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1. Introduction

Synchronization with the environment is a key mechanism that facilitates adaptation to var-
ying environmental conditions in most living organisms, potentially providing an evolutionary ad-
vantage (Xue et al., 2019). In humans, adaptation to other people is a central survival mechanism
and has been linked to interpersonal synchronization that occurs at multiple biobehavioral levels
during human social interaction (Gordon et al., 2021; Harel et al., 2011; Mogan et al., 2017; V.
Miiller et al., 2013; Reindl et al., 2022). Interpersonal synchronization involves coordination of
behavioral, physiological, or hormonal activities between people and may represent adaptive ca-
pacities that allow humans to access another's internal arousal state (Mizugaki et al., 2015), share
and regulate emotions, increase social affiliation, empathy, and prosocial commitment (Mogan et
al., 2017), facilitate learning (Pan et al., 2021), and adapt to collective behaviors and group norms
(Wiltermuth & Heath, 2009; Reinero et al., 2021). Revealing the neurobiology underlying inter-
personal synchronization will improve our understanding of the fundamental mechanisms by which
humans adapt to and engage with others. Knowledge on how these mechanisms work and how they
fail has broad implications for educational sciences and developmental and social neurosciences
on the one hand, and for intra- and intergroup conflict studies and psychiatric health care on the
other.

Interpersonal synchronization has been extended to the neural activity of interacting individ-
uals, often referred to as interpersonal neural synchronization (INS) (Jiang et al., 2015), interbrain
synchrony, or brain-to-brain synchrony (Mu et al., 2016; Dikker et al., 2014). In a single brain,
rhythmic oscillations of neurons may lead to neuronal signal coherence through synchronization
of excitatory states, thereby enabling neuronal information transfer and interaction (Fries, 2005).
Local neuronal oscillations have been linked to excitation-inhibition (E/I) balance, regulated by
GABAergic and glutamatergic neuron populations (Gonzalez-Burgos & Lewis, 2008; Sears &
Hewett, 2021), which may also be a driving factor for long-range synchronization (Stagg et al.,
2014). Electrophysiologically, within-brain synchronization may be driven by excitatory cortico-
cortical connections (Uhlhaas & Singer, 2006), together with subcortical structures, in particular
the thalamus (Llinds & Steriade, 2006). Across brains, in analogy to the oscillations of individual
neurons, our brains and their sensory systems may also rhythmically sample information from the
environment. Information transfer is then not enabled via direct physical contact but indirectly
through actions arising from an individual’s motor system (e.g., speech, sounds, gestures, or eye

contact). These actions are transmitted through the environment and sampled by an interaction
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partner’s sensory system. In each individual in a dyad or group, rhythmical neuronal oscilla-

tions may then synchronize (Hasson & Frith, 2016).

By simultaneous brain recordings from two or more subjects, termed hyperscanning (Mon-
tague et al., 2002), it is now possible to quantify the temporal and spatial similarities of brain signals
while the individuals engage in interpersonal interaction. Alternatively, one subject can be scanned
after another in response to prerecorded stimuli of the first person, often termed pseudohyperscan-
ning (Babiloni & Astolfi, 2014; Schoot et al., 2016). Methodologically, human hyperscanning ex-
periments have been performed over the full spectrum of noninvasive electrical and hemodynamic
brain imaging techniques, with electroencephalography (EEG), functional near-infrared spectros-
copy (fNIRS), and functional magnetic resonance imaging (fMRI) being the most widely used
(Babiloni & Astolfi, 2014; Czeszumski et al., 2020).

Previous human hyperscanning studies identified a variety of brain regions that contribute to
INS, including the medial prefrontal cortex (PFC), anterior cingulate (Babiloni et al., 2007; Yun et
al., 2012), superior temporal gyrus (STG) and right temporoparietal junction (rTPJ) (Stolk et al.,
2014; Bilek et al., 2015; Kinreich et al., 2017), and insular cortex (Koike, Tanabe, et al., 2019).
The first meta-analytic evaluation of 13 fNIRS hyperscanning studies involving interpersonal co-
operation confirmed INS in the PFC and TPJ (Czeszumski et al., 2022). The observed brain region
patterns suggest connections to brain networks known to be associated with mentalization (Schurz
et al., 2021; Bilek et al., 2015), social cognition and interaction (Feng et al., 2021), predictive cod-
ing (Ficco et al., 2021; Shamay-Tsoory et al., 2019), and mirroring (Rizzolatti & Craighero, 2004;
Schippers et al., 2010). These patterns indicate that INS involves complex cognitive processes,
including theory of mind (ToM), mental modeling, prediction, emulation, and simulation of behav-

ioral and affective states.

Developmentally, INS might be rooted early in human life, with synchronous caregiver-in-
fant interactions being critical for establishing affiliative bonds (Feldman, 2017) and impacting
long-term developmental outcomes (Atzil & Gendron, 2017). In the brain, on both cognitive and
functional levels, INS has been embedded in a predictive coding framework (social alignment sys-
tem), mediated by a three-component feedback loop consisting of an observation-execution/align-
ment, an error-monitoring, and a reward system thought to be activated by and to reinforce suc-
cessful alignment (Shamay-Tsoory et al., 2019). As postulated in the mutual prediction theory,
coherent patterns of brain activity in two interacting partners might result from the sum of neural
activities from co-localized neurons (i) encoding self-behavior as well as (ii) encoding predictions

of the partner’s behavior (Hamilton, 2021; Kingsbury et al., 2019). On the neurophysiological
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level, the connectivity between two brains or among multiple brains may be shaped by social con-
tact in analogy to the Hebbian rule for synaptic connectivity (“fire together, wire together”) (Sha-
may-Tsoory, 2021). Here, the cortical activity of one subject engaged in a certain behavior would
translate into the cortical activity of an interacting subject, with the repetition of this social inter-
action reshaping interbrain functional connectivity not only in dyads but potentially in entire social
groups (Ramakrishnan et al., 2015). On the neurochemical level, oxytocin and dopamine have been
discussed as the key neurotransmitter systems involved (Feldman, 2017; Gvirts & Perlmutter,
2020; Mu et al., 2016) given their pivotal roles in social functions (MacDonald & MacDonald,
2010), reward processing (Glimcher, 2011), and reciprocal interactions between the two systems
in the mesolimbic tract (Baskerville & Douglas, 2010). Related to the social alignment system
(Shamay-Tsoory et al., 2019), these mesolimbic neurotransmitter systems may regulate a mutual
social attention system located in the PFC and TPJ, possibly enabling selective attention in social

interactions through reward-related feedback mechanisms (Gvirts & Perlmutter, 2020).

The rapidly evolving hyperscanning research field and our inherent fascination with human
social abilities and inabilities led to a steadily growing number of theoretical accounts attempting
to explain the phenomenon of INS. However, robust evidence to ground these theories on is still
lacking and many of the proposed frameworks have yet to be tested empirically. In particular,
attempts to develop models moving beyond brain region correlates have been limited by the una-
vailability of empirical data. Given that social cognition, oxytocin signaling, and E/I balance are
considered to be connected on neurophysiological levels (Lopatina et al., 2018), the extent to which
these mechanisms underlying within-brain synchronization are involved in INS also remains to be

explored.

The current study aimed to identify a common neural substrate and formulate new testable
hypotheses regarding the neurophysiological mechanisms of INS. To achieve this goal, we used
multimodal data fusion techniques as powerful tools to integrate data from imaging, genetic, and
behavioral levels. Through integrative meta-analytic techniques, data fusion approaches, and null
model-based hypothesis tests (Figure 1), we confirm robust spatial convergence of INS in the rTPJ
as well as an involvement of the ventral PFC, and provide first evidence for an important and

previously unacknowledged role of GABAergic neurotransmission and E/I balance in human INS.
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2. Materials and Methods

First, to identify a common brain regional correlate of INS, we collected the currently
available fMRI and fNIRS hyperscanning data through an inclusive literature search and submitted
it to spatial meta-analyses. Second, based on these brain correlates of INS, we assessed INS-related
functional brain networks and biobehavioral association patterns on both brain regional and whole
brain levels. Third, extending our results to a molecular level, we explored how the whole-brain
INS distribution aligned with neurotransmitter systems and how spatially related gene expression
patterns connected INS to specific neuronal cell types, brain development, and psychopathology

(Figure 1).
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Figure 1: The multimodal data fusion approach to explore the neurobiology of human INS

The figure outlines the multimodal data fusion workflow applied in the present study. Depicted are data sources and
major analysis steps applied to generate multilevel knowledge and new hypotheses about the neurobiological basis of
INS.

