bioRxiv preprint doi: https://doi.org/10.1101/2022.07.18.498922; this version posted July 18, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

. nl-DDM: a non-linear drift-diffusion
. model accounting for the dynamics
. of single-trial perceptual decisions

. Isabelle Hoxha'2?*, Sylvain Chevallier3, Matteo Ciarchi*, Stefan Glasauer®, Arnaud
s Delorme®, Michel-Ange Amorim’2

« TCIAMS, Université Paris-Saclay; 2CIAMS, Université d'Orléans; 3LISV, Université

- Paris-Saclay; *“Max-Planck Institute for the Physics of Complex Systems, Dresden,

= Germany; >Brandenburgische Technische Universitat Cottbus-Senftenberg; ®CerCo,
o CNRS, Université Toulouse Ill - Paul Sabatier, Toulouse, France

10 isabelle.hoxha®@universite-paris-saclay.fr

11

12 Abstract The Drift-Diffusion Model (DDM) is widely accepted for two-alternative forced-choice
13 decision paradigms thanks to its simple formalism, straightforward interpretation, and close fit to
1« behavioral and neurophysiological data. However, this formalism presents strong limitations to
15 capture inter-trial dependency and dynamics at the single-trial level. We propose a novel model,
16 the non-linear Drift-Diffusion Model (nl-DDM), that addresses these issues by allowing the

17 existence of several trajectories to the decision boundary. We show that the fitting accuracy of
18 our model is comparable to the accuracy of the DDM, with the non-linear model performing

10 better than the drift-diffusion model for an equivalent complexity. To give better intuition on the
20 meaning of nl-DDM parameters, we compare the DDM and the nl-DDM through correlation

21 analysis. This paper provides evidence of the functioning of our model as an extension of the

22 DDM. Our model paves the way toward more accurately analyzing single-trial dynamics for

23 perceptual decisions and accounts for pre- and post-stimulus influences.

24

s Introduction

26 Perceptual decision-making has been studied extensively from behavioral (Ratcliff and McKoon,
27 2008; Ratcliff and Smith, 2004), neurophysiological (Gold and Shadlen, 2001), and computational
2s  (Gold and Shadlen, 2007) perspectives, as it is omnipresent in daily activities. When decisions are
20 timed, evidence accumulation models describe human and animal behavior well. They assume
30 that decisions are made when enough sensory evidence from the external world has been gath-
;1 ered. Typically, evidence is accumulated at a given rate (or drift) until reaching a decision boundary,
32 triggering an action.

33 Among them, the Drift-Diffusion Model (DDM) (Ratcliff, 1978) suggests that evidence is accumu-
sa lated linearly, that is, with a constant drift. The accumulation is additionally subject to Gaussian
s noise; hence the decision state can be seen as a particle following a Brownian motion. The popular-
3¢ ity of this modelyields from its intuitive and straightforward formalism and its good fit to behavioral
37 (Ratcliff and McKoon, 2008) and neurophysiological data (Gold and Shadlen, 2001). It has also been
s shown that the DDM formalizes the optimal strategy for decision-making under time constraints
3o (Bogacz et al., 2006; Moehlis et al., 2004). Interestingly, other forms of decision models such as the
20 Leaky-Competing Accumulator model (Usher and McClelland, 2001), and even attractor models
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a1 (Wang, 2002; Ditterich et al., 2003) can be formulated equivalently to the DDM or are similar to it
a2 under certain performance constraints (Bogacz et al., 2006).

a3 The initial version of the DDM accounts for global statistics of the behavior. More specifically, it
a2 describes the Response Times (RT) distribution and the error rate. A major limitation of this model
+s IS that this simple form does not take into account inter-trial variability. However, behavioral stud-
s ies have shown sequential effects (Abrahamyan et al., 2016, for example) which impact prior ex-
«z pectations on the decisions and the subsequent decision process (Glaze et al., 2015). Traditionally,
4s  prior expectations on the decision are modelled through the starting point, or bias, of the accu-
s mulation process (Ratcliff, 1978). Recent accounts have also suggested that choice history affects
so subsequent drift rates (Urai et al., 2019). Taken together, these studies suggest that these param-
s1  eters could be intertwined and that they can vary throughout an experiment, as participants are
s2 more experienced in the task. To address this issue, (Ratcliff and Rouder, 1998, 2000) proposed
s3 an extended form of the DDM, which uses a uniform distribution of starting points and a Gaus-
s« Sian distribution of drifts without explicit dependence between them. However, this only provides
ss global statistics about perceptual responses, without insight at the single-trial level or on inter-trial
se interactions. Moreover, the linear dynamics do not describe the variation of the dynamics at the
sz scale of the single decision, which seems inconsistent with the aforementioned physiological and
ss behavioral (empirical) observations.

50 Linear evidence accumulation also assumes that evidence accumulation is independent of the
e evidence that has already been gathered, or of the time that passes. While some models take into
e1 account the effect of time on the decision parameters (Cisek et al., 2009), or dynamics close to the
ez threshold (Busemeyer and Townsend, 1993; Schurger, 2018), no model to our knowledge allows
ez for an account of initial dynamics. For example, ambiguous stimuli could yield flat initial drifts.
ea Thisisin part translated into non-decision time, as it is assumed to be a time during which sensory
es evidence is processed in the brain without contributing to the decision process.

66 In addition, the DDM also assumes that the response only occurs after a decision has been
ez Mmade. Mathematically speaking, it means that the decision variable has reached a decision bound-
es ary. However, paradigms that show spontaneous change of mind indicate that responses can occur
eo before the final decision has been reached and that a decision can change under ambiguous stim-
7o uli after enough time (Pleskac and Busemeyer, 2010). This can only occur if decision and motor
=1 processes overlap. The DDM, however, assumes that they happen sequentially. In addition, the
=2 DDM would explain spontaneous change of mind by the presence of noise in the system. In real-
73 ity, error-correcting behaviors (Rabbitt, 1966) indicate the existence of more explainable processes
72 underlying these changes.

5 Previous attempts at single-trial fitting of decisions have been made through attractor models
7 (Wang, 2002; Wong and Wang, 2006; Wong et al., 2007), and it has also been shown, using some
7z simplifying assumptions, that these models can be put in the form of a generalized Drift-Diffusion
»s Model (Shinn et al., 2020b), that is in that case, a Langevin equation with a non-linear drift (Roxin
7 and Ledberg, 2008). It has been shown that this model can be reduced to the DDM in certain cases
so (Bogacz et al., 2006), but that it dynamics allows for transitions between decision states under
sx fluctuating stimuli (Prat-Ortega et al., 2021). However, the link between each parameter and the
sz dynamics of the model is complicated to interpret. Moreover, the reduction proposed assumes
sz a reflection symmetry of the network to obtain the given form. This, however, seems limiting in
sa particular in the case where each perceptual decision recruits different sensory modalities.

85 Here we propose a straightforward one-dimensional non-linear form to address these limita-
ss tions: the non-linear Drift-Diffusion Model (nl-DDM). It recreates double-well-like dynamics from
ez an evidence-accumulation perspective, without assuming reflection symmetry. We show its valid-
ss ity and compare its fitting performances to these of the DDM. We first provide a formal description
se Of the nl-DDM, relating it to the DDM. Then, we fit them on two human behavior datasets: one that
o0 Was already published (Wagenmakers et al., 2008) where participants classified words into two
o1 Categories (existing vs. invented), and one that we collected ourselves that consists of a classifica-
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o2 tion task recruiting two different sensory modalities. Last, we compared the parameters of both
ez models to provide an empirical explanation of the effect of each of the nl-DDM parameters with
o« analogies on the DDM by showing correlation on fitted parameters on the same data. We show
os thatit fits data equally well as the DDM while providing drift variability like the extended DDM. The
os dependency of the drift rate on the current decision state provides a framework for more refined
oz analyses of the decision process. We provide open-source code that is directly pluggable onto the
os PyDDM toolbox (Shinn et al., 2020b) for reproducibility and easy use of our model.

