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Abstract The Drift-Diffusion Model (DDM) is widely accepted for two-alternative forced-choice12

decision paradigms thanks to its simple formalism, straightforward interpretation, and close fit to13

behavioral and neurophysiological data. However, this formalism presents strong limitations to14

capture inter-trial dependency and dynamics at the single-trial level. We propose a novel model,15

the non-linear Drift-Diffusion Model (nl-DDM), that addresses these issues by allowing the16

existence of several trajectories to the decision boundary. We show that the fitting accuracy of17

our model is comparable to the accuracy of the DDM, with the non-linear model performing18

better than the drift-diffusion model for an equivalent complexity. To give better intuition on the19

meaning of nl-DDM parameters, we compare the DDM and the nl-DDM through correlation20

analysis. This paper provides evidence of the functioning of our model as an extension of the21

DDM. Our model paves the way toward more accurately analyzing single-trial dynamics for22

perceptual decisions and accounts for pre- and post-stimulus influences.23

24

Introduction25

Perceptual decision-making has been studied extensively from behavioral (Ratcliff and McKoon,26

2008; Ratcliff and Smith, 2004), neurophysiological (Gold and Shadlen, 2001), and computational27

(Gold and Shadlen, 2007) perspectives, as it is omnipresent in daily activities. When decisions are28

timed, evidence accumulation models describe human and animal behavior well. They assume29

that decisions are made when enough sensory evidence from the external world has been gath-30

ered. Typically, evidence is accumulated at a given rate (or drift) until reaching a decision boundary,31

triggering an action.32

Among them, the Drift-DiffusionModel (DDM) (Ratcliff, 1978) suggests that evidence is accumu-33

lated linearly, that is, with a constant drift. The accumulation is additionally subject to Gaussian34

noise; hence the decision state can be seen as a particle following a Brownianmotion. The popular-35

ity of thismodel yields from its intuitive and straightforward formalismand its goodfit to behavioral36

(Ratcliff andMcKoon, 2008) and neurophysiological data (Gold and Shadlen, 2001). It has also been37

shown that the DDM formalizes the optimal strategy for decision-making under time constraints38

(Bogacz et al., 2006; Moehlis et al., 2004). Interestingly, other forms of decision models such as the39

Leaky-Competing Accumulator model (Usher and McClelland, 2001), and even attractor models40
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(Wang, 2002; Ditterich et al., 2003) can be formulated equivalently to the DDM or are similar to it41

under certain performance constraints (Bogacz et al., 2006).42

The initial version of the DDM accounts for global statistics of the behavior. More specifically, it43

describes the Response Times (RT) distribution and the error rate. A major limitation of this model44

is that this simple form does not take into account inter-trial variability. However, behavioral stud-45

ies have shown sequential effects (Abrahamyan et al., 2016, for example) which impact prior ex-46

pectations on the decisions and the subsequent decision process (Glaze et al., 2015). Traditionally,47

prior expectations on the decision are modelled through the starting point, or bias, of the accu-48

mulation process (Ratcliff, 1978). Recent accounts have also suggested that choice history affects49

subsequent drift rates (Urai et al., 2019). Taken together, these studies suggest that these param-50

eters could be intertwined and that they can vary throughout an experiment, as participants are51

more experienced in the task. To address this issue, (Ratcliff and Rouder, 1998, 2000) proposed52

an extended form of the DDM, which uses a uniform distribution of starting points and a Gaus-53

sian distribution of drifts without explicit dependence between them. However, this only provides54

global statistics about perceptual responses, without insight at the single-trial level or on inter-trial55

interactions. Moreover, the linear dynamics do not describe the variation of the dynamics at the56

scale of the single decision, which seems inconsistent with the aforementioned physiological and57

behavioral (empirical) observations.58

Linear evidence accumulation also assumes that evidence accumulation is independent of the59

evidence that has already been gathered, or of the time that passes. While some models take into60

account the effect of time on the decision parameters (Cisek et al., 2009), or dynamics close to the61

threshold (Busemeyer and Townsend, 1993; Schurger, 2018), no model to our knowledge allows62

for an account of initial dynamics. For example, ambiguous stimuli could yield flat initial drifts.63

This is in part translated into non-decision time, as it is assumed to be a time during which sensory64

evidence is processed in the brain without contributing to the decision process.65

In addition, the DDM also assumes that the response only occurs after a decision has been66

made. Mathematically speaking, it means that the decision variable has reached a decision bound-67

ary. However, paradigms that show spontaneous changeofmind indicate that responses canoccur68

before the final decision has been reached and that a decision can change under ambiguous stim-69

uli after enough time (Pleskac and Busemeyer, 2010). This can only occur if decision and motor70

processes overlap. The DDM, however, assumes that they happen sequentially. In addition, the71

DDM would explain spontaneous change of mind by the presence of noise in the system. In real-72

ity, error-correcting behaviors (Rabbitt, 1966) indicate the existence of more explainable processes73

underlying these changes.74

Previous attempts at single-trial fitting of decisions have been made through attractor models75

(Wang, 2002; Wong and Wang, 2006; Wong et al., 2007), and it has also been shown, using some76

simplifying assumptions, that these models can be put in the form of a generalized Drift-Diffusion77

Model (Shinn et al., 2020b), that is in that case, a Langevin equation with a non-linear drift (Roxin78

and Ledberg, 2008). It has been shown that this model can be reduced to the DDM in certain cases79

(Bogacz et al., 2006), but that it dynamics allows for transitions between decision states under80

fluctuating stimuli (Prat-Ortega et al., 2021). However, the link between each parameter and the81

dynamics of the model is complicated to interpret. Moreover, the reduction proposed assumes82

a reflection symmetry of the network to obtain the given form. This, however, seems limiting in83

particular in the case where each perceptual decision recruits different sensory modalities.84

Here we propose a straightforward one-dimensional non-linear form to address these limita-85

tions: the non-linear Drift-Diffusion Model (nl-DDM). It recreates double-well-like dynamics from86

an evidence-accumulation perspective, without assuming reflection symmetry. We show its valid-87

ity and compare its fitting performances to these of the DDM.We first provide a formal description88

of the nl-DDM, relating it to the DDM. Then, we fit them on two human behavior datasets: one that89

was already published (Wagenmakers et al., 2008) where participants classified words into two90

categories (existing vs. invented), and one that we collected ourselves that consists of a classifica-91
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tion task recruiting two different sensory modalities. Last, we compared the parameters of both92

models to provide an empirical explanation of the effect of each of the nl-DDM parameters with93

analogies on the DDM by showing correlation on fitted parameters on the same data. We show94

that it fits data equally well as the DDMwhile providing drift variability like the extended DDM. The95

dependency of the drift rate on the current decision state provides a framework for more refined96

analyses of the decision process. We provide open-source code that is directly pluggable onto the97

PyDDM toolbox (Shinn et al., 2020b) for reproducibility and easy use of our model.98

Results99

In this paper we introduce a model, the non-linear Drift-Diffusion Model (nl-DDM), that, similarly100

to the DDM, can be formulated through a Langevin equation. This model takes the form 𝑑𝑥 =101

−𝑘(𝑥−𝑎)(𝑥−𝑧)(𝑥+𝑎)𝑑𝑡+𝑁(𝑡), where the decision variable follows an infinitesimal change of 𝑑𝑥 during102

the time interval 𝑑𝑡. More details on the formalism of this model can be found in the Methods103

section of this paper.104

We show that the nl-DDM performs better than the DDM in terms of fitting accuracy and theo-105

retical predictions on behavior. To do that, we fitted both models on two datasets: a classification106

task we designed and a dataset published previously in Wagenmakers et al. (2008). To provide107

more insight into the empirical meaning of the parameters beyond the formalism, we performed108

correlation analyses between nl-DDM and DDM parameters. The link between models is hence109

explicitly exposed.110

nl-DDM formalism111

Our goal was to propose a simplemodel in which trajectories are naturally attracted to a boundary.112

Placing ourselves in the context of two-alternative (forced) choice paradigms, our model needed113

two attractive states. In one dimension, this forces the existence of an unstable fixed point between114

the two stable fixed pointsmaking the stable states (Strogatz, 2015). Thesemodels are widely used115

in classical and quantum mechanics (Jelic and Marsiglio, 2012). For a simple analogy, we imagine116

that the decision variable is a ball traveling on valleys and hills. The stable points represent points117

downhill from which the decision variable cannot escape without a substantial uphill input. Two118

distinct valleys can exist only if there is a hill separating them. This profile is called a double-well119

potential profile.120

Therefore, the model we propose follows a Langevin equation, as the DDM does, but this time121

the drift varies with the state of the decision instead of being constant. The drift equation can be122

written in the following form:123

𝑑𝑥 = −𝑘(𝑥 + 𝑎)(𝑥 − 𝑧)(𝑥 − 𝑎)𝑑𝑡 +𝑁(𝑡) , (1)

where 𝑥 represents the decision variable and 𝑑𝑥 its variation in infinitesimal time 𝑑𝑡, as previ-124

ously seen on the DDM (Equation (6)). 𝑁(𝑡) is a Gaussian white noise term, characterized in the125

same way as in the DDM and relates similarly to the accuracy. The term −𝑘(𝑥 + 𝑎)(𝑥 − 𝑧)(𝑥 − 𝑎)126

represents the drift, and depends itself on several parameters. The parameter 𝑘 can be seen as a127

time constant of the system, and 𝑎 and 𝑧 determine where the attractors, or decision boundaries,128

lie. ±𝑎 represent the two attractive states, and we constraint 𝑧 to the interval ] − 𝑎, 𝑎[ to obtain129

three distinct fixed points to the differential equation with 𝑧 the unstable fixed point. In this case,130

the drift corresponds to the deterministic part of the equation, and is dependent on the current131

decision state. A summary of the parameters of the nl-DDM is given in Figure 1, which can be132

compared to the description of the DDM we provided in Figure 10. In the following, we provide a133

formal explanation of the meaning of each parameter.134

The interpretation of 𝑘 as a time constant is straightforward from the equation: as 𝑘 increases,135

a decision is reached faster for any given set of parameters. This is the closest parameter to the136

constant drift 𝜈 in the DDM.137
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Figure 1. Description of the Non-linear Drift-Diffusion Model (nl-DDM). The decision state is represented by a
decision variable 𝑥 traveling from a starting point (for example, drawn from a uniform distribution, centered
around 𝑥0 and of width 2𝑠𝑧. It is represented as "SP" on the figure) to a boundary ("Correct boundary" or
"Incorrect boundary") under the influence of a drift. Here, the drift depends on the current state of the
decision. Depending on the position of 𝑥0 relative to 𝑧, the drift will hence have different shapes. The
trajectory is also impacted by white noise so that real trajectories are similar to the thin blue lines. From the
stimulus onset, the decision process is delayed by a certain non-decision time (𝑇𝑛𝑑 ). Over an ensemble of
decisions, probability density functions of correct and error response times can be created, as displayed here.
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In order to provide an intuition for the other parameters, we consider first the potential function138

derived from the drift term (Figure 2). It is a function 𝑉 (𝑥) defined from a drift 𝜈(𝑥) such that:139

𝜈(𝑥) = −𝜕𝑉
𝜕𝑥

. (2)

In our case, we therefore have:140

𝑉 (𝑥) = 𝑘
(

1
4
𝑥4 − 𝑧

3
𝑥3 − 𝑎2

2
𝑥2 + 𝑎2𝑧𝑥

)

. (3)

The decision variable can be seen as a ball traveling along the potential function.

A B

C D

Figure 2. Parameter manipulation on the nl-DDM. A, B, C: Potential functions of the nl-DDM for different 𝑧 (A.
Shifting 𝑧 changes the relative attractiveness of each boundary, 𝑎 (B. Shifting 𝑎 changes the accuracy and the
speed of decisions), and 𝑘 (C. Shifting 𝑘 changes the speed of decisions). The parameters are always the same
for the solid black curve: 𝑎 = 1, 𝑘 = 1, 𝑧 = 0, allowing for comparison of the effects of the different parameters.
D: Trajectories in the absence of noise for different values of 𝑥0, under 𝑎 = 1, 𝑘 = 1, 𝑧 = 0. It becomes clear that
the drift range for each trajectory depends on the starting point. The trajectory approach the boundary
asymptotically, and will eventually be crossed since noise is omnipresent.

141

From Figure 2, we can see that there are two potential sinks at 𝑎 and −𝑎, as well as a source at 𝑧,142

which derive directly from the topology of the system. Therefore, ±𝑎 are the decision boundaries143

and controls along with 𝑧 the speed-accuracy trade-off. Taking again 𝑎 as the boundary for correct144

responses and −𝑎 that for incorrect ones, we can see that moving 𝑧 closer to −𝑎makes the −𝑎 well145

shallower and the well in 𝑎 deeper (Figure 2A). In other words, the correct decision becomes more146

attractive than the incorrect one. The gradient becoming more positive on the interval [𝑧, 𝑎], the147

trajectories starting on that interval also reach the correct decision faster.148

By reducing the boundary separation, that is, reducing 𝑎, both wells become shallower, making149

decisions slower (Figure 2B). However, for a given noise scale, this alsomeans that any perturbation150
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in the wrong direction is easier to correct because a small perturbation in the other direction can151

counterbalance that effect. This is not as much the case when the wells are deep because then the152

decision variable is driven rapidly to the stable fixed point, making perturbations less reversible.153

We can also observe the impact of 𝑘 on the potential function in Figure 2C. Similar to the DDM,154

fitting of response times can be obtained by solving the Fokker-Planck equation corresponding to155

the Langevin equation defined above (Shinn et al., 2020b). Then, a non-decision time 𝑇𝑛𝑑 comes156

into play in order to shift the resulting distribution to account for biological transmission delays.157

To better understand the parameters of our model in comparison to the DDM, it can be useful158

to define amean drift rate across all trajectories. Since the deterministic trajectories only approach159

the decision boundary asymptotically, we define an estimate of the mean drift rate. Considering160

that the maximum drift for each trajectory causes the largest variation in decision value, we can161

approximate the mean drift of each trajectory by its maximum, and subsequently average over all162

the trajectories to get an estimate of the mean drift. Put in equations, we obtain:163

𝜈 = 1
𝑥− + 𝑎 ∫

𝑥−

−𝑎
−𝑘(𝑥0 − 𝑎)(𝑥0 + 𝑎)(𝑥0 − 𝑧)d𝑥0 +

1
𝑧 − 𝑥− ∫

𝑧

𝑥−

𝜈𝑚𝑖𝑛d𝑥0

+ 1
𝑥+ − 𝑧 ∫

𝑥+

𝑧
𝜈𝑚𝑎𝑥d𝑥0 +

1
𝑎 − 𝑥+ ∫

𝑎

𝑥+

−𝑘(𝑥0 − 𝑎)(𝑥0 + 𝑎)(𝑥0 − 𝑧)d𝑥0
(4)

The noise term does not intervene as we assumed a Gaussian white noise. We observe a disconti-164

nuity in 𝑧, due to the presence of an unstable fixed point at that location. Trajectories determined165

by 𝑥0 = 𝑧 will finish in either well under the influence of noise, and the mean of the noise being166

zero, the two scenarios are equally likely. Consequently, the mean drift for these trajectories is the167

average between 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥, with 𝜈𝑚𝑖𝑛 (respectively 𝜈𝑚𝑎𝑥) is the maximum negative (respectively168

positive) drift rate achievable by the system. The graph of the max drift as a function of starting169

point is given in Figure 3.170

From Figures 2 and 3 we can see that 𝑧 and 𝑎 impact the mean drift (see also Figure 4). It171

becomes clear that the parameter 𝑧 has a larger effect on the mean drift than the parameter 𝑎.172

That is explained by the fact that 𝑧 determines which proportion of the trajectories is attracted to173

the positive boundary for a given distribution of starting points. In contrast, 𝑎 determines the scale174

of the drift.175

This model is similar to the Double-Well Model (DWM), which emerges from attractor network176

models (Prat-Ortega et al., 2021; Roxin and Ledberg, 2008). The potential profile of theDWM indeed177

takes the form:178

𝑉 (𝑥) = −𝜇𝑥 − 𝛼𝑥2 + 𝑥4. (5)

Comparing this equation to Equation (3), we observe a term in 𝑥3 that is absent from the DWM,179

because of the reflection symmetry assumption made in the DWM (Strogatz, 2015; Roxin and Led-180

berg, 2008). However, when 𝑧 = 0 and 𝜇 = 0, we observe the equivalence of the systems by having:181

𝑘 = 4

𝑎2 = 𝛼∕2

This equivalence is coherent with the interpretation of 𝑧 and 𝜇 as the impact of the stimulus182

on the decision, and shows that in the absence of a stimulus, the two models follow the same183

behavior. Because the nl-DDM is not assuming reflection symmetry, the presence of a stimulus184

impacts the trajectories generated by the two models in different ways.185

Behavioral results186

For decision-making analysis, it is helpful to obtain each participant’s response times and decision187

accuracy, particularly for decision model fitting.188
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Figure 3. Maximum drift as a function of starting point

We used two datasets in this paper. The section Data collection and processing describes these189

datasets in detail. They both consist of classification tasks performed by human participants. One190

of them is a dataset collected by Wagenmakers et al. (2008), in which participants had to assess191

whether a word presented on screen existed or not. The second one is a dataset not presented be-192

fore, in which participants were shown visual stimuli on screen and had to classify them according193

to their type (either "face" or "number").194

To ensure the correctness of both datasets in terms of behavioral measurements, we describe195

here the validation conducted on our dataset. Analyses of the Wagenmakers’ dataset are available196

in Wagenmakers et al. (2008) and are not discussed further here.197

First, we ruled out methodological artifacts, as we aimed at providing equiprobable stimuli for198

each participant. On average, participants were shown 49.82 ± 2.42% of "number+sound" stim-199

uli, showing the quasi equiprobability of each stimulus. We then tested whether the experiment200

we designed led to similar responses across all participants by performing mixed-model ANOVAs201

on their response times and response accuracy for both stimulus-response mapping (between-202

subject factor) and stimuli (within-subject factor). Across all participants and stimulus types, the203

mean response time is 535 ± 61 ms (mean ± standard deviation, 𝑁 = 25), with an accuracy of204

98.59 ± 0.95%. For the "face" stimulus, participants responded after 539 ± 56 ms with an average205

accuracy of 98.51 ± 1.17%. Participants responded to the "number + sound" stimulus after 531 ± 69206

ms on average with an accuracy of 98.68±0.94%. The difference in performance between the types207

of stimuli is not significant in terms of accuracy (Table 1) nor in terms of response times (Table 2).208

In the "face is left button" stimulus-response mapping, where participants were instructed209

to click left upon face stimulus presentation and right when they were presented with a num-210

ber+sound stimulus, participants responded on average within 531 ± 74 ms with an accuracy of211
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Figure 4. Effect of 𝑧 and 𝑎 on the mean drift, estimated as the mean of the maximum drift for each trajectory
determined by its starting point. We formulated the nl-DDM drift under the form 𝑑𝑥 = −𝑘(𝑥 − 𝑎)(𝑥 + 𝑎)(𝑥 − 𝑎𝑧),
having −1 < 𝑧 < 1, without loss of generality. The mean drift is defined as in Equation (4), which depends both
on 𝑧 and 𝑎. The darker line represents the variation of the mean drift thus defined as a function of 𝑧, while the
pale blue curve is the variation of the mean drift as a function of 𝑎. