequency spectrum Y'(f) from an input time series of real values at discrete time a2
points y(t). =
N-1 et
V()= ylt)e 7 (1)
t=0

Where ¢ is a discrete time point, f is a discrete frequency, fs is the sampling as
frequency in Hz and N is the number of data points. The output, Y (f), is a a5
complex-valued array containing the estimate of the spectrum. In practice, the a6
computationally efficient Fast Fourier Transform (FFT;|Cooley and Tukey| (1965)) a7
implementation of the DFT is applied by most software packages. We will use the FFT as
for this section, as it refers to the algorithm that is most commonly used in practice. a9

The mathematics underlying the FFT works with an infinite time series. However, 50
the data from real measurements are finite. Therefore, the FFT must implicitly assume s
that the time-limited input data, y(t), repeats infinitely many times. The combination 52
of this repetition and the discrete sampling of the time-series y(¢) leads to the 53
frequency output of the FFT being a linearly spaced axis of N frequency values 54
spanning between —% to +f§. In addition, the discontinuities between repetitions 55
lead to an effect known as spectral leakage, which spreads power contained in one 56
frequency bin to its neighbours. Finally, the computational efficiency of the FFT relies 57
on the input data length N being an integer power of 2. If it is not, then the routine 58
will zero-pad the length of the input up to a power of 2. This padding causes further 50
sharp changes and discontinuities that can lead to spectral leakage. 60

The impact of the spectral leakage is reduced by applying a tapered window 61

function designed to flatten the data at the start and end of each segment to minimise e
discontinuities between repetitions. Here, we modify equation [1|to multiply a window s

function w(t) with the data (point-by-point) during the FFT: 64
N-1 st
Y(f) =D withy(t)e 7 ®)
t=
There is a huge range of possible window functions that provide different profiles of s
spectral leakage and sensitivity. The Hamming and Hann windows (used by MatLab’s o6
‘pwelch’ functiorE] and SciPy’s ‘scipy.signal.welch’ functionEl, respectively) are two o7
commonly applied options which offer reasonable narrowband resolution. More o8
advanced tapering can be applied using discrete prolate spheroid sequences (DPSS) to s
create a Multi-Tapered Spectrum estimate (Prerau et al.,2017; Thomson), [1982). 70
Y(f) is complex-valued, with its real and imaginary parts reflecting the sine and 7
cosine components of the Fourier transform. The phase and magnitude of each 72

Thttps://www.mathworks.com/help/signal/ref/pwelch.html
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html
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frequency component can be computed from these complex values, though spectrum 73
analyses most commonly use the magnitude. We can take the absolute value of Y(f) to  7s
create a magnitude spectrum Sy (f). 5

Sy(f) =Y (Sl 3
Similarly, a power spectral density (sometimes just called a power spectrum) can be 76
calculated by taking the squared absolute value normalised by the data length: 7

Y (f)I?
P, = 4

V() =% @
P,(f) is a real-valued estimate of the spectral density of a signal, sometimes known 7
as a periodogram. This periodogram provides a relatively simple spectrum estimation 70
but has a further shortcoming. Only one estimate for the power at each frequency is 80
calculated, irrespective of the length of y(¢). This means that we have no information 81
about the variance around that estimate, and the estimate does not improve if we 82
include more data. 83
A better estimator is the Time-Averaged Periodogram (TAP), introduced by Maurice s
Bartlett (Bartlett, [1948,|1950) and refined by Peter Welch (Welch, |1967)). These 85
methods are commonly used and ensure that the noise level in the periodogram 86
reduces as the length of the input data increases by a method of ensemble averaging (at sz
the expense of information about low frequencies). This splits the input into a set of 88
k=1,2,... K segments (i.e., time windows) each containing ¢t = 1,2,...T samples 80
and computes the FFT of each to produce a short time Fourier transform (STFT): %

—i2wft
Sy(f,k) =D w(t)y(t, ke 7 ()
t=1

The input for each FFT is now the k-th segment of the continuous input y(¢), which e
we denote with y(¢, k). The output matrix Y (f, k) contains the STFT, which describes 02
how the spectrum changes in power across the K segments. A time-varying magnitude o3

spectrum can be computed by taking the absolute value of the STFT. 0a
Sy(f, k) = Y (£, k)] (6)

Similarly, a time-varying power spectral density is computed from the squared o5

absolute of the STFT. %
Y (f.k)P
P,(f, k)= —"T"—"—

Finally, the TAP is then the average of the time-varying power spectral density o7
across segments. If the previous computations included the windowing function w(t) o8
and overlapping time segments, then this is Welch’s power spectral density estimate 09
(WEICh, 1967) 100
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1 K
Pwelch = — P,
welchy (f) = ,; s (f.k) 8)

Welch’s TAP now has the property that the noise level of the estimate decreases with 101
increased data length, since more input data provides a larger number of segments for 102

the central averaging step. It is still an imperfect estimator that has been subject to 103
criticism (Prerau et al., [2017;|Thomson) [1982) but it is practical, straightforward to 104
compute, and in wide use across science and engineering. 108

The real-valued power spectrum may additionally be scaled by a log-transform to 106
produce a log-power spectrum log(P,(f, k)). This can be desirable as the power 107
spectrum is strictly positive and tends to have a strongly non-Gaussian distribution, 108
whereas the log-power spectrum is not strictly positive and tends to have a more 100
Gaussian distribution (See supplemental section|[7.1). 110

Several key parameters must be set by the user when computing a spectrum in this 11
way. These values affect the range and resolution of the spectrum and must be chosen 112
with care. Briefly, there are three main considerations. Firstly, longer segment lengths s
(T) will increase the frequency resolution (number of bins per Hertz). Secondly, faster 114

data sampling rates allows higher frequencies to be estimated (by increasing the 115
Nyquist range). Finally, increasing the length of the input time-series for a given 116
segment length will increase the number of segments in the average, reducing the 117
impact of noise. These choices are discussed in full in Supplemental section[7.2] 118
2.2 General Linear Model Spectrum 110
The GLM-Spectrum replaces the averaging step in the time-averaged spectrum 120
estimation methods with a General Linear Model (also known as multiple regression). 12
The GLM is widely used in neuroimaging analyses (Friston), |2007; Woolrich et al., 122
2009) and the same principles around analysis, model validation and statistics apply 123

here. The objective is to model the spectrum across the K sliding window segments as a 124
linear function of a set of regressor variables. The magnitude GLM-Spectrum is defined 125
as: 126

Sy(f k) = X(k)B(f) + e(f) 9

Where S, (f) is the (Kx1) time-varying spectrum estimated at frequency (f) across 127
all K segments/windows (the STFT computed in [6)) computed from a single channel 128
(timeseries) of data, X is a (KxP) design matrix containing the P regressors of interest 120

as they vary over time, and e(f) is a (Kx1) vector of residual errors. We model the 130
whole spectrum using a mass-univariate modelling approach that fits a separate GLM 131
for each frequency bin in the FFT. The resulting (Px1) vector B(f) contains the 132
estimated regression parameters. We refer to the whole vector of estimates across 133
frequency as the GLM ‘beta-spectrum’. 134

We assume that the data being modelled (the dependant variable) follows a normal, 13s
Gaussian distribution and that the residuals e(f) are Gaussian, independent and 136
identically distributed (IID) over time, i.e. k. Violations of these assumptions will be 137
discussed later in section 2.4. 138

A critical choice is which form of the time-varying spectrum to use as the dependant 1se
variable; the complex, magnitude, power and log-power spectra are linked by 140
non-linear transforms and have very different distributions. The power spectrum is 141
typically strongly non-Gaussian and will need to be transformed prior to modelling. 142
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The magnitude and log-power spectra are more likely to have a Gaussian spectrum. We = 143
typically will not model the complex spectrum as any phase differences across windows 1
could lead to structure being averaged out of the final spectrum. If phase information is 1ss
critical, and expected to be consistent across time-segments, then future work may 146
generalise these statistics to the complex spectrum (for example, [Baker| (2021))). 147

Here, we will focus on modelling the magnitude spectrum, which works well for the 14s
specific data used here (see supplemental section[7.1)). In future, the GLM-Spectrum 140

approach could be extended to use Generalised Linear Modelling (Nelder and 150
Wedderburn, (1972) to account for specific differences in the distribution of the data 151
being modelled. 152
2.3 Estimating the GLM Parameters 153
Once the design matrix has been specified and the data have been transformed into the 1sa
STFT, we are ready to fit the regression parameters B in equation[9} Under the 155
assumptions specified above, this can be achieved using Ordinary Least Squares (OLS)  1se
to estimate the regression parameters (also known as beta-estimates), B(f), as 157
B(f) = (XTX)"'XTS,(f) (10)
Alternatively, we can pre-multiply the data by the Moore-Penrose pseudo-inverse 158
(Penrose, [1956) of the design matrix, which performs well even when there are 150
multi-collinearities in X (see Section [2.4): 160
B(f) = X*8,(f) an

Where the superscript * denotes the Moore-Penrose pseudo-inverse. More complex 11
fitting routines could be used if the assumptions underlying OLS are inappropriate for a 2
particular application. For example, the rest of the GLM-Spectrum framework would 163
work in the same way if B(f) were estimated using a robust or regularised regression.  1ea
Similarly, it would be possible to extend the approach to Bayesian regression methods.  1es

Here, we use the pseudo-inverse model fitting approach (equation[11)) for all GLM 166
estimation. 167
2.4 Assumptions of the GLM-Spectrum model 168
A statistical model such as the GLM is only valid if its assumptions are met. These 160
critical assumptions must be checked to ensure the validity of the GLM model fit 170
(Monti, [2011). We highlight three cases here. Firstly, the distribution of the spectrum 171
data to be fitted should be assessed prior to the application of the GLM-Spectrum as 172
highlighted in section 2.2. Secondly, the values in the error term e(f) must be Gaussian 173
distributed and finally the values in the error term e(f) must be independently and 174
identically distributed (IID). 175

The presence of any temporal autocorrelation in e( f) indicates a violation of the 176
second assumption. This issue is commonly encountered in other time-series models 177

such as first-level fMRI analyses (Friston et al., | 2000; Woolrich et al.,|2001j |Worsley and| 17s
Friston, [1995) and is a strong concern for first-level GLM-Spectra. Many time-averaged 17e
periodogram implementations are computed from overlapping data segments that are  1so
not independent of their neighbours. Care must be taken to specify STFT parameters 181
that maximise the independence of each data segment, particularly if first-level 182
permutation statistics are of interest. We recommend inspecting the model residuals for 1ss

/9
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temporal autocorrelation using a metric such as the Durbin-Watson statistic (Durbin 184
and Watson, 1950, [1951) (see supplemental section. If this condition is not met, 185
then the estimates of the GLM-Spectra (i.e. the regression parameter estimates can still  1se
be used, but any first-level statistics do not reflect an inferential statistic and must be 187
taken as purely descriptive results. It should be noted that this allows subsequent group 1ss
analyses to be carried out, as these depend on the GLM-Spectra estimates and not on 180

their statistics. Future work may develop explicit models for this temporal 100
autocorrelation similar to those used in fMRI to make statistics on individual session 101
estimates of the GLM-Spectra valid (Friston et al., |2000; [Woolrich et al.,[2001). 102

Finally, while it is not a violation of the model assumptions, one should take care 103

when regressors in X can be expressed, to any extent, as a linear combination of other 104
regressors. This is called multicollinearity in the GLM literature and means that there 105

are infinite equally good solutions to the regression equation. The Moore-Penrose 106
pseudo-inverse (MPPI) can overcome this limitation. If multiple solutions to equation[9] 1o
exist, the MPPI will return the regression parameters with the minimum Euclidean 108

norm (Penrosel |1956). Note that when there is partial multicollinearity, the MPPI uses 100
the component of the regressor that is uncorrelated with the rest of the design matrix 200
(i.e. corresponding to any unique variability in that regressor) to find each parameter 201

estimate. This property means the MPPI solution quantifies the unique effect of each 202
regressor that cannot be accounted for by the others. Therefore, it is frequently 203
desirable to proceed with the MPPI solution for a GLM whose design contains some 204
degree of multicollinearity that we wish to eliminate from the results. 208