» Results

w0 In this paper we introduce a model, the non-linear Drift-Diffusion Model (nl-DDM), that, similarly
101 to the DDM, can be formulated through a Langevin equation. This model takes the form dx =
102 —k(x—a)(x—z)(x+a)dt+ N (t), where the decision variable follows an infinitesimal change of dx during
103 the time interval dt. More details on the formalism of this model can be found in the Methods
104 Section of this paper.

108 We show that the nl-DDM performs better than the DDM in terms of fitting accuracy and theo-
16 retical predictions on behavior. To do that, we fitted both models on two datasets: a classification
107 task we designed and a dataset published previously in Wagenmakers et al. (2008). To provide
s More insight into the empirical meaning of the parameters beyond the formalism, we performed
100 correlation analyses between nl-DDM and DDM parameters. The link between models is hence
10 explicitly exposed.

112 nI-DDM formalism

112 Our goal was to propose a simple model in which trajectories are naturally attracted to a boundary.
13 Placing ourselves in the context of two-alternative (forced) choice paradigms, our model needed
1a two attractive states. In one dimension, this forces the existence of an unstable fixed point between
s the two stable fixed points making the stable states (Strogatz, 2015). These models are widely used
16 in classical and quantum mechanics (Jelic and Marsiglio, 2012). For a simple analogy, we imagine
117 that the decision variable is a ball traveling on valleys and hills. The stable points represent points
11 downhill from which the decision variable cannot escape without a substantial uphill input. Two
10 distinct valleys can exist only if there is a hill separating them. This profile is called a double-well
120 potential profile.

121 Therefore, the model we propose follows a Langevin equation, as the DDM does, but this time
122 the drift varies with the state of the decision instead of being constant. The drift equation can be
123 written in the following form:

dx = —k(x + a)(x — z)(x — @)dt + N(t), ™

124 where x represents the decision variable and dx its variation in infinitesimal time dt, as previ-
125 ously seen on the DDM (Equation (6)). N() is a Gaussian white noise term, characterized in the
126 Same way as in the DDM and relates similarly to the accuracy. The term —k(x + a)(x — z)(x — a)
12z represents the drift, and depends itself on several parameters. The parameter k can be seen as a
128 time constant of the system, and a and z determine where the attractors, or decision boundaries,
120 lie. +a represent the two attractive states, and we constraint z to the interval ] — a, a[ to obtain
130 three distinct fixed points to the differential equation with z the unstable fixed point. In this case,
131 the drift corresponds to the deterministic part of the equation, and is dependent on the current
132 decision state. A summary of the parameters of the nl-DDM is given in Figure 1, which can be
133 compared to the description of the DDM we provided in Figure 10. In the following, we provide a
13a formal explanation of the meaning of each parameter.

135 The interpretation of k as a time constant is straightforward from the equation: as k increases,
136 a decision is reached faster for any given set of parameters. This is the closest parameter to the
137 constant drift v in the DDM.
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Figure 1. Description of the Non-linear Drift-Diffusion Model (nl-DDM). The decision state is represented by a
decision variable x traveling from a starting point (for example, drawn from a uniform distribution, centered
around x, and of width 2s,. It is represented as "SP" on the figure) to a boundary ("Correct boundary" or
"Incorrect boundary") under the influence of a drift. Here, the drift depends on the current state of the
decision. Depending on the position of x, relative to z, the drift will hence have different shapes. The
trajectory is also impacted by white noise so that real trajectories are similar to the thin blue lines. From the
stimulus onset, the decision process is delayed by a certain non-decision time (T,,;). Over an ensemble of
decisions, probability density functions of correct and error response times can be created, as displayed here.

4 of 26


https://doi.org/10.1101/2022.07.18.498922
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.18.498922; this version posted July 18, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

138 In order to provide an intuition for the other parameters, we consider first the potential function
130 derived from the drift term (Figure 2). It is a function V (x) defined from a drift v(x) such that:
aV
v(x) = - (2)
X
140 In our case, we therefore have:

2
Vix)=k (ix4 — §x3 — %xz + azzx> . (3)

The decision variable can be seen as a ball traveling along the potential function.
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Figure 2. Parameter manipulation on the nl-DDM. A, B, C: Potential functions of the nl-DDM for different z (A.
Shifting z changes the relative attractiveness of each boundary, a (B. Shifting a changes the accuracy and the
speed of decisions), and k (C. Shifting k changes the speed of decisions). The parameters are always the same
for the solid black curve: a =1,k = 1,z = 0, allowing for comparison of the effects of the different parameters.
D: Trajectories in the absence of noise for different values of x;, under a =1,k = 1,z = 0. It becomes clear that
the drift range for each trajectory depends on the starting point. The trajectory approach the boundary
asymptotically, and will eventually be crossed since noise is omnipresent.

142 From Figure 2, we can see that there are two potential sinks at a and —a, as well as a source at z,
13 Which derive directly from the topology of the system. Therefore, +a are the decision boundaries
s and controls along with z the speed-accuracy trade-off. Taking again a as the boundary for correct
145 responses and —a that for incorrect ones, we can see that moving z closer to —a makes the —a well
16 Shallower and the well in a deeper (Figure 2A). In other words, the correct decision becomes more
17 attractive than the incorrect one. The gradient becoming more positive on the interval [z, a], the
s trajectories starting on that interval also reach the correct decision faster.

140 By reducing the boundary separation, that is, reducing a, both wells become shallower, making
150 decisions slower (Figure 2B). However, for a given noise scale, this also means that any perturbation
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152 in the wrong direction is easier to correct because a small perturbation in the other direction can
152 counterbalance that effect. This is not as much the case when the wells are deep because then the
13 decision variable is driven rapidly to the stable fixed point, making perturbations less reversible.
154 We can also observe the impact of k on the potential function in Figure 2C. Similar to the DDM,
155 fitting of response times can be obtained by solving the Fokker-Planck equation corresponding to
156 the Langevin equation defined above (Shinn et al., 2020b). Then, a non-decision time T,, comes
17 into play in order to shift the resulting distribution to account for biological transmission delays.
158 To better understand the parameters of our model in comparison to the DDM, it can be useful
150 to define a mean drift rate across all trajectories. Since the deterministic trajectories only approach
10 the decision boundary asymptotically, we define an estimate of the mean drift rate. Considering
12 that the maximum drift for each trajectory causes the largest variation in decision value, we can
12 approximate the mean drift of each trajectory by its maximum, and subsequently average over all
163 the trajectories to get an estimate of the mean drift. Put in equations, we obtain:

. z
V= 1 / —k(xo - a)(x() + a)(x() - Z)dx() + z ] / Vmindxo
X_

x_+a/_, - X_

1 X* 1 ‘ (4)
d —k(xy — —z)d
+ o /Z VyaxdXg + P /); (xg — a)(xg + a)(xy — 2)dx,

+ +

162 The noise term does not intervene as we assumed a Gaussian white noise. We observe a disconti-
165 Nuity in z, due to the presence of an unstable fixed point at that location. Trajectories determined
1.6 Dy x, = z will finish in either well under the influence of noise, and the mean of the noise being
167 zero, the two scenarios are equally likely. Consequently, the mean drift for these trajectories is the
s average between v, and v, with v, (respectively v, ) is the maximum negative (respectively
160 POsitive) drift rate achievable by the system. The graph of the max drift as a function of starting
7o pointis given in Figure 3.
71 From Figures 2 and 3 we can see that z and a impact the mean drift (see also Figure 4). It
172 becomes clear that the parameter z has a larger effect on the mean drift than the parameter a.
173 Thatis explained by the fact that z determines which proportion of the trajectories is attracted to
17a the positive boundary for a given distribution of starting points. In contrast, a determines the scale
175 Of the drift.
176 This model is similar to the Double-Well Model (DWM), which emerges from attractor network
17z models (Prat-Ortega et al., 2021; Roxin and Ledberg, 2008). The potential profile of the DWM indeed
i7s  takes the form:

V(x) = —ux — ax> + x*. (5)

17e  Comparing this equation to Equation (3), we observe a term in x* that is absent from the DWM,
180 because of the reflection symmetry assumption made in the DWM (Strogatz, 2015; Roxin and Led-
;1 berg, 2008). However, when z = 0 and u = 0, we observe the equivalence of the systems by having:

k=4

@ =a/2
182 This equivalence is coherent with the interpretation of z and u as the impact of the stimulus
183 on the decision, and shows that in the absence of a stimulus, the two models follow the same

1sa  behavior. Because the nl-DDM is not assuming reflection symmetry, the presence of a stimulus
185 impacts the trajectories generated by the two models in different ways.

1.s Behavioral results

1s7  For decision-making analysis, it is helpful to obtain each participant’s response times and decision
188 accuracy, particularly for decision model fitting.
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Figure 3. Maximum drift as a function of starting point

180 We used two datasets in this paper. The section Data collection and processing describes these
100 datasets in detail. They both consist of classification tasks performed by human participants. One
101 Of them is a dataset collected by Wagenmakers et al. (2008), in which participants had to assess
102 Whether a word presented on screen existed or not. The second one is a dataset not presented be-
103 fore, in which participants were shown visual stimuli on screen and had to classify them according
104 to their type (either "face" or "number").

195 To ensure the correctness of both datasets in terms of behavioral measurements, we describe
106 here the validation conducted on our dataset. Analyses of the Wagenmakers' dataset are available
17 in Wagenmakers et al. (2008) and are not discussed further here.

108 First, we ruled out methodological artifacts, as we aimed at providing equiprobable stimuli for
100 each participant. On average, participants were shown 49.82 + 2.42% of "number+sound" stim-
200 Uli, showing the quasi equiprobability of each stimulus. We then tested whether the experiment
200 we designed led to similar responses across all participants by performing mixed-model ANOVAs
202 0N their response times and response accuracy for both stimulus-response mapping (between-
203 Subject factor) and stimuli (within-subject factor). Across all participants and stimulus types, the
204 Mean response time is 535 + 61 ms (mean + standard deviation, N = 25), with an accuracy of
205 98.59 + 0.95%. For the "face" stimulus, participants responded after 539 + 56 ms with an average
200 accuracy of 98.51 + 1.17%. Participants responded to the "number + sound" stimulus after 531 + 69
207 MS 0N average with an accuracy of 98.68 +£0.94%. The difference in performance between the types
208 Of stimuli is not significant in terms of accuracy (Table 1) nor in terms of response times (Table 2).
200 In the "face is left button" stimulus-response mapping, where participants were instructed
210 to click left upon face stimulus presentation and right when they were presented with a num-
211 ber+sound stimulus, participants responded on average within 531 + 74 ms with an accuracy of
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Figure 4. Effect of z and a on the mean drift, estimated as the mean of the maximum drift for each trajectory
determined by its starting point. We formulated the nl-DDM drift under the form dx = —k(x — a)(x + a)(x — az),
having —1 < z < 1, without loss of generality. The mean drift is defined as in Equation (4), which depends both
on z and a. The darker line represents the variation of the mean drift thus defined as a function of z, while the
pale blue curve is the variation of the mean drift as a function of a. Since a is strictly positive, we also
represented the absolute value of the mean drift (dotted line). That allows for comparing the magnitude
difference of the mean drift rate when z or a vary. We see that varying z changes the mean drift rate more
strongly than similar variations of « at a given value of z.
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22 98.48 + 1.12% (N = 15), whereas participants who underwent the "face is right button" stimulus-

213 response mapping, participants (N = 10) responded within 541 + 30 ms and an accuracy of 98.77 +

22 0.60%. The effect of the stimulus-response mapping on accuracy and response time was not sig-

215 nificant (Tables 3 and 4). We do note however a marginal interaction effect between stimulus-

216 response mapping and stimulus type on the accuracy of participants (p = 0.052, Table 1).

217 These results show the uniformity of participant responses across mappings and stimuli. All
participants, mappings and stimuli were considered together in the subsequent analyses.

Table 1. Within Subjects Effects on Accuracy

Cases Sum of Squares df Mean Square F p
Stimulus 1.249 x 1073 1 1.249x 10  0.299 0.590
Stimulus * S-R mapping 1.758 x 10~ 1 1.758 x 10™* 4202  0.052
Residuals 9.623x 107* 23 4.184 x 1073

218

Table 2. Within Subjects Effects on Response Times

Cases Sum of Squares df Mean Square F p
Stimulus 1201.903 1 1201.903 2.446 0.132
Stimulus * S-R mapping 370.446 1 370446  0.754 0394
Residuals 11303.230 23 491.445

Table 3. Between Subjects Effects on Accuracy

Cases Sum of Squares df Mean Square F p
S-R mapping 8.608 x 1073 1 8.608x 107  0.447 0.510
Residuals 0.004 23 1.926 x 10~

210 Fitting on data

220 The fitting of parameters was performed using the PyDDM (Shinn et al., 2020b) Python toolbox for
221 both the nl-DDM and the DDM, minimizing the negative log-likelihood function. As participants
222 in our experiment were shown two types of stimuli, we fitted a model per participant for each
223 model type, resulting in 25 DDM and 25 nl-DDM fitted. In addition, 17 x 2 models of each type
224 Were computed for the Wagenmakers dataset (17 participants x 2 conditions = 34 models). Since
225 the two datasets did not use the same number of parameters for each model, we performed a
226 pairwise comparison of loss values over the models. To remove the possible effect of outliers, for
227 which fitting would have failed, we removed the models for which the loss values were above the
226 mean loss + standard deviation over all models. This resulted in the rejection of 11 participants x
220 conditions (7/17 rejected in the Wagenmakers accuracy condition (41%), 2/17 in the Wagenmakers
230 speed condition (12%), and 2/25 in our dataset (8%)), so 81% of all fitted models were kept.

-1 Comparison of loss values

232 Thefirst metric we used to compare the models is the loss value after fitting. Fitting is done by min-
233 imizing the negative log-likelihood, which gives information on how close the curve of theoretical
234 response times is to empirical response times histograms. For a measure that takes into considera-
235 tion the number of parameters and samples, we also computed the Bayesian Information Criterion
236 (BIC). All the test results on fitting performance are summarized in Table 5.
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Table 4. Between Subjects Effects on Response Times

Cases Sum of Squares df Mean Square F p
S-R mapping 1438.081 1 1438.081 0.179 0.676
Residuals 184867.754 23 8037.728
-340
410 -
[ 1
LogLoss (DDM) LogLoss (nIDDM)

Figure 5. Comparison of fitting loss values between the DDM and the nl-DDM. Error bars show the 95%
confidence interval on the mean values.

237 The comparison of loss values between model types (Figure 5) shows that the nl-DDM fits data
238 significantly better than the DDM for the same number of parameters. Indeed, the loss values are
230 significantly smaller in the nl-DDM compared to the DDM, with a moderate effect size (right-tailed
220 paired r—test, 1(47) = 2.18,t = 2.241,p = 0.015,d = 0.324, N = 48).

241 We computed the Bayesian Information Criterion (BIC) for each model to establish a compar-
222 ison of model performance that takes into account the sample size and number of parameters
223 necessary for each model. This is indeed necessary when comparing performance across datasets,
2a¢  Since the number of conditions, and hence of parameters needed, is different. We observed that
245 the nl-DDM fitted response time data significantly better than the DDM even when accounting for
2a6  the number of parameters (Figure 6, #(47) = 2.18,1 = 2.207, p = 0.016,d = 0.319).

27 Speed-accuracy trade-off

2as  We computed the behavior prediction of each model type to ensure that the results are consistent
220 With empirical observations. For that, we used a metric described by Roitman and Shadlen (2002),
250 Whereby the loss is computed as the sum of the mean squared error on mean response time and
251 the mean squared error on the predicted accuracy over all conditions. We observe that there is no

-640

-780 -

I 1
BIC (DDM) BIC (nIDDM)

Figure 6. Comparison of the Bayesian Information Criterion (BIC) between the DDM and the nl-DDM. Error
bars show the 95% confidence interval on the mean values.
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Table 5. Left-tailed paired samples ¢-test on the quality of the fit between the nl-DDM and the DDM over all
fitted models (N = 52,d f = 51,#(51) = 1.675285). Significant p-values are marked with *.

Measure 1 Measure 2 t df p Cohen’sd
LoglLoss (DDM) - LogLoss (nIDDM) 2.241 47 0.015 0.324
BIC (DDM) - BIC (nIDDM) 2207 47 0.016 0.319
Performance Loss (DDM) - Performance Loss (nIDDM) —0.357 47 0.639 —0.052

252 significant difference in terms of behavioral prediction capacity between the DDM and the nl-DDM
253 (see Performance Loss, Table 5, and Figure 7).

0.013
0.006 - —
Perf./Loss Perf! Loss
(DDM) (nIDDM)

Figure 7. Comparison of loss computed on behavioral performance between the DDM and the nl-DDM. Error
bars show the 95% confidence interval on the mean values.

s« Comparison of parameters

25 Although we fit the parameters separately for each stimulus type, we merge all the results to build
256 relations between the parameters of the DDM and the parameters of the nl-DDM. Of the resulting
257 fitted models, we rejected the participants that were rejected in our previous analysis (participants
28 6 and 11). In addition, participant 22 was rejected due to a fitted boundary outside of the other
250 models’' range. Hence, 44 models were taken into account.

260 Given the mathematical formalism described above, we expect to find a negative correlation
261 between the decision boundaries of the two models. Indeed, while an increase in the boundary
262 in the DDM results in increased accuracy and response times, a similar increase in the nl-DDM re-
263 sults in decreased accuracy and response times. Our previous explanation of model parameters
26« Showed that both ¢ and k in the nl-DDM impacted the decision boundaries. Therefore, the bound-
2s  ary of the DDM could be negatively correlated to either of these parameters. We also expect the
266 parameter z of the nl-DDM to be correlated negatively with the drift in the DDM. The reason for
267 this can be derived from Figures 2 and 3: if we shift z closer to 0, the negative and positive plateaus
26s  Of Figure 3 will tend to be at the same level in absolute value. Averaging them, it means that the
260 Mean maximum drift will decrease towards zero as z increases closer to the middle of the two
270 boundaries +a. In other words, increasing z will decrease the drift, hence the negative correlation.
271 The correlation matrix of the nl-DDM and DDM parameters across all models is given in Figure
272 8. Note that we only took into account our dataset for parameter comparison, and while fitting the
27z models to this set, we assumed that the starting points followed a uniform distribution spanning
274 the entire decision interval [—a, a] for the nl-DDM, while we took a shorter interval for the DDM to
275 avoid border effects. This difference in assumptions for the starting point distribution was com-
276 pensated by fitting a non-decision time in the nl-DDM and taking the same value when fitting the
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27z DDM.

278 We first empirically show the relation between the parameters within the nl-DDM. We observe
270 @ strong negative correlation between a the boundary and k the time constant. This corresponds
200 to their similar effect on the attractiveness of the correct response. Increasing either will make
2s1  the decision more attractive, so to keep the same attractiveness of the correct response, if one in-
282 Creases, the other should decrease. In our data, since the accuracy is similar across all participants
23 and conditions, and the noise term is kept constant, these two terms are strongly correlated. Note
284 that the effect of each parameter is still different, as shown on Figure 2B and C. While increasing k
25 deepens both wells, increasing a will not only deepen the wells but also pull them apart. Effectively,
286 the relation between a and k is not linear, as seen on Figure 9.

287 We also observed the known relations within DDM parameters in the correlation matrix (Figure
288 8). The starting point distribution, parameterized by its center x, and half-width s_, correlates to the
280 boundary b and the drift v. It could be expected, as the same response time for correct responses
200 Will necessitate faster integration of evidence (that is, accumulation to a bigger drift) if the starting
201 point is further (smaller). Similarly, as the boundaries get stretched, the starting point distribu-
202 tion also needs to become wider for similar response time shapes, hence the positive correlation
203 between b ands,.

208 Concerning the cross-model comparison, we observe that k is negatively correlated to the DDM
20s boundary b and positively to x,. The link with the decision boundary is expected, as k in the nl-
206 DDM regulates the depth of the decision wells, that is, the time necessary to reach each decision.
207 More specifically, increasing k makes the wells more attractive and hence results in fast decisions.
20¢ Conversely, increasing the DDM boundary will result in longer response times as more time will be
200 Needed for the decision variable to reach the boundary, given the linear drift.

300 We also observe a significant negative correlation between the parameter z of the nl-DDM and
so1  thedrift parameter of the DDM v. This relationship was also expected, as increasing the drift vin the
302 DDM results in faster correct decisions. Mirroring this effect, z regulates the relative attractiveness
303 Of each decision well. As z becomes more negative, the correct decision (corresponding to decision
304 boundary +a) becomes more attractive, and hence correct decisions are made faster.

305 Last, the position of the stable fixed-points, parameterized by g, is positively correlated to the
306  DDM drift v. We have described earlier that v was also related to z. It therefore seems that the
307 drift is related to these two parameters. A formal analysis of the nl-DDM (see Methods) provides
308 the following explanation: all three parameters g, k, and z, impact the speed at which the decision
300 boundary is reached. While z controls the relative attractiveness of the boundaries, both a and k
310 modulate their absolute attractiveness. An increase in either of them will result in faster response
s times for both correct and incorrect responses. In the DDM, two parameters impact the speed
;12 Of responses: v and the boundary b. Similarly, k should be more related to the decision boundary
313 given the previous correlation, and a to the drift. Given the correlation between a and v, we explain
;14 the observed correlation between a and x, due to the correlation between v and x,,.

315 We observed more precisely the intertwining of parameters through Principal Component Anal-
316 Ysis, keeping only the components corresponding to eigenvalues of the correlation matrix greater
31z than 1. For clarity, we displayed for each principal component only the parameters with a loading
s1s  iN absolute value greater than 0.4, that is, parameters sharing at least 16% of variance with the
310 component. We thus obtained 3 principal components, accounting for 82,2% of the total variance,
320 summarized in Table 6. The first principal component (PC1) accounts for 34.4% of the variance. We
321 interpret it as the decision attractiveness, given that a and k share more than 90% of their variance
322 with this component. The second component (PC2) is loaded mainly by v and z, which relate to
323 the decision speed. The fact that x, shares its variance between both PC1 and PC2 is consistent
324 With the fact that decision bias x, contributes both to the decision attractiveness and to its speed.
325 Finally, the third component (PC3) is strongly loaded (> 80% of shared variance) by s, and b, sug-
326 gesting that it reflects the amount of information that needs to be integrated in order to make a
327 decision, or the decision caution (Ratcliff and McKoon, 2008). Indeed, the greater the uncertainty
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 gall -0.832***

z- 0.155 -0.158

b 0232 -0.346* -0.15

v+ 0.332* -0.053 -0.384* 0.339*

x0 — 0.414** 0.205 -0.268

sz — -0.131 0.145 -0.189 0.356* 0.129
[ I [ T T T 1
> s v © 2 RN &

Figure 8. Correlation matrix of all parameters. a, k and z are parameters of the nl-DDM (marked in a circular
patch), while b, v, x, and s, are parameters of the DDM. Pearson correlation coefficients were computed over
N = 44 observations.

* 1 p<0.05%%: p<0.01,*** : p<0.001.
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Figure 9. Correlation plots of DDM and nl-DDM parameters. The correlations were computed as Pearson’s

correlation coefficient.
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328 s, associated with decision bias x,, the greater the amount of information needed to reach a deci-

320 Sion. In this case, PC3 would reflect this decision caution: the greater the uncertainty s, associated

330 with decision bias x,, the more cautious one must be, and in turn greater amounts of evidence one
needs to process.

Table 6. Component Loadings

PC1 PC2  PC3 Uniqueness

a —0.942 0.104
k 0912 0.141
Xy 0.649 0.626 0.181
v —0.795 0.227
z 0.780 0.320
s, 0.907 0.111
b 0.847 0.166

Variance explained 0.344 0.242  0.236

2 Discussion

333 We have presented in this paper a non-linear model of decision-making. This model is a form of
3¢ generalized drift-diffusion model (Shinn et al., 2020b), and provides a framework in which individ-
335 Ual trajectories of the decision variable can have different shapes under the same global parame-
336 ters (Figure 2D). Even without considering the single-trial fitting capability, we have shown that this
337 model predicts behavioral data equally well as the DDM, with a slight but significant improvement
s3e  iN the goodness of fit. From the formalism we have described, it becomes clear that inter-trial
330 variability in drift emerges from the dynamics of the system proposed, offering the possibility for
a0 further single-trial analyses and modelling.

341 The interpretation of the nl-DDM parameters may seem counter-intuitive at first, in particular
3.2 when considering that decisions are made faster when the boundaries are further apart. Indeed,
a3 We observe the opposite effect in the DDM. However, our correlation analysis provided insight
3aa  iNto bridging the meaning of nl-DDM parameters to DDM parameters. The difference is thatin the
s DDM, the gradient of the drift is constant, whereas it varies in decision space with the nl-DDM. By
e pulling the boundaries further apart, we effectively reduce the impact of one attractor on the other,
sz making each of them more attractive. Therefore, a decision can be reached faster, at the price of
sas  accuracy. Similarly, increasing the drift in the DDM is equivalent to shifting the unstable fixed
a0 point towards the negative boundary in the nl-DDM, as they both result in fast correct responses.
3s0 However, it must be noted that these parameters are not entirely equivalent as we did not find a
;1 perfect mapping between them, meaning that the nl-DDM is conceptually different from the DDM.
352 We have shown that, while similar to the DWM (Prat-Ortega et al., 2021) derived from attractor
353 models (Roxin and Ledberg, 2008), the nl-DDM is equivalent to it only in the absence of input. A
s« question that remains open is that of the mechanism underlying this equation. From the reduc-
35 tion computed in the paper by Roxin and Ledberg (2008), it would seem that a network of three
3ss  populations could produce the dynamics we have described. However, the main assumption of
57 the reduction was that the network was invariant through reflection. We argue that the mecha-
sss  Nisms described by the nl-DDM are in fact similar to these of the DWM, but offer a broader range
350 Of application beyond the case of symmetrical models.

360 Aquestion that arises from our analyses is the different assumptions made on the starting point.
3e1 We took in both cases a uniform distribution, but while fitting our dataset, we assumed that this
32 distribution spanned the whole decision space for the nl-DDM, while it was an interval [x, —s,, x, +
s 5,] C [—b,b] for the DDM, with +b the decision boundaries of the DDM. By doing so, we wanted
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3sa  to show that with fewer degrees of freedom, our model could fit behavioral data better than the
3es  DDM. The DDM assumes a global bias towards either boundary transcribed in the position of the
s Starting point distribution within the decision interval. Variability in the starting point enables faster
ez error responses (Ratcliff and Rouder, 1998). In our model, that could also be achieved by including
s Starting point variability similarly to the DDM, that is by defining an interval [x, —s,, x,+s,] C [—a, al,
3e0  With +a the decision boundaries of the nl-DDM. It is the strategy that we have implemented while
370 fitting the Wagenmakers' dataset. However, this would have been an issue when comparing the
s two models as the starting point distributions fitted by the DDM and the nl-DDM did not necessarily
72 match. The most striking consequence of such a mismatch is the difference between the non-
373 decision times of the two models. Indeed, the non-decision time of the nl-DDM would be close to
za  the minimum response time displayed by a participant. At the same time, it would be smaller in the
375 DDM, as the displacement of the decision variable from the bias to either decision boundary in the
376 absence of noise is not instantaneous. To minimize this effect, we have also fitted the variability of
377 the non-decision time for the Wagenmakers' dataset, although introducing such variability in one
s7¢  model and not the other made the two models less comparable. One could also argue that we
370 could have chosen a uniform starting point distribution for both models. The problem with this
ss0  solution is that due to the linearity of the drift in the DDM, the resulting response time distributions
s would have had sharp edges, which are a direct consequence of starting close to the decision
.2 boundary. We thus fitted x, and s, for the DDM and not for the nl-DDM when comparing the two
ss3  models. That is, we fitted the starting point distribution for the DDM, but not for the nl-DDM.

384 We argue that drift and starting point variability are not independent, which is transcribed in the
s System’s dynamics we created. EEG research has shown a matching between pre-stimulus activity
sss and confidence ratings in human participants (Wostmann et al., 2019; Samaha et al., 2017). Pre-
37 stimulus states are modeled by the starting point and its variability, and in the DDM the drift relates
s to the quality of the stimulus being integrated (Gold and Shadlen, 2007), with more ambiguous
30 Stimuli corresponding to lower drift rates. Translated to the single-trial level, drift variability relates
300 to the variation of how well the brain perceives and processes the stimulus (Ratcliff and McKoon,
se1 2008). In our model, the starting point directly impacts the evidence accumulation, allowing for
302 @ more uniform theory of decision-making than the DDM that includes explicit co-dependency of
303 Certain parameters. Some general forms of the DDM include a variance of the drift, which we have
sea Never considered here. In the current nl-DDM, we have not implemented such a possibility, as we
3o assumed that the inter-trial variability of the drift simply emerged from the variability of the starting
96 point. In neurophysiological terms, we assumed that the pre-stimulus arousal and expectations
307 on the stimulus led to differences in the rate of evidence accumulation. This is supported by past
38 Observations, according to which pre-stimulus brain activation impact response times (Petro et al.,
300 2019; Chen et al., 2020). Pre-stimulus brain activity also modifies perceptual (van Dijk et al., 2008)
a0 and pain (Taesler and Rose, 2016) thresholds. Therefore, depending on the pre-stimulus activity,
s01 decisions can be made, even in the absence of actual evidence (Barik et al., 2019; Wostmann et al.,
a2 2019), or under ambiguous evidence (Rassi et al., 2019; Railo et al., 2021). Along the same lines,
203 Kloosterman et al. (2019) have shown that biases were implemented through local changes in
a4 accumulation rate, which supports the intertwining of accumulation rate and pre-stimulus states.
s0s  However, (Benwell et al., 2021; Samaha et al., 2017; lemi et al., 2017; Lange et al., 2013) argue that
206 pre-stimulus brain states should only affect the decision criterion, not how well participants could
a7 perceive the stimuli. Translating the signal-detection theory to the evidence-accumulation scheme
208 (Ratcliff and Rouder, 2000), it means that pre-stimulus states should only be changing the decision
a9 boundary, or equivalently, changing the starting point, and not the drift rate. For example, Samaha
210 et al. (2017) found that pre-stimulus alpha power did not impact the accuracy of visual evidence
a1 accumulated, but only the confidence in the decision. Wostmann et al. (2019) found similar results
212 with the auditory modality. Although these observations seem to contradict our assumption that
a1z the starting point should impact the evidence-accumulation process, both phenomena could co-
a2 exist, asindeed more extreme starting points are more attracted to the closer attractor. This results
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a5 in fast and confident observations, although little evidence has been accumulated (we would be
a1 located at a plateau in our model), that is, even if the stimulus was not well perceived.

a17 The dynamics that we propose here are not the sole product of mathematical formalism and
a1 constraints, but have deep roots in empirical observations made in neurophysiological studies.
210 More specifically, three phases can be identified in the decision trajectories: an initial inertia stage,
a20 a roughly linear evidence accumulation stage, and a plateau stage. The initial inertia relates di-
a1 rectly to the brain activation needed to integrate sensory evidence. Petro et al. (2019) and Chen
422 et al. (2020) have shown in human EEG studies that depending on the brain activity prior to stim-
423 ulus presentation changed the speed of responses. More specifically, they showed that the more
s24 pre-activated the required sensory area, the faster the decision. The nl-DDM mimics this behavior
a2s  at the single-trial level: for trials starting close to the unstable fixed-point (that is, further from the
a26 correctdecision well), the trajectories start with a plateau-like stage, whereby little evidence is accu-
a2z mulated because the brain would need to process the stimulus more intensively in order to extract
«2s information from it, before integrating evidence faster. This initial inertia is circumvented by shift-
a20 ing the starting point closer to the decision well, resulting in faster and more accurate responses.
a3 Theinitialinertia in the DDM is referred to as the non-decision time and encompasses both sensory
a:1 processing and motor planning and execution processes. The nl-DDM assumes therefore that part
a2 Of these processes participate in the decision process, which goes beyond the conceptualization
433 Of decision-making as a sequential process of sensation, perception and motion.

a3a Arecentreview from Evans and Wagenmakers (2020) shows the limitations of existing evidence-
a3 accumulation models. We try to address several of them with the present model, including the
436 possibility for analyses beyond the global description of response times and the formulation of
.37 initial and final dynamic changes during the decision process. In particular, our formal description
438 has shown that different shapes of decision trajectories can co-exist within the same framework,
230 not solely because of noise, but because of meaningful variability. We expect this model to be
a0 further analyzed and used to gain insight into the single-trial dynamics of decisions.

an1 The present work did not include trials where the response is missing, which sometimes occur
a2 When participants need more time to decide. However, it could easily be implemented with a
223 timeout. Typically, with a stronger constraint on response time in the experimental paradigm, it is
aaa  likely that participants do not have time to give a response. One could imagine that the decision
a5 has not settled in either well at timeout, and this parameter could be taken into account in future
a6 Works with different experimental paradigms.

aa7 The current study only addressed the case where the input was presented at the beginning of
aas  thetrial and affected the decision in a constant fashion. We could also imagine more dynamic cases,
a0 Where the input is processed over a finite amount of time and participants accumulate evidence
a0 solely during stimulus presentation, as has been done in past DDM analyses (Huk and Shadlen,
ss1 2005; Shinn et al.,, 2020a). In non-stationary contexts, the input can be considered as a variation
«s2  Of z in time. By shifting that parameter to either boundary, we make more trajectories attracted
a3 to the opposite boundary, hence increasing the likelihood of correct answers. In addition, it can
«s2  be inferred from our formal analysis that changing z means changing the drift rate. This change
a5 ininput could also explain error-correcting behaviors (Rabbitt, 1966) and spontaneous changes of
ass  mind (Pleskac and Busemeyer, 2010). When the stimulus ends, the DDM is modified so that the
«s7  driftis null, i.e. evidence is no longer accumulated. Therefore, changes of mind are the result of
sz Noise in the system. Conversely, stimulus termination could be modelled through shifting z in the
ss0  NI-DDM, which effectively modifies the drift-rate of the current decision, in a way that the decision
a0 Vvariable could toggle towards the opposite boundary upon stimulus disappearance. Conceptually,
s61 the drift in the nl-DDM not only relates to the accumulation of evidence but also encompasses
42 decision processes related to the post-processing of evidence.
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«.3 ldeas and Speculations

w2 As mentioned above, the presence of two attractors offers an interesting perspective for when
a5 participants are asked to alter their perceptual responses during the trials. Indeed, not all types
ss Of evidence can extract the decision variable from the region of attraction of a fixed point with
a7 enough strength for a participant to change their mind. This has already been conceptualized
ses in studies of perception (Hafemeister et al., 2010), whereby different representations can emerge,
a0 and participants can switch, consciously or not, from one representation to the other (see Rolls and
a0 Treves, 1999, Chapters 4-6). The size of evidence, modeled by the position of the unstable fixed
471 point z, can be estimated quantitatively from experimental parameters fixed by the experimenter,
a2 such as sound level and luminosity.

473 In the past, attempts at single-trial fitting have been debated (Latimer et al., 2015; Zylberberg
a7 and Shadlen, 2016; Latimer et al., 2017). Maybe this model could explain the observations made by
a5 Latimer et al. (2015). Fitting of neural data (spiking data, similar to analyses in Latimer et al. (2015)
476 and Gold and Shadlen (2001)) could give insight into the goodness of fit of this model with regards
a7z to the choice of the starting point and drift variance: the DDM assumes that they are two separate
a7e phenomena, and it is hard to extract any baseline excitation from behavioral data only. This could
470 give us an indication on whether there is a link between the starting point and inter-trial variability
a0 Of the drift, and whether the nl-DDM captures this interaction.

481 Extending this model to multiple-choice situations is another interesting ground of research.
ss2 The DDM is not easily applicable in such situations, whereas models such as the Linear Ballistic
as3  Accumulator model (Brown and Heathcote, 2008) are. We argue that the current model would
asa require structural changes in its formulation, without however changing its essence, for such sit-
«ss Uations to be implemented. Indeed, the trajectory of the decision variable is here modelled in a
a6 One-dimensional space, where the possible alternatives are represented as attractors. Its multiple-
a7 Choice variant would require several other attractors. In 1D space however, adding more stable
ass  fixed-points will result in two issues. First and foremost, travelling from one alternative to another
as0 May require passing through other decision wells, which seems incoherent with behavior. It seems
200 cCounter-intuitive that a person has to make a decision before travelling to another decision state.
201 Second, adding more stable fixed-points requires the implementation of as many unstable fixed-
202 points between two stable fixed-points (see nl-DDM formalism), which would mean that the num-
a3 ber of parameters to fit increases by 2 when adding one choice. A simpler solution would be to
a2 Switch to a 2D space, so there could still be a central unstable fixed-point, and the position of each
205 stable fixed-point in 2D space would be determined by the subjective preference of each alterna-
a6 tive.

»» Methods and Materials

28  Drift-Diffusion Model
200 The Drift-diffusion model (Ratcliff, 1978) is characterized by a linear accumulation disturbed by
so0 additive noise. Formally, this can be written as the following Langevin equation (Equation (6)):

dx=vdt+ N(), (6)

so1 Where x represents the decision variable, an abstract quantity representing the state of the deci-
s02  Sion, dx its infinitesimal variation in time dr, and N(¢) is a Gaussian white noise, parameterized by
so3 its standard deviation ¢. Figure 10 gives a representation of this model.

504 Evidence is accumulated following Equation (6) until a decision boundary A > 0 or —A is reached.
sos  Typically, the positive boundary corresponds to correct decisions and the negative one to incorrect
s06  responses.

507 Finally, the starting point of accumulation is called the bias and is defined as a single point
sos  Within the two boundaries. In general forms of this model, it is also possible to consider that the
soo  Starting point is drawn from a uniform distribution centered around the bias x, and of width 2s,,
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Figure 10. Description of the Drift-Diffusion Model (DDM). The decision state is represented through a
decision variable that travels from a starting point that can be drawn for example from a uniform distribution,
centered around x, and of width 2s,. The decision state is represented through a decision variable x traveling
from a starting point (for example, drawn from a uniform distribution, centered around x, and of width 2s,. It
is represented as "SP" on the figure) to a boundary ("Correct boundary" or "Incorrect boundary") under the
influence of a constant drift (dotted line). The trajectory is also impacted by white noise so that real
trajectories are similar to the thin blue lines. From the stimulus onset, the decision process is delayed by a
certain non-decision time (T,,;). Over an ensemble of decisions, response time distributions of correct and
error responses can be estimated, as displayed here.
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s10  such that [x, —s,, x, + 5,] €] — A4, A[ (Laming, 1968), or from other parametric distributions (Ratcliff
s11 and Rouder, 1998). We will consider uniformly distributed starting points in our fitting to provide
s12  a fair comparison of the two models without loss of generality.

513 The boundary separation represents the speed-accuracy trade-off. Indeed, if this separation is
s1a  bigger, decisions are less impacted by noise and hence more accurate, but at the same time, they
s15 Will take longer to reach from a given starting point. In contrast, the drift mainly impacts the speed
s16  Of response, as a higher drift will lead to faster correct responses and longer incorrect responses.
517 Fitting is typically done globally over response times. In fact, the trajectories defined by the
s18  equation cross the decision boundaries, forming a response time distribution usually compared
s10  to an exponentially modified Gaussian. In order to obtain a close fit, it is necessary to define a
s20 non-decision time (noted T,,,), which corresponds to the time necessary for sensory processing of
s21  the stimulus, motor planning and execution, independently of the decision process.

s22 Data collection and processing

s23  Inorder to test the quality of the fitting of the proposed model, we use response times from a classi-
524 fication task performed by humans described thereafter. The paradigm was initially implemented
s2s O assess the relation between response times and emotion valence of visual stimuli.

s2¢ Classification task with different sensory modalities

s2z We first tested the quality of the nl-DDM by fitting it to data we collected. 25 (11 female, 14 male)
s2s  healthy right-handed participants aged 27.72 + 8.96 (mean + standard deviation) with normal or
s20 corrected-to-normal vision and hearing took part in a perceptual classification task experiment.
s30 EEG brain activity was also recorded (not reported here). The experiment was performed under
sa1 the local ethics committee approval of the Comité d’Ethique de la Recherche Paris-Saclay (CER-
s32  Paris-Saclay, invoice notice nb. 102). An interview preceded the experiment to check with the
s3s  participants for non-inclusion criteria (existing neurological and psychiatric disorders, uncorrected
s3a  visual and hearing deficiencies). Participants were presented at each trial with images of faces or
s3s  images of numbers, and had to respond with mouse clicks to report what stimulus they perceived.
s3s A sound accompanied images of numbers to suppress any ambiguity. Participants were instructed
s37  to respond using their right hand. To control for possible differences in motor response speeds
s3s  between the two fingers, one group of participants (N = 15) was instructed to report faces with
s30  a left click and numbers with a right click ("face is left button" stimulus-response mapping), while
sa0 the other (N = 10) was given the opposite instruction ("face is right button" stimulus-response
sa1  Mapping). Responses were constrained to two seconds after stimulus onset. No feedback on the
sa2  performance was given to participants. At each trial, each stimulus had a 50% chance of occurring.
543 Each participant performed 480 classification trials, split into 8 blocks of 60 trials each. Between
saa  each block, participants were offered a break of free duration. Each trial followed the sequence
sas described in Figure 11. First, a central red cross appeared on the screen, indicating a pause period.
sa6  After 1.5 second, the cross became white as a signal for trial start. The white cross stayed for 1.5
saz  Second, after which a video clip of visual noise appeared: 9 frames of noise of 100 ms each were
sas  displayed. After the noise clip, a last frame of random visual noise was presented, and the stimulus
sa0 appeared on top of it. The last frame stayed intact until the end of the trial, and the stimulus was
sso displayed over it for 200ms. The trial was terminated upon participant response or timed out after
ss1 2 seconds. A trial lasted for about 5 seconds, resulting in blocks of about 5 minutes each.

552 We used face sketches as used in Yang et al. (2020), which were generated from the Radboud
ss3  Face Dataset (Langner et al., 2010). Number stimuli were generated at the beginning of the session
ssa for each participant, under the constraint that they were 3-digit integers. In total, 10 different face
sss  stimuli and 10 different number stimuli were used for each participant.
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Face stimulus ~ Number+sound
ms) st

Baseline period Noise clip Response

Figure 11. Timeline of a single trial. Each trial is preceded by a rest period, followed by a baseline period
(necessary for EEG processing, not reported here), each lasting 1.5 seconds. A noise clip consisting of 9
random-dot frames of 100 ms each indicates the arrival of the stimulus in a non-stimulus-specific fashion. The
stimulus then appears on a noisy visual background for 100 ms. The same noisy background frame then lasts
until the participant's response and times out after 2 seconds otherwise.

sss  Pre-existing dataset from Wagenmakers et al. (2008)

ss7 1o discard the possibility of better performances emerging from the fitting algorithm or data acqui-
sse  Sition, we also lead our analyses on a pre-existing dataset taken from Wagenmakers et al. (2008).
sso 17 human participants performed a classification task, as they were randomly presented with real
seo Or invented words. The invented words were generated from real words by changing a vowel, and
se1 the real words were labeled in three categories depending on their frequency (frequent, rare, or
se2 Very rare). In total, stimuli were split into 4 categories of interest. Each participant performed 20
ses  blocks of 96 trials each, with as many invented words as real words in each block. Participants
sea Were given the additional instruction to define the speed-accuracy trade-off in each block: they
ses alternated between blocks where speed was emphasized and blocks where accuracy was more
ses important. Responses were limited to 3 seconds, and trials with response times below 180 ms
sez were discarded to avoid anticipatory responses. More details can be found in Wagenmakers et al.
ses  (2008), and the dataset can be accessed from here.

sec Behavioral analyses

s70  We are interested in comparing model parameters between the DDM and the nl-DDM. It is impor-
s71 tantto check whether participants’ performance across stimulus-response mappings and stimuliis
s72 coherentin terms of response times and accuracy. Indeed, the experimental paradigm we defined
s73  entails two types of stimuli and two motor commands for the choices. In addition, we have cre-
s7« ated two experimental groups, which were instructed to respond with opposite motor commands.
s7s  First, we computed the percentage of stimuli in each class to verify that the stimuli were globally
s76 equiprobable for each participant. Since we designed the experiment to display each stimulus with
s77 the same probability at each trial, we expect this number to be close to 50%. Otherwise, participants
s7s  could opt for a strategy that prioritizes one response against the other. Then, we performed two
s7o mixed-model ANOVAs, testing response times and accuracy respectively. The stimulus-response
sso Mapping was considered a between-subject factor and the stimulus type a within-subject factor.

ss2  Data fitting

ss2 The classical way of fitting evidence-accumulation models is by fitting one drift for each stimulus cat-
ss3  egory separately. In that case, the positive and negative boundaries still correspond to correct and
ssa INCOrrect responses respectively, and the starting points are taken from the same distribution re-
sss gardless of the stimulus. Consequently, one pair of boundaries +B, the middle of the starting point
sss  distribution x, and its half-width s,, and two drifts v, and v, (corresponding respectively to "face"
ss7 and "number+sound" trials) have to be fitted in the DDM. Similarly, one pair of stable fixed points
sss (attractors, also corresponding to the decision boundaries) +a, one time scale k and two unstable
sso  fixed points z, and z, (repellers, that will tune the drift in the "face" and "number+sound" stimuli
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so0 respectively) are needed for the nl-DDM. In both cases we fix the noise parameter to ¢ = 0.3. As
so1 explained by Ratcliff (1978), since the speed-accuracy trade-off is determined by the boundary sep-
so2 aration, fitting two parameters among drift, boundary, and noise is constraining enough. Hence,
se3 5 parameters have to be fitted per participant for the DDM, against 4 for the nl-DDM. In addition,
soa fitting requires one non-decision time T,, per stimulus type. The non-decision time and the start-
sos iNg point distribution are intertwined in the case of the DDM. Therefore, as trajectories starting
sos Closer to the boundary will reach it faster than trajectories starting further away, it is necessary to
se7 CoONstrain either of these to provide comparison grounds between the nl-DDM and the DDM. For
ses  this reason, we first fit the nl-DDM and use the computed non-decision times as fixed parameters
se0 iN the DDM.

600 We used the PyDDM toolbox (Shinn et al., 2020b, see: pyddm.readthedocs.io) for the fitting,
s01 Minimizing the log-loss function and an implicit resolution. The explicit resolution is indeed im-
s02 practical with the nl-DDM, which does not allow for explicit solutions when z is not centered. The
s03 log-likelihood is such that the more negative, the closer the modeled distribution of response times
s0s IS to the empirical response time histogram.

sos Fitting Wagenmakers et al. (2008)

s0s For this dataset, we reproduced the methods of Wagenmakers et al. (2008) by fitting the same
ez parameters as in that paper for the DDM: the "accuracy" condition was first fitted globally for all
s0s participants, with a single boundary, starting point, non-decision time and noise term. In addition,
s00 the starting point and non-decision time variability were fit. One drift was computed per stimulus
s10 type, resultingin 4 driftterms: v, v,, vs, vyy,, COrresponding respectively to frequent, rare, very rare
s11 and non-existent word stimuli. Hence, each model consisted of 10 parameters. Then, the same
e12 drifts, non-decision times (with its variability), and starting point variability were kept to fit the
e13 boundary and starting point in the "speed" condition.

614 We performed this analysis for each participant separately for more comparison grounds, while
e1s the original paper fitted all participants' response times together.
616 Given our formal analysis, we fitted a single a, k, noise, and starting point interval (centered

e17 around zero) parameters and one z per stimulus type (z,, z,, z;, zyy ), resulting in 8 parameters,
s1s  ON the "accuracy" trials. Then, we fit again a, all other parameters fixed, on the "speed" condition.
s10 We did not fit the middle point of the starting point interval because z should fulfill this role, and
s20 NoOt the non-decision time variability because the dynamics of the trajectories account for delayed
e21 onsets of the maximum drift rate depending on the starting point.

622 As previously, we used PyDDM (Shinn et al., 2020b) with log-loss minimization and implicit res-
e23  Olution.

s« Performance comparison
s2s  We used two metrics to compare the fitting performance of both models. First, we compared pair-
s26 Wise the loss scores, here the Negative Log-Likelihood, obtained after fitting. For our hypothesis
e27 to be validated, we expected the nl-DDM losses to be lower than these of the DDM. This metric
e2s assesses the shape of the predicted distribution of response times.
Since the fitting on both datasets was performed using a different number of parameters and
samples, we also computed the Bayesian Information Criterion for each model, defined as:

BIC = log(sample size) X n,,rameters + 2 X (Negative Log-Likelihood).

s20 That way, a penalty for more samples and parameters is considered.

630 Another interesting metric to compare decision models is their capacity to predict behavior.
e31  Indeed, one goal of the decision models we consider is to provide a theoretical description of indi-
e32 Vvidual speed-accuracy trade-offs. A good model predicts mean response times and error rates as
e33  Close as possible to the empirical quantities. The metric we used to quantify the speed-accuracy
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e3a trade-off is described in Roitman and Shadlen (2002), which associates a squared error to any de-
e3s Vviation from the empirical mean response time and accuracy rate, summed over all conditions.
s3s Mathematically, this translates into a loss of the form:

L= Z (RT — RT)? + (accuracy — accuracy)? @)
conditions
637 Note that the accuracy is computed as the ratio of correct responses over all responses, and

e3s lies within [0 : 1], while the response times are provided in seconds. Since the mean response
630 time is shorter than 1 s and of the order of a few hundred milliseconds, this metric scales speed
sa0 and accuracy similarly.

641 Hence, we compare each loss pairwise, using three repeated-measure one-sided paired-sample
ss2 t-tests. Indeed, we want to test whether the nl-DDM is better than the DDM with these three met-
sa3  rics, hence testing the hypothesis 10ss,, ppm < 10SSppy- Since we are comparing 3 losses, we set the
saa threshold for significance to « = 0.017, corresponding to the Bonferroni-corrected 5% threshold.

«s Comparison of parameters
sas FOr abetter empirical understanding of the parameters of the nl-DDM, we computed the Pearson'’s
saz correlation coefficients of the nl-DDM parameters over all conditions and participants, using only
sas OUr dataset, that is, over N = 50 observations. This allows supporting the observations we have
sas Noted in the formalism part. Indeed, since fewer parameters were fitted in this case than for the
eso Wagenmakers' dataset, the comparison becomes more straightforward. From the 25 participants,
es1  We obtained 50 fits per model type by duplicating for each stimulus type the boundaries and time
es2 Cconstant terms, hence separating the stimulus types and obtaining 25 x 2 fits per model type. The
ez models were filtered as previously based on the quality of the fit over all models. 6 models were
esa thus rejected (12% of the total), limiting the comparison to 44 fits of each model type.
First, we computed the correlation matrix between all the parameters of both models. This
allows for a first look into first-order interactions between model parameters, within and across
model types. The correlation coefficients were computed using Pearson’s p, defined as:

cov(x, y)
Pry=—TT"1:
0,0,
655 Next, to compare parameters of the DDM to parameters of the nl-DDM more quantitatively,

ess We performed principal component analysis on the correlation matrix of DDM and nl-DDM fitted
es7 parameters. The goal isindeed to find how parameters relate to each other. This becomes possible
ess by observing the coefficients of the decomposition matrix.
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