
 

Revealing the Neurobiology Underlying Interpersonal Neural Synchronization  

with Multimodal Data Fusion 

Leon D. Lotter1,2,3,4,*, Simon H. Kohl1,5, Christian Gerloff1,5,6, Laura Bell1,7,  

Alexandra Niephaus1, Jana A. Kruppa1,5, Juergen Dukart2,3, Martin Schulte-Rüther1,5,8,  

Vanessa Reindl1,5,9, Kerstin Konrad1,5 

1Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and 
Psychotherapy, University Hospital RWTH Aachen, Germany  

2Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Jülich Research Centre, Germany 
3Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany 
4Max Planck School of Cognition, Stephanstrasse 1A, 04103 Leipzig, Germany 
5JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Germany  
6Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen 

University, Germany 
7Audiovisual Media Center, Medical Faculty, RWTH Aachen University, Germany 
8Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany 
9Psychology, School of Social Sciences, Nanyang Technological University, Singapore S639818, Republic of 

Singapore 

*Corresponding author: Dr. Leon D. Lotter; Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52425 Jülich, 
Germany; ORCID: 0000-0002-2337-6073 

Author Notes 

CRediT: Conceptualization: LDL, KK, MS, VR; Methodology: LDL, KK, SHK, CG, JD, MS, VR; 
Software: LDL, CG; Validation: LDL; Formal Analysis: LDL; Investigation: LDL, SHK, 
CG, LB, AN, JAK; Resources: KK; Data curation: LDL, SHK, CG, LB; Writing – Original 
Draft: LDL, KK; Writing – Review & Editing: LDL, KK, SHK, CG, LB, AN, JAK, JD, MS, 
VR; Visualization: LDL, LB; Supervision: KK; Project administration: KK, LDL; Funding 
acquisition: KK. 

Funding: KK received funding for this study by the Deutsche Forschungsgemeinschaft, Germany 
(DFG) within the CRC1451.  

Conflicts of interest: SHK is an employee of MEDIACC GmbH, Berlin, Germany, an independent 
clinical research organization, and received payments to consult with Mendi Innovations AB, 
Stockholm, Sweden. LB receives commissions for fNIRS visualizations. The remaining au-
thors declare no competing interests. 

Short title: Neurobiology of Interpersonal Neural Synchronization 
Preprint: bioRxiv (https://doi.org/10.1101/2022.07.26.501562) 
Dataset: zenodo (https://doi.org/10.5281/zenodo.7002119) 
Repository: GitHub (https://github.com/LeonDLotter/MAsync) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.07.26.501562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501562
http://creativecommons.org/licenses/by/4.0/


 1 

1. Introduction 

Synchronization with the environment is a key mechanism that facilitates adaptation to var-

ying environmental conditions in most living organisms, potentially providing an evolutionary ad-

vantage (Xue et al., 2019). In humans, adaptation to other people is a central survival mechanism 

and has been linked to interpersonal synchronization that occurs at multiple biobehavioral levels 

during human social interaction (Gordon et al., 2021; Harel et al., 2011; Mogan et al., 2017; V. 

Müller et al., 2013; Reindl et al., 2022). Interpersonal synchronization involves coordination of 

behavioral, physiological, or hormonal activities between people and may represent adaptive ca-

pacities that allow humans to access another's internal arousal state (Mizugaki et al., 2015), share 

and regulate emotions, increase social affiliation, empathy, and prosocial commitment (Mogan et 

al., 2017), facilitate learning (Pan et al., 2021), and adapt to collective behaviors and group norms 

(Wiltermuth & Heath, 2009; Reinero et al., 2021). Revealing the neurobiology underlying inter-

personal synchronization will improve our understanding of the fundamental mechanisms by which 

humans adapt to and engage with others. Knowledge on how these mechanisms work and how they 

fail has broad implications for educational sciences and developmental and social neurosciences 

on the one hand, and for intra- and intergroup conflict studies and psychiatric health care on the 

other. 

Interpersonal synchronization has been extended to the neural activity of interacting individ-

uals, often referred to as interpersonal neural synchronization (INS) (Jiang et al., 2015), interbrain 

synchrony, or brain-to-brain synchrony (Mu et al., 2016; Dikker et al., 2014). In a single brain, 

rhythmic oscillations of neurons may lead to neuronal signal coherence through synchronization 

of excitatory states, thereby enabling neuronal information transfer and interaction (Fries, 2005). 

Local neuronal oscillations have been linked to excitation-inhibition (E/I) balance, regulated by 

GABAergic and glutamatergic neuron populations (Gonzalez-Burgos & Lewis, 2008; Sears & 

Hewett, 2021), which may also be a driving factor for long-range synchronization (Stagg et al., 

2014). Electrophysiologically, within-brain synchronization may be driven by excitatory cortico-

cortical connections (Uhlhaas & Singer, 2006), together with subcortical structures, in particular 

the thalamus (Llinás & Steriade, 2006). Across brains, in analogy to the oscillations of individual 

neurons, our brains and their sensory systems may also rhythmically sample information from the 

environment. Information transfer is then not enabled via direct physical contact but indirectly 

through actions arising from an individual’s motor system (e.g., speech, sounds, gestures, or eye 

contact). These actions are transmitted through the environment and sampled by an interaction 
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partner’s sensory system. In each individual in a dyad or group, rhythmical neuronal oscilla-

tions may then synchronize (Hasson & Frith, 2016). 

By simultaneous brain recordings from two or more subjects, termed hyperscanning (Mon-

tague et al., 2002), it is now possible to quantify the temporal and spatial similarities of brain signals 

while the individuals engage in interpersonal interaction. Alternatively, one subject can be scanned 

after another in response to prerecorded stimuli of the first person, often termed pseudohyperscan-

ning (Babiloni & Astolfi, 2014; Schoot et al., 2016). Methodologically, human hyperscanning ex-

periments have been performed over the full spectrum of noninvasive electrical and hemodynamic 

brain imaging techniques, with electroencephalography (EEG), functional near-infrared spectros-

copy (fNIRS), and functional magnetic resonance imaging (fMRI) being the most widely used 

(Babiloni & Astolfi, 2014; Czeszumski et al., 2020). 

Previous human hyperscanning studies identified a variety of brain regions that contribute to 

INS, including the medial prefrontal cortex (PFC), anterior cingulate (Babiloni et al., 2007; Yun et 

al., 2012), superior temporal gyrus (STG) and right temporoparietal junction (rTPJ) (Stolk et al., 

2014; Bilek et al., 2015; Kinreich et al., 2017), and insular cortex (Koike, Tanabe, et al., 2019). 

The first meta-analytic evaluation of 13 fNIRS hyperscanning studies involving interpersonal co-

operation confirmed INS in the PFC and TPJ (Czeszumski et al., 2022). The observed brain region 

patterns suggest connections to brain networks known to be associated with mentalization (Schurz 

et al., 2021; Bilek et al., 2015), social cognition and interaction (Feng et al., 2021), predictive cod-

ing (Ficco et al., 2021; Shamay-Tsoory et al., 2019), and mirroring (Rizzolatti & Craighero, 2004; 

Schippers et al., 2010). These patterns indicate that INS involves complex cognitive processes, 

including theory of mind (ToM), mental modeling, prediction, emulation, and simulation of behav-

ioral and affective states. 

Developmentally, INS might be rooted early in human life, with synchronous caregiver-in-

fant interactions being critical for establishing affiliative bonds (Feldman, 2017) and impacting 

long-term developmental outcomes (Atzil & Gendron, 2017). In the brain, on both cognitive and 

functional levels, INS has been embedded in a predictive coding framework (social alignment sys-

tem), mediated by a three-component feedback loop consisting of an observation-execution/align-

ment, an error-monitoring, and a reward system thought to be activated by and to reinforce suc-

cessful alignment (Shamay-Tsoory et al., 2019). As postulated in the mutual prediction theory, 

coherent patterns of brain activity in two interacting partners might result from the sum of neural 

activities from co-localized neurons (i) encoding self-behavior as well as (ii) encoding predictions 

of the partner’s behavior (Hamilton, 2021; Kingsbury et al., 2019). On the neurophysiological 
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level, the connectivity between two brains or among multiple brains may be shaped by social con-

tact in analogy to the Hebbian rule for synaptic connectivity (“fire together, wire together”) (Sha-

may-Tsoory, 2021). Here, the cortical activity of one subject engaged in a certain behavior would 

translate into the cortical activity of an interacting subject, with the repetition of this social inter-

action reshaping interbrain functional connectivity not only in dyads but potentially in entire social 

groups (Ramakrishnan et al., 2015). On the neurochemical level, oxytocin and dopamine have been 

discussed as the key neurotransmitter systems involved (Feldman, 2017; Gvirts & Perlmutter, 

2020; Mu et al., 2016) given their pivotal roles in social functions (MacDonald & MacDonald, 

2010), reward processing (Glimcher, 2011), and reciprocal interactions between the two systems 

in the mesolimbic tract (Baskerville & Douglas, 2010). Related to the social alignment system 

(Shamay-Tsoory et al., 2019), these mesolimbic neurotransmitter systems may regulate a mutual 

social attention system located in the PFC and TPJ, possibly enabling selective attention in social 

interactions through reward-related feedback mechanisms (Gvirts & Perlmutter, 2020).  

The rapidly evolving hyperscanning research field and our inherent fascination with human 

social abilities and inabilities led to a steadily growing number of theoretical accounts attempting 

to explain the phenomenon of INS. However, robust evidence to ground these theories on is still 

lacking and many of the proposed frameworks have yet to be tested empirically. In particular, 

attempts to develop models moving beyond brain region correlates have been limited by the una-

vailability of empirical data. Given that social cognition, oxytocin signaling, and E/I balance are 

considered to be connected on neurophysiological levels (Lopatina et al., 2018), the extent to which 

these mechanisms underlying within-brain synchronization are involved in INS also remains to be 

explored.  

The current study aimed to identify a common neural substrate and formulate new testable 

hypotheses regarding the neurophysiological mechanisms of INS. To achieve this goal, we used 

multimodal data fusion techniques as powerful tools to integrate data from imaging, genetic, and 

behavioral levels. Through integrative meta-analytic techniques, data fusion approaches, and null 

model-based hypothesis tests (Figure 1), we confirm robust spatial convergence of INS in the rTPJ 

as well as an involvement of the ventral PFC, and provide first evidence for an important and 

previously unacknowledged role of GABAergic neurotransmission and E/I balance in human INS. 
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2. Materials and Methods 

First, to identify a common brain regional correlate of INS, we collected the currently 

available fMRI and fNIRS hyperscanning data through an inclusive literature search and submitted 

it to spatial meta-analyses. Second, based on these brain correlates of INS, we assessed INS-related 

functional brain networks and biobehavioral association patterns on both brain regional and whole 

brain levels. Third, extending our results to a molecular level, we explored how the whole-brain 

INS distribution aligned with neurotransmitter systems and how spatially related gene expression 

patterns connected INS to specific neuronal cell types, brain development, and psychopathology 

(Figure 1).  

 

Figure 1: The multimodal data fusion approach to explore the neurobiology of human INS 

The figure outlines the multimodal data fusion workflow applied in the present study. Depicted are data sources and 
major analysis steps applied to generate multilevel knowledge and new hypotheses about the neurobiological basis of 
INS. 
Abbreviations: INS = interpersonal neural synchrony, fMRI = functional magnetic resonance imaging, fNIRS = 
functional near-infrared spectroscopy, GCEA = gene-category enrichment analysis. 
 

neuromaps & JuSpace

32 in vivo maps of 21 molecular brain 
systems from 1,360 healthy subjects

Biobehavioral Associations

Reverse & forward inference, correlation

Neurotransmitter Associations

Spatial correlations with transmitter maps

Cellular Associations

GCEA: spatial correlations with marker 
genes of neuronal cell types

Developmental Gene Expression

GCEA: Spatial correlations with genes 
regionally enriched across development

Psychopathology Associations

GCEA: Spatial correlations with genes 
associated with psychiatric disorders/traits

Cluster & distribution

Multilevel Model of Human INSfMRI peak 
activations

Integrative analysis & 
interpretation

fNIRS channel 
coordinates

Brain Functional Associations

Meta-analytic connectivity modeling

Resting-state networks

Spatial Meta-analyses

fMRI: activation likelihood estimation

fNIRS: parcelwise meta-analysis

Meta-analytic Results

Robust fMRI cluster

Whole-brain parcellated INS distribution

Left hemisphere Right hemisphere Subcortex

Structured Literature Search

fMRI and fNIRS hyperscanning publications
Records identified

PubMed, Scopus, arXiv, bioRxiv,
medRxiv, OpenCitations 
(n = 2,621)

Previous literature search 
(n = 39) 

Nam et al., 2020 (n = 64)

Records removed before 
screening

Additional duplicates (n = 149)  

Records screened
(n = 2,575)

Reports sought for retrieval
(n = 182)

Records excluded
(n = 2,393) 

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n = 182)

Reports excluded
Not healthy / <18 / >65 y (n = 13)
No article / preprint (n = 8)
Not fMRI / fNIRS (n = 8)
No hyperscanning (n = 33)
No interaction (n = 17)
No temporal synchrony (n = 43)
Not whole-brain / channel-wise / 

data not available (n = 55)

Studies included
fMRI (n = 22)
fNIRS (n = 57)

Experiments identified
fMRI (n = 22)
fNIRS (n = 69)

Id
en

tif
ic

at
io

n
Sc

re
en

in
g

In
cl

us
io

n

Experiments analyzed
fMRI: Primary whole-brain activation likelihood estimation (n = 22)
fNIRS: Primary parcel-level meta-analysis (n = 69)
fMRI & fNIRS: Secondary joint activation likelihood estimation (n = 22/60) A

na
ly

se
s

Nonparametric 
permutation tests

Integrative analysis 
& Interpretation

DistributionCluster

Distribution

Distribution

Distribution

Integrative analysis & 
interpretation

BrainMap

3,098 functional neuroimaging studies in 
healthy subjects, manually curated

Neurosynth

14,371 functional neuroimaging studies, 
collected by automated datamining

Allen Human Brain Atlas

Postmortem gene expression profiles of 
15,633 genes sampled to 116 brain regions

PsychENCODE

Marker genes for 24 neuronal cell types 
based on transcripts per kilobase counts

Web of Science
PubMed
Scopus
arXiv
medRxiv
bioRxiv
OpenCitations
Nam et al., 2020

BrainSpan

Gene enrichment in 18 brain regions across 
5 developmental stages  

Data sources Methods & Results Interpretation

Human Connectome Project

Resting-state fMRI data from 120 healthy 
subjects (50% female, 22 – 35 years)

DisGeNET

Genes associated with 150 psychiatric 
disorders and traits

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.07.26.501562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501562
http://creativecommons.org/licenses/by/4.0/


 5 

2.1. Software, code, and data availability 

The analyses were conducted in Python (3.8.8) and Matlab (R2021a) environments. The fol-

lowing software and packages were used: Literature search: SetYouFree (0.0.1) (Gerloff, Lotter, et 

al., 2022), Cadima (Kohl et al., 2018). Neuroimaging meta-analysis and image manipulation: 

NiMARE (0.0.12rc7) (Salo et al., 2018), Nilearn (0.9.1) (Abraham et al., 2014), AtlasReader (0.1.2) 

(Notter et al., 2019). FNIRS probe reconstruction: AtlasViewer (2.12.12) (Aasted et al., 2015). 

FMRI data processing: CONN (20b) (Whitfield-Gabrieli & Nieto-Castanon, 2012). Nuclear imag-

ing/mRNA expression data retrieval and spatial correlation analyses: JuSpace (1.3) (Dukart et al., 

2021), neuromaps (0.0.2) (Markello et al., 2022), JuSpyce (0.0.1) (Lotter & Dukart, 2022), brainS-

MASH (0.11.0) (Burt et al., 2020), abagen (0.1.3) (Markello et al., 2021), ABAnnotate (0.1.0) 

(Lotter et al., 2022). Visualizations: Nilearn, Matplotlib (3.4.3) (Hunter, 2007), seaborn (0.11.2) 

(Waskom, 2021), surfplot (0.1.0) (Gale et al., 2021; Vos de Wael et al., 2020), GO-Figure! (1.0.1) 

(Reijnders & Waterhouse, 2021), pyvis (0.2.1), WordCloud (1.8.1). Furthermore: scipy (1.8.1) (Vir-

tanen et al., 2020), statsmodels (0.13.1), numpy (1.22.3), pandas (1.4.2).  

We provide all code and data necessary to reproduce our results in a GitHub repository 

(https://github.com/LeonDLotter/MAsync). Raw Human Connectome Project neuroimaging data 

(Van Essen et al., 2013) are openly accessible otherwise (https://db.humanconnectome.org). All 

code can be found in an annotated Jupyter notebook, available in the repository and in HTML 

format (https://leondlotter.github.io/MAsync/MAsync_analyses.html). 

2.2. Ethics 

All analyses conducted and reported here rely on third-party data that were acquired in 

accordance with the respective institute’s ethical guidelines. The ethics committee of the RWTH 

Aachen University, Germany approved the use of these data (EK 188/22). 

2.3. Literature search and data extraction 

Currently published fMRI and fNIRS hyperscanning experiments were identified in a two-

step semi-automated literature search (Gerloff, Lotter, et al., 2022). Methodologically, we focused 

on fMRI and fNIRS, as both methods rely on the hemodynamic signal, provide a relatively high 

spatial resolution (as compared to EEG), and together form the currently largest body of hyperscan-

ning literature (Nam et al., 2020; Czeszumski et al., 2020). In the following, we will use the terms 

publication to refer to original studies and experiment to refer to sets of data obtained from inde-

pendent study subjects which can cover data from multiple publications (Tables S1 and S2). 
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2.3.1. Literature search process 

An initial semi-structured literature search relying on PubMed, Web of Science, and Scopus 

and a manual screening of Google Scholar citation lists were performed in spring 2021 and updated 

through PubMed alerts during the following months. The final search was conducted on December 

12, 2021, through open-access APIs of PubMed, Scopus, arXiv, bioRxiv, and medRxiv using 

SetYouFree (https://github.com/ChristianGerloff/set-you-free) followed by forward- and back-

ward-citation searches of the resulting records in the OpenCitations database (Peroni & Shotton, 

2020) (excluding records without abstracts). The results of both literature searches, together with 

references from a related review (Nam et al., 2020), were imported into Cadima (https://www.ca-

dima.info/) for manual screening, eligibility assessment, and a final inclusion decision following 

PRISMA 2020 guidelines (Page et al., 2021). First, titles and abstracts were screened by one of 

five independent reviewers (LDL, LB, AN, JK, and CG) followed by a full text assessment by two 

of four reviewers unaware of each other’s inclusion/exclusion decisions (LDL, LB, AN, and JK).  

2.3.2. Study inclusion and data extraction 

We searched for (i) fMRI or fNIRS hyperscanning or pseudohyperscanning publications as-

sessing (ii) temporal synchrony at (iii) whole-brain (fMRI) or channelwise (fNIRS) levels between 

(iv) hemodynamic brain signals of (v) healthy adults (18–65 years) engaging in (vi) uni- or bidi-

rectional interactions (Supplement 1.1.1–3). While pseudohyperscanning, in which typically one 

subject is scanned after another in response to pre-recorded stimuli of the first person (Babiloni et 

al., 2007; Schoot et al., 2016), allow for a more precise control of the experimental stimuli, it may 

not fully capture potential neurobiological representations unique to real-life reciprocal social in-

teractions. However, we included both hyperscanning and pseudohyperscanning studies, as the 

latter may still shine light on certain aspects of social interaction in the sense that the unidirectional 

communicative aspect of, e.g., a subject listening to a speaker in a two-person communicative set-

ting can be seen as a subaspect of an actual bidirectional social interaction. 

Brain coordinates or group-level imaging data depicting INS-related foci were extracted from 

the included experiments (Supplement 1.1.4–6), requested from the authors, or, in case of multiple 

fNIRS studies, derived by reconstructing reported probe setups (see below). We were interested in 

analyses contrasting INS during interpersonal interaction with rest, control, or randomization con-

ditions, independent of the type of interaction, as we aimed to identify the common neural substrate 

of INS (e.g., if a study contrasted INS during cooperation, competition, and control conditions, we 

included the combined result as cooperation/competition > control). We additionally included 

studies that reported only more specific contrasts (e.g., INS after feedback > INS prior to feedback) 
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and evaluated, in post-hoc assessments, how the inclusion of these studies influenced the meta-

analytic results (only relevant for fNIRS studies). Methodologically, we included studies independ-

ent of the connectivity estimator (i.e., timeseries correlation or prediction, wavelet coherence) if 

the method captured temporal synchrony. If studies investigated the effect of temporally shifting 

subject timeseries, we aimed to include only results reflecting zero-lag relationships to increase 

homogeneity. Therefore, the broad concept of “significant INS” studied here can be summarized 

as similarity in the temporal variation of brain-derived blood oxygenation-dependent signals meas-

ured in humans during interpersonal interaction relative to non-interaction conditions. 

2.4. Spatial meta-analysis of fMRI experiments 

We used activation likelihood estimation (ALE) to identify consistent spatial correlates of 

INS. Briefly, ALE provides brain-wide convergence maps combining the experiment-level activa-

tion maps modelled from the reported INS foci by convolving each focus with a sample-size de-

pendent Gaussian kernel (Eickhoff et al., 2012; Turkeltaub et al., 2002, 2012). A nonparametric 

permutation procedure then distinguishes true convergence of INS foci from random spatial pat-

terns (5,000 permutations) (Eickhoff et al., 2012, 2016).  

2.4.1. ALE 

All coordinate based meta-analyses were performed using the Neuroimaging Meta-Analysis 

Research Environment (NiMARE; https://github.com/neurostuff/NiMARE). All contrasts and co-

ordinates derived from the same sample (experiment) were concatenated. For each experiment, an 

activation map in 2-mm isotropic Montreal Neurological Institute (MNI)-152 space (Fonov et al., 

2011) was estimated by convolving each focus with a Gaussian kernel. The width of the kernel, at 

half of the maximum of the height of the Gaussian, was determined based on the sample sizes of 

each experiment (Eickhoff et al., 2012; Turkeltaub et al., 2002, 2012). If foci from the same exper-

iment overlapped, only the maximum voxelwise values were retained (Eickhoff et al., 2012). The 

union of these experiment-level data constituted the meta-analytic convergence map. Voxelwise 

statistical significance was determined based on an empirically derived null distribution (Eickhoff 

et al., 2012), a primary threshold of 𝑝 < .001 was used to form clusters (extended by a threshold 

of 𝑝 < .01 to increase sensitivity for weak effects) (Eklund et al., 2016), and a null distribution of 

cluster masses (5,000 iterations) was generated by randomly drawing coordinates from a gray mat-

ter template. By comparison of the actual cluster masses to the null distribution of cluster masses, 

each cluster was assigned a familywise error (FWE)-corrected p value and significant clusters were 

retained by thresholding the cluster map at −𝑙𝑜𝑔!"(𝑝) > ~1.3. We relied on comparisons of 
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cluster masses (the sum of voxel values) to estimate significance, as this has previously been shown 

to be more powerful than cluster inference based on size (the number of voxels) (H. Zhang et al., 

2009). All subsequent analyses relied either on cluster-level FWE-corrected and binarized ALE 

clusters (depicting brain regions of significant spatial convergence of INS) or on the unthresholded 

Z-maps generated from ALE-derived voxel-level p values (reflecting the continuous probability of 

observing INS for every voxel). 

2.4.2. Influence of individual experiments and risk of publication bias 

To estimate experimentwise influences on the overall ALE result (Eickhoff et al., 2016), we 

iteratively calculated the contribution of experiment x as 1 − ∑ "#	%&'()*+	,-.	/0&'*(	1")23')	4
∑ "#	%&'()*+	,-.	/0&'*( . Noting that 

this approach is not exact due to the nonlinear ALE union computation, from a practical perspec-

tive, it is sufficient to approximate contributions and identify the exaggerated influence of individ-

ual experiments (Eickhoff et al., 2016). We then calculated the spatial conjunction of all resulting 

thresholded and binarized maps (Nichols et al., 2005) to demonstrate which clusters persisted in 

each iteration. 

Clusterwise robustness against publication bias was estimated as the fail-safe-N (Acar et al., 

2018). For each cluster, noise experiments in which the foci did not contribute to the cluster were 

generated. We then estimated the minimum number of noise experiments needed to render the 

cluster insignificant, reflecting the number of negative studies that could have “remained in the file 

drawer” (Supplement 1.2). 

2.5. Spatial meta-analysis of fNIRS experiments 

As, to date, the fNIRS field is still limited with respect to methodological standardization and 

availability of specific meta-analytic techniques, we developed a meta-analytic fNIRS evaluation 

in accordance with the ALE approach. In brief, for each of 100 cortical brain parcels (Schaefer et 

al., 2018), we collected information on whether or not INS was observed in fNIRS channels sam-

pling the respective regions along with the overall number of subjects and experiments contributing 

to this information. We then calculated a parcelwise “fNIRS index” incorporating all available 

information for further evaluation and tested for parcelwise significance by randomizing channel-

parcel-assignments (1,000 permutations).  

2.5.1. Coordinate extraction and reconstruction  

Most fNIRS studies use probe arrays with standard formats positioned on the participant’s 

head according to coordinates within the international EEG positioning system. Commonly used 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.07.26.501562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501562
http://creativecommons.org/licenses/by/4.0/


 9 

methods to derive approximate locations on the brain surface are (i) registration using an anatom-

ical MRI scan of one or more subjects, (ii) registration after digitization of channel positions using 

a 3D digitizer or (iii) virtual registration based on a digital model of the optode array and a refer-

ence database (Tsuzuki et al., 2007; Tsuzuki & Dan, 2014). The full workflow we followed to 

extract fNIRS coordinates is outlined in Supplement 1.1.6. When possible, we included coordinates 

as reported or sent to us by the authors. When necessary, we obtained coordinates from a database 

(Tsuzuki et al., 2007), or from other studies conducted by the same research groups, or we recon-

structed the optode positions using AtlasViewer (Table S2). Experiments for which this workflow 

failed were excluded. 

2.5.2. FNIRS data analysis 

For fNIRS data, standardized results reporting systems are currently being developed (Yücel 

et al., 2021), and no specific meta-analytic analysis techniques are available. To approximate a 

meta-analytic evaluation of fNIRS INS findings, we used a 100-parcel volumetric cortical atlas 

(Schaefer et al., 2018) to summarize fNIRS data by region. We assigned the nearest atlas parcel to 

each fNIRS channel using a kd-tree (Virtanen et al., 2020). Then, for each parcel, we collected the 

overall number of channels, the number of channels showing INS, and the corresponding numbers 

of experiments and subjects contributing to that information. To compare the results between par-

cels, we used three indices calculated as  

(i) 𝑁#$%&$'$()&*	(,)&&-.#, 

(ii) 5("6#"7"%0#)	%20##*&(
5%3/*+*8	%20##*&(

× 𝑁(/&*0$12*$&%	#213-(*#, and 

(iii) 5("6#"7"%0#)	%20##*&(
5%3/*+*8	%20##*&(

× 𝑁(/&*0$12*$&%	-45-0$6-&*#. 

We focused on the second index as it incorporated all available fNIRS data. To identify regions 

with the highest probability of the observed indices not being due to chance, we then permuted the 

channel-parcel assignment (1,000 iterations), estimated exact one-sided p values for each parcel 

and each “fNIRS index”, and applied FDR correction across parcels per index. We preferred this 

ALE-like approach over effect size-based meta-analyses for each parcel (Czeszumski et al., 2022), 

as the latter would have severely limited eligible studies due to their methodological heterogeneity. 

The results were visualized on fsaverage surface templates after surface transformation (Markello 

et al., 2022; Wu et al., 2018). By using parcellation-level instead of voxel-level data, we aimed to 

approximate the spatial resolution of fNIRS data, taking into account the added spatial uncertainty 

due to post-hoc reconstruction of channel coordinates without detailed information on head shape, 

size, and probe positioning.  
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Second, we conducted a joint meta-analysis of all neuroimaging data by evaluating fNIRS 

foci along with fMRI foci by means of an ALE. To adapt fNIRS data to the ALE method, we kept 

the ALE kernel size to a constant 10-mm FWHM for all fNIRS experiments as the kernel’s sample 

size-FWHM function was developed for fMRI data. 

To further incorporate the spatial uncertainty of fNIRS data in our analyses, we iteratively 

(1,000 iterations) recalculated parcelwise and fNIRS-ALE meta-analyses after randomization of 

fNIRS coordinates (10 mm radius constrained to the cortical surface; Supplement 1.3).  

2.6. Meta-analytic coactivation and resting-state functional connectivity 

To establish the role of our meta-analytic findings in a whole-brain functional context, we 

constructed a co-activation network using meta-analytic connectivity modeling (MACM) (Eick-

hoff et al., 2011; Langner et al., 2014) on BrainMap data (Laird et al., 2011). As MACM does not 

provide information on interregional connection strength, we assessed resting-state functional con-

nectivity (RSFC) patterns within the MACM network (Whitfield-Gabrieli & Nieto-Castanon, 

2012).  

2.6.1. MACM 

We performed MACM by performing an ALE on all BrainMap experiments (Laird et al., 

2009, 2011) that had at least one activation focus within the robust rTPJ cluster (voxel-level 𝑝 <

.001). Only this cluster was used as the other INS-related ALE clusters proved unstable or, in the 

case of fNIRS analysis, did not survive multiple-comparison correction. Data were constrained to 

activations from normal mapping studies (i.e., those involving healthy control participants) and 

downloaded via Sleuth (3.0.4, https://brainmap.org/sleuth/). The resulting patterns resemble the 

network of task-related coactivation associated with the region of origin and are closely related to 

functional networks derived by RSFC analysis (Eickhoff et al., 2011). We relied on the BrainMap 

database as experiments and coordinates were manually screened by a dedicated team, promising 

greater precision and specificity of the resulting networks compared to automated data mining ap-

proaches.  

To identify the most specific regions coactivated with the INS cluster, we used a specific 

coactivation likelihood estimation (Langner et al., 2014) in a separate analysis constructing a 

MACM network controlled for the baseline activation rate of all included BrainMap studies (3,098 

experiments). 
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To validate the MACM results, and to assess whether the resulting activation patterns mir-

rored those of the original INS data, we computed the spatial correlation pattern between Z-maps 

derived from MACM and INS analyses after parcellation into 116 functionally defined whole-brain 

parcels [100 cortical (Schaefer et al., 2018) and 16 subcortical parcels (Tian et al., 2020)]. 

2.6.2. RSFC 

As MACM is not suited to quantify the connection strength between pairs of regions, we 

elucidated the functional connectivity patterns within the coactivation network using resting-state 

fMRI, thereby validating the presence of the network in single-subject data. For this, we relied on 

open access data from 120 Human Connectome Project subjects (50% female, 20 subjects per sex 

randomly drawn from each age group: 22–25, 26–30, and 31–35 years). The subject-level average 

timeseries of each MACM cluster was extracted and correlated using semipartial Pearson correla-

tions. The p values resulting from connectionwise one-sample t tests were thresholded at 𝑝 < .05 

(Bonferroni-corrected). Only positive connections were retained to exclude potential artifacts in-

troduced through noise regression (Murphy et al., 2009) (Supplement 1.4). 

2.7. Functional contextualization 

To explore the functional context of the observed activation patterns, we characterized rela-

tionships to established brain-wide resting-state networks (Yeo et al., 2011; Chen et al., 2018), 

determined associations between our INS-findings and biobehavioral domains in the Neurosynth 

database (Yarkoni et al., 2011) labeled with functional domain-related terms (Poldrack et al., 2012), 

and finally assessed relationships to meta-analytic networks underlying INS-associated constructs.  

2.7.1. Overlap with major resting-state networks 

To assess spatial relationships between the INS-data and seven established resting-state net-

works covering the cortex, striatum, and thalamus (Yeo et al., 2011; Choi et al., 2012; Yeo, 2020), 

we calculated the relative and absolute distributions of ALE-derived clusters and the MACM-net-

work within each of these reference networks (Chen et al., 2018). The relative distribution refers 

to the proportion of activated voxels within a reference network compared to all activated voxels, 

while the absolute distribution was calculated as the proportion of activated voxels compared to all 

voxels within a reference network. We evaluated the results using a permutation procedure (Sup-

plement 1.5). 
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2.7.2. Functional decoding and comparison to related meta-analytic brain networks 

To reach an objective, data-driven interpretation of functional domains associated with re-

gions found in our ALE analyses, we relied on the Neurosynth database (Yarkoni et al., 2011), the 

largest corpus of annotated neuroimaging data available to date (version 7; 14,371 studies). Studies 

in the database are mapped to topics generated by Latent Dirichlet Allocation (Poldrack et al., 

2012) based on the frequency of topic-associated terms in the study’s full text (default: at least 

every 1000th word annotated to the topic). We excluded 109 topics comprising mainly anatomical, 

disease-related, or too general terms (e.g., “resonance magnetic mechanisms”) from the 200-topic 

version of the database and applied two complementary functional decoding approaches. First, we 

decoded clusters resulting from ALE analyses based on reverse and forward inference (V. I. Müller 

et al., 2013) as implemented in NiMARE. For each topic and each cluster, all Neurosynth studies 

reporting at least one coordinate within the cluster were collected. The forward likelihood is the 

result of a binominal test examining whether the probability of topic-related activation in the clus-

ter, 𝑃(𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛|𝑇𝑜𝑝𝑖𝑐), is higher than the baseline probability of observing activation in the 

cluster, 𝑃(𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛). The reverse probability was derived from a chi-squared test assessing the 

probability of finding a particular topic given activation in the cluster, 𝑃(𝑇𝑜𝑝𝑖𝑐|𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛), 

which was derived using Bayes’ rule. Both resulting sets of p values were FDR-corrected and Z 

transformed. Second, we adopted the “Neurosynth” approach (https://neurosynth.org/decode/) 

based on whole-brain spatial correlations between a brain volume of interest and topic maps de-

rived from the spatial meta-analysis of all studies annotated to a topic. We calculated meta-analytic 

maps for each of 91 topics using the multilevel kernel density analysis chi-square algorithm imple-

mented in NiMARE (Wager et al., 2007) and calculated spatial Spearman correlations to the INS 

Z-map after parcellation as described above. By comparison of these correlation coefficients to null 

distributions derived from 10,000 spatial autocorrelation-corrected topic null maps (Burt et al., 

2020; Markello et al., 2022) using JuSpyce (https://github.com/LeonDLotter/JuSpyce), we esti-

mated empirical p values and applied FDR correction. 

To further confirm these associations, we then calculated the relative and absolute distribu-

tions of the INS-related cluster and network within meta-analytic networks of social interaction 

(Feng et al., 2021), ToM (Schurz et al., 2021), and predictive coding (Ficco et al., 2021) and with 

a previously published representation of the rTPJ in which it was parcellated into two subunits 

(Bzdok et al., 2013). Except for the predictive coding network, which we generated from coordi-

nates (ALE, voxel-level 𝑝 < .001, cluster-mass), volumetric data were obtained from the cited 

authors. 
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2.8. Biological contextualization 

We then explored the neurobiological mechanism of INS by conducting a series of whole-

brain spatial correlation analyses explicitly testing for positive associations, i.e., systems that 

showed their highest density in brain areas identified as subserving INS. Briefly, we first assessed 

relationships to neurotransmitter atlases quantified by spatial correlation analyses adjusted for 

spatial autocorrelation (Burt et al., 2020; Lotter & Dukart, 2022; Markello et al., 2022) and partial 

volume effects (Dukart & Bertolino, 2014). Second, we validated these analyses based on spatial 

associations with neuronal cell type distributions as obtained from human cell marker genes (Dar-

manis et al., 2015; Lake et al., 2016; D. Wang et al., 2018) using a neuroimaging-specific method 

for gene-category enrichment analysis (GCEA) (Subramanian et al., 2005) based on gene null-

ensembles (Fulcher et al., 2021; Lotter et al., 2022). To assess the extent to which these molecular 

and cell-level systems could explain INS, we used dominance analysis (Azen & Budescu, 2003), a 

method that quantifies the relative contributions of each predictor to the overall explained variance 

in a multivariate regression model. Further GCEAs were directed at INS-associated developmental 

gene expression patterns, relationships to psychopathology, and INS-related molecular processes. 

2.8.1. Sources and processing of nuclear imaging and gene expression atlases 

Invivo neurotransmitter atlases derived from nuclear imaging in various healthy adult cohorts 

(overall, 32 brain maps involving data from 1,360 subjects) were collected from JuSpace 

(https://github.com/juryxy/JuSpace) and neuromaps (https://github.com/netneurolab/neuromaps), 

parcellated into 116 brain regions, and Z-standardized atlaswise. Multiple atlases using the same 

tracers were combined by calculating the parcelwise mean weighted by the number of subjects 

contributing to each atlas (Hansen et al., 2022) forming 21 averaged atlases (Table S3). Parcelwise 

Allen Human Brain Atlas (ABA) mRNA expression data (https://portal.brain-map.org/) (Hawry-

lycz et al., 2012) were retrieved and processed with abagen (https://github.com/rmarkello/abagen/) 

using the default settings (Markello et al., 2021; Arnatkevic̆iūtė et al., 2019) (Supplement 1.6). 

2.8.2. Spatial associations with neurotransmitter systems 

To relate the brain-wide INS distribution to molecular brain systems, spatial correlations 

between the INS ALE-Z map and nuclear imaging-derived brain maps were calculated as partial 

Spearman correlations of parcellated whole-brain data using JuSpyce. As parametric p values 

resulting from these analyses suffer from exaggerated false positive rates due to inflated degrees 

of freedom and spatial autocorrelations, we assessed significance by comparisons of “true” 

correlations to the right tails of empirically estimated null distributions of correlation coefficients 
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derived from correlation with atlaswise null maps (5,000 iterations) (Burt et al., 2020; Lotter & 

Dukart, 2022; Markello et al., 2022). The resulting positive-sided empirical p values were FDR-

corrected. To control for partial volume effects, correlations were adjusted for parcel-wise grey 

matter estimates derived from the MNI-152 template (Dukart et al., 2021; Dukart & Bertolino, 

2014).  

In sensitivity analyses, significant associations were repeated while (i) using only subcortical 

parcels and (ii) adjusting for functional baseline activation rate. For the second approach, a map of 

baseline activation rate (meta-analytic map of 14,370 Neurosynth experiments) was additionally 

included in the partial correlation analyses. Finally, the observed association to GABAA receptors 

was replicated using ABA gene expression data (Supplement 1.7). 

Combined with the averaged neuronal cell type maps introduced below, we finally estimated 

the amount of INS variance explained by neurotransmitter and neuronal cell type distributions 

associated with INS using dominance analysis (Azen & Budescu, 2003) as implemented in JuSpyce 

(Supplement 1.8). 

2.8.3. GCEA 

GCEA was applied according to an approach specifically adopted for neuroimaging data 

(Fulcher et al., 2021). We adopted a previously published toolbox 

(https://github.com/benfulcher/GeneCategoryEnrichmentAnalysis/), originally designed for 

annotation of neuroimaging data to GO categories (Ashburner et al., 2000; The Gene Ontology 

Consortium et al., 2021), to perform GCEA on any given set of genes (ABAnnotate, 

https://github.com/LeonDLotter/ABAnnotate). First, a whole-brain volume (the INS ALE-Z map) 

and the complete ABA dataset (including mRNA expression data for 15,633 genes) were 

parcellated into 116 brain regions. Next, spatial autocorrelation-corrected null maps (5,000) were 

generated from the phenotypic data (Burt et al., 2018; Dukart et al., 2021). After matching category 

and ABA genes based on gene symbols, Spearman correlations between the phenotypic map, the 

null maps, and all mRNA expression maps were calculated. For each null map and each category, 

null category scores were obtained as the mean Z-transformed correlation coefficients. Positive-

sided p values, representing the association of the phenotypic map to each category, were calcu-

lated from comparisons of the “true” category scores with the null distribution and FDR-corrected. 

This approach has been shown to sufficiently control false positive rates potentially caused by 

spatial autocorrelation present in the phenotypic data and within-category coexpression in the ge-

netic data (Fulcher et al., 2021). 
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The following sets of gene-category annotations were used (Table S4): neuronal cell type 

markers (PsychENCODE) (Darmanis et al., 2015; Lake et al., 2016; D. Wang et al., 2018), genes 

associated with psychiatric disorders (DisGeNET) (Jiao et al., 2012), developmental regional gene 

enrichment (BrainSpan) (Miller et al., 2014; Grote et al., 2016), and GO biological processes (Ash-

burner et al., 2000; The Gene Ontology Consortium et al., 2021; Jiao et al., 2012). To aid 

interpretation, GO results were clustered as described in Supplement 1.9.  

3. Results 

3.1. Literature search and data extraction 

Searching for an extensive list of INS-related terms (Supplement 1.1.1), the initial literature 

search resulted in 2,575 unique records from which 79 publications were found eligible for meta-

analysis (Figure 2A for exclusion reasons). Finally, we included 14 hyperscanning fMRI publica-

tions (Bilek et al., 2015; Gordon et al., 2021; Koike et al., 2016; Koike, Sumiya, et al., 2019; Koike, 

Tanabe, et al., 2019; Miyata et al., 2021; Saito et al., 2010; Salazar et al., 2021; Shaw et al., 2018, 

2020; Spiegelhalder et al., 2014; Špiláková et al., 2020; L.-S. Wang et al., 2022; Xie et al., 2020; 

Yoshioka et al., 2021), 8 pseudohyperscanning fMRI publications (Anders et al., 2011; Dikker et 

al., 2014; Kostorz et al., 2020; Liu et al., 2021, 2022; Silbert et al., 2014; Smirnov et al., 2019; 

Stephens et al., 2010), 54 hyperscanning fNIRS publications, and 3 pseudohyperscanning fNIRS 

publications [Figure 2B (interactive version available online), see Tables S1 and S2 for detailed 

information and fNIRS references]. INS foci coordinates were extracted from the above publica-

tions, requested from the authors, drawn from a virtual registration database (Tsuzuki et al., 2007), 

or derived from manual reconstruction of fNIRS probe setups (Aasted et al., 2015). Detailed infor-

mation is provided in the methods, Figure 2, Supplement 1.1, Tables S1 and S2, and Figures S1 

and S2. 

After taking data-reuse into account (Tables S1 and S2), 22 fMRI and 69 fNIRS experiments 

reporting 297 and 228 brain foci derived from data of 740 and 3,721 unique subjects were included. 

Task domains of these experiments varied widely, targeting communication, joint attention/action, 

cooperation/competition, learning, imitation, reward, and decision-making.  
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Figure 2: Structured literature search 

A: Flow chart depicting the literature search process in line with the PRISMA 2020 statement. SetYouFree was used 
for the automatic literature search, duplicate detection and the cross-reference search. The resulting records, together 
with results from other sources, were submitted to Cadima to manually identify eligible studies. Note that the exclusion 
criteria listed in Reports excluded were not mutually exclusive. Records are entries in the publication lists resulting 
from the main search and screened on the abstract level, reports are publications screened in full, studies are included 
publications, and experiments are sets of data derived from independent study samples and can cover data from 
multiple studies. B: Citation network generated from OpenCitations data, including overview figures of reported INS 
foci and fNIRS probe setups. An interactive version with metadata for each individual study is available at 
https://leondlotter.github.io/MAsync/citenet. Note that the OpenCitations database only contains citations and 
references made openly accessible by the publishers and thus does likely not include all existing links among 
publications.  
Abbreviations: fMRI = functional magnetic resonance imaging, fNIRS = functional near-infrared spectroscopy, y = 
years, INS = interpersonal neural synchronization. 

3.2. Spatial meta-analysis of fMRI and fNIRS INS experiments 

To identify brain areas consistently associated with INS, we performed separate spatial meta-

analyses on INS brain coordinates reported in eligible fMRI and fNIRS experiments. For fMRI 

data, we relied on the well-established ALE method, while for fNIRS experiments, we developed 

a meta-analytic procedure comparable to the ALE approach. 

3.2.1. Robust spatial convergence of INS revealed by fMRI hyperscanning studies  

The ALE INS map revealed a mainly cortical distribution focused on right-sided parieto-

temporal-insular brain areas. After applying standard voxel-level thresholding (𝑝 < .001, uncor-

rected), two clusters with significant spatial convergence emerged in the rTPJ and right STG. Then, 

after applying a more liberal threshold (𝑝 < .01) (Eklund et al., 2016), we observed increased 
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cluster sizes and an additional cluster in the right insula (Figure 3A, Table S5). Sensitivity analyses 

confirmed robust spatial convergence of INS in the rTPJ by showing that the cluster (i) remained 

after excluding pseudohyperscanning experiments (Figure S3A, Table S5), (ii) was stable against 

the exclusion of single experiments using a jackknife approach (12 of 22 experiments contributed 

relevantly to the cluster with a maximum contribution of 16%; Supplement 2.1.1; Table S1, Figure 

3A), and (iii) was robust against the potential influence of publication bias (Acar et al., 2018) (fail-

safe-N of 66; Supplement 2.1.2). The right STG and insular clusters did not prove stable in these 

analyses. 

3.2.2. Spatial convergence of INS revealed by fNIRS hyperscanning studies  

Meta-analytic evaluation of fNIRS data revealed four significant parcels covering the right 

inferior temporal gyrus (4/19 INS channels/total channels, 𝑛 = 1,339 subjects, 𝑝 = .017), left 

inferior frontal gyrus (IFG; 11/56, 𝑛 = 2,205, 𝑝 = .020) and superior parietal gyrus (3/5, 𝑛 =

154, 𝑝 = .047), as well as right STG that overlapped with the fMRI-derived rTPJ cluster 

(5/35, 𝑛 = 2,145, 𝑝 = .048; Figures 3B and S5A, Table S5). None of the derived exact p values 

survived false discovery rate (FDR) correction. An exploratory ALE analysis, including combined 

INS coordinates from 22 fMRI and 60 fNIRS experiments, resulted in four significant clusters 

covering the rTPJ, left anteroventral superior frontal gyrus, and right middle and superior frontal 

gyri (Figure 3B, Table S5). The fNIRS studies contributed to both the prefrontal clusters and the 

rTPJ cluster (Tables S1 and S2). Evaluation of alternative indices derived from fNIRS data further 

pointed to bilateral prefrontal and left temporoparietal brain regions (Supplement 2.2.1, Figure S5A 

and B, Table S6). Sensitivity analyses, accounting for bias in study selection and spatial uncertainty 

of fNIRS data, demonstrated generally comparable patterns. However, concerning the fNIRS-only 

meta-analysis, the left superior frontal cluster showed the highest stability, while, in the combined 

fNIRS-fMRI meta-analysis, left superior frontal and rTPJ were the most stable locations (Supple-

ment 2.2.2–3, Tables S1, S2, and S5, Figure S5).  

Summarizing, in line with prior findings and models of INS, we identified the rTPJ as a 

robust and task domain-independent hub region of INS supported by both fMRI and fNIRS data. 

FNIRS meta-analysis additionally indicated involvement of the left inferior PFC in INS.  

3.3. INS-related neuronal connectivity and biobehavioral association patterns  

To establish the functional context of the identified INS hub region within large-scale brain 

networks and biobehavioral domains, we conducted a set of brain- and task-functional association 
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analyses capitalizing on different open neuroimaging databases (Figure 1). First, a MACM network 

of brain regions likely to co-activate with the rTPJ hub was constructed from the BrainMap data-

base (Laird et al., 2011) and RSFC patterns within this network were evaluated (Van Essen et al., 

2013; Whitfield-Gabrieli & Nieto-Castanon, 2012). To then explore the functional context of the 

observed activation patterns and aid interpretation, we characterized relationships to established 

brain-wide resting-state networks (Yeo et al., 2011; Chen et al., 2018), biobehavioral domains in 

the Neurosynth database (Yarkoni et al., 2011), and previously published meta-analytic networks 

of INS-associated constructs, i.e., social interaction (Feng et al., 2021), empathy and ToM (Schurz 

et al., 2021), and predictive coding (Ficco et al., 2021). Finally, we assessed how the rTPJ cluster 

related to a parcellation of the rTPJ (Bzdok et al., 2013).  

3.3.1. Task-based coactivation and resting-state connectivity networks 

148 BrainMap studies reported at least one activation focus within the rTPJ cluster. The meta-

analytic coactivation network involved primarily bilateral frontotemporal cortical regions, with the 

largest clusters placed on bilateral TPJs, insulae and dorsolateral PFCs, supplementary motor areas, 

and thalami (Figure 3C, Table S5). Within this network, RSFC was strongest between temporopa-

rietal clusters, while subcortical regions showed functional connections primarily to insulae but not 

to the TPJ hub regions (Figure 3D). An additional analysis controlling for baseline activation prob-

ability also indicated the TPJs as unique hub regions of the observed INS-related network (Supple-

ment 2.3.1, Figure S3B). Comparing whole-brain patterns of INS-ALE maps and MACM maps, 

bilateral TPJs, insulae, and dorsal PFCs showed the highest activation likelihood in both maps, 

indicating a possible role of the MACM network in INS beyond the rTPJ activation (Supplement 

2.3.2, Figure S3C). In line with interregional connectivity patterns, the rTPJ cluster and the 

associated coactivation network showed the strongest spatial associations to the default mode and 

attention resting-state networks (Supplement 2.4, Figure 3E). 

3.3.2. Functional decoding of INS-related networks 

We observed significant associations between the rTPJ and topics related to ToM, action, 

observation, and social interaction. On the whole-brain level, the strongest associations were found 

with topics related to attention and sensory domains (Figure 3F, Table S7). In line with that, INS-

associated activation showed a general alignment with (affective) ToM and social interaction 

networks, and relatively greater overlap with the posterior rTPJ subunit, which itself had previously 

been related to ToM and social cognition (Bzdok et al., 2013). While the predictive coding network 

did not include the rTPJ, it strongly resembled the INS-related MACM network (Figure S4).  
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In summary, spatial associations analyses embedded meta-analytic INS results in the context 

of large-scale brain networks mainly related to attentional, sensory, and mentalizing processes. 

While the TPJs again emerged as hub regions, we cannot exclude the possibility that INS may also 

be present in the extended INS-related network involving mainly the insulae, PFCs, and potentially 

thalami. 

 

Figure 3: Brain-functional INS correlates resulting from fMRI and fNIRS meta-analyses 

with their neuronal connectivity and neurobehavioral association patterns  

A: Results of the main fMRI INS meta-analysis. Upper: Unthresholded Z-map derived from ALE p values. 
Middle/lower: Significant INS clusters after thresholding using voxel-level thresholds of either 𝑝 < .001 or 𝑝 < .01. 
Black overlays: Spatial conjunctions of all maps derived from jackknife-analyses. B: Upper: Parcelwise fNIRS INS 
results. Colors: Number of “INS channels” relative to all channels sampled in the region, multiplied by the total number 
of subjects involved in the contributing experiments. Red outlines: Parcels showing 𝑝 < .05 estimated in the 
permutation test. Lower: Results of a preliminary ALE analysis of the combined fMRI and fNIRS data. Black outlines: 
Significant parcels estimated in the fNIRS-only analysis. C: Meta-analytic coactivation network using the rTPJ INS 
cluster as a seed (black contour). D: Functional resting-state connectivity between MACM clusters. Colors: Semipartial 
Pearson correlation coefficients between clusters. Asterisks: Positive functional connections significant after 
Bonferroni correction (𝑝 < .05). E: Relationships of the rTPJ cluster and MACM network to major resting-state 
networks. Relative: Proportion of “INS-voxels” within a given network vs. all “INS-voxels”. Absolute: Proportion of 
“INS-voxels” within a given network vs. all voxels within the network. Bold print: 𝑝 < .05. *: 𝑞 < .05. F: Functional 
decoding of INS-related activation using Neurosynth topics. Three alternative approaches are presented: x-axis: Z-
transformed, FDR-corrected p values derived from decoding of the rTPJ cluster using reverse inference, 
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P(Topic|Activation); y-axis: similar but with forward likelihood, P(Activation|Topic) > P(Activation). Point sizes and 
colors: Nonparametric p values according to Spearman correlations between whole-brain INS distribution and meta-
analytic topic maps (*: 𝑞 < .05). Dashed lines: Alpha level of 𝑞 < .05. All FDR-corrected significant topics are 
annotated. 
Abbreviations: fMRI = functional magnetic resonance imaging, fNIRS = functional near-infrared spectroscopy, INS 
= interpersonal neural synchronization, ALE = activation likelihood estimation, MACM = meta-analytic connectivity 
modeling, RSFC = resting-state functional connectivity, r/lTPJ = right/left temporoparietal junction, rSTG = right 
superior temporal gyrus, rIns = right insula, r/lPFCIns = right/left prefrontal cortex-insula, SMA = supplementary 
motor area, r/lTh = right/left thalamus, r/lIPL = right/left inferior parietal lobule, lPrec = left precuneus, DAN/VAN = 
dorsal/ventral attention network, SMN = somatomotor network, VN = visual network, DMN = default mode network, 
FPN = frontoparietal network, LN = limbic network. 

3.4. Relationships of INS with neurophysiological brain systems 

To extend our meta-analytic approach from the macroscale level of brain regions to meso- 

and microscale neurophysiological functions, and thereby identify biological processes potentially 

underlying INS, we conducted a series of whole-brain spatial association analyses. We first 

assessed relationships between INS and  neurotransmitter systems by spatial correlations with 

neurotransmitter atlases (Dukart et al., 2021; Markello et al., 2022; Hawrylycz et al., 2012). Using 

GCEA, we identify INS-related neuronal cell types (Darmanis et al., 2015; Lake et al., 2016; D. 

Wang et al., 2018), tested for potential gene-mediated associations between INS and 

psychopathology (Piñero et al., 2020), quantified the regional enrichment of INS-related genes 

across neurodevelopment (Miller et al., 2014; Grote et al., 2016), and identified INS-related 

molecular processes (Ashburner et al., 2000; Fulcher et al., 2021; The Gene Ontology Consortium 

et al., 2021). 

3.4.1. Spatial associations with neurotransmitter systems and neuronal cell types 

We observed significant positive spatial associations between INS and the distributions of 

GABAergic (GABAA) and glutamatergic (mGluR5) receptors as well as between INS and synaptic 

density (SV2a). Without FDR-correction, INS was further associated with serotonergic (5-HT2A) 

and cholinergic components (M1; Figures 4A and S6). The remaining neurotransmitter atlases were 

not significantly associated (Figure S6, Table S8). Furthermore, GCEA indicated significant 

associations with a specific excitatory neuron class, Ex3 (𝑍 = .36, 𝑝 < .001, 𝑞 < .001), and two 

classes of inhibitory neurons, In5 (𝑍 = .12, 𝑝 < .001, 𝑞 = .012) and In6 (𝑍 = .19, 𝑝 = .001, 𝑞 =

.032; Figures 4B, Table S9). In the original publication that identified the applied cell markers 

(Lake et al., 2016), Ex3 was enriched in visual brain areas and cortical layer IV, and classified as 

granule neuron. In5 and In6 were widely distributed, concentrated in layers II/III (In5) and IV/V 

(In6), and the latter was identified as the parvalbumin-expressing interneuron subclass. Dominance 

analysis including all FDR-corrected significant nuclear imaging and cell type maps indicated an 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.07.26.501562doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501562
http://creativecommons.org/licenses/by/4.0/


 21 

overall explained variance of 31.4% with the strongest relative contributions by Ex3 (26.2%), 

followed by GABAA (19.8%) and mGluR5 (18.5%; Figure S8). 

Further sensitivity analyses targeting neurotransmitter associations showed (i) that additional 

adjustment for functional baseline activation rate generally led to a slight increase in effect sizes 

(Table S8), (ii) that only the associations with GABAA and SV2a remained significant after 

exclusion of subcortical parcels to estimate effects of a potential cortical-subcortical density 

gradient in the neurotransmitter data (Table S8), and (iii) that the GABAA-association was 

replicated in mRNA expression data (Figure S7, Table S8). The latter pointed to a relationship 

between INS and genes coding for the α1-GABAA receptor subunit and parvalbumin (Supplement 

2.5.1). 

3.4.2. Spatial associations with developmental gene expression, genetic disease markers, and 

molecular processes 

Significant developmental gene enrichment was found in 29 categories that revealed a gene 

expression pattern that was pronounced in adult cortical sensory brain areas but was detectable 

from the postnatal stage (Figure 4C, Table S9). Of note, we found no significant enrichment 

prenatally, or in subcortical areas. Furthermore, INS was strongly related to genes previously 

associated with neurodevelopmental disorders and secondary with affective disorders (9/16 and 

5/16 unique significant categories, respectively; Figure 4D, Table S9). Finally, semantic clustering 

analyses (Reijnders & Waterhouse, 2021) based on 474 GO categories spatially associated with 

the INS distribution (Table S9) indicated processes related to neuron and general cell development, 

and neuronal signal transmission (Table S10, Figure S8).  

Concluding, our results pointed towards a neurophysiological basis of INS consisting of 

major inhibitory and excitatory neuronal systems involved in sensory processing. In line with that, 

INS-related genes (i) were most expressed in cortical sensory brain areas starting in postnatal brain 

development and (ii) have previously been related to primarily neurodevelopmental disorders. 
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Figure 4: Spatial associations of INS to neurotransmitter receptor and synaptic density 

distributions, as well as genetic markers of neuronal cell types, brain development and 

psychiatric disorders 

A: Correlation of the whole-brain INS Z-map (x-axis) with in vivo nuclear imaging-derived neurotransmitter receptor 
and synaptic density (SV2a) distributions. Statistics: Partial Spearman correlations between INS and nuclear imaging 
maps adjusted for local grey matter volume with exact p values estimated via nonparametric permutation-corrected for 
spatial autocorrelation. Points: Value pairs associated representing 116 whole-brain parcels. Point size and color: p 
values derived from the fNIRS INS meta-analysis as shown in the upper panel of Figure 2B. The two yellow and the 
rightmost points correspond to the significant fNIRS atlas parcels. White points: Parcels not included in the fNIRS 
analysis. Lines: Linear regression lines with 95% confidence intervals. B, C, and D: Spatial associations of INS to 
postmortem mRNA expression distributions estimated by GCEA. Bar plots: Associations of INS with neuronal cell 
type markers (B) and disease markers (D). Bars: Average Z-transformed Spearman correlation coefficient of all genes 
annotated to a category. Bar color: Uncorrected p values. For cell types (B), all categories are shown, and those 
significant at FDR-corrected 𝑝 < .05 are highlighted. For disease markers (D), only significant categories are shown. 
Brackets: Categories comprising exactly the same genes. C: INS-related regional developmental gene enrichment 
across five developmental stages (y-axis) and 16 brain regions (x-axis). Point size: Average r-to-Z transformed 
correlation coefficient. Point color: Uncorrected p values. Rectangles: Categories significant after FDR correction.  
Abbreviations: INS = interpersonal neural synchrony, ALE = activation likelihood estimation, OFC = orbital frontal 
cortex, MFC = anterior (rostral) cingulate (medial prefrontal) cortex, DFC = dorsolateral prefrontal cortex, VFC = 
ventrolateral prefrontal cortex, M1C = primary motor cortex, S1C = primary somatosensory cortex, STC = posterior 
(caudal) superior temporal cortex, ITC = inferolateral temporal cortex, IPC = posteroventral (inferior) parietal cortex, 
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A1C = primary auditory cortex, V1C = primary visual cortex, HIP = hippocampus, MD = mediodorsal nucleus of 
thalamus, STR = striatum, AMY = amygdaloid complex, CBC = cerebellar cortex, GCEA = gene category enrichment 
analysis.  

4. Discussion 

In recent years, synchronization of brain activities between interacting partners has been 

acknowledged as a central mechanism by which we foster successful social relationships as well 

as a potential factor involved in the pathogenesis of diverse neuropsychiatric disorders. Based on 

the results generated by our multimodal data fusion approach (see Figure 5), we hypothesized that 

human INS is tightly linked to social attentional processing, subserved by the rTPJ as a sensory-

integration hub at the brain system level, and potentially facilitated by GABA-mediated E/I balance 

at the neurophysiological level. 

 

Figure 5: Summary of results and hypotheses 
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Abbreviations: INS = interpersonal neural synchronization, DAN/VAN = dorsal/ventral attention network, DMN = 
default mode network, ToM = theory of mind network, TPJ = temporoparietal junction, IFG = inferior frontal gyrus, 
dm/vmPFC = dorsomedial/ventromedial prefrontal cortex, AI = anterior insula, PMC = premotor cortex, IPL = inferior 
parietal lobule, OFC = orbitofrontal cortex, VS = ventral striatum, OXT = oxytocin, E/I = excitation/inhibition balance. 

4.1. Brain functional systems facilitating INS 

Our results confirmed the central role of the rTPJ and of the left IFG in the facilitation of 

INS. Both regions have been proposed as central hubs of the mutual social attention system, 

thought to allow for “coupling” between interacting partners (Gvirts & Perlmutter, 2020), and the 

observation-execution/alignment subunit of the social alignment system (Shamay-Tsoory et al., 

2019). On the whole-brain level, the connection to the alignment system was further supported by 

our data indicating a clear association of INS to biobehavioral domains, such as “motion”, “action”, 

“observation”, “imitation”, and “attention”. On the brain regional level, we also demonstrated links 

between the rTPJ and its functional connected network with the brain’s attention networks. Here, 

attention might generally enhance the processing of relevant information, regulate the overall cor-

tical responsiveness (Lakatos et al., 2008), and more specifically increase the computational weight 

of prediction error units via synaptic gain enhancement (Kok et al., 2012). Both, the rTPJ as well 

as the associated network, were further linked to the default mode network as well as networks 

associated with ToM and social interaction and showed strong associations with ToM-related terms 

(e.g., "mind”, “social”, and “interaction”). Consistent with the previously reported twofold func-

tional specialization of the rTPJ (Bzdok et al., 2013), our findings highlight the link between inter-

personal synchronization and both alignment of behavior (Shamay-Tsoory et al., 2019) as well as 

alignment of mental states (i.e., ToM) (Gallotti et al., 2017). Thus, our ALE findings are largely in 

line with the assumptions of the mutual prediction theory suggesting that on the brain network 

level, INS might reflect the sum of brain activity involved in encoding self-behavior (e.g., right-

sided anterior insula) (Seth et al., 2012), other’s behavior and mental state (e.g., rTPJ) and dynamic 

interpersonal alignment (e.g., left IFG). 

While the most robust effect was found in the rTPJ, the left IFG became evident as an addi-

tional region of convergence when findings from fNIRS hyperscanning experiments were included. 

The IFG might be involved in both simple mirroring of behavior and brain activities (Hasson & 

Frith, 2016) and facilitating dynamic interpersonal alignment, e.g., by containing motor represen-

tations of actions (Shamay-Tsoory, 2021; Shamay-Tsoory et al., 2019). While all three components 

of the social alignment system have been proposed to be involved in INS (Shamay-Tsoory et al., 

2019), we found evidence only for INS in the alignment subsystem but not in the misalignment-

detection and reward sub-systems. Although these latter systems might also be involved in social 
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alignment processes (Shamay-Tsoory et al., 2019), our finding could indicate that they might not 

necessarily exhibit synchronized neural activity. The question of whether systems underlying mis-

alignment detection and experienced reward mainly form and motivate biobehavioral synchrony 

or actually become activated simultaneously in interacting individuals will have to be addressed in 

future research.  

Given our approach of searching for the common spatial correlate of INS across a wide range 

of study types, tasks, analysis protocols, and social interaction settings, two aspects deserve further 

consideration. On the one hand, based on our results, we cannot draw conclusions about situation-

specific spatial INS patterns that might occur bound to specific interaction settings. On the other 

hand, the identified brain regions might be considered core regions of INS that simultaneously 

activate in interacting humans independent of the specific interaction context. Reiterating the afore-

mentioned connection to attentional processing and the social alignment system, and referring to 

the following discussion on potential neurophysiological mechanisms, we hypothesize that a core 

component of social interaction must be a system that supports the reciprocal alignment of attention 

and sensory processing between interacting people. INS in the core brain areas supporting these 

cognitive functions might represent this mutual alignment process, thus representing the correlate 

of successful interpersonal communication. 

4.2. Comparing fMRI and fNIRS approaches to measuring INS 

Given the currently available data and the meta-analytic methods applied, our study is not 

suited to rule out the possibility that INS is present in a larger network but was not detected in these 

other areas. Relatedly, we also found no evidence for prefrontal INS based on fMRI hyperscanning 

data alone. Comparing specific confounds affecting the comparison between fNIRS and fMRI data, 

we noted that the fNIRS data had only limited cortex coverage and prefrontal regions were rela-

tively oversampled. Furthermore, fNIRS data shows higher spatial uncertainty resulting mainly 

from variations in head shape, virtual registration methods, and post-hoc reconstruction of probe 

coordinates (Aasted et al., 2015; Cooper et al., 2012; Tsuzuki et al., 2007; Tsuzuki & Dan, 2014) 

and lower image quality due to limited methodological standardization (Tachtsidis & Scholkmann, 

2016). On the other hand, upright body posture has been shown to affect body physiology, brain 

activation, and cognitive performance, potentially increasing the ecological validity of fNIRS to 

capture neurophysiological processes underlying social interactions (Thibault & Raz, 2016). In 

addition to several methodological differences inherent to fMRI and fNIRS (Czeszumski et al., 

2020), variation may also stem from differing experimental designs and settings. First, 
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experimental designs allowed generally only for limited face-to-face contact in both modalities, 

however only fNIRS experiments could establish real-life interactional settings. Second, while both 

hyperscanning techniques covered a similarly broad spectrum of task domains with communication 

tasks being most prevalent, a bias was found toward more joint attention tasks for fMRI experi-

ments and toward cooperation/competition conditions for fNIRS experiments. Keeping in mind 

these limitations but considering that our fNIRS hyperscanning dataset far exceeds its fMRI pen-

dant in terms of sample size (3,721 versus 740 subjects), the prefrontal activation observed in 

fNIRS data might indeed arise from interpersonal collaboration paradigms (Czeszumski et al., 

2022) which should be tested in future fMRI hyperscanning research.  

4.3. Future pathways for the hyperscanning research field 

We identified several pathways that can be built upon in the future. Methodologically, it 

seems mandatory for the field to move toward standardized and reproducible data acquisition, task 

protocols, and analysis pipelines (Yücel et al., 2021). Dissecting the definition of interpersonal 

synchronization both in a methodological and in a conceptual sense (Schirmer et al., 2021) will 

help us delineate the brain regional and behavioral domain-dependent nuances of INS. To (i) ensure 

that the phenomenon of INS goes beyond the representation of shared sensory environments, (ii) 

delineate the interaction between behavioral interpersonal synchronization and INS, and (iii) facil-

itate effective interpretation and formulation of predictions for future research, carefully designed 

experiments, including multimodal (behavior, body, and brain) data collection and integrative data 

analysis within a neurocognitive framework, constitute necessary steps for the future (Hamilton, 

2021). As the current state of the fMRI hyperscanning field did not allow us to conduct meta-

analyses that differentiate task domains or examine the influence of, e.g., sex, gender, and age, the 

impact of these factors on INS will have to be clarified in future meta-analyses. Most studies in-

cluded here focused on temporal synchrony between homologous brain regions or on the univariate 

coherence between one region and multiple other regions. Analogous to the development of “tra-

ditional” fMRI research, moving toward network-based analyses in which functionally connected 

networks are tracked across subjects (Gerloff, Konrad, et al., 2022) will elucidate the role of the 

rTPJ and its functional connections between individuals. Furthermore, while the current meta-anal-

ysis of fNIRS data was focused on spatial information, our openly accessible dataset could easily 

be extended to include statistical information, thus enabling regional effect size-based meta-anal-

yses (Czeszumski et al., 2022). 
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4.4. GABA-mediated E/I balance as a potential mechanism underlying INS 

To generate hypotheses on the neurophysiological processes underlying INS, we developed 

and applied state of the art data fusion methods drawing robust spatial associations between whole-

brain INS patterns and potentially underlying cellular, molecular, and genetic systems (Hansen et 

al., 2022; Dukart et al., 2021; Markello et al., 2022; Fulcher et al., 2021; Lotter et al., 2022; Lotter 

& Dukart, 2022). We note, however, that our inferences are based on spatial correlation analyses 

involving heterogeneous data obtained from often relatively small samples and, thus, must be 

treated cautiously. These analyses, by no means, provide a reliable basis for causal claims and 

cannot replace nuclear imaging methods, brain stimulation protocols, pharmacological investiga-

tions, or histological approaches. We nevertheless consider these analyses to be sufficient to pro-

vide a basis for future hypothesis-driven research based on the currently available hyperscanning 

data. 

We found converging evidence for an association of spatial INS patterns with GABAA re-

ceptors and layer IV/V interneuron density, suggestive of (“fast-spiking”) parvalbumin-expressing 

interneurons. These interneurons constitute the largest group of cortical inhibitory neurons (Trem-

blay et al., 2016), contribute to feedback and feedforward inhibition, and are critically involved in 

the generation of network oscillations (Hu et al., 2014). In accordance with the association between 

INS and attention systems, GABAergic neurotransmission has previously been linked to general 

attentional processing and to visual attentional selectivity in particular (Lockhofen & Mulert, 

2021). Furthermore, parvalbumin-expressing interneurons, along with layer V pyramidal cells, 

have been shown to express 5-HT2A receptors which we also found spatially related to INS (An-

drade & Weber, 2010). Together with Ex3 (“granule”) excitatory neurons, which explained the 

largest amount of spatial INS information in the present study and were also located in cortical 

layer IV (Lake et al., 2016), these INS-associated neuron classes may form thalamocortical feed-

forward inhibition circuits (Tremblay et al., 2016) between thalamocortical afferents (Sherman & 

Guillery, 2002), GABAergic interneurons, and pyramidal cells which have crucial roles in encod-

ing spatial and temporal sensory information (Gabernet et al., 2005; Tremblay et al., 2016). Relat-

edly, layer IV neurons have previously been linked to computations of prediction errors (Bastos et 

al., 2012). Finally, in line with the potential relevance of thalamocortical neuronal circuits, the INS-

associated meta-analytic network involved the bilateral thalami as the sole subcortical structures.  

Here, we could not confirm the involvement of oxytocin and dopamine in neurobiobehavioral 

synchrony that was hypothesized previously (Feldman, 2017; Gvirts & Perlmutter, 2020; Mu et al., 

2016). In contrast, we consider our findings to be more in line with the hypothesis that INS relies 
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on neurobiological mechanisms similar to those previously reported for within-brain synchroniza-

tion processes: GABA-mediated E/I balance (Sears & Hewett, 2021). Given links between GA-

BAergic interneurons and local gamma oscillations (Gonzalez-Burgos & Lewis, 2008) as well as 

between local oscillations, GABA concentration, and long-range functional connectivity (Stagg et 

al., 2014; Rajkumar et al., 2021), we hypothesize that INS might be maintained by GABA-regu-

lated signal transmission that relies on thalamocortical pathways transferring sensory information 

obtained during social interaction to an INS-associated cortical network centered in the rTPJ. Im-

portantly, while we focused on blood oxygenation signals, electrophysiological studies also local-

ized the source of gamma power synchronization in the TPJ (Hoehl et al., 2021; Kinreich et al., 

2017). Of note, indirect involvement of oxytocin might be plausible given that both oxytocin and 

GABA signaling may mediate E/I balance in the contexts of social interaction and brain develop-

ment (Lopatina et al., 2018), that GABAA receptors might have oxytocin binding sites (Gough, 

2015), and that oxytocin regulates GABAA neurosteroid binding and expression patterns (Kaneko 

et al., 2016; Koksma et al., 2003). 

The indirect nature of our evidence for INS mediation by GABAergic signaling and E/I bal-

ance requires thorough confirmation or falsification with experimental data. Future electrophysio-

logical, and especially magnetoencephalography-based (Watanabe et al., 2022) hyperscanning ex-

periments could investigate the role of E/I balance in the development of INS. GABAergic involve-

ment as well as regulatory mechanisms could be tested using pharmacological challenges with safe 

oxytocin-regulating or GABA-regulating agents or multibrain stimulation protocols to show causal 

roles in the regulation and maintenance of human INS. 

4.5. Associations to neurodevelopment and neurodevelopmental disorders 

We demonstrated that genes which’s spatial expression pattern aligned with the INS 

distribution were expressed particularly in cortical sensory brain areas starting at the postnatal 

stage. The GABAergic system undergoes significant changes in early postnatal development, 

switching from excitatory to inhibitory action, thus establishing E/I balance (Lopatina et al., 2018), 

enabling intrapersonal cortical synchronization (Warm et al., 2022) and potentially also INS. If the 

observed developmental gene expression pattern reflects the development of this 

neurophysiological system, it might indicate long-lasting plasticity in this system; however, it is 

also compatible with ideas about neurobiological instantiation through early postnatal infant-care-

giver interactions (Feldman, 2017).  
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We observed gene-mediated spatial associations of INS with psychopathology, i.e., primarily 

with disordered language development, general neurodevelopment, and schizophrenia spectrum 

disorders and, secondarily, with affective disorders. Indeed, both developmental and affective dis-

orders have been suggested as disorders of social interaction (Schilbach, 2016; Kruppa et al., 2021) 

and a prior study reported reduced INS during interaction between people with and without autism 

spectrum disorder (Tanabe et al., 2012). Moreover, autism and schizophrenia spectra have repeat-

edly been linked to disrupted GABA signaling and E/I balance (Gonzalez-Burgos & Lewis, 2008; 

Tang et al., 2021; Lopatina et al., 2018) as well as thalamotemporal functional and structural 

dysconnectivity (Ameis & Catani, 2015; Woodward et al., 2017), and GABAergic agents have 

been shown to affect both clinical presentation and brain E/I balance in patients with autism (L. 

Zhang et al., 2020). Our findings provide further evidence for a pathophysiological role of (dis-

rupted) INS in these disorders, with relevance for both the identification of social biomarkers and 

the development of neurobiologically based treatment strategies.  

4.6. A multilevel model of human INS 

Taken together, our findings suggest a model of human INS bridging multiple levels of or-

ganization from social interaction to molecular processes (Figure 5). Interindividual synchrony in 

humans, as in many group-living species, amplifies social rapport and affective bonds and arises 

both intentionally and spontaneously (Hoehl et al., 2021). Our actions broadcast our behaviors 

through the environment, i.e., by motion, touch, gesture, mimics, speech, or sounds. Our brain’s 

sensory systems, subserved by neuronal attention networks, rhythmically sample information from 

the environment and can detect these actions. Synchronizing the actions of one individual with the 

perceptions of another and vice versa might then lead to interpersonal synchronization of brain 

oscillations (Hasson & Frith, 2016). From these sensory inputs, we not only observe and predict 

the actions of our interaction partner but also infer mental states. The rTPJ may serve as the brain’s 

hub for processing attention information and integrating this information into a broader context, 

communicating with brain networks relevant for controlling selective attention, reactive action, 

inference of mental states, and affective responses (Downar et al., 2000; Bzdok et al., 2013). Neu-

rophysiologically, these interpersonally synchronized oscillations may, within each brain, arise 

from GABA-mediated E/I balance, receiving sensory input from thalamic afferences. In an attempt 

to incorporate prior hypotheses on the involvement of oxytocin and dopamine or social reward 

processes (Feldman, 2017; Gvirts & Perlmutter, 2020; Shamay-Tsoory et al., 2019), one might 

now speculate that these aspects could act as influencing factors on the rTPJ, functionally 
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associated brain networks, or GABA-mediated neuronal oscillations, without directly partaking in 

INS (Lopatina et al., 2018; Mu et al., 2016). Relatedly, dysregulation of this multilevel represen-

tation of INS might be involved in the pathophysiology of neurodevelopmental disorders (Ameis 

& Catani, 2015; Gonzalez-Burgos & Lewis, 2008; Lopatina et al., 2018; Tang et al., 2021; Wood-

ward et al., 2017). If further validated and fully understood, our findings may lay the foundation of 

a neurobiologically based concept of “typical” INS, with relevance for the study of human social 

development, communication, and interpersonal learning processes. Understanding how INS 

works will also help us understand how its mechanisms fail, which might have critical implications 

for how we view and treat disordered social interaction on both individual levels and societal levels. 

Closing and taking a general perspective, our methodological approach demonstrated the 

value of multimodal association analyses not only for psychiatric research but also to advance cur-

rent models of cognition in typically developing populations. We designed this study with reuse of 

our resources in mind to provide a path for similar future endeavors.  
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