In addition, the impact of any multicollinearity is naturally accounted for in the 206
variance of the affected regression parameter estimates; for example, when it is not 207
clear what a regression parameter’s value should be due to multicollinearity, then that  zes
parameter estimate’s variance (as computed in section will be appropriately 200
increased. Nonetheless, even when using the MPPIL, we recommend assessing the 210
correlation and singular value spectrum of the design matrix prior to model fitting as 211
well as the variance of the regression parameters (Smith et al.,[2007)), to ensure that 212
one is aware of the potential impact of multicollinearity on finding a significant result. 215
If these checks identify unexplainable or unintended multicollinearity, perhaps from 214
inclusion of too many or inappropriate regressors, then the design should be 215
re-assessed prior to further analysis. 216
2.5 Contrasts and t-statistics 217
Once the design matrix is specified and the model parameters have been estimated, the z1s
GLM-Spectrum consists of a beta-spectrum for each regressor. This beta-spectrum 210
contains the regression parameter estimates quantifying the linear effect of that 220
regressor across the frequency range. 221

Next, we can compute simple linear combinations of regression parameter 222

estimates, known as contrasts. Contrasts can be defined to ask questions about the size 223
of these linear combinations, including whether they are significantly different to zero 224

(using t-tests). This approach is commonly applied in neuroimaging applications 225
(Friston, |2007; Woolrich et al., |2009). 226

Each contrast is defined as a vector of values defining the relative weightings 227
between the regression parameter estimates of the regressors. For example, we could 228
define the following contrasts for a model that contains three regressors in its design 220
matrix: 230
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1 0 0
c1 = 0 ,Co = 0.5 ,C3 = 1 ,C: [01702703] (12)
0 0.5 -1
Where Cis a (P x N,.) matrix containing all V. contrasts. Using terminology 231

common in neuroimaging, these contrasts define a Contrast Of Parameter Estimates, or 232
a cope, which is computed from a matrix multiplication between the contrast and the 233

model parameter estimates: 234
cope(f) = CB(f) (13)

Here, we refer to the resulting frequency resolved vector of cope values, cope(f), as 235

the GLM cope-spectrum. The individual contrasts are designed to ask specific 236

experimental questions. Using the examples in equation[12] the first contrast asks 237

whether ¢; B(f) = 0. This specifies a t-test that tests whether each value in 238

beta-spectrum of the first regressor is different from zero; regressors two and three are 230
weighted to zero in this specific contrast, but nevertheless still explain variance in the = 240

overall model. The second contrast tests if co B(f) = 0 and asks whether the mean of 241
the beta-spectra from regressors two and three is different from zero. Note that setting 242
the values in this contrast to 0.5 that ensures that the contrast of the regression 243

parameter estimates can be interpreted as the mean of the two regression parameters  zaa
involved. When turned into statistics (see below), contrasts ¢; and ¢, are equivalent to  2as
one-sample t-tests in classical statistical frameworks. 246

Finally, testing if c3 B(f) = 0 tests whether the difference in parameter estimates in  zsr
the beta-spectrum of regressor 2 minus regressor 3 is different from zero. This will be 248
equivalent to an independent samples t-test between the conditions modelled by these 240

regressors. Regressor 1 is set to zero in the second two contrasts and is not directly 250
included in the comparison. However, it is still explaining variance in the model and 251
may be indirectly affecting the outcome of the contrast between regressors 2 and 3. 252
These contrasts are useful quantifications of different combinations of parameters 253
estimates but we also need to compute the associated standard error to complete a 254
formal statistical test. The ratio of the contrast value (cope) and its standard errorisa  zss
t-statistic that indicates the estimated magnitude of a cope relative to its standard 256
error. To compute the standard errors and subsequent t-statistics for each contrast, we 257
first need to compute the residuals of the model fit: 258
Ry(f) = Sy(f) — B(/)X (19
Note that R,(f) contains the actual set of residuals for a given dataset and model 250
fit. This is distinct from e, (f), which denotes a more general white noise process. 260
These residuals are used to compute the variance in the estimate of the cope, also 261
known as a varcope. Firstly, we compute the variance of the residuals: 262
o*(f) = diag(Ry(f)Ry(f)") (15)

And transform this to get the variance of relevant part of the model for this contrast: 2es

varcope(f) = diag(C(XTX)71C)a*(f) (16)



https://doi.org/10.1101/2022.11.14.516449
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.14.516449; this version posted November 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Quinn et al., (2022) B\{g;[ﬁl? under aCC-BY 4.0 International license. GLM-Spectrum
varcope( f) now contains the square of the standard error for this contrast. This 264
computation can be costly with large datasets as several matrix multiplications must be  zes
performed. However, only the diagonal of the resultant matrix is used for further 266
analysis. Therefore, we achieve a substantial speed-up in this computation using 267

Einstein summation in numpyﬂ to compute only the multiplications which appear in the zes
final diagonal. More information on this is in Supplemental section[7.4] The spectrum 260
of t-values corresponding to the contrast can then be computed as the ratio of the cope 270
to its standard error: 271

cope(f)

i) = varcope(f)

(17)

This GLM t-spectrum quantifies the difference of each cope from zero in statistical 272
terms, incorporating both the parameter estimates and their standard errors. In 273
practice, the varcope-spectrum values commonly scale linearly with the copes, leading 274
to low t-values. This effect is commonly observed in neuroimaging data, particularly in 275
fMRI. Here, we attenuate this effect by applying a median filter to smooth the varcope 276
spectrum along the frequency dimension to compute a pseudo-t statistic, in 277
combination with non-parametric permutations (see section Nichols and Holmes 278
(2001)). Further information on this is in supplemental section[7.5 Taken together, the =7

GLM beta-spectrum B( f), cope-spectrum cope( f) and t-spectrum ¢(f) provide an 280
intuitive description of the frequency spectrum of the input data in terms of the 281
specified regressors and contrasts. 282
2.6 Design Matrix Specification 283
The regressors in the design matrix X will typically be secondary time-series that are 284
recorded simultaneously with the main data or known a priori. The model tests for 285
linear associations between these regressors and the spectrum estimates in the STFT. 286
Therefore, the regressors must be prepared in the same manner as the main data, 287
including any filtering and the segmentation, to ensure correspondence between the 288
design matrix and data. 280

The GLM is a highly general method as the design matrix, X, can be adapted 200
depending on the application in question. However, this flexibility can also make the 201
specification and interpretation of the regressors challenging. The addition of a new 202
regressor to an existing GLM design matrix can change the parameter estimates and 203
standard errors of the previous regressors. Therefore, the final choice and 204
interpretation of any regressors is necessarily specific to each individual analysis. 208

Standard time-averaged spectrum estimation methods (such as Welch’s 206
Periodogram) model the mean spectrum across time-segments. Similarly, most 207
GLM-Spectrum analyses will also want to include regressors that quantify this average. 2es
In the simplest case, a single, constant regressor of ones is directly equivalent to the 200
standard method. However, the flexibility of the GLM allows us to build on this and 300
define more sophisticated models with multiple covariates if required. 301

One extension allowed by the GLM-Spectrum is to use confound regression to model o2
the effect of an artefact source and attenuate its contribution to the estimate of the 303
overall mean. Confound regression adaptively models the effect of the potential 304
artefact each given dataset, only performing any denoising if a linear association 308
between the confound regressor and the data can be identified. It is a flexible 306

alternative to removing the artefact time periods altogether. Confound regression can 307

3https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
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be performed by including a non-zero mean regressor alongside a constant regressor in  sos
the design matrix. With this specification, the constant regressor models the intercept 300

(the average where the value of the artefact regressor is zero) whilst the confound 310
regressor quantifies the artefact effect. This example is explored in more detail in 311
supplemental section 312

Covariates can be included into the GLM in several ways. We can use indicator 313
regressors (containing zeros and ones) which assume that the covariates effect will be  s1a
the same each time it is present. Otherwise, we can use dynamic covariates to model 315

phenomena that dynamically change over time in a continuous way. For example, this 316
might include pupil-size, heart rate, or respiration rate. When we include these types 317

of continuous regressors, their regression parameters capture the “slope” effect; in 318
other words, how much does the spectrum change with each increment in the value of 31
the regressor. For example, when including a pupil-size regressor, the spectrum 320
resulting from its regression parameter estimates would indicate how much the power sz
in a particular frequency bin increases or decreases as the pupil-size changes by a 322
certain amount. 323

Another decision is whether to demean a given covariate regressor in the design 324
matrix. Counter intuitively, the interpretation of the regression parameter estimate is 328

unchanged when a covariate is demeaned; in both cases it is modelling the ‘slope’ effect 326
that quantifies how much the spectrum changes with each increment of the regressor.  s2r
In contrast, the interpretation of a constant regressor in the same model will change 328
depending on whether a covariate is demeaned or not. A constant regressor will model  s2o
the mean over all time points if the other covariates are demeaned and will model the 330
intercept if non-zero mean regressors are included. As a result, confound regressors 331
that are intended to remove a given effect from the estimate of the mean will typically = ss2
have a non-zero mean whilst dynamic covariates that model changes around the mean  sss
will be demeaned or z-transformed prior to model fitting. 334

2.7 Model Projected Spectra 338

The GLM beta-, cope- and t-spectra assess parts of the overall time-varying spectrum in  sss
relation to the model. As these GLM-Spectra can relate to combinations of effects, their s

impact on the mean spectrum can be difficult to intuit. We propose computing the 338
model-projected spectra to gain a more immediately intuitive visualisation of effects. 330
This is a visualisation of how the spectrum changes for different value of the regressor  sao
of interest. For example, if the GLM-Spectrum of EEG data includes a covariate for 341

pupil size then its beta-spectrum will describe how the spectrum changes as pupil size sz
expands and contracts. The model-projected spectrum could then be used to visualise a3

the predicted spectrum at a single, specific pupil size. 344
The model-projected spectrum is typically calculated for a descriptive range of 345
values in the original regressor. In this paper, wee use the largest and smallest values 346

from the regressor of interest. For example, to compute the projected spectrum for the — sa7
largest and smallest value of a covariate regressor Rv relative to a constant mean term, sas
we use: model-projected spectra 340

max{Sy|Rv}(f) = max(Rv)ém(f) + Bmean(f) (18)
min{Sy|Rv}(f) = min(Rv)By(f) + Bmean(f) (19)
(20)

The max and min model-projected spectrum then describes the range of variability  sso
in the spectrum that is described by the regressor. Note that this is only a visualisation  ss:

o/
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method and that any apparent differences in these model projected spectra must be 352
confirmed by statistical significance testing, such as non-parametric permutations (see  sss
section [2.9)). 354
2.8 Group Models for GLM-Spectra 385
The GLM-Spectrum described thus far is used to describe continuous data recorded 356
from a single session; we refer to this as the “first-level”. We now consider how we can  ss7
carry out a “group-level” analysis to combine the results across the first-level 358

GLM-Spectra from multiple sessions/subjects using a group-level (or second-level) GLM  sso
(Beckmann et al.,|2003; [Friston et al., |2002; Woolrich et al., 2004)). In brief, we create 3o

a group-level dependant variable by concatenating the parameter estimates, copes or 361
varcopes from a set of first-level analyses and use another GLM to model how 362
GLM-Spectra vary over sessions/subjects across the group. For example, here we fit a 363
group-level beta-spectrum using the first-level cope-spectra for N subjects and a 364
group-level design matrix: 365
Copegubjl(f)
J
copey,pio(f)
Su. ! = XgroupBgroup(f) + egroup(f) 21)
COpejsuij(f)
Where copegub 1 (f) is the jth first-level cope computed for subject n at frequency 366

bin, i.e. copezubﬂ(f) = c)jBSUbjn(f) where ¢; is the 4" first-level contrast and B’S"bjn 367

is the first-level contrast regression parameter estimates for subject n. Note that X o, 3es

is the (NxQ) group-level design matrix and the (Qx1) matrix Bg,oup(f) is the 360
group-level regression parameters, where Q is the number of group-level regressors. As 7o
with the first-level GLM, the error ey,.q.,(f) is assumed to be Normal and IID. 371

As with the first-level analysis, the group-level GLM is fitted using OLS with the 372
Moore-Penrose pseudo inverse; and is computed separately for each frequency, f, (and sz
each channel or voxel — the indexing for which is not shown in the equations) in a 374
mass-univariate manner. In addition, a separate group-level GLM is computed for each 375
first-level cope of interest. As with the first-level GLM, contrasts can be used to ask a 376
range of inference questions from the regression parameter estimates, Bg,.oup( A 377
resource showing examples of commonly used group-level design matrices and 378
contrasts is available onlindl 370

As shown in the equation above, the simplest group-level model carries forward the  sso
cope-spectra from a set of first-level analyses. This can be thought of as a fixed-effects  sa1

group model in which each observation (first-level result) contributes equally to the 382
group effect and the group-level GLM models the between-session/subject variability. 383
This is the approach taken in this manuscript. This is straightforward to compute but 384
neglects the information about the first-level standard errors in the varcope-spectra. 385

This could be accounted for by carrying forward both the cope and varcope information  sse
to the group level and fitting a mixed effects model such as the FLAME method in fMRI  se7

(Woolrich et al.,|2004). In practice, this model is challenging to fit as no simple 388
closed-form estimation is available. Another alternative would be to carry the first-level s
t-statistics to the group level. Future work can explore wide range of possibilities for 300
multi-level and mixed-modelling for the GLM-Spectrum. 301

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM
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GLM-Spectrum

Term

Definition

STFT

Design Matrix
Regressor

Beta-estimates

Beta-Spectrum
Contrast

cope
cope-spectrum
t-statistic
t-spectrum
Model-Projected

spectrum
First-Level GLM

The short-time Fourier transform of a time series, containing the
spectrum computed within sliding window time-segments across
the data. Also called a time-varying spectrum.

A matrix of regressors used to explain variability in observed data
with a linear regression model.

A single column of a design matrix containing explanatory vari-
ables relating to each individual observation.

A parameter estimate describing the linear relation between a re-
gressor and the observed data. Also known as regression parame-
ter estimates.

A vector of parameter estimates for a single regressor across the
range of a frequency spectrum.

A planned comparison between one or more parameter estimates.
The result of a defined contrast between beta-estimates.

A vector of cope estimates for a single contrast across the range of
a frequency spectrum.

The ratio of the departure of the estimated value of a contrast from
its hypothesised value to its standard error.

A vector of t-statistics for a single contrast across the range of a
frequency spectrum.

A visualisation of a spectrum as predicted by a fitted GLM set at a
particular set of covariate values.

A linear model for a single data recording that models variabil-
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ity across time segments in a STFT with a specified design- and
contrast-matrix resulting in a set of beta-, cope- and t-spectra.

Group-Level GLM A linear model for a group dataset combining a set of first level
GLM-Spectra. A group level design- and contrast-matrix models
variability in first level beta or t-spectra across datasets resulting
in a set of group-level beta-, cope- and t-spectra.

Table 1. Glossary of definitions for the GLM-Spectrum.

2.9 Non-parametric Permutations 302
Null-hypothesis testing for a given contrast can be carried out with non-parametric 303
permutations (Nichols and Holmes} 2001; Winkler et al., 2014). A null distribution of 304
observed statistics is derived by recomputing the GLM after manipulating the design 305

matrix in line with the null hypothesis. The observed group average is then compared 306
to this null distribution and is ‘significant’ if it exceeds a pre-set critical threshold, such e

as the 95th percentile of the null distribution. Here, we perform non-parametric 308
permutation testing to assess which frequencies and EEG sensors show significant 300
group-level GLM effects. 400

Different forms of non-parametric permutation can be tailored to apply to for 401
different hypothesis tests, though the overall procedure is similar for each. First, 402
‘sign-flipping’ permutations are used to test whether a test statistic significantly 403
deviates from zero, or when the sum of the values in the contrast does not equal zero.  sos
Each row in the regressors of interest for this contrast have a 50% chance of being a0s
multiplied by minus one. This is under the null hypothesis that, if the observed statistic  sos
is not significantly different from zero then flipping the sign of the design matrix a07
should not shift the mean. Second, ‘row-shuffle’ permutations are used for 408

parametrically varying regressors. This scrambles the order of the rows in the regressor oo
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at each permutation to test the null hypothesis that there is no correspondence a10
between the regressor and observed data, so changing their order should not affect the s
test statistic. In all cases, we are only permuting the columns of the design matrix a12
directly related to that contrast in question, whilst the remaining covariate structure of a3
the design matrix stays unchanged. 414

Non-parametric permutation testing could, in principle, be carried out to assess the s
results of a first-level GLM-Spectrum. In contrast to a group-level analysis, the first level a6
permutations would only assess whether a particular effect observed within a dataset a7
could be expected to generalise to a wider sample of possible data observations from a1s
the same source. Moreover, the time-segments in a first-level GLM-Spectrum are likely 410
to exhibit strong autocorrelation (see section [2.4)) which would need to be accounted 420

for before any permutation testing could provide a valid result (Friston et al., 2000; 421
Woolrich et al., [2001). 22
2.10 Software implementation and dependencies 023
The analyses in this paper were carried out in Python 3.9 with core dependencies as 424
numpy (Harris et al.,|2020), scipy (Virtanen et al., [2020) and Matplotlib (Hunter, 425

2007)). MNE python (Gramfort, |2013) was used for EEG/MEG data processing with 426
OSL batch processing tools (Quinn et al.,|2022). The spectrum analyses further depend 427

on the Spectrum Analysis in Linear Systems toolbox (Quinn and Hymers} |2020) and a2s
glmtoolsﬂ All code used to run analyses and generate the figures in this paper are 429
available onlinef] 430
2.11 The LEMON Dataset a1
2.11.1 EEG Preprocessing 432
All data pre-processing was carried out using MNE-Python and OSL using the OSL 433
batch pre-processing tools. Resting-state EEG recordings from 191 individuals of an 434
open source dataset (Babayan et al.,|2019) were analysed. The raw data for each a3s
subject is a resting-state EEG recording from a 62-channel (61 EEG and 1 EOG) cap 436
using a BrainAmp MR plus amplifier. The channels were in the 10-10 layout and 437
referenced to FCz. Sixteen minutes of data were recorded in one-minute blocks a38

alternating between eyes closed and eyes open resting-state. Data were acquired with 430
a bandpass filter between 0.015 Hz and 1 kHz at a sampling frequency of 2500 Hz. The 440

remaining acquisition details are reported in (Babayan et al., 2019). aa1

The raw data were first converted from Brainvision files on disk into MNE-Python aa2
Raw data objects. The continuous data were bandpass filtered between 0.25 Hz and 443
125 Hz using an order-5 Butterworth filter. A notch filter was then used to suppress 444
line noise at 50, 100 and 150 Hz. Bad channels were automatically identified using the aas
generalised-extreme studentized deviate (G-ESD;Rosner| (1983)) routine to identify 46
outliers in the distribution of variance per channel over time. The data were then aaz
resampled to 250 Hz to reduce space on-disk and ease subsequent computations. ass
Independent Component Analysis (ICA) denoising was carried out using a 30 449
component FastICA decomposition (Hyvarinen, [1999) on the EEG channels. This a50
decomposition explained an average of 99.2% of variance in the sensor data across a51
datasets. Artefactual components containing blinks were automatically identified by 452
correlation with the simultaneous V-EOG channel. ICA components linked to saccades 3
were identified by correlation with a surrogate H-EOG channel, i.e., the difference 454

Shttps://pypi.org/project/glmtools/
Shttps://github.com/0HBA-analysis/Quinn2022_GLMSpectrum
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between channels F7 and F8. Between 2 and 7 components were rejected in each ass
dataset, with an average of 2.66 across all datasets. The two ICs that correlated as6
strongest with the V-EOG and H-EOG channels were separately retained for later use in  4s7
the GLM design matrix. ass
The continuous sensor data were then reconstructed without the influence of the as0
artefactual V-EOG and H-EOG components. Bad segments were identified by 460
segmenting the ICA-cleaned data into arbitrary 2-second chunks (distinct from the a61
STFT time segments) and using the G-ESD algorithm to identify outlier (bad) samples a2
with high variance across channels. An average of 31 seconds of data (minimum 6 263
seconds and maximum 114 seconds) were marked as bad in this step. This procedure is es
biased towards low-frequency artefacts due to the 1/f shape of electrophysiological a6s

recordings. Therefore, to identify bad segments with high-frequency content, the same 46
procedure was repeated on the temporal derivative of the ICA-cleaned data. An average aer

of 27 seconds of data (minimum 2 seconds, maximum 109 seconds) were marked as 468
bad when using the differential of the data. 460

To retain consistent dimensionality across the group, any bad channels were 470
interpolated using a spherical spline interpolation (Perrin et al., [1989) as implemented 47
in MNE-Python. Finally, the spatial gradient between each channel and its distance a72

from the reference sensor (FCz), is attenuated by computing the surface Laplacian (or 473
current source density) of the sensor data. The surface Laplacian data is reference free 474

and has sharper spatial topographies than the raw EEG; though this is complex azs
computation that is dependent on several hyperparameters, and which may reduce a76
sensitivity to deeper sources (Kayser and Tenke, 2015). a77
2.11.2 First-Level GLM-Spectrum a7s

A ’first-level’ analysis model the data within each individual participants EEG data. The a7
STFT is computed from the preprocessed sensor time-series from each dataset using a 2  4so

second segment length, a 1 second overlap between segments and a Hanning taper. as1
The 2 second segment length at the sample rate of 250Hz gives a resolution of around sz
2 frequency bins per unit Hertz in the resulting spectrum. The short-time magnitude 483
spectrum is computed from the complex valued STFT and the frequency bins ranging 484
between 0.1Hz and 100Hz taken forward as the dependent variable in the first-level ass
GLM-Spectrum for that dataset. The GLM design matrix is specified with eight ase
regressors (Figure[l). A single constant regressor models the intercept of the data 487

whilst two non-zero mean regressors model the eyes open and eyes closed effect. The = ass
fourth regressor is a z-transformed covariate describing a linear trend over time. Two 480
non-zero mean confound regressors tracked the sum of the number of samples within s
each STFT time segment that were marked as bad samples (these are the bad samples 41
assumed to be associated with lower frequency content) and differential bad samples 492
(the bad samples associated with higher frequency content). Rather than a continuous  4es

regressor containing the number of bad segments, we could have used a categorical 404
regressor with a value of one when there were any bad samples the STFT time a05
segments, and zeros otherwise. We chose the continuous approach to allow the model 46
to distinguish STFT time segments that contain a brief artefact, from STFT time a07
segments that contain only artefactual samples. Finally, two further non-zero mean a08
confound regressors are constructed from absolute value of the V-EOG and H-EOG as0
independent component time-courses. Each covariate is subjected to the same 500
windowing as the STFT before the values in each window are summed to create a s01
vector of regressor values. The four confound regressor values are scaled between zero  so2
and one, and the linear trend is z-transformed. 503

A range of contrasts are specified to quantify critical hypothesis tests. The overall 504
mean is modelled by a contrast summing the constant, eyes open and eyes closed 505
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Regressors

Observations

0- L

Constant Eyes Open Eyes Closed Linear Trend Bad Segs Bad Segs Diff V-EOG HEOG
C1: OverallMean 10 0496 0479 0.0 0.0 0.0 0.0 0.0
C2: RestMean 00 05 05 0.0 0.0 00 0.0 00
C3: Eyes Open AbsEffect 1.0 05 0.0 0.0 0.0 0.0 0.0 0.0
C4: Eyes Closed AbsEffect1.0 00 05 00 00 00 0.0 00
C5: Open > Closed 0.0 10 10 0.0 0.0 0.0 0.0 0.0
C6: Constant 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C7: Eyes Open 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0
C8: Eyes Closed 0.0 0.0 10 0.0 0.0 0.0 0.0 0.0
C9: Linear Trend 0.0 0.0 0.0 10 0.0 0.0 0.0 0.0
C10: Bad Segs 0.0 0.0 0.0 0.0 10 0.0 0.0 0.0
C11: Bad Segs Diff 0.0 0.0 0.0 0.0 0.0 10 0.0 0.0
C12: V-EOG 0.0 0.0 0.0 0.0 0.0 0.0 10 0.0
C13: HEOG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10

Fig 1. An example first-level design matrix and contrast matrix for a single
subject. The matrix shows the design matrix with individual regressor in columns. The
table shows the contrast matrix with corresponding weightings for each regressor. The
efficiency of this design matrix is summarised in Supplemental section F.

regressors together weighted by the proportion of ones in each regressor (Contrast 1, 506
Figure[l). A t-test between the spectrum in the eyes-open and eye-closed conditions is  sor
specified with a differential contrast (weighted [1, -1], in the direction of eyes open s08
minus eyes closed; Contrast 5; Figure[1). Finally, separate one-sample tests are 500

specified for each covariate with contrasts containing a single one for a given regressor  sio
(Contrasts 9 to 13; Figure[1). A design matrix and contrast table for a single datasetis  su

shown in Figure [l The model parameters were estimated using the Moore-Penrose 512
peudo-inverse method and no statistical assessment was carried out at the first level. 513
2.11.3 Structural MRI Processing 514
Individual anatomical details were extracted from T-weighted structural MRI scans 515
downloaded from the LEMON data server (Babayan et al.,|2019). All images were 516
processed using the FMRIB Software Library (Woolrich et al.,|2009). Images were 517
reoriented to standard Montreal Neurological Institute (MNI) space, cropped, and 518

bias-field corrected. FMRIB’s Linear Registration Tool (FLIRT; |Greve and Fischl (2009); s
Jenkinson et al.| (2002)); Jenkinson and Smith| (2001)) was used to register to standard sz
space before brain extraction was performed using BET (Smith, 2002)). Brain images 521
were segmented into different tissue types (grey matter, white matter, CSF etc) using 522
FMRIB’s Automated Segmentation Tool (FAST;|Zhang et al.| (2001))). The voxel count 523
for each tissue type was extracted and normalised by the individual’s total brain 524
volume (also computed by FAST) to create a percentage. The total brain volume and 525

14/49


https://doi.org/10.1101/2022.11.14.516449
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.14.516449; this version posted November 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Quinn et al., (2022) B\{g;[ﬁl? under aCC-BY 4.0 International license. GLM-Spectrum

individual percentage of grey matter were carried forward as group-level covariates in  s26

the GLM-Spectrum. 527
2.11.4 Group-Level GLM-Spectrum 528
We now carry out a “group-level” analysis to combine the first-level results and describe s2o
between subject variability with another GLM. As described in section 2.8, the 530
cope-spectra of each first-level GLM was used as the dependent variable in the 531
group-level GLM. The group-level design matrix contained categorical regressors 532
coding the age group of each participant and covariates corresponding to variability in  sss
participant sex, head size and relative grey matter volume. A contrast was defined to 534
estimates the mean across all participants and a second to estimate the difference 535
between young and old participants. Finally, one-sample t-tests were specified for each  sss
covariate to test whether the regression coefficient significantly differed from zero. 537

The group-level design matrix was applied separately to several first-level contrasts. sss
The overall mean, the difference between eyes-open and eyes-closed rest, and the main s
effect of each covariate. Statistical significance in the group-level t-spectra was assessed  sao
using cluster-based non-parametric permutations based on sign-flipping or row-shuffle  sa:

permutations. The group model parameter estimates were computed using the 542
Moore-Penrose pseudo inverse. A cluster forming threshold of t=3 was used for all 543
permutations, except for a threshold of t=6 used for the group average of the first-level sas
covariates, as very strong effects were observed in the artefact sources. sas
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3 Results
3.1 First-level covariate spectra on a central EEG channel sa7
Figure 2 summarises the first-level GLM-Spectrum analysis of a single channel (Pz) sas
from an exemplar resting-state EEG recording. The pre-processed EEG time series 549
(Figure [2]A) was split into 2 second time segments with a 50% overlap (Figure 2B), 550
modified by a Hann window (Figure [2[C) and transformed into the frequency domain 551
using a Short-Time Fourier Transform (STFT; Figure [2D). Each column of this STFT 552
contains the time course of the magnitude at each frequency and constitutes the 553
dependent variable in a first-level GLM. The first-level GLM (see methods 554
section models this variability over time in relation to the resting conditions, 555
artefacts detected in the data and the electrooculogram (EOG). The final first-level 556
design matrix had eight regressors (Figure [2E) modelling the two resting-state 557
conditions, a linear trend over time and four potential dynamic confounds. The full 558
design matrix and contrast specification for the entire run can be seen in Figure 559
The first-level GLM was fitted separately for each frequency bin using a standard 560
ordinary least squares routine. The average magnitude spectra for the eyes open and s61

eyes closed rest periods are quantified by two cope-spectra (Figure [2F) specified by first ss2
level contrasts 3 and 4 (Figure[I)). Both cope-spectra showed a 1/f-type structure and a ses

prominent alpha peak around 9 Hz. The eyes open > eyes closed contrast (the 564
regressor was coded to have ones for eyes open and minus ones for eyes closed; s6s
specified in contrast 5 in Figure [1)) had negative values in the cope-spectrum indicating see
that spectral magnitude was larger in the eyes closed condition across a range of 567
frequencies, peaking around the alpha range (Figure [2G - top left panel). The square 568
of the standard error of the estimates is shown in the varcope-spectrum (Figure |2/G — 569

top right panel) and indicates where the estimate of the mean was least certain. This 570
roughly followed the shape of the spectra in Figure [2F, showing a clear alpha peak and  sn

a weak 1/f trend. This is an example of a close relation between cope and varcope 572
estimates that can lead to effects with large effects in the beta-spectrum being 573
substantially less prominent in the t-spectrum. We used a varcope smoothing correction sza
before computing pseudo-t-spectra to account for this effect (Nichols and Holmes), 575

2001) (see methods section and supplemental section for more details). The 576
final pseudo t-spectrum contained a full spectrum of t-values for the contrast between s
the two resting conditions (Figure [2G — bottom panel). The large magnitude, negative  ss
t-values in alpha and surrounding frequencies qualitatively indicated a greater 579
magnitude in the eyes closed condition. In sum, this shows a full spectrum perspective  sso
on the ‘alpha reactivity’ or ‘alpha blocking’ effect (Adrian and Matthews} |1934) the is s81
most commonly assessed within a-priori frequency bands (Babiloni et al.,[2011; [Wan 582
et al., 2018) 583

Next, we visualised the results from the dynamic confound regressor created from 584
the marked bad segments estimated on the differential of the EEG data (Figure [2H). 585
The cope-spectrum of this regressor was mostly positive apart from the alpha (9-12 Hz) sss

range (Figure 2H - top left panel). The square of the standard error of the estimate 587
shown by the varcope-spectrum was highest around the alpha peak frequency. This 588
pattern was very similar to other varcope-spectrum of the condition contrast (figure 3H sso
— top right panel). The largest values in the pseudo-t spectrum are in relatively high 500
frequencies (25 to 100 Hz). This qualitatively indicates, as expected, that the so1
differential bad segments are particularly sensitive to high-frequency noise. 502
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Fig 2. First-level (i.e. within-session) GLM-Spectrum description during
alternating eyes open and eyes closed resting-state from channel Pz in a single
EEG recording.

A: A 30-second segment of pre-processed EEG time-course from sensor Pz.

B: EEG time-course segmented into 2-second sliding windows with 50% overlap.

C: Windowed data segments modified by a tapered Hann window function.

D: Short time-Fourier transform computed with the FFT of each windowed data segment. Each
column of this matrix (change in magnitude of a single frequency over time) is the dependent
variable to be described by the GLM.

E: The GLM design matrix containing condition, covariate and confound regressors.

F: The GLM beta-spectra for the two regressors modelling the spectrum during eyes-open and
eyes-closed rest (contrasts 3 and 4 in Figure .

G: The cope-, varcope- and pseudo t-spectrum for a differential contrast between the eyes open
and eyes closed conditions as specified in contrast 5 in Figure[1]

H: The cope-, varcope- and t-spectrum for a mean contrast on the differential bad segments
confound regressor as specified in contrast 11 in Figure
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3.2 First-level spectral analysis on whole head EEG 503

So far GLM-Spectrum method has been applied to univariate data (i.e., single-channel  sea
EEG data), but it can be readily extended to a full multi-channel dataset. To model the ses

GLM-Spectrum across channels, a separate GLM using the same design matrix was 506
fitted to each channel and frequency bin. This provides a description of spectral effects  sor
over frequency and space. Accordingly, we extended the resting-state model to the 508
61-channel whole head EEG recording. The design matrix and contrast specification 500
were the same as the single-channel analysis. 600

The beta-spectrum computed from the condition regressors showed the familiar 1/f  eo1
slope and prominent occipital alpha features in both resting-state conditions. The GLM  eo2

analysis was identical to the single channel results (Figure [2) but now can include 603
spatial distributions alongside the frequency spectrum. Qualitatively, the eyes-open 604
condition (Figure[3A) had a smaller alpha peak than the eyes-closed condition 605
(Figure 3B). Both conditions had a similar topography in this subject. The pseudo 606
t-spectrum of the contrast between eyes open and eyes closed rest showed a large, 607
negative effect peaking around the alpha range (Figure[3|C) as seen in the single 608
channel example (Figure [2iG). This difference had a spatial maximum in 609
posterior-central regions, replicating the occipital-parietal location of the alpha 610
reactivity effect widely reported in the literature (Babiloni et al., 2011; Wan et al. 611
2018)). 612

We can qualitatively evaluate the t-spectra of these first level results, though in this e
work, a full statistical analysis is reserved for the group level (see methods section|[2.4] 614
and for details), The group-level best reflects the analyses typically carried out in 615
cognitive or clinical neuroscience research studies. The t-spectra quantify the statistical s
association between each regressor and the time-varying spectrum. This effect is then &7
visualised with a model-projected spectrum averaged across channels for each contrast. es
The linear trend showed substantial pseudo t-values around the alpha range, though its es

model projected spectra suggest that this is a subtle effect (Figure[3D). The bad 620
segments (Figure[3E) and bad segments estimated on the differential of the 621
preprocessed time-series (Figure [3F) show similar patterns peaking at relatively low 622
(<4Hz) and high (>25Hz) frequency ranges. The pseudo t-spectrum showed 623
substantially higher values for bad-segments detected on the differential suggesting 624
that these artefacts were more strongly associated with dynamics in the spectral 625

magnitude over time-segments. The size of this effect is visualised more intuitively in 626
the model projected spectrum (Figure 3F — bottom panel) which shows the substantial 627
increase in both low and high frequency magnitude in time segments with large 628
amounts differential bad segments. Finally, the V-EOG (Figure [3iG) and H-EOG 629
(Figure [BH) covariates both showed large t-values in relatively low frequencies (around s
1Hz). The V-EOG had a large negative effect around the alpha range, suggesting that 631
time segments with high V-EOG activity were associated with lower alpha magnitude. 32

In contrast, the H-EOG showed an additional positive effect in high frequencies 633
suggesting that segments with high H-EOG activity are associated with higher high 634
frequency spectral magnitude. In particular, the complex pattern of effects in the 635
V-EOG t-spectrum manifests as segments with high V-EOG activity showing a decrease 36
in alpha magnitude and an increase in alpha frequency. 637
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Fig 3. GLM-Spectrum fits for alternating eyes-open and eyes-closed resting-state
EEG for a single participant. Mean magnitude spectrum estimates for each channel
and frequency bin. The topography (top right) provides location-colour coding used in
the pseudo t-spectra throughout the figure. The colour range of each topography is set
range between plus and minus the maximum absolute value of the data plotted. The
contrasts shown in this figure are detailed in supplemental section H.

A: Beta-spectrum for the eyes open condition regressor. The topography shows the spatial
distribution of spectral magnitude at 9 Hz

B: Beta-spectrum for the eyes closed condition regressor, layout is same as in A.

C: Pseudo t-spectrum for the contrast between the eyes open and eyes closed conditions.

D: Pseudo t-spectrum spectrum for the linear trend covariate (top). Model-predicted magnitude
spectra averaged across all sensors for the extrema of the predictor, which in the case of a linear
trend regressor corresponds to the start and end of the scan (bottom).

E: Pseudo t-spectrum spectrum for the bad segment confound (layout same as for D),
model-projected spectra are shown for good and bad segments.

F: Pseudo t-spectrum spectrum for the differential bad segment confound (layout same as for D),
model-projected spectra are shown for good and bad segments.

G: Pseudo t-spectrum spectrum for V-EOG confound (layout same as for D), model-projected
spectra are shown for zero, and the maximum observed, V-EOG activity.

H: Pseudo t-spectrum spectrum for H-EOG segment confound (layout same as for D),
model-projected spectra are shown for zero, and the maximum observed, H-EOG activity.
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Fig 4. Effect of first-level confound variables on mean spectrum estimates.

A: The coefficient of variation of the full model and the reduced model (condition terms only) for
all datasets. Points lying to the left of the x=y boundary are datasets where the full model
explained more variance than the reduced model. The red dots are datasets visualised in c. The
box plot shows the difference between the full and reduced models and indicates that the
variance explained was improved in the full model for all datasets.

B: The distribution of differences between AIC estimates for the full and reduced models across
all 191 datasets. All datasets lie on the positive side of the x-axis indicating that the inclusion of
additional covariates and confounds improved the model in all cases.

C: Closer visualisation of the average beta-spectra across all channels from five example datasets
(highlighted in red in 6A). Ci is the dataset used in the figures 2 to 5.

3.3 Model assessment across datasets 638
Next, we build on the single subject exemplar result by exploring the effect of the 639
covariate and confound regressors across 191 EEG recordings from the LEMON 640
dataset. Each dataset was modelled individually using the same pre-processing, design  ea:
specification and model fit as the single subject example above. The overall mean 642
variance explained was computed and averaged across frequencies and channels for 643

both a full model and a reduced model. The reduced model only contains the constant  ess
and two condition terms (i.e., eyes open and eyes closed), excluding other covariates 6as
and confounds. It acts as a benchmark analysis enabling us to explore how the addition ess

of covariate and confound variables affects spectrum estimates. 647
The R-squared values for the full and reduced models are compared in Figure [4A. 648
All datasets in this study lie to the left of the x=y boundary, indicating that the full 649

model explained more variance than the reduced model in all datasets. The R-squared  eso
metric is limited in that a more complex model can always be expected to explain more es:
variance than a simpler one. We use it here only as an interpretable description of how es2

much improvement is seen in each individual dataset. The overall distribution of full 053
model minus reduced model r-squared values show that the median improvement was  ess
around 5%, ranging from <1% up to 45% in one exceptional case. Akaike’s 655

Information Criterion (AIC; Akaike| (1974)) provides a more principled comparison that ese
accounts for model complexity. This difference between AIC estimates for the full and  es7
reduced model for each dataset indicates that the inclusion of additional covariate and  ess
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confound regressors improved the model in all datasets, justifying the additional 659
complexity (Figure [4B). More formal model comparisons could be carried out by a 660
cross-validation analysis. 661

Here, we have focused on model assessment metrics that can be computed from the ee2
residuals of the GLM fit. The R-squared metric and AIC as used above use the residuals ees
to assess goodness of fit to help select between models. Many further assessments and  ees

diagnostics could be performed on the GLM-Spectrum. One example would be c6s
diagnostics that explore in detail whether the model assumptions have been violated 666
(see methods section [2.4 and supplemental section [7.3]for an example using the 667
Durbin-Watson statistic). Future work could extend this assessment to include 668
cross-validation methods from machine learning including exploration of out of sample  ess
prediction errors (Stone, [1974). 670

The differences between datasets can be driven by several factors including 71
variability in neuronal oscillations, acquisition noise, and physiological noise. The 672
overall mean cope-spectrum (averaged across all channels) for the full and reduced 673
models are shown for five example datasets in Figure [4C). The first dataset is the 674
example used in previous analyses, a modest attenuation of low- and high-frequency 675
magnitude can be seen when including confound regressors. In contrast, very little 676
change can be seen for datasets ii and v. Finally, the confound regressors have a 677

substantial impact on the overall mean spectrum of datasets iii and iv. In particular, the e7s
confound regressors remove a large amount of variability in low and high frequencies e
in dataset iv. Critically, this shows that the GLM-Spectrum can adaptively treat noise 680
across datasets. No denoising is applied when the regressor cannot explain variance in  es:
the time-varying spectrum but the impact of denoising can be substantial when specific es:

patterns of structured noise are associated with the confound regressors. 683

Next, the variance explained by each regressor within each frequency bin was 684
summarised across all 191 participants. The R-squared value was computed as a o8s
percentage for the full model and for a simplified model containing only one of the o86
regressors in turn (Figure [5A). This provides an upper estimate of the amount of 687
variance each individual regressor might explain. The full model explained between oss
50% and 80% of the temporal variability in the magnitude spectrum across all 689
channels and frequencies (‘Full Model’, Figure [5A). The average variance explained 690

across the whole group was relatively constant across frequency, though variability was es:
high across individual datasets, particularly in higher frequency ranges. The simplest 602
reduced model only contained only a constant regressor (‘Constant Only’; Figure[5A); o3
this model is directly equivalent to a standard time-averaged magnitude periodogram.  ecs
It showed a broadly similar pattern to the full model, though the variability across 605
individual datasets was larger. The eyes-open and eyes-closed regressors explained 606
between 20% and 50% of variability on their own (‘Eyes Open Only’ and ‘Eyes Closed o7
Only’; Figure[5]A). The eyes closed regressor shows a peak in the alpha range, reaching eos

around 60% in some participants. In contrast, the eyes open regressor tended to 600
explain less variance overall and was more variable across participants in higher 700
frequencies. 701

The linear trend regressor explained the least variance overall, the average across 702
datasets only peaking around 2-5% (‘Linear Trend Only’; Figure[SA). The linear trend 703
explained up to around 20% of variance in high frequencies for a small number of 704

participants, though this was not consistent overall. The average across datasets for the 705
bad sement confound regressors ranged between 5% and 20%, though this value was 706

highly variable across individual datasets (‘Bad Segs Only’, ‘Bad Segs Diff Only’; 707
Figure[5]A). Finally the V-EOG and H-EOG confound regressors explained an average of s
40% and 50% of variance respectively there was substantial variability between 700

datasets (‘V-EOG Only’, ‘H-EOG Only’; Figure [5]A). Both EOG regressors were highly 710
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Fig 5. The distribution of variance explained by the model across frequency and
participants.
A: The frequency spectrum of R-squared value averaged across channels for each dataset (grey
lines) and the average across all datasets (black lines). Each subpanel shows the variance
explained for a single GLM-Spectrum model. B: The distribution of R-Squared values averaged
across frequency and channels for each dataset for each GLM-Spectrum model. Each red dot
represents a dataset with the box plot representing their distribution.
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variable between datasets, ranging between 20% and 80% of variance explained. 711
The model fit performance has variability both within individual first-level models 712
and between subjects. As such, the variability in R-squared we observe here reflectsa 713

combination of these two sources. We can visualise the between-subject variability 714
(neglecting the variance within each dataset) by taking the average R-squared across 715
all channels and frequencies as represented by the distributions in Figure 5. This 716
illustrates the adaptive nature of the confound regression. These confound regressors 717
explain very little difference in clean datasets with relatively few artefacts but can 718
absorb substantial variability in noisier recordings. This individual variability is 710
summarised in Figure 5B, each red dot represents the average R-Squared across 720

frequencies and channels for each dataset for each model. The variance explained by 721
the bad segment confound-regressors is close to zero for many participants, though the 722

upper end of these distributions reaches 30%-40% of all variance explained in some 723
datasets. The EOG confounds have a range of 15% to 75% of variance explained in 724
each dataset, they tend to explain more variability than the bad segments, but remain  72s
widely varying across recordings. 726
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Fig 6. Group-level GLM-Spectrum describing a group mean and variability
associated with two between-subject factors.

A: The data modelled by the group-level GLM are the first-level GLM-Spectra across all
participants. A GLM is fit separately for each channel, frequency bin and first-level contrast. B:
The group-level design matrix. The first and second regressors are categorical predictors coding
female and male participants. C: The group-level estimate obtained from the first contrast coding
for the average of the two regressors (contrast 1). Error bars indicate the varcope of the group
contrast. D: The group-level effects for the difference between female and male participants
(contrast 2, weighted [1, -1]) and the three covariate contrasts (contrasts 5, 6 and 7),
quantifying the effect of sex, total brain volume and normalised grey matter volume respectively.
Error bars indicate the varcope of the group contrast.

3.4 Group-level design matrix and contrasts 727

The GLM-Spectrum framework can be extended to group analyses by carrying a set of 728
first-level results to a second-level GLM (See methods section [2.8). This group-level 729
analysis models between-subject variability across independent first-level GLM-Spectra. 7so
These multilevel, hierarchical models are well established in neuroimaging (Beckmann | 7s:
et al., |2003; [Friston et al., 2002} [Friston, |2007; [Woolrich et al.,|2004), and the existing 7s:

theory applies to the GLM-Spectrum. 733

The group-level GLM was fitted to the first-level cope-spectra (Figure[6A) across all 734
datasets separately for each channel, frequency bin and first-level contrast (see 738
methods section[2.11.4). The group-level design matrix contained two condition 736
regressors modelling the mean across subjects for younger and older participants 737
separately and three z-transformed parametric covariates modelling between-subject 738
variability in sex, total brain volume and relative grey matter volume (Figure [6B). Two 73
group contrasts were defined alongside the main effects. One overall average that 740

modelled the sum of the young and old groups (Contrast 1; Figure [6B) weighted by the 741
the number of participants in each group. A second contrast quantified the linear group 7
difference (Contrast 2; Figure [6B). Finally, a set of main effect contrasts were also 743
defined for each regressor (Contrasts 3 to 7; Figure[6B). The final fitted model contains 7
a group-level beta-spectrum that describes the linear effect of a group regressor across  7as
separate datasets. The group-level GLM returns beta-spectra for the overall mean 746
spectrum (Figure EKI) as well as contrasts and main effects (Figure @D). At the 747
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group-level, the error bars now indicate the standard error of the fitted mean across 748
participants (rather than across STFT time windows, as in the first-level). 740
3.5 Group effects of age and eyes open versus eyes closed 750
Next, we explored how the GLM-Spectrum varies across resting conditions and 751
participant age. Therefore, two main-effect contrasts and their interaction were 752
explored. Two-tailed, non-parametric, cluster (with clusters formed over frequencies 753
and sensors) permutation tests were used to establish statistical significance for all 754
group level analyses. 755
We first computed the group average of the within-subject difference between 750
eyes-open > eyes-closed rest. Specifically, we computed the Mean group-level contrast  7s7
(Contrast 1; Figure [6B) on the eyes open > eyes closed first-level contrast (Contrast 5; 758

Figure[1)). Non-parametric cluster permutation testing indicated two significant clusters 7se
(Figure [8A). The first cluster showed a negative effect (indicating greater magnitude in  7e0
the eyes-closed condition) in the lower frequency range (<20 Hz) across almost all 761
channels, though the effect peaked around the alpha range in occipital channels. This e
posterior cluster matched the expected occipito-parietal source of the reactivity effect  7es
(Wan et al.,|2018)). The second cluster showed a positive effect (indicating higher 764
magnitude in the eyes open condition) in the higher frequency range (20-50 Hz) across 7es
all channels with the largest effect in bilateral frontal regions. This cluster potentially  zes

reflects residual eye movements that have not been accounted for by ICA or the 767
first-level artefact regression. 768

Further, we computed the difference in the time-averaged first-level spectra 760
between the younger and older adults. This corresponds to computing the Young > Old 770
group-level contrast (Contrast 2; Figure [6B) on the Overall Mean first-level contrast’s e
cope-spectrum (Contrast 1; Figure[I)). The group-level pseudo t-spectrum for this 772

showed three significant clusters. The first cluster covered low frequencies (<8 Hz) and 773
much of the electrode array peaking in frontal and occipital channels (Figure [8B). The 77

positive t-values within this cluster indicated that spectral magnitude was higher for 775
younger participants, consistent with previously reported decreases in delta and theta 776
power in older adults (Klimesch, |1999). 777

The second and third clusters are similar and likely split in frequency by the notch 78
filter for line noise. These clusters cover a wide frequency range (14-48 Hz and 52-100 7o

Hz) and cover many sensors, peaking in bilateral central sensors around the beta 780
frequency range (Figure[8B). The t-stats in these clusters were negative, indicating that s
older participants had higher magnitude in this frequency range. This replicates 782
literature showing higher beta power in older adults (Xifra-Porxas et al.,[2019). In 783
addition, the change in overall spectral shape qualitatively supports indications that 784
older adults have a flatter 1/f slope in the EEG spectrum (Merkin et al., 2022; Voytek 785
et al., |2015), though we did not explicitly quantify 1/f slope here. 786

No significant cluster for an age difference was identified in the alpha range, though 7s7
individual pseudo t-statistics reach around 5. This null effect may relate to the choice 788
of sensor normalisation during pre-processing (Klimeschl [1999). In addition, the choice 7so

of a 0.5 to 100 Hz frequency range may be too wide to assess any relatively narrow 700
band alpha changes in the presence of large broadband effects in higher frequencies. 701

Finally, we explored whether the within-subject difference in eyes-open and 702
eyes-closed resting-state changed between the younger and older adults. Specifically, 703
this corresponds to the Young > Old group-level contrast (Contrast 2; Figure [6B) 704
computed on the eyes open > eyes closed first-level contrast (Contrast 5; Figure[1]). 705
Non-parametric permutation testing identified two significant clusters (split by the 706
notch filter for line noise). The clusters spread from high alpha up throughout the 707
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Fig 7. Higher order GLM-Spectrum group-level results.. The topography (top right)
provides location-colour coding used in the pseudo t-spectra throughout the figure. In
all cases, statistical significance is assessed by sensors x frequency cluster permutation
testing and is indicated in grey. The colour range of each topography is set range
between plus and minus the maximum absolute value of the data plotted.

A: The within-subject contrast between eyes-open and eyes-closed conditions, averaged across all
participants. Model-predicted magnitude spectra averaged across all sensors for the extrema of
the predictor (bottom).

B: The between-subject difference in average magnitude between young and old participants.
Layout is the same as for A.

C: The interaction effect exploring whether the eyes-open>eyes-closed contrast varies between
young and old participants. Layout is the same as for A.

D: The averaged GLM-Spectra for the two conditions and two groups.

spectrum and a range of sensors (Figure [8[C). This effect indicates areas where older 708
adults show a larger increase in spectral magnitude when transitioning from eyes 700
closed to eyes open during resting state. Interestingly, there is no indication of an 800
interaction effect in the low to mid alpha range. The interaction can be qualitatively 801
summarised by plotting the beta-spectrum separately for each of the underlying four 802
mean levels (Figure 8D). s03
3.6 Group average of first-level cope-spectra. s0a

Group analyses can be used to quantify between-subject effects in the cope-spectra of  sos
the first-level covariate regressors. This creates a statistical map identifying the effect 806

of each potential artefact source across channels and frequencies. Statistical 807
significance is established using two-tailed cluster-based permutation testing using a 808
higher cluster forming threshold of t=6 (with clusters formed over frequencies and 800
sensors), due to the very large effects observed here. 810

We first visualised the group spectra (averaged across younger and older 811
participants) separately for the two resting-state conditions. Specifically, this 812
corresponds to the Mean group-level contrast (Contrast 1; Figure [6B) computed on the &3
eyes open and the eyes closed first-level contrasts separately (Contrasts 3 and 4; 814
Figure[I). The expected 1/f and alpha peak structure was visible during eyes-open 815
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(Figure[8A) and eyes-closed (Figure [8B) resting state, with a qualitatively larger alpha s

peak during eyes closed. The alpha peak in both conditions had a clear 817
posterior-dominant topography. 818

The first-level linear trend regressor is expected to be sensitive to slow drifts 810
throughout the duration of the whole recording. The pseudo t-spectrum of the Mean 820
group-level contrast (Contrast 1; Figure [6B) computed on the Linear Trend first-level 821

contrast (Contrast 9; Figure 1) showed two significant clusters (Figure ). The first 822
cluster showed a positive effect across all channels below 1 Hz, indicating that spectral  s2s
magnitude in this cluster increases over the course of the recording. The second cluster s2s
indicated a positive effect in fronto-central sensors in the beta frequency range (15-25 25

Hz), again suggesting that spectral magnitude in this cluster increases over time. 826

The group average pseudo t-spectrum for the bad segment and differential bad 827
segment regressors highlight the spectral profile of these artefacts. The Mean s28
group-level contrast (Contrast 1; Figure [6B) computed on the Bad Segs first-level 829
contrast (Contrast 10; 1)) showed a strong positive effect at low frequencies (<2 Hz) 830
across all channels (Figure [8D). In contrast, the Mean group-level contrast computed 831

on the Bad Segs Diff first-level contrast (Contrast 11; Figure[1)) showed three significant ss-
clusters. The first was a low-frequency effect (<2 Hz) across all channels (Figure ), 833
similar to the bad segments regressor but a qualitatively weaker effect. In addition, the s3a
other two clusters show a broadband high-frequency effect across the whole head split  sss

by the notch filter for line noise (Figure [8E). These differences show that standard 836
bad-segment rejection is strongly biased towards low-frequency artefacts and that 837
identifying artefacts on the differential of the EEG signal can strongly increase 838
sensitivity to high-frequency artefacts. 830

Finally, we computed the Mean group-level contrast (Contrast 1; Figure [6B) 840
computed on the V-EOG and H-EOG first-level contrasts separately (Contrast 12 and 13; s
Figure[1). Cluster-based non-parametric permutation testing of the V-EOG artefact 842
identified two significant clusters (Figure ). The first effect is an increase in 843

low-frequency (<5 Hz) magnitude across a wide topography whilst the second cluster  sas
showed a decrease in alpha (around 7-10 Hz) magnitude peaking in occipital channels. sss
The alpha range effect likely reflects real neuronal dynamics associated with eye blinks  sss
given that the activity is posterior and far away from the eye muscles and is therefore 8a7
unlikely to have arisen from volume conduction. The H-EOG component (Figure [§G) sas
shows two clusters across a broad spatial and spectral range, split by the line noise 840
notch filter. In contrast to the relatively specific low-frequency and alpha effects in the  sso
V-EOG, artefacts associated with H-EOG are spectrally much broader also affecting the  ss:
high end of the spectrum. 852
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Fig 8. Group-level group-averaged GLM-Spectrum results for each first-level
regressor. The topography (top right) provides location-colour coding used in the
pseudo t-spectra throughout the figure. In all cases, statistical significance is assessed

by sensors x frequency cluster permutation testing and is indicated in grey. The colour
range of each topography is set range between plus and minus the maximum absolute
value of the data plotted.

A: The group average of the first-level contrast that corresponds to the eyes-open cope-spectrum
for all participants with topographies at 10 and 22 Hz. The spectrum is shown separately for
each channel, whereby colour denotes channel location.

A: Same as A, but for eyes-closed resting-state.

C-G: For each of the first-level contrasts that correspond to the covariate and confound
regressors: the group average GLM t-spectrum (top) and model-predicted magnitude spectra
averaged across all sensors for the extrema of the regressors (bottom).
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Fig 9. Between-subject group covariate effects on the overall first-level mean. The
topography (top right) provides location-colour coding used in the pseudo t-spectra
throughout the figure. In all cases, statistical significance is assessed by sensors x
frequency cluster permutation testing and is indicated in grey. The colour range of each
topography is set range between plus and minus the maximum absolute value of the
data plotted.

A: The between-subject difference effect of sex on the average magnitude between females and
males. The model projected spectra visualise the group differences (bottom).

B: Same as A for total brain volume. The model projected spectra visualise the spectrum at the
smallest and largest head size.

C: Same as A for normalised grey matter volume. The model projected spectra visualise the
spectrum at the smallest and largest grey matter volume.

3.7 Group-level covariate effects

853

The results so far have combined and contrasted group-level averages of the first-level
results. We can also explore parametric variability between subjects, illustrating the
potential of additional covariate and confound regression applied at the group level.
Two-tailed non-parametric permutation testing was used to identify significant clusters
with a cluster formed over frequencies and sensors with a threshold of t=3.

One possible group-level confound for the age contrast is that the LEMON dataset
contains a different number of male and female participants. The small correlation
between participant sex and age group indicates that these factors are not balanced. A
separate group regressor indicating the reported sex of each participant was included
to model between-subject variability relating to this factor, effectively partialling it out
from the main age effect of interest in each group contrast. We visualise the overall
effect of participant-reported sex on the first-level cope-spectra (averaged across eyes
open and eyes closed resting-state); this corresponds to the Sex group-level contrast
(Contrast 5; Figure [6B) computed on the Overall Mean first-level contrast (Contrast 1;
Figure[1)). A single significant cluster identified stronger spectral magnitude in female
participants between 1 and 48 Hz, peaking around the alpha and beta frequency
ranges (Figure [9A). Increased power in females relative to males has been previously
reported in the EEG literature (Aurlien et al., 2004; |Zibrandtsen and Kjaer, [2021).
Further work is required to distinguish whether this is a true neuronal difference or
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reflects simpler anatomical differences such as skull thickness. 873
Between subject variability associated with two anatomical covariates were 874
modelled at the group level. The total brain volume of each participant and the 875
proportion of grey matter relative to total brain volume. As before, the inclusion of 876
these regressors ensures that the reported group effects are not biased by these 877
anatomical factors. We separately computed the TotalBrainVol and GrayMatterVol 878
group-level contrasts (Contrasts 6 and 7; Figure ) on the Overall Mean first-level 870
contrast (Contrast 1; Figure[I). Non-parametric permutation testing did not identify 880
any significant effects for either overall brain volume or relative grey matter volume 881
(Figure |9B and C). Though these are null effects, the inclusion of these regressors in 882
the group model enables a more refined interpretation of the other results. The 883
inclusion of these confounds means that any variance they can explain can not be 884
attributed to one of the other regressors. Specifically, this increases our confidence that  sss
the differences between younger and older adults is not caused by correlated 886
variability in head size or relative grey matter volume. 887
Finally, we can visualise the distribution of variance explained in the first-level sss

average spectra by the group GLM (Figure[10). As with the first level model assessment sse
results (Figure[5)), this gives us an intuition about which channels and frequencies are  soo
well described by each regressor in the group level GLM-Spectrum. The full group 801
model is able to explain 60-90% of variability across participants (Figure [I0A) with a 802
spectral profile similar to the full model on the first level (‘Full Model’; Figure [SA). The  sos

“Young Only’ and ‘Old Only’ reduced models explain substantially less variance 804
(Figure and C). More variance is described by the ‘Young Only’ regressor, though 805
this overall shift likely reflects the larger number of young participants in the group 806
analysis. The profile of R-squared values across frequency also differ between the 807
young and old regressors, with the ‘Young Only’ regressor explaining more variance at  ses
lower frequencies and ‘Old Only’ explaining more variance at higher frequencies. 809

The three group covariates explain relatively low amounts of the overall 900
between-subject variability. The ‘Sex Only’ model explains up to 4% of variance in %01

posterior channels between 10Hz and 25Hz, and up to 5% of variance above 25Hz in 902
frontal channels (Figure[10D). The ‘Total Brain Volume Only’ model shows a similar 903

profile but explaining less variability overall, peaking at around 2% (Figure [10E). 904
Finally, the grey matter volume covariate describes around 1% of variability in the high eos
alpha range in posterior sensors, and up to 3% in high frequencies in frontal sensors 906
(Figure [IOF) 907
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Fig 10. The r-squared spectra for the full model and simplified models containing
only a single regressor at a time. The topography (top right) provides location-colour
coding used in the pseudo t-spectra throughout the figure. The colour range of each
topography is set range between zero and the maximum value of the data plotted.

A-F: The r-squared spectrum for the full model explored in figure 4. The r-squared spectrum is
shown separately for each channel, whereby colour denotes channel location.

4 Discussion

We have outlined the GLM-Spectrum framework and provided a tutorial overview of its  sos
function alongside a practical application. We have established the theory behind the 010
GLM-Spectrum and provided practical guidelines for its use in data analysis. A 011
first-level analysis was performed in which an alpha-reactivity effect was quantified 012
alongside explicit modelling of a set of potential noise sources. The GLM beta-spectra 013
for the noise sources showed substantial effects on the spectrum across the whole range 14
of channels and frequencies. Critically, these are both quantified and partialled out of o5
the main average by our multiple regression approach. Of particular interest is the 016
alpha peak in the beta-spectrum of the V-EOG regressor. This is likely a true neuronal 017
effect linked to blinking that cannot be removed by ICA but can be explicitly modelled o1
by the GLM-Spectrum. Finally, we extended our analysis to the group level and 019
explored the spectral differences between older and younger adults. Older adults were  e20
shown to have lower theta range (3-7 Hz) magnitude and higher magnitude in the beta o2

and gamma ranges (>15 Hz). A range of within- and between-subject effects were 022
explored and, crucially, we showed that the reported age effect is robust to differences  o2s
in participant sex, head size or relative grey matter volume. 024
4.1 A comprehensive framework for spectrum analysis 025
The GLM-Spectrum is a practical combination of two well-established methodologies 926
that modernises the statistics underlying the time-averaged periodogram, a 027
long-standing and standard spectral estimation method (Bartlett, 1948, /1950; Welch, 028
1967). Specifically, we utilise multi-level general linear modelling (Friston, |2007; 020

Woolrich et al., 2004)), non-parametric permutation testing (Nichols and Holmes}, |2001;  e30
Winkler et al.,|2014), contrast coding and confound regression to extend the scope of  oa

classical time-averaged spectrum estimators. 032

We illustrate the GLM-Spectrum in an open EEG dataset by simultaneously 033
quantifying and contrasting the spectrum of two alternating resting-state conditions 034
whilst regressing out the effect of bad segments and eye movements. Both artefact 035

types were associated with a strong group effect but diverse effects at the first level; the o36
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denoising applied by the GLM was specific to each dataset and no denoising is 037
performed in datasets where the spectrum showed no association with the noise 038
covariates. Spectral differences between younger and older participants were 039
quantified as a group-level contrast accounting for the effects of sex, brain volume and  es0
relative grey matter volume. 0a1
This approach is generalisable to a huge range of analyses. In principle, the 042

GLM-Spectrum could be used in place of Welch’s periodogram or other time-averaged  oss
spectrum estimate in any analysis pipeline. A very simple GLM-Spectrum analysis could oesa

be configured to be exactly equivalent to these standard approaches. In the simplest 0as
case, without first-level covariates the GLM-Spectrum provides a formal framework for  ess
multivariate whole-head group analysis of power spectra. Moreover, GLM-Spectrum 047

allows for linear denoising of spectrum estimates wherever simultaneous recordings of  ess
potential artefact sources are available. In addition, covariate effects and contrasts can  eas
be readily defined to quickly compute spectra associated with specific external 950
dynamics. For example, an early application of this method has used a GLM-Spectrum  os:
to compute power spectra associated with dynamic whole-brain functional networks in  es2

MEG (Gohil et al., 2022). 053
4.2 Covariate and confound regression for spectrum analysis osa
The GLM-Spectrum can characterise spectral changes associated with covariates and 055
potential artefact sources. Standard ICA denoising removes artefacts that share the 956
time-course of the artefact channel, In contrast, confound regression is exploratory 057
across the spectrum. Denoising can be applied to any frequency band with dynamics 058

associated with the segmented artefact time-course irrespective of the artefacts original s
spectrum. For example, the V-EOG blink artefact has a classic low-frequency response 960

that can be attenuated with by removing correlated ICA components. However, eye 961
blinks are also associated with relatively prolonged changes in alpha and beta power 062
(Liu et al.} |2020). In the context of this paper, we consider this to be an ‘indirect’ 063
artefact; it is spatially and spectrally separated from the artefact source and is unlikely  cea
to have arisen from volume conduction. The GLM-Spectrum can detect these 065
differences and remove their effect from the overall mean. As such, it could not have 966
been detected or removed by ICA de-noising. In another context, this might form the 967
contrast of interest, but in this case, we apply confound regression to minimises the 068

effect of eye movements and blinks on the eyes open > eyes closed condition contrast.  sees

4.3 Limitations of the GLM-Spectrum model 070
As outlined in the main text, the parameters of a model are only valid if the underlying o7
assumptions are met. The GLM has several relevant assumptions for the spectrum 072
analysis presented here, particularly at the first level. In particular, the GLM assumes 073
that the residuals of the model are independently and identically distributed. The 074
presence of any temporal autocorrelation in the residuals indicates that this assumption ezs
has been violated and the parameter estimates must be interpreted with caution. 076
Future work can account for this shortcoming by building on similar work in fMRI. 077

The covariate and confound regressors in a GLM-Spectrum model dynamics over o7s
time in a highly simplified sense. This approach is appropriate to quantify relatively 079
slow dynamics, on timescales of seconds, in the context of a spectrum estimator that 980
already utilises sliding time segments for spectrum estimation. The sliding windows are  es:
tuned for spectral resolution. They have fixed and arbitrary length and may not 082
accurately reflect the true timescale of dynamics in the covariate variables. As such, 083
limited conclusions about underlying dynamics can be made from a GLM-Spectrum. o84
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We can only say that a dynamic relationship existed at the specific timescale selected o8s
for spectrum estimation. If precise temporal dynamics are of interest, a more advanced, sse
window-free method such as the Hidden Markov Model (Quinn et al.| |2019,|2018; 087
Vidaurre et al., 2018,|2016) or Empirical Mode Decomposition (Huang et al., [1998) 088
might be more appropriate. 089
4.4 Conclusion 900
The GLM-Spectrum builds on methodologies that are all well established in the field. 901
The novelty of this work is to bring modern statistics and classical spectrum estimation ez
together into a single framework and to thoroughly explore the theoretical, 003
computational, and practical challenges in its use. The result is an approach for 004
spectrum analysis across the whole head and frequency range with the flexibility to 905
generalise to a huge variety of research and engineering questions. 996
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7 Supporting information
7.1 STFT Data Distributions 1022

The general linear model used here expects the dependant variable (the time-varying 123
spectrum) and residuals to follow a Gaussian distribution. Whilst small deviations are 1024

permissible, the model fit and any subsequent statistics may be invalid if either is 1025
strongly non-Gaussian. This is a concern for the GLM-Spectrum as power values in a 1026
standard PSD tend to be non-Gaussian; they are strictly positive and squared (see 1027
equation|[7)). Figure shows an example power spectrum for a single example 1028
subject. The second column shows a strongly skewed distribution of power values over 1ozs
time-segments for a single channel and frequency. This skew persists into the 1030
distribution of residuals as well, indicating that the model assumptions are likely to be 101
violated for when using PSD estimates as the dependant variable in a GLM. 1032

In this paper, we fix this violation by using the magnitude spectrum rather than the 1033
power spectrum. Whilst the magnitude spectrum is less commonly used and has less 1034

clear mathematical properties E], though the distribution of magnitude estimates is 1035
more Gaussian than for power estimates. Figure shows an example magnitude 1036
spectrum, its data distribution and its residual distribution. All are better distributed 1037
than the PSD example in Figure [1TJA. Another option would have been to use the 1038

log-power spectrum, which also has a well-behaved Gaussian distribution Figure[11|C. 1030
Here, we restored the GLM model assumptions through a data-transform however a 1040

more general solution could be to use a model that is robust to different data and 1041
residual distributions. Future work could explore using a Generalised Linear Model 1042
which can describe skewed power distributions with an appropriate link function 1043
(Nelder and Wedderburn, (1972). 1044

7the relation between the sum-square of the time-domain data and the integral of the spectrum does not
hold for a magnitude spectrum.
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Fig 11. Distribution of the magnitude, power and log-power spectra for an
example dataset.

A: The power spectrum across frequency and channels, the distribution of power values over
time-segments and the distribution of residuals after fitting a GLM-Spectrum B: As A, for the
magnitude spectrum. The data and residual distributions are substantially more Gaussian in
shape. C: As A for the log-power spectrum. The data and residual distributions are more
Gaussian than the power and magnitude spectra.
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7.2 Parameter settings and resolution in periodograms 1045
When estimating power spectra with a time-averaged approach such as Welch’s 1046
Method, three parameters are of particular interest: the sampling rate, the length of 1047

the window in which the data will be divided, and the length of the data. Changing 1048
these parameters can affect the resolution of the spectrum and how many segments are 1oss

included in the average. 1050

Segment Length. The length of the time segments that the data is divided into 1051
influences the resolution of the underlying FFT result. In general, more frequencies are ios:
estimated from longer time segments. So, increasing window length whilst holding 1053
other parameters constant will result in a larger number of frequency bins in the final 1054
spectrum estimate. The resolution in Hz can be computed by dividing the segment 1085
length by the sample rate of the data 1056

5f = 22)
fs

For example, a time series with 512 data points sampled at 128Hz would have a 1057
frequency resolution of 4Hz. Similarly, the lowest frequencies that can be reliably 1058
extracted from the time-series are also dependent of the window length. Frequencies 1050
that are slower than the window period cannot be extracted. In general, it is 1060
recommended to estimate power of an oscillatory signal across several cycles to reduce o6
the signal-to-noise ratio of the estimation (Cohen, 2014). Therefore, increasing the 1062
window size will also allow to assess lower frequencies more reliably (Figure [12A). 1063

There is an additional subtly in some implementations of the FFT that means that  1ces
the data length does not necessarily equal the length of the computed FFT. For 1065
example, the scipy implementation of Welch’s method contains parameters for segment 1ose
length (nperseg) and FFT length (nfft). These are assigned equivalent values by 1067
default, but if they are different then the nfft parameter should be used instead of N t0  1ces
compute the frequency resolution. 1069

Sampling Rate. The FFT returns estimates at equally spaced frequencies from OHz 1070
to one half of the sampling rate of the data Nyquist Frequency. The OHz component is 107
known as a ‘direct current’ or DC offset and contains the average of all samples in the 1072
segment being analysed. The Nyquist frequency is the fastest observable frequency in 1073
the dataset and is one half of the sample rate. As such, increases in the sampling rate, 1o
whilst holding other parameters constant, will in result in larger frequency spacing and 1075

a lower resolution (Figure[12]A). The reason for this is that the same number of 1076
frequency bins must cover a larger frequency range. In reverse, this means that 1077
decreasing the sampling rate while holding the window length constant results in a 1078
smaller frequency spacing and higher spectral resolution. 1079
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Fig 12. Influence of parameter choice on time-averaged spectrum estimates.

A: The effect of increasing segment length on the spectrum estimate. Longer segment lengths
have a higher frequency resolution. B: The effect of increasing sample rate on the spectrum
estimate. Faster sample rates have higher Nyquist frequencies and lower frequency resolution. C:
The effect on increasing the length of the analysed data set. Longer datasets have more segments
contributing to the central average and are less affected by noise.

Importantly, increasing the frequency spacing is not always better because smaller
bins might result in a noisier estimation of the power spectrum (Figure [12B). Small
variations in the (intrinsic) frequency of the oscillatory signals - that are in most cases
not of particular interest - might be represented by power in various of these small
frequency bins whereas larger frequency bins allow to smooth across these smaller, less
relevant variations. This results in a smoother power spectrum.

Length of the overall time-series. The length of the data determines the number
of windows in which the time course is divided by Welch’s Method before averaging
across power spectra. A higher number of windows results in averaging across a larger
number of power spectra which in turn results in a better signal-to-noise ratio of the
overall power estimation (Figure [I2/C). In general, considering more data is preferable
because the average of a larger number of window-power spectra should result in an
estimation closer to the true average power spectrum according to the law of large
numbers. Importantly, dynamic fluctuations in oscillatory power over the time course
might introduce meaningful variations in the mean power spectrum that cannot be
accounted for by Welch’s Method and result in more complex, and less peaky power

spectra.
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7.3 Residual autocorrelation & first-level statistics 1007
In addition to having a Gaussian distribution (see methods section and 1098
supplemental section [7.1)), the residuals of a GLM should also not show any 1009
autocorrelation. This is vital concern for the GLM-Spectrum is first-level statistical 1100
inference are critical. We do not perform statistical inference at the first-level in this 1101
paper due to concerns about validity for this reason. Despite this, it is worth exploring 1102
how the choice of parameters in the time-varying spectrum can affect residual 1103
auto-correlation in the GLM-Spectrum. Here, we use the Durbin-Watson statistic 1104
(Durbin and Watson, [1950, 1951 as a measure of residual autocorrelation for a set of 1105
GLM-Spectra fitted on a single dataset. A Durbin-Watson statistic of 2 indicates no 1106
autocorrelation, whilst values closer to 0 or 4 indicate the presence of positive and 1107
negative autocorrelation respectively. 1108
We computed the Durbin-Watson statistic with the standard first-level design used 1100
in this paper for 4 different segment lengths and 3 different window overlaps. Some 1110

positive residual autocorrelation exists for the shortest window with an overlap of one 1111
sample (Figure[13]A; nperseg: 100, nstep: 99) though this drastically reduces for the 1122
longer segment lengths in that row. Segment lengths of 500 or 1250 samples show little 1113

residual autocorrelation in most channels and frequencies. In contrast, time-varying 1114
spectra with longer window overlaps show substantial positive autocorrelation in the 1115
residuals for all window lengths (Figure & C). This positive autocorrelation 1116

indicates that consecutive segments are likely to have similar residuals. This is strongest 1117
in the shortest segment with the largest overlap (Figure[13[C; nperseg: 100, nstep: 25) 1118
which shows Durbin-Watson statistics close to 0 for most channels and frequencies. 1110
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Fig 13. Durbin-Watson statistics for a GLM-Spectra across a range of segment
lengths and step sizes. Values close to 2 are considered to have no residual
autocorrelation indicating a valid GLM fit. Values close to 0 or 4 indicate substantial
residual autocorrelation indicating that the assumptions of the GLM have been
violated. Several sets of parameters clearly violate the residual autocorrelation
assumptions of the GLM, though this can be attenuated by choosing longer segment
lengths with a lower overlap.

A: The Durbin-Watson values for a range of segment lengths with a single sample overlap
between windows. B: The Durbin-Watson values for a range of segment lengths with a 50%
overlap between windows. C: The Durbin-Watson values for a range of segment lengths with a
75% overlap between windows.
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7.4 Fast standard-error estimation with Einstein summation 1120

The slowest computation in the GLM-Spectrum is obtaining the standard error of the 1121
parameter estimates, known as varcopes. This involves large matrix multiplications that 1122
are typically repeated across many tests. However, only the diagonal output is used in 1123
the eventual varcope estimate. Standard computing approaches will evaluate every 1124
single cell within these matrices even though majority contribute to the off-diagonals  112s
and are eventually discarded. This is not a large computational expense for single tests 1126

but quickly becomes prohibitive when computing large numbers of test together in 1127
matrix form. We use the numpy implementation of Einstein summation conventions 1128
(Numpy.Einsum — NumPy v1.23 Manual, 1120
n.d.) (https://numpy.org/doc/stable/reference/generated/numpy.einsum.html) to 1130
compute the most efficient computational path for the varcope evaluation. In practice, 113
this avoids carrying out intermediate multiplications which would eventually be 1132
dropped when extracting the diagonal at the final step. The code for the standard 1133
'DotDiag’ approach and the new Einsum approache is as follows: 1134
resid_var = np.diag(resid.T.dot(resid)) # Standard approach 1135
resid_var = np.einsum (’ij,ji—i’, resid.T, resid) # Einsum approach 1136

We explore the difference this makes to computation time by running 100 simulated 1137
GLMs with each method for each of four datasets. The first dataset was a single GLM 1138

that might represent a single channel and frequency bin. The second is a full 1130
GLM-Spectrum across 100 frequency bins whilst the third and fourth were 1140
GLM-Spectra across 60 or 204 channels, representing common EEG and MEG data 1141

sizes. The GLM was computed 100 times for each case and the results are summarised 112
in Figure The computation was equally fast for both methods in the single-test case 1143

but the einsum approach can lead to a 1000x speed up in computation time in the 1144
larger datasets. This is convenient for in any case but is essential for making 1145
non-parametric permutation statistics of GLM-spectra practically feasible. 1146
25 Windows 25 Windows 25 Windows 25 Windows
Single Channel Single Channel hannel Channel
single Frequency 100 Frequency Bins 100 Frequency Bins 100 Frequency Bins
&
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Fig 14. Computation times for varcope estimation across different data sizes with
a standard or einsum based method. Each data size and method was computed for
random data 100 times and the distribution of its timing shows as a boxplot.
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7.5 Pseudo t Statistics 1147

A standard t-statistic is computed a change divided by the square root of the estimated 114s
variance of that change (Nichols and Holmes, [2001). The variance in the denominator 11ss
of the t-statistic can be estimated poorly, for instance if there are few available degrees 1iso

of freedom available in the model. In addition, estimates of variance tend to scale in 1151
proportion with real effects in the data, reducing the prominence of larger changes. 1152
One solution to these issues is the pseudo t-statistic (Nichols and Holmes, 2001)). 1153

Figure and B show the cope- and varcope-spectra for the first-level eyes open > 11sa
eyes closed contrast for an example dataset. The clear negative effect in the low 1155
frequencies, peaking around the alpha range is clearly visible in the cope-spectrum, yet 1ise
is greatly reduced in the corresponding t-spectrum in Figure [I5C. This is due to a 1157
strong correlation between the cope and varcope estimates in the model Figure[15D).  1ss
In other words, the square root of the standard error of the contrast value is scaling 1150
closely with the contrast value itself. We can assume that the variance structure 1160
underlying a spectral effect is relatively smooth over frequency and compute a 1161
smoothed varcope-spectrum using a median-filter (Figure [I5E). A pseudo t-statistic 1162
(Figure[15F) computed with the smoothed varcope values now more closely reflects the e
effects seen in the original cope-spectrum (Figure[15A). 1164

Note that the distribution of pseudo t-statistic values is not known, so standard 1165
parametric statistics are inappropriate (Nichols and Holmes, [2001). However, if the 1166
same variance smoothing approach is take across all permutations in a non-parametric ez
statistical approach then the resulting statistics are valid. Any bias created by the 1168
smoothing procedure will apply equally to both the observed data and the nulls. 1160

A c

le-s cope-spectrum le-13  varcope-spectrum t-spectrum

1 4 9 16 25 36 49 64 81 100 4 9 16 25 36 49 64 81 100 1 4 9 16 25 36 49 64 81 100
Frequency (Hz) Frequency (Hz) Frequency (Hz)

le-13 E 1e—19Moothed varcope-spectrum pseudo t-spectrum

varcope values

00 02 04 06 08 1.0 12 1 4 9 16 25 36 49 64 81 100 1 4 9 16 25 36 49 64 81 100
abs(cope_values le-5 Frequency (Hz) Frequency (Hz)

Fig 15. Illustration of the pseudo t-spectrum computation. Spectra are shown
from an example single data recording. A: An example cope-spectrum B: An
example varcope-spectrum C: Correlation between the cope and varcope values
showing a strong positive trend. D: The standard t-spectrum for the example dataset.
The correlation between the cope and varcope values flattens the observed effects in
the cope-spectrum. E: A 15-point median filter smoothed varcope spectrum F: A
pseudo t-spectrum computed from the cope-spectrum and smoothed varcope-spectrum.
This better reflects the structure observed in the original cope-spectrum.
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7.6 Confound Regression 1170
Figure shows an example design matrix for this case. The first regressor is a 1un

constant vector of ones and a second regressor tracks the time segments in which the 1172
artefact occurs. In isolation, the constant regressor models the data mean (including 1173
the time periods that the artefact occurs), but this changes when it is alongside a 1174
regressor with non-zero mean in the same model. The constant regressor now models 1175
the intercept; this is the expected value of the data when the artefact regressor is zero  1i7e
(Figure — contrast 1 ‘Intercept’). In turn, the artefact regressor can be interpreted 1177

as the difference between the value of the intercept and the mean of the segments 1178
indicated in the artefact regressor (Figure — contrast 2 Artefact Effect’). We can 1179
recover the mean of the artefact segments by summing the parameter estimates for 1180
both regressors (Figure — contrast 3 Artefact Mean’). 1181

To illustrate the quantities estimated by the simple model and the confound 1182
regression, we generate a simulation of 128 data points centred around a ‘true’ mean of 11ss
1 with a small number of outliers centred around 4 (Figure[16C). The simple mean 1184
estimated by the ‘mean-only’ design is biased towards the outlier observations. In 1185

contrast, the confound regression quantifies the ‘true mean’ of 1 in the intercept term 1186
as the artefact regressor describes the effect of the artefact. In a real data example, this 11s7

design could describe the mean spectrum of a resting-state EEG recording whilst 1188
accounting for a set of ‘bad segments’ annotations identified during pre-processing. 1180
This both provides an estimate of any ‘artefact effect’ and linearly removes its influence 1100
from the estimate of the mean term. 1101

We can also specify artefact regressor with the mean removed, i.e. with zero means. 112
Counter-intuitively, the interpretation of the regression parameter estimate is 1103
unchanged; whereas the interpretation of the constant regressor changes from 1104

modelling the intercept (as in Figure[16B) to modelling the mean over all time points. 115
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Fig 16. GLM-Spectrum design matrix for confound regression. A: A GLM design
with a single regressor and contrast modelling a simple mean of the observed data B: A
GLM design with two regressors and three contrasts illustrating confound regression.
The first regressor is a constant term and the second is a sparse, non-zero mean
artefact regressor indicating data observations that are possible artefacts. Three
contrasts isolate each regressor individually (intercept and artefact effect) and their
sum (artefact mean). C: Simulated data observations and the quantities estimated by
the GLM designs in A and B. The first design estimates the simple mean overall data,
though this is heavily influenced by the possible outlier points. The second design
models an intercept and an artefact effect. The intercept can be thought of as the mean
where the artefact regressor equals zero, and the artefact effect is the distance between
the intercept and the artefact mean. Finally, the absolute artefact mean can be
reconstructed by the sum of the two parameter estimates as shown in B contrast 3.
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