Abbreviations: INS = interpersonal neural synchrony, fMRI = functional magnetic resonance imaging, fNIRS =
functional near-infrared spectroscopy, GCEA = gene-category enrichment analysis.
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2.1. Software, code, and data availability

The analyses were conducted in Python (3.8.8) and Matlab (R2021a) environments. The fol-
lowing software and packages were used: Literature search: SetYouFree (0.0.1) (Gerloff, Lotter, et
al., 2022), Cadima (Kohl et al., 2018). Neuroimaging meta-analysis and image manipulation:
NiMARE (0.0.12rc7) (Salo et al., 2018), Nilearn (0.9.1) (Abraham et al., 2014), AtlasReader (0.1.2)
(Notter et al., 2019). FNIRS probe reconstruction: AtlasViewer (2.12.12) (Aasted et al., 2015).
FMRI data processing: CONN (20b) (Whitfield-Gabrieli & Nieto-Castanon, 2012). Nuclear imag-
ing/mRNA expression data retrieval and spatial correlation analyses: JuSpace (1.3) (Dukart et al.,
2021), neuromaps (0.0.2) (Markello et al., 2022), JuSpyce (0.0.1) (Lotter & Dukart, 2022), brainS-
MASH (0.11.0) (Burt et al., 2020), abagen (0.1.3) (Markello et al., 2021), ABAnnotate (0.1.0)
(Lotter et al., 2022). Visualizations: Nilearn, Matplotlib (3.4.3) (Hunter, 2007), seaborn (0.11.2)
(Waskom, 2021), surfplot (0.1.0) (Gale et al., 2021; Vos de Wael et al., 2020), GO-Figure! (1.0.1)
(Reijnders & Waterhouse, 2021), pyvis (0.2.1), WordCloud (1.8.1). Furthermore: scipy (1.8.1) (Vir-
tanen et al., 2020), statsmodels (0.13.1), numpy (1.22.3), pandas (1.4.2).

We provide all code and data necessary to reproduce our results in a GitHub repository

(https://github.com/LeonDLotter/MAsync). Raw Human Connectome Project neuroimaging data

(Van Essen et al., 2013) are openly accessible otherwise (https://db.humanconnectome.org). All

code can be found in an annotated Jupyter notebook, available in the repository and in HTML

format (https://leondlotter.github.io/MAsync/MAsync_analyses.html).

2.2. Ethics

All analyses conducted and reported here rely on third-party data that were acquired in
accordance with the respective institute’s ethical guidelines. The ethics committee of the RWTH

Aachen University, Germany approved the use of these data (EK 188/22).

2.3. Literature search and data extraction

Currently published fMRI and fNIRS hyperscanning experiments were identified in a two-
step semi-automated literature search (Gerloff, Lotter, et al., 2022). Methodologically, we focused
on fMRI and fNIRS, as both methods rely on the hemodynamic signal, provide a relatively high
spatial resolution (as compared to EEG), and together form the currently largest body of hyperscan-
ning literature (Nam et al., 2020; Czeszumski et al., 2020). In the following, we will use the terms
publication to refer to original studies and experiment to refer to sets of data obtained from inde-

pendent study subjects which can cover data from multiple publications (Tables S1 and S2).
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2.3.1. Literature search process

An initial semi-structured literature search relying on PubMed, Web of Science, and Scopus
and a manual screening of Google Scholar citation lists were performed in spring 2021 and updated
through PubMed alerts during the following months. The final search was conducted on December
12, 2021, through open-access APIs of PubMed, Scopus, arXiv, bioRxiv, and medRxiv using
SetYouFree (https://github.com/ChristianGerloff/set-you-free) followed by forward- and back-

ward-citation searches of the resulting records in the OpenCitations database (Peroni & Shotton,
2020) (excluding records without abstracts). The results of both literature searches, together with

references from a related review (Nam et al., 2020), were imported into Cadima (https://www.ca-

dima.info/) for manual screening, eligibility assessment, and a final inclusion decision following
PRISMA 2020 guidelines (Page et al., 2021). First, titles and abstracts were screened by one of
five independent reviewers (LDL, LB, AN, JK, and CG) followed by a full text assessment by two

of four reviewers unaware of each other’s inclusion/exclusion decisions (LDL, LB, AN, and JK).

2.3.2. Study inclusion and data extraction

We searched for (i) fMRI or fNIRS hyperscanning or pseudohyperscanning publications as-
sessing (ii) temporal synchrony at (iii) whole-brain (fMRI) or channelwise (fNIRS) levels between
(iv) hemodynamic brain signals of (v) healthy adults (18—65 years) engaging in (vi) uni- or bidi-
rectional interactions (Supplement 1.1.1-3). While pseudohyperscanning, in which typically one
subject is scanned after another in response to pre-recorded stimuli of the first person (Babiloni et
al., 2007; Schoot et al., 2016), allow for a more precise control of the experimental stimuli, it may
not fully capture potential neurobiological representations unique to real-life reciprocal social in-
teractions. However, we included both hyperscanning and pseudohyperscanning studies, as the
latter may still shine light on certain aspects of social interaction in the sense that the unidirectional
communicative aspect of, e.g., a subject listening to a speaker in a two-person communicative set-

ting can be seen as a subaspect of an actual bidirectional social interaction.

Brain coordinates or group-level imaging data depicting INS-related foci were extracted from
the included experiments (Supplement 1.1.4-6), requested from the authors, or, in case of multiple
fNIRS studies, derived by reconstructing reported probe setups (see below). We were interested in
analyses contrasting INS during interpersonal interaction with rest, control, or randomization con-
ditions, independent of the type of interaction, as we aimed to identify the common neural substrate
of INS (e.g., if a study contrasted INS during cooperation, competition, and control conditions, we
included the combined result as cooperation/competition > control). We additionally included

studies that reported only more specific contrasts (e.g., INS after feedback > INS prior to feedback)


https://doi.org/10.1101/2022.07.26.501562
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.26.501562; this version posted December 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

and evaluated, in post-hoc assessments, how the inclusion of these studies influenced the meta-
analytic results (only relevant for fNIRS studies). Methodologically, we included studies independ-
ent of the connectivity estimator (i.e., timeseries correlation or prediction, wavelet coherence) if
the method captured temporal synchrony. If studies investigated the effect of temporally shifting
subject timeseries, we aimed to include only results reflecting zero-lag relationships to increase
homogeneity. Therefore, the broad concept of “significant INS” studied here can be summarized
as similarity in the temporal variation of brain-derived blood oxygenation-dependent signals meas-

ured in humans during interpersonal interaction relative to non-interaction conditions.

2.4. Spatial meta-analysis of fMRI experiments

We used activation likelihood estimation (ALE) to identify consistent spatial correlates of
INS. Briefly, ALE provides brain-wide convergence maps combining the experiment-level activa-
tion maps modelled from the reported INS foci by convolving each focus with a sample-size de-
pendent Gaussian kernel (Eickhoff et al., 2012; Turkeltaub et al., 2002, 2012). A nonparametric
permutation procedure then distinguishes true convergence of INS foci from random spatial pat-

terns (5,000 permutations) (Eickhoff et al., 2012, 2016).

24.1. ALE

All coordinate based meta-analyses were performed using the Neuroimaging Meta-Analysis

Research Environment (NiMARE; https://github.com/neurostuff/NiIMARE). All contrasts and co-

ordinates derived from the same sample (experiment) were concatenated. For each experiment, an
activation map in 2-mm isotropic Montreal Neurological Institute (MNI)-152 space (Fonov et al.,
2011) was estimated by convolving each focus with a Gaussian kernel. The width of the kernel, at
half of the maximum of the height of the Gaussian, was determined based on the sample sizes of
each experiment (Eickhoff et al., 2012; Turkeltaub et al., 2002, 2012). If foci from the same exper-
iment overlapped, only the maximum voxelwise values were retained (Eickhoff et al., 2012). The
union of these experiment-level data constituted the meta-analytic convergence map. Voxelwise
statistical significance was determined based on an empirically derived null distribution (Eickhoff
et al., 2012), a primary threshold of p < .001 was used to form clusters (extended by a threshold
of p < .01 to increase sensitivity for weak effects) (Eklund et al., 2016), and a null distribution of
cluster masses (5,000 iterations) was generated by randomly drawing coordinates from a gray mat-
ter template. By comparison of the actual cluster masses to the null distribution of cluster masses,
each cluster was assigned a familywise error (FWE)-corrected p value and significant clusters were

retained by thresholding the cluster map at —log,,(p) > ~1.3. We relied on comparisons of
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cluster masses (the sum of voxel values) to estimate significance, as this has previously been shown
to be more powerful than cluster inference based on size (the number of voxels) (H. Zhang et al.,
2009). All subsequent analyses relied either on cluster-level FWE-corrected and binarized ALE
clusters (depicting brain regions of significant spatial convergence of INS) or on the unthresholded
Z-maps generated from ALE-derived voxel-level p values (reflecting the continuous probability of

observing INS for every voxel).

2.4.2. Influence of individual experiments and risk of publication bias

To estimate experimentwise influences on the overall ALE result (Eickhoff et al., 2016), we

__ Yincluster ALE values without x :
Y in cluster ALE values : NOtll’lg that

iteratively calculated the contribution of experiment x as 1

this approach is not exact due to the nonlinear ALE union computation, from a practical perspec-
tive, it is sufficient to approximate contributions and identify the exaggerated influence of individ-
ual experiments (Eickhoff et al., 2016). We then calculated the spatial conjunction of all resulting
thresholded and binarized maps (Nichols et al., 2005) to demonstrate which clusters persisted in
each iteration.

Clusterwise robustness against publication bias was estimated as the fail-safe-N (Acar et al.,
2018). For each cluster, noise experiments in which the foci did not contribute to the cluster were
generated. We then estimated the minimum number of noise experiments needed to render the
cluster insignificant, reflecting the number of negative studies that could have “remained in the file

drawer” (Supplement 1.2).

2.5.  Spatial meta-analysis of fNIRS experiments

As, to date, the fNIRS field is still limited with respect to methodological standardization and
availability of specific meta-analytic techniques, we developed a meta-analytic fNIRS evaluation
in accordance with the ALE approach. In brief, for each of 100 cortical brain parcels (Schaefer et
al., 2018), we collected information on whether or not INS was observed in fNIRS channels sam-
pling the respective regions along with the overall number of subjects and experiments contributing
to this information. We then calculated a parcelwise “fNIRS index” incorporating all available
information for further evaluation and tested for parcelwise significance by randomizing channel-

parcel-assignments (1,000 permutations).

2.5.1. Coordinate extraction and reconstruction

Most fNIRS studies use probe arrays with standard formats positioned on the participant’s

head according to coordinates within the international EEG positioning system. Commonly used
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methods to derive approximate locations on the brain surface are (i) registration using an anatom-
ical MRI scan of one or more subjects, (ii) registration after digitization of channel positions using
a 3D digitizer or (iii) virtual registration based on a digital model of the optode array and a refer-
ence database (Tsuzuki et al., 2007; Tsuzuki & Dan, 2014). The full workflow we followed to
extract fNIRS coordinates is outlined in Supplement 1.1.6. When possible, we included coordinates
as reported or sent to us by the authors. When necessary, we obtained coordinates from a database
(Tsuzuki et al., 2007), or from other studies conducted by the same research groups, or we recon-
structed the optode positions using AtlasViewer (Table S2). Experiments for which this workflow

failed were excluded.

2.5.2. FNIRS data analysis

For fNIRS data, standardized results reporting systems are currently being developed (Yiicel
et al., 2021), and no specific meta-analytic analysis techniques are available. To approximate a
meta-analytic evaluation of fNIRS INS findings, we used a 100-parcel volumetric cortical atlas
(Schaefer et al., 2018) to summarize fNIRS data by region. We assigned the nearest atlas parcel to
each fNIRS channel using a kd-tree (Virtanen et al., 2020). Then, for each parcel, we collected the
overall number of channels, the number of channels showing INS, and the corresponding numbers
of experiments and subjects contributing to that information. To compare the results between par-

cels, we used three indices calculated as

(1) Nsignificant channels»
s Nsignificant channels
(11) N X Ncontributing subjects» and

covered channels

o Ngignifi
significant channels . . .
(111) N X Ncontrlbutlng experiments:-
covered channels

We focused on the second index as it incorporated all available fNIRS data. To identify regions
with the highest probability of the observed indices not being due to chance, we then permuted the
channel-parcel assignment (1,000 iterations), estimated exact one-sided p values for each parcel
and each “fNIRS index”, and applied FDR correction across parcels per index. We preferred this
ALE-like approach over effect size-based meta-analyses for each parcel (Czeszumski et al., 2022),
as the latter would have severely limited eligible studies due to their methodological heterogeneity.
The results were visualized on fsaverage surface templates after surface transformation (Markello
et al., 2022; Wu et al., 2018). By using parcellation-level instead of voxel-level data, we aimed to
approximate the spatial resolution of fNIRS data, taking into account the added spatial uncertainty
due to post-hoc reconstruction of channel coordinates without detailed information on head shape,

size, and probe positioning.
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Second, we conducted a joint meta-analysis of all neuroimaging data by evaluating fNIRS
foci along with fMRI foci by means of an ALE. To adapt fNIRS data to the ALE method, we kept
the ALE kernel size to a constant 10-mm FWHM for all fNIRS experiments as the kernel’s sample
size-FWHM function was developed for fMRI data.

To further incorporate the spatial uncertainty of fNIRS data in our analyses, we iteratively
(1,000 iterations) recalculated parcelwise and fNIRS-ALE meta-analyses after randomization of

fNIRS coordinates (10 mm radius constrained to the cortical surface; Supplement 1.3).

2.6. Meta-analytic coactivation and resting-state functional connectivity

To establish the role of our meta-analytic findings in a whole-brain functional context, we
constructed a co-activation network using meta-analytic connectivity modeling (MACM) (Eick-
hoff et al., 2011; Langner et al., 2014) on BrainMap data (Laird et al., 2011). As MACM does not
provide information on interregional connection strength, we assessed resting-state functional con-
nectivity (RSFC) patterns within the MACM network (Whitfield-Gabrieli & Nieto-Castanon,
2012).

2.6.1. MACM

We performed MACM by performing an ALE on all BrainMap experiments (Laird et al.,
2009, 2011) that had at least one activation focus within the robust rTPJ cluster (voxel-level p <
.001). Only this cluster was used as the other INS-related ALE clusters proved unstable or, in the
case of fNIRS analysis, did not survive multiple-comparison correction. Data were constrained to
activations from normal mapping studies (i.e., those involving healthy control participants) and

downloaded via Sleuth (3.0.4, https://brainmap.org/sleuth/). The resulting patterns resemble the

network of task-related coactivation associated with the region of origin and are closely related to
functional networks derived by RSFC analysis (Eickhoff et al., 2011). We relied on the BrainMap
database as experiments and coordinates were manually screened by a dedicated team, promising
greater precision and specificity of the resulting networks compared to automated data mining ap-
proaches.

To identify the most specific regions coactivated with the INS cluster, we used a specific
coactivation likelihood estimation (Langner et al., 2014) in a separate analysis constructing a
MACM network controlled for the baseline activation rate of all included BrainMap studies (3,098

experiments).


https://doi.org/10.1101/2022.07.26.501562
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.26.501562; this version posted December 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license. 11

To validate the MACM results, and to assess whether the resulting activation patterns mir-
rored those of the original INS data, we computed the spatial correlation pattern between Z-maps
derived from MACM and INS analyses after parcellation into 116 functionally defined whole-brain
parcels [100 cortical (Schaefer et al., 2018) and 16 subcortical parcels (Tian et al., 2020)].

2.6.2. RSFC

As MACM is not suited to quantify the connection strength between pairs of regions, we
elucidated the functional connectivity patterns within the coactivation network using resting-state
fMRI, thereby validating the presence of the network in single-subject data. For this, we relied on
open access data from 120 Human Connectome Project subjects (50% female, 20 subjects per sex
randomly drawn from each age group: 22-25, 26-30, and 31-35 years). The subject-level average
timeseries of each MACM cluster was extracted and correlated using semipartial Pearson correla-
tions. The p values resulting from connectionwise one-sample t tests were thresholded at p < .05
(Bonferroni-corrected). Only positive connections were retained to exclude potential artifacts in-

troduced through noise regression (Murphy et al., 2009) (Supplement 1.4).

2.7. Functional contextualization

To explore the functional context of the observed activation patterns, we characterized rela-
tionships to established brain-wide resting-state networks (Yeo et al., 2011; Chen et al., 2018),
determined associations between our INS-findings and biobehavioral domains in the Neurosynth
database (Yarkoni et al., 2011) labeled with functional domain-related terms (Poldrack et al., 2012),

and finally assessed relationships to meta-analytic networks underlying INS-associated constructs.

2.7.1. Overlap with major resting-state networks

To assess spatial relationships between the INS-data and seven established resting-state net-
works covering the cortex, striatum, and thalamus (Yeo et al., 2011; Choi et al., 2012; Yeo, 2020),
we calculated the relative and absolute distributions of ALE-derived clusters and the MACM-net-
work within each of these reference networks (Chen et al., 2018). The relative distribution refers
to the proportion of activated voxels within a reference network compared to all activated voxels,
while the absolute distribution was calculated as the proportion of activated voxels compared to all
voxels within a reference network. We evaluated the results using a permutation procedure (Sup-

plement 1.5).
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2.7.2. Functional decoding and comparison to related meta-analytic brain networks

To reach an objective, data-driven interpretation of functional domains associated with re-
gions found in our ALE analyses, we relied on the Neurosynth database (Yarkoni et al., 2011), the
largest corpus of annotated neuroimaging data available to date (version 7; 14,371 studies). Studies
in the database are mapped to fopics generated by Latent Dirichlet Allocation (Poldrack et al.,
2012) based on the frequency of topic-associated terms in the study’s full text (default: at least
every 1000™" word annotated to the topic). We excluded 109 topics comprising mainly anatomical,
disease-related, or too general terms (e.g., “resonance magnetic mechanisms”) from the 200-topic
version of the database and applied two complementary functional decoding approaches. First, we
decoded clusters resulting from ALE analyses based on reverse and forward inference (V. 1. Miiller
et al., 2013) as implemented in NIMARE. For each topic and each cluster, all Neurosynth studies
reporting at least one coordinate within the cluster were collected. The forward likelihood is the
result of a binominal test examining whether the probability of topic-related activation in the clus-
ter, P(Activation|Topic), is higher than the baseline probability of observing activation in the
cluster, P(Activation). The reverse probability was derived from a chi-squared test assessing the
probability of finding a particular topic given activation in the cluster, P(Topic|Activation),
which was derived using Bayes’ rule. Both resulting sets of p values were FDR-corrected and Z

transformed. Second, we adopted the “Neurosynth” approach (https://neurosynth.org/decode/)

based on whole-brain spatial correlations between a brain volume of interest and topic maps de-
rived from the spatial meta-analysis of all studies annotated to a topic. We calculated meta-analytic
maps for each of 91 topics using the multilevel kernel density analysis chi-square algorithm imple-
mented in NIMARE (Wager et al., 2007) and calculated spatial Spearman correlations to the INS
Z-map after parcellation as described above. By comparison of these correlation coefficients to null
distributions derived from 10,000 spatial autocorrelation-corrected topic null maps (Burt et al.,

2020; Markello et al., 2022) using JuSpyce (https://github.com/LeonDLotter/JuSpyce), we esti-

mated empirical p values and applied FDR correction.

To further confirm these associations, we then calculated the relative and absolute distribu-
tions of the INS-related cluster and network within meta-analytic networks of social interaction
(Feng et al., 2021), ToM (Schurz et al., 2021), and predictive coding (Ficco et al., 2021) and with
a previously published representation of the rTPJ in which it was parcellated into two subunits
(Bzdok et al., 2013). Except for the predictive coding network, which we generated from coordi-
nates (ALE, voxel-level p < .001, cluster-mass), volumetric data were obtained from the cited

authors.
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2.8. Biological contextualization

We then explored the neurobiological mechanism of INS by conducting a series of whole-
brain spatial correlation analyses explicitly testing for positive associations, i.e., systems that
showed their highest density in brain areas identified as subserving INS. Briefly, we first assessed
relationships to neurotransmitter atlases quantified by spatial correlation analyses adjusted for
spatial autocorrelation (Burt et al., 2020; Lotter & Dukart, 2022; Markello et al., 2022) and partial
volume effects (Dukart & Bertolino, 2014). Second, we validated these analyses based on spatial
associations with neuronal cell type distributions as obtained from human cell marker genes (Dar-
manis et al., 2015; Lake et al., 2016; D. Wang et al., 2018) using a neuroimaging-specific method
for gene-category enrichment analysis (GCEA) (Subramanian et al., 2005) based on gene null-
ensembles (Fulcher et al., 2021; Lotter et al., 2022). To assess the extent to which these molecular
and cell-level systems could explain INS, we used dominance analysis (Azen & Budescu, 2003), a
method that quantifies the relative contributions of each predictor to the overall explained variance
in a multivariate regression model. Further GCEAs were directed at INS-associated developmental

gene expression patterns, relationships to psychopathology, and INS-related molecular processes.

2.8.1. Sources and processing of nuclear imaging and gene expression atlases
Invivo neurotransmitter atlases derived from nuclear imaging in various healthy adult cohorts
(overall, 32 brain maps involving data from 1,360 subjects) were collected from JuSpace

(https://github.com/juryxy/JuSpace) and neuromaps (https://github.com/netneurolab/neuromaps),

parcellated into 116 brain regions, and Z-standardized atlaswise. Multiple atlases using the same
tracers were combined by calculating the parcelwise mean weighted by the number of subjects
contributing to each atlas (Hansen et al., 2022) forming 21 averaged atlases (Table S3). Parcelwise

Allen Human Brain Atlas (ABA) mRNA expression data (https://portal.brain-map.org/) (Hawry-

lycz et al., 2012) were retrieved and processed with abagen (https://github.com/rmarkello/abagen/)

using the default settings (Markello et al., 2021; Arnatkeviciute et al., 2019) (Supplement 1.6).

2.8.2. Spatial associations with neurotransmitter systems

To relate the brain-wide INS distribution to molecular brain systems, spatial correlations
between the INS ALE-Z map and nuclear imaging-derived brain maps were calculated as partial
Spearman correlations of parcellated whole-brain data using JuSpyce. As parametric p values
resulting from these analyses suffer from exaggerated false positive rates due to inflated degrees
of freedom and spatial autocorrelations, we assessed significance by comparisons of “true”

correlations to the right tails of empirically estimated null distributions of correlation coefficients
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derived from correlation with atlaswise null maps (5,000 iterations) (Burt et al., 2020; Lotter &
Dukart, 2022; Markello et al., 2022). The resulting positive-sided empirical p values were FDR-
corrected. To control for partial volume effects, correlations were adjusted for parcel-wise grey
matter estimates derived from the MNI-152 template (Dukart et al., 2021; Dukart & Bertolino,
2014).

In sensitivity analyses, significant associations were repeated while (i) using only subcortical
parcels and (ii) adjusting for functional baseline activation rate. For the second approach, a map of
baseline activation rate (meta-analytic map of 14,370 Neurosynth experiments) was additionally
included in the partial correlation analyses. Finally, the observed association to GABAA receptors
was replicated using ABA gene expression data (Supplement 1.7).

Combined with the averaged neuronal cell type maps introduced below, we finally estimated
the amount of INS variance explained by neurotransmitter and neuronal cell type distributions
associated with INS using dominance analysis (Azen & Budescu, 2003) as implemented in JuSpyce

(Supplement 1.8).

2.8.3. GCEA

GCEA was applied according to an approach specifically adopted for neuroimaging data
(Fulcher et al., 2021). We adopted a previously published toolbox
(https://github.com/benfulcher/GeneCategoryEnrichmentAnalysis/), originally designed for

annotation of neuroimaging data to GO categories (Ashburner et al., 2000; The Gene Ontology
Consortium et al., 2021), to perform GCEA on any given set of genes (ABAnnotate,
https://github.com/LeonDLotter/ABAnnotate). First, a whole-brain volume (the INS ALE-Z map)

and the complete ABA dataset (including mRNA expression data for 15,633 genes) were
parcellated into 116 brain regions. Next, spatial autocorrelation-corrected null maps (5,000) were
generated from the phenotypic data (Burt et al., 2018; Dukart et al., 2021). After matching category
and ABA genes based on gene symbols, Spearman correlations between the phenotypic map, the
null maps, and all mRNA expression maps were calculated. For each null map and each category,
null category scores were obtained as the mean Z-transformed correlation coefficients. Positive-
sided p values, representing the association of the phenotypic map to each category, were calcu-
lated from comparisons of the “true” category scores with the null distribution and FDR-corrected.
This approach has been shown to sufficiently control false positive rates potentially caused by
spatial autocorrelation present in the phenotypic data and within-category coexpression in the ge-

netic data (Fulcher et al., 2021).
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The following sets of gene-category annotations were used (Table S4): neuronal cell type
markers (PsychENCODE) (Darmanis et al., 2015; Lake et al., 2016; D. Wang et al., 2018), genes
associated with psychiatric disorders (DisGeNET) (Jiao et al., 2012), developmental regional gene
enrichment (BrainSpan) (Miller et al., 2014; Grote et al., 2016), and GO biological processes (Ash-
burner et al., 2000; The Gene Ontology Consortium et al., 2021; Jiao et al., 2012). To aid

interpretation, GO results were clustered as described in Supplement 1.9.

3. Results

3.1. Literature search and data extraction

Searching for an extensive list of INS-related terms (Supplement 1.1.1), the initial literature
search resulted in 2,575 unique records from which 79 publications were found eligible for meta-
analysis (Figure 2A for exclusion reasons). Finally, we included 14 hyperscanning fMRI publica-
tions (Bilek et al., 2015; Gordon et al., 2021; Koike et al., 2016; Koike, Sumiya, et al., 2019; Koike,
Tanabe, et al., 2019; Miyata et al., 2021; Saito et al., 2010; Salazar et al., 2021; Shaw et al., 2018,
2020; Spiegelhalder et al., 2014; gpilékové et al., 2020; L.-S. Wang et al., 2022; Xie et al., 2020;
Yoshioka et al., 2021), 8 pseudohyperscanning fMRI publications (Anders et al., 2011; Dikker et
al., 2014; Kostorz et al., 2020; Liu et al., 2021, 2022; Silbert et al., 2014; Smirnov et al., 2019;
Stephens et al., 2010), 54 hyperscanning fNIRS publications, and 3 pseudohyperscanning fNIRS
publications [Figure 2B (interactive version available online), see Tables S1 and S2 for detailed
information and fNIRS references]. INS foci coordinates were extracted from the above publica-
tions, requested from the authors, drawn from a virtual registration database (Tsuzuki et al., 2007),
or derived from manual reconstruction of fNIRS probe setups (Aasted et al., 2015). Detailed infor-
mation is provided in the methods, Figure 2, Supplement 1.1, Tables S1 and S2, and Figures S1
and S2.

After taking data-reuse into account (Tables S1 and S2), 22 fMRI and 69 fNIRS experiments
reporting 297 and 228 brain foci derived from data of 740 and 3,721 unique subjects were included.
Task domains of these experiments varied widely, targeting communication, joint attention/action,

cooperation/competition, learning, imitation, reward, and decision-making.
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Figure 2: Structured literature search

A: Flow chart depicting the literature search process in line with the PRISMA 2020 statement. SetY ouFree was used
for the automatic literature search, duplicate detection and the cross-reference search. The resulting records, together
with results from other sources, were submitted to Cadima to manually identify eligible studies. Note that the exclusion
criteria listed in Reports excluded were not mutually exclusive. Records are entries in the publication lists resulting
from the main search and screened on the abstract level, reports are publications screened in full, studies are included
publications, and experiments are sets of data derived from independent study samples and can cover data from
multiple studies. B: Citation network generated from OpenCitations data, including overview figures of reported INS
foci and fNIRS probe setups. An interactive version with metadata for each individual study is available at
https://leondlotter.github.io/MAsync/citenet. Note that the OpenCitations database only contains citations and
references made openly accessible by the publishers and thus does likely not include all existing links among
publications.

Abbreviations: fMRI = functional magnetic resonance imaging, fNIRS = functional near-infrared spectroscopy, y =
years, INS = interpersonal neural synchronization.

3.2.  Spatial meta-analysis of fMRI and fNIRS INS experiments

To identify brain areas consistently associated with INS, we performed separate spatial meta-
analyses on INS brain coordinates reported in eligible fMRI and fNIRS experiments. For fMRI
data, we relied on the well-established ALE method, while for fNIRS experiments, we developed

a meta-analytic procedure comparable to the ALE approach.

3.2.1. Robust spatial convergence of INS revealed by fMRI hyperscanning studies

The ALE INS map revealed a mainly cortical distribution focused on right-sided parieto-
temporal-insular brain areas. After applying standard voxel-level thresholding (p < .001, uncor-
rected), two clusters with significant spatial convergence emerged in the rTPJ and right STG. Then,

after applying a more liberal threshold (p < .01) (Eklund et al., 2016), we observed increased
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cluster sizes and an additional cluster in the right insula (Figure 3A, Table S5). Sensitivity analyses
confirmed robust spatial convergence of INS in the rTPJ by showing that the cluster (i) remained
after excluding pseudohyperscanning experiments (Figure S3A, Table S5), (ii) was stable against
the exclusion of single experiments using a jackknife approach (12 of 22 experiments contributed
relevantly to the cluster with a maximum contribution of 16%; Supplement 2.1.1; Table S1, Figure
3A), and (iii) was robust against the potential influence of publication bias (Acar et al., 2018) (fail-
safe-N of 66; Supplement 2.1.2). The right STG and insular clusters did not prove stable in these

analyses.

3.2.2. Spatial convergence of INS revealed by fNIRS hyperscanning studies

Meta-analytic evaluation of fNIRS data revealed four significant parcels covering the right
inferior temporal gyrus (4/19 INS channels/total channels, n = 1,339 subjects, p = .017), left
inferior frontal gyrus (IFG; 11/56,n = 2,205, p = .020) and superior parietal gyrus (3/5,n =
154,p = .047), as well as right STG that overlapped with the fMRI-derived rTPJ cluster
(5/35,n = 2,145, p = .048; Figures 3B and S5A, Table S5). None of the derived exact p values
survived false discovery rate (FDR) correction. An exploratory ALE analysis, including combined
INS coordinates from 22 fMRI and 60 fNIRS experiments, resulted in four significant clusters
covering the r'TPJ, left anteroventral superior frontal gyrus, and right middle and superior frontal
gyri (Figure 3B, Table S5). The fNIRS studies contributed to both the prefrontal clusters and the
rTPJ cluster (Tables S1 and S2). Evaluation of alternative indices derived from fNIRS data further
pointed to bilateral prefrontal and left temporoparietal brain regions (Supplement 2.2.1, Figure SS5A
and B, Table S6). Sensitivity analyses, accounting for bias in study selection and spatial uncertainty
of fNIRS data, demonstrated generally comparable patterns. However, concerning the fNIRS-only
meta-analysis, the left superior frontal cluster showed the highest stability, while, in the combined
fNIRS-fMRI meta-analysis, left superior frontal and rTPJ were the most stable locations (Supple-
ment 2.2.2-3, Tables S1, S2, and S5, Figure S5).

Summarizing, in line with prior findings and models of INS, we identified the rTPJ as a
robust and task domain-independent hub region of INS supported by both fMRI and fNIRS data.
FNIRS meta-analysis additionally indicated involvement of the left inferior PFC in INS.

3.3. INS-related neuronal connectivity and biobehavioral association patterns

To establish the functional context of the identified INS hub region within large-scale brain

networks and biobehavioral domains, we conducted a set of brain- and task-functional association
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analyses capitalizing on different open neuroimaging databases (Figure 1). First,a MACM network
of brain regions likely to co-activate with the rTPJ hub was constructed from the BrainMap data-
base (Laird et al., 2011) and RSFC patterns within this network were evaluated (Van Essen et al.,
2013; Whitfield-Gabrieli & Nieto-Castanon, 2012). To then explore the functional context of the
observed activation patterns and aid interpretation, we characterized relationships to established
brain-wide resting-state networks (Yeo et al., 2011; Chen et al., 2018), biobehavioral domains in
the Neurosynth database (Yarkoni et al., 2011), and previously published meta-analytic networks
of INS-associated constructs, i.e., social interaction (Feng et al., 2021), empathy and ToM (Schurz
et al., 2021), and predictive coding (Ficco et al., 2021). Finally, we assessed how the rTPJ cluster
related to a parcellation of the rTPJ (Bzdok et al., 2013).

3.3.1. Task-based coactivation and resting-state connectivity networks

148 BrainMap studies reported at least one activation focus within the rTPJ cluster. The meta-
analytic coactivation network involved primarily bilateral frontotemporal cortical regions, with the
largest clusters placed on bilateral TPJs, insulae and dorsolateral PFCs, supplementary motor areas,
and thalami (Figure 3C, Table S5). Within this network, RSFC was strongest between temporopa-
rietal clusters, while subcortical regions showed functional connections primarily to insulae but not
to the TPJ hub regions (Figure 3D). An additional analysis controlling for baseline activation prob-
ability also indicated the TPJs as unique hub regions of the observed INS-related network (Supple-
ment 2.3.1, Figure S3B). Comparing whole-brain patterns of INS-ALE maps and MACM maps,
bilateral TPJs, insulae, and dorsal PFCs showed the highest activation likelihood in both maps,
indicating a possible role of the MACM network in INS beyond the rTPJ activation (Supplement
2.3.2, Figure S3C). In line with interregional connectivity patterns, the rTPJ cluster and the
associated coactivation network showed the strongest spatial associations to the default mode and

attention resting-state networks (Supplement 2.4, Figure 3E).

3.3.2. Functional decoding of INS-related networks

We observed significant associations between the rTPJ and topics related to ToM, action,
observation, and social interaction. On the whole-brain level, the strongest associations were found
with topics related to attention and sensory domains (Figure 3F, Table S7). In line with that, INS-
associated activation showed a general alignment with (affective) ToM and social interaction
networks, and relatively greater overlap with the posterior rTPJ subunit, which itself had previously
been related to ToM and social cognition (Bzdok et al., 2013). While the predictive coding network
did not include the rTPJ, it strongly resembled the INS-related MACM network (Figure S4).
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In summary, spatial associations analyses embedded meta-analytic INS results in the context
of large-scale brain networks mainly related to attentional, sensory, and mentalizing processes.
While the TPJs again emerged as hub regions, we cannot exclude the possibility that INS may also
be present in the extended INS-related network involving mainly the insulae, PFCs, and potentially

thalami.
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Figure 3: Brain-functional INS correlates resulting from fMRI and fNIRS meta-analyses

with their neuronal connectivity and neurobehavioral association patterns

A: Results of the main fMRI INS meta-analysis. Upper: Unthresholded Z-map derived from ALE p values.
Middle/lower: Significant INS clusters after thresholding using voxel-level thresholds of either p <.001 or p < .01.
Black overlays: Spatial conjunctions of all maps derived from jackknife-analyses. B: Upper: Parcelwise fNIRS INS
results. Colors: Number of “INS channels” relative to all channels sampled in the region, multiplied by the total number
of subjects involved in the contributing experiments. Red outlines: Parcels showing p < .05 estimated in the
permutation test. Lower: Results of a preliminary ALE analysis of the combined fMRI and fNIRS data. Black outlines:
Significant parcels estimated in the fNIRS-only analysis. C: Meta-analytic coactivation network using the rTPJ INS
cluster as a seed (black contour). D: Functional resting-state connectivity between MACM clusters. Colors: Semipartial
Pearson correlation coefficients between clusters. Asterisks: Positive functional connections significant after
Bonferroni correction (p < .05). E: Relationships of the rTPJ cluster and MACM network to major resting-state
networks. Relative: Proportion of “INS-voxels” within a given network vs. all “INS-voxels”. Absolute: Proportion of
“INS-voxels” within a given network vs. all voxels within the network. Bold print: p < .05. *: ¢ < .05. F: Functional
decoding of INS-related activation using Neurosynth topics. Three alternative approaches are presented: x-axis: Z-
transformed, FDR-corrected p values derived from decoding of the rTPJ cluster using reverse inference,
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P(Topic|Activation); y-axis: similar but with forward likelihood, P(Activation|Topic) > P(Activation). Point sizes and
colors: Nonparametric p values according to Spearman correlations between whole-brain INS distribution and meta-
analytic topic maps (*: g < .05). Dashed lines: Alpha level of q <.05. All FDR-corrected significant topics are
annotated.

Abbreviations: fMRI = functional magnetic resonance imaging, fNIRS = functional near-infrared spectroscopy, INS
= interpersonal neural synchronization, ALE = activation likelihood estimation, MACM = meta-analytic connectivity
modeling, RSFC = resting-state functional connectivity, r/ITPJ = right/left temporoparietal junction, rSTG = right
superior temporal gyrus, rIns = right insula, r/IPFCIns = right/left prefrontal cortex-insula, SMA = supplementary
motor area, r/1Th = right/left thalamus, r/IIPL = right/left inferior parietal lobule, 1Prec = left precuneus, DAN/VAN =
dorsal/ventral attention network, SMN = somatomotor network, VN = visual network, DMN = default mode network,
FPN = frontoparietal network, LN = limbic network.

3.4. Relationships of INS with neurophysiological brain systems

To extend our meta-analytic approach from the macroscale level of brain regions to meso-
and microscale neurophysiological functions, and thereby identify biological processes potentially
underlying INS, we conducted a series of whole-brain spatial association analyses. We first
assessed relationships between INS and neurotransmitter systems by spatial correlations with
neurotransmitter atlases (Dukart et al., 2021; Markello et al., 2022; Hawrylycz et al., 2012). Using
GCEA, we identify INS-related neuronal cell types (Darmanis et al., 2015; Lake et al., 2016; D.
Wang et al, 2018), tested for potential gene-mediated associations between INS and
psychopathology (Pifiero et al., 2020), quantified the regional enrichment of INS-related genes
across neurodevelopment (Miller et al., 2014; Grote et al., 2016), and identified INS-related
molecular processes (Ashburner et al., 2000; Fulcher et al., 2021; The Gene Ontology Consortium
etal., 2021).

3.4.1. Spatial associations with neurotransmitter systems and neuronal cell types

We observed significant positive spatial associations between INS and the distributions of
GABAergic (GABA) and glutamatergic (mGluR5) receptors as well as between INS and synaptic
density (SV2a). Without FDR-correction, INS was further associated with serotonergic (5-HT2a)
and cholinergic components (M1; Figures 4A and S6). The remaining neurotransmitter atlases were
not significantly associated (Figure S6, Table S8). Furthermore, GCEA indicated significant
associations with a specific excitatory neuron class, Ex3 (Z = .36,p < .001,q <.001), and two
classes of inhibitory neurons, In5 (Z = .12,p < .001,q = .012) and In6 (Z = .19,p = .001,q =
.032; Figures 4B, Table S9). In the original publication that identified the applied cell markers
(Lake et al., 2016), Ex3 was enriched in visual brain areas and cortical layer IV, and classified as
granule neuron. /n5 and In6 were widely distributed, concentrated in layers II/III (/n5) and IV/V
(In6), and the latter was identified as the parvalbumin-expressing interneuron subclass. Dominance

analysis including all FDR-corrected significant nuclear imaging and cell type maps indicated an
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overall explained variance of 31.4% with the strongest relative contributions by Ex3 (26.2%),

followed by GABAA (19.8%) and mGlIuRS5 (18.5%; Figure S8).

Further sensitivity analyses targeting neurotransmitter associations showed (i) that additional
adjustment for functional baseline activation rate generally led to a slight increase in effect sizes
(Table S8), (ii) that only the associations with GABAA and SV2a remained significant after
exclusion of subcortical parcels to estimate effects of a potential cortical-subcortical density
gradient in the neurotransmitter data (Table S8), and (iii) that the GABAAa-association was
replicated in mRNA expression data (Figure S7, Table S8). The latter pointed to a relationship
between INS and genes coding for the a1-GABAA receptor subunit and parvalbumin (Supplement

2.5.1).

3.4.2. Spatial associations with developmental gene expression, genetic disease markers, and

molecular processes

Significant developmental gene enrichment was found in 29 categories that revealed a gene
expression pattern that was pronounced in adult cortical sensory brain areas but was detectable
from the postnatal stage (Figure 4C, Table S9). Of note, we found no significant enrichment
prenatally, or in subcortical areas. Furthermore, INS was strongly related to genes previously
associated with neurodevelopmental disorders and secondary with affective disorders (9/16 and
5/16 unique significant categories, respectively; Figure 4D, Table S9). Finally, semantic clustering
analyses (Reijnders & Waterhouse, 2021) based on 474 GO categories spatially associated with
the INS distribution (Table S9) indicated processes related to neuron and general cell development,
and neuronal signal transmission (Table S10, Figure S8).

Concluding, our results pointed towards a neurophysiological basis of INS consisting of
major inhibitory and excitatory neuronal systems involved in sensory processing. In line with that,
INS-related genes (i) were most expressed in cortical sensory brain areas starting in postnatal brain

development and (ii) have previously been related to primarily neurodevelopmental disorders.
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Figure 4: Spatial associations of INS to neurotransmitter receptor and synaptic density

distributions, as well as genetic markers of neuronal cell types, brain development and

psychiatric disorders

A: Correlation of the whole-brain INS Z-map (x-axis) with in vivo nuclear imaging-derived neurotransmitter receptor
and synaptic density (SV2a) distributions. Statistics: Partial Spearman correlations between INS and nuclear imaging
maps adjusted for local grey matter volume with exact p values estimated via nonparametric permutation-corrected for
spatial autocorrelation. Points: Value pairs associated representing 116 whole-brain parcels. Point size and color: p
values derived from the fNIRS INS meta-analysis as shown in the upper panel of Figure 2B. The two yellow and the
rightmost points correspond to the significant fNIRS atlas parcels. White points: Parcels not included in the fNIRS
analysis. Lines: Linear regression lines with 95% confidence intervals. B, C, and D: Spatial associations of INS to
postmortem mRNA expression distributions estimated by GCEA. Bar plots: Associations of INS with neuronal cell
type markers (B) and disease markers (D). Bars: Average Z-transformed Spearman correlation coefficient of all genes
annotated to a category. Bar color: Uncorrected p values. For cell types (B), all categories are shown, and those
significant at FDR-corrected p < .05 are highlighted. For disease markers (D), only significant categories are shown.
Brackets: Categories comprising exactly the same genes. C: INS-related regional developmental gene enrichment
across five developmental stages (y-axis) and 16 brain regions (x-axis). Point size: Average r-to-Z transformed
correlation coefficient. Point color: Uncorrected p values. Rectangles: Categories significant after FDR correction.

Abbreviations: INS = interpersonal neural synchrony, ALE = activation likelihood estimation, OFC = orbital frontal
cortex, MFC = anterior (rostral) cingulate (medial prefrontal) cortex, DFC = dorsolateral prefrontal cortex, VFC =
ventrolateral prefrontal cortex, M1C = primary motor cortex, S1C = primary somatosensory cortex, STC = posterior
(caudal) superior temporal cortex, ITC = inferolateral temporal cortex, IPC = posteroventral (inferior) parietal cortex,
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A1C = primary auditory cortex, V1C = primary visual cortex, HIP = hippocampus, MD = mediodorsal nucleus of
thalamus, STR = striatum, AMY = amygdaloid complex, CBC = cerebellar cortex, GCEA = gene category enrichment

analysis.

4. Discussion

In recent years, synchronization of brain activities between interacting partners has been
acknowledged as a central mechanism by which we foster successful social relationships as well
as a potential factor involved in the pathogenesis of diverse neuropsychiatric disorders. Based on
the results generated by our multimodal data fusion approach (see Figure 5), we hypothesized that
human INS is tightly linked to social attentional processing, subserved by the rTPJ as a sensory-
integration hub at the brain system level, and potentially facilitated by GABA-mediated E/I balance

at the neurophysiological level.
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Figure 5: Summary of results and hypotheses
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Abbreviations: INS = interpersonal neural synchronization, DAN/VAN = dorsal/ventral attention network, DMN =
default mode network, ToM = theory of mind network, TPJ = temporoparietal junction, IFG = inferior frontal gyrus,
dm/vmPFC = dorsomedial/ventromedial prefrontal cortex, Al = anterior insula, PMC = premotor cortex, IPL = inferior
parietal lobule, OFC = orbitofrontal cortex, VS = ventral striatum, OXT = oxytocin, E/I = excitation/inhibition balance.

4.1.  Brain functional systems facilitating INS

Our results confirmed the central role of the rTPJ and of the left IFG in the facilitation of
INS. Both regions have been proposed as central hubs of the mutual social attention system,
thought to allow for “coupling” between interacting partners (Gvirts & Perlmutter, 2020), and the
observation-execution/alignment subunit of the social alignment system (Shamay-Tsoory et al.,
2019). On the whole-brain level, the connection to the alignment system was further supported by

9 ¢

our data indicating a clear association of INS to biobehavioral domains, such as “motion”, “action”,
“observation”, “imitation”, and “attention”. On the brain regional level, we also demonstrated links
between the rTPJ and its functional connected network with the brain’s attention networks. Here,
attention might generally enhance the processing of relevant information, regulate the overall cor-
tical responsiveness (Lakatos et al., 2008), and more specifically increase the computational weight
of prediction error units via synaptic gain enhancement (Kok et al., 2012). Both, the rTPJ as well
as the associated network, were further linked to the default mode network as well as networks
associated with ToM and social interaction and showed strong associations with ToM-related terms
(e.g., "mind”, “social”, and “interaction”). Consistent with the previously reported twofold func-
tional specialization of the rTPJ (Bzdok et al., 2013), our findings highlight the link between inter-
personal synchronization and both alignment of behavior (Shamay-Tsoory et al., 2019) as well as
alignment of mental states (i.e., ToM) (Gallotti et al., 2017). Thus, our ALE findings are largely in
line with the assumptions of the mutual prediction theory suggesting that on the brain network
level, INS might reflect the sum of brain activity involved in encoding self-behavior (e.g., right-
sided anterior insula) (Seth et al., 2012), other’s behavior and mental state (e.g., rTPJ) and dynamic

interpersonal alignment (e.g., left IFG).

While the most robust effect was found in the rTPJ, the left IFG became evident as an addi-
tional region of convergence when findings from fNIRS hyperscanning experiments were included.
The IFG might be involved in both simple mirroring of behavior and brain activities (Hasson &
Frith, 2016) and facilitating dynamic interpersonal alignment, e.g., by containing motor represen-
tations of actions (Shamay-Tsoory, 2021; Shamay-Tsoory et al., 2019). While all three components
of the social alignment system have been proposed to be involved in INS (Shamay-Tsoory et al.,
2019), we found evidence only for INS in the alignment subsystem but not in the misalignment-

detection and reward sub-systems. Although these latter systems might also be involved in social
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alignment processes (Shamay-Tsoory et al., 2019), our finding could indicate that they might not
necessarily exhibit synchronized neural activity. The question of whether systems underlying mis-
alignment detection and experienced reward mainly form and motivate biobehavioral synchrony
or actually become activated simultaneously in interacting individuals will have to be addressed in

future research.

Given our approach of searching for the common spatial correlate of INS across a wide range
of study types, tasks, analysis protocols, and social interaction settings, two aspects deserve further
consideration. On the one hand, based on our results, we cannot draw conclusions about situation-
specific spatial INS patterns that might occur bound to specific interaction settings. On the other
hand, the identified brain regions might be considered core regions of INS that simultaneously
activate in interacting humans independent of the specific interaction context. Reiterating the afore-
mentioned connection to attentional processing and the social alignment system, and referring to
the following discussion on potential neurophysiological mechanisms, we hypothesize that a core
component of social interaction must be a system that supports the reciprocal alignment of attention
and sensory processing between interacting people. INS in the core brain areas supporting these
cognitive functions might represent this mutual alignment process, thus representing the correlate

of successful interpersonal communication.

4.2. Comparing fMRI and fNIRS approaches to measuring INS

Given the currently available data and the meta-analytic methods applied, our study is not
suited to rule out the possibility that INS is present in a larger network but was not detected in these
other areas. Relatedly, we also found no evidence for prefrontal INS based on fMRI hyperscanning
data alone. Comparing specific confounds affecting the comparison between fNIRS and fMRI data,
we noted that the fNIRS data had only limited cortex coverage and prefrontal regions were rela-
tively oversampled. Furthermore, fNIRS data shows higher spatial uncertainty resulting mainly
from variations in head shape, virtual registration methods, and post-hoc reconstruction of probe
coordinates (Aasted et al., 2015; Cooper et al., 2012; Tsuzuki et al., 2007; Tsuzuki & Dan, 2014)
and lower image quality due to limited methodological standardization (Tachtsidis & Scholkmann,
2016). On the other hand, upright body posture has been shown to affect body physiology, brain
activation, and cognitive performance, potentially increasing the ecological validity of fNIRS to
capture neurophysiological processes underlying social interactions (Thibault & Raz, 2016). In
addition to several methodological differences inherent to fMRI and fNIRS (Czeszumski et al.,

2020), variation may also stem from differing experimental designs and settings. First,
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experimental designs allowed generally only for limited face-to-face contact in both modalities,
however only fNIRS experiments could establish real-life interactional settings. Second, while both
hyperscanning techniques covered a similarly broad spectrum of task domains with communication
tasks being most prevalent, a bias was found toward more joint attention tasks for fMRI experi-
ments and toward cooperation/competition conditions for fNIRS experiments. Keeping in mind
these limitations but considering that our fNIRS hyperscanning dataset far exceeds its fMRI pen-
dant in terms of sample size (3,721 versus 740 subjects), the prefrontal activation observed in
fNIRS data might indeed arise from interpersonal collaboration paradigms (Czeszumski et al.,

2022) which should be tested in future fMRI hyperscanning research.

4.3. Future pathways for the hyperscanning research field

We identified several pathways that can be built upon in the future. Methodologically, it
seems mandatory for the field to move toward standardized and reproducible data acquisition, task
protocols, and analysis pipelines (Yiicel et al., 2021). Dissecting the definition of interpersonal
synchronization both in a methodological and in a conceptual sense (Schirmer et al., 2021) will
help us delineate the brain regional and behavioral domain-dependent nuances of INS. To (i) ensure
that the phenomenon of INS goes beyond the representation of shared sensory environments, (ii)
delineate the interaction between behavioral interpersonal synchronization and INS, and (iii) facil-
itate effective interpretation and formulation of predictions for future research, carefully designed
experiments, including multimodal (behavior, body, and brain) data collection and integrative data
analysis within a neurocognitive framework, constitute necessary steps for the future (Hamilton,
2021). As the current state of the fMRI hyperscanning field did not allow us to conduct meta-
analyses that differentiate task domains or examine the influence of, e.g., sex, gender, and age, the
impact of these factors on INS will have to be clarified in future meta-analyses. Most studies in-
cluded here focused on temporal synchrony between homologous brain regions or on the univariate
coherence between one region and multiple other regions. Analogous to the development of “tra-
ditional” fMRI research, moving toward network-based analyses in which functionally connected
networks are tracked across subjects (Gerloff, Konrad, et al., 2022) will elucidate the role of the
rTPJ and its functional connections between individuals. Furthermore, while the current meta-anal-
ysis of fNIRS data was focused on spatial information, our openly accessible dataset could easily
be extended to include statistical information, thus enabling regional effect size-based meta-anal-

yses (Czeszumski et al., 2022).
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4.4. GABA-mediated E/I balance as a potential mechanism underlying INS

To generate hypotheses on the neurophysiological processes underlying INS, we developed
and applied state of the art data fusion methods drawing robust spatial associations between whole-
brain INS patterns and potentially underlying cellular, molecular, and genetic systems (Hansen et
al., 2022; Dukart et al., 2021; Markello et al., 2022; Fulcher et al., 2021; Lotter et al., 2022; Lotter
& Dukart, 2022). We note, however, that our inferences are based on spatial correlation analyses
involving heterogeneous data obtained from often relatively small samples and, thus, must be
treated cautiously. These analyses, by no means, provide a reliable basis for causal claims and
cannot replace nuclear imaging methods, brain stimulation protocols, pharmacological investiga-
tions, or histological approaches. We nevertheless consider these analyses to be sufficient to pro-
vide a basis for future hypothesis-driven research based on the currently available hyperscanning

data.

We found converging evidence for an association of spatial INS patterns with GABAAx re-
ceptors and layer [V/V interneuron density, suggestive of (“fast-spiking”) parvalbumin-expressing
interneurons. These interneurons constitute the largest group of cortical inhibitory neurons (Trem-
blay et al., 2016), contribute to feedback and feedforward inhibition, and are critically involved in
the generation of network oscillations (Hu et al., 2014). In accordance with the association between
INS and attention systems, GABAergic neurotransmission has previously been linked to general
attentional processing and to visual attentional selectivity in particular (Lockhofen & Mulert,
2021). Furthermore, parvalbumin-expressing interneurons, along with layer V pyramidal cells,
have been shown to express 5-HT2a receptors which we also found spatially related to INS (An-
drade & Weber, 2010). Together with Ex3 (“granule”) excitatory neurons, which explained the
largest amount of spatial INS information in the present study and were also located in cortical
layer IV (Lake et al., 2016), these INS-associated neuron classes may form thalamocortical feed-
forward inhibition circuits (Tremblay et al., 2016) between thalamocortical afferents (Sherman &
Guillery, 2002), GABAergic interneurons, and pyramidal cells which have crucial roles in encod-
ing spatial and temporal sensory information (Gabernet et al., 2005; Tremblay et al., 2016). Relat-
edly, layer IV neurons have previously been linked to computations of prediction errors (Bastos et
al., 2012). Finally, in line with the potential relevance of thalamocortical neuronal circuits, the INS-
associated meta-analytic network involved the bilateral thalami as the sole subcortical structures.

Here, we could not confirm the involvement of oxytocin and dopamine in neurobiobehavioral
synchrony that was hypothesized previously (Feldman, 2017; Gvirts & Perlmutter, 2020; Mu et al.,

2016). In contrast, we consider our findings to be more in line with the hypothesis that INS relies
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on neurobiological mechanisms similar to those previously reported for within-brain synchroniza-
tion processes: GABA-mediated E/I balance (Sears & Hewett, 2021). Given links between GA-
BAergic interneurons and local gamma oscillations (Gonzalez-Burgos & Lewis, 2008) as well as
between local oscillations, GABA concentration, and long-range functional connectivity (Stagg et
al., 2014; Rajkumar et al., 2021), we hypothesize that INS might be maintained by GABA-regu-
lated signal transmission that relies on thalamocortical pathways transferring sensory information
obtained during social interaction to an INS-associated cortical network centered in the rTPJ. Im-
portantly, while we focused on blood oxygenation signals, electrophysiological studies also local-
ized the source of gamma power synchronization in the TPJ (Hoehl et al., 2021; Kinreich et al.,
2017). Of note, indirect involvement of oxytocin might be plausible given that both oxytocin and
GABA signaling may mediate £// balance in the contexts of social interaction and brain develop-
ment (Lopatina et al., 2018), that GABAA receptors might have oxytocin binding sites (Gough,
2015), and that oxytocin regulates GABA 4 neurosteroid binding and expression patterns (Kaneko

etal., 2016; Koksma et al., 2003).

The indirect nature of our evidence for INS mediation by GABAergic signaling and E/I bal-
ance requires thorough confirmation or falsification with experimental data. Future electrophysio-
logical, and especially magnetoencephalography-based (Watanabe et al., 2022) hyperscanning ex-
periments could investigate the role of E/I balance in the development of INS. GABAergic involve-
ment as well as regulatory mechanisms could be tested using pharmacological challenges with safe
oxytocin-regulating or GABA-regulating agents or multibrain stimulation protocols to show causal

roles in the regulation and maintenance of human INS.

4.5.  Associations to neurodevelopment and neurodevelopmental disorders

We demonstrated that genes which’s spatial expression pattern aligned with the INS
distribution were expressed particularly in cortical sensory brain areas starting at the postnatal
stage. The GABAergic system undergoes significant changes in early postnatal development,
switching from excitatory to inhibitory action, thus establishing E/I balance (Lopatina et al., 2018),
enabling intrapersonal cortical synchronization (Warm et al., 2022) and potentially also INS. If the
observed developmental gene expression pattern reflects the development of this
neurophysiological system, it might indicate long-lasting plasticity in this system; however, it is
also compatible with ideas about neurobiological instantiation through early postnatal infant-care-

giver interactions (Feldman, 2017).
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We observed gene-mediated spatial associations of INS with psychopathology, i.e., primarily
with disordered language development, general neurodevelopment, and schizophrenia spectrum
disorders and, secondarily, with affective disorders. Indeed, both developmental and affective dis-
orders have been suggested as disorders of social interaction (Schilbach, 2016; Kruppa et al., 2021)
and a prior study reported reduced INS during interaction between people with and without autism
spectrum disorder (Tanabe et al., 2012). Moreover, autism and schizophrenia spectra have repeat-
edly been linked to disrupted GABA signaling and E/I balance (Gonzalez-Burgos & Lewis, 2008;
Tang et al., 2021; Lopatina et al., 2018) as well as thalamotemporal functional and structural
dysconnectivity (Ameis & Catani, 2015; Woodward et al., 2017), and GABAergic agents have
been shown to affect both clinical presentation and brain E/I balance in patients with autism (L.
Zhang et al., 2020). Our findings provide further evidence for a pathophysiological role of (dis-
rupted) INS in these disorders, with relevance for both the identification of social biomarkers and

the development of neurobiologically based treatment strategies.

4.6. A multilevel model of human INS

Taken together, our findings suggest a model of human INS bridging multiple levels of or-
ganization from social interaction to molecular processes (Figure 5). Interindividual synchrony in
humans, as in many group-living species, amplifies social rapport and affective bonds and arises
both intentionally and spontaneously (Hoehl et al., 2021). Our actions broadcast our behaviors
through the environment, i.e., by motion, touch, gesture, mimics, speech, or sounds. Our brain’s
sensory systems, subserved by neuronal attention networks, rhythmically sample information from
the environment and can detect these actions. Synchronizing the actions of one individual with the
perceptions of another and vice versa might then lead to interpersonal synchronization of brain
oscillations (Hasson & Frith, 2016). From these sensory inputs, we not only observe and predict
the actions of our interaction partner but also infer mental states. The rTPJ may serve as the brain’s
hub for processing attention information and integrating this information into a broader context,
communicating with brain networks relevant for controlling selective attention, reactive action,
inference of mental states, and affective responses (Downar et al., 2000; Bzdok et al., 2013). Neu-
rophysiologically, these interpersonally synchronized oscillations may, within each brain, arise
from GABA-mediated E/I balance, receiving sensory input from thalamic afferences. In an attempt
to incorporate prior hypotheses on the involvement of oxytocin and dopamine or social reward
processes (Feldman, 2017; Gvirts & Perlmutter, 2020; Shamay-Tsoory et al., 2019), one might

now speculate that these aspects could act as influencing factors on the rTPJ, functionally
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associated brain networks, or GABA-mediated neuronal oscillations, without directly partaking in
INS (Lopatina et al., 2018; Mu et al., 2016). Relatedly, dysregulation of this multilevel represen-
tation of INS might be involved in the pathophysiology of neurodevelopmental disorders (Ameis
& Catani, 2015; Gonzalez-Burgos & Lewis, 2008; Lopatina et al., 2018; Tang et al., 2021; Wood-
ward et al., 2017). If further validated and fully understood, our findings may lay the foundation of
a neurobiologically based concept of “typical” INS, with relevance for the study of human social
development, communication, and interpersonal learning processes. Understanding how INS
works will also help us understand how its mechanisms fail, which might have critical implications

for how we view and treat disordered social interaction on both individual levels and societal levels.

Closing and taking a general perspective, our methodological approach demonstrated the
value of multimodal association analyses not only for psychiatric research but also to advance cur-
rent models of cognition in typically developing populations. We designed this study with reuse of

our resources in mind to provide a path for similar future endeavors.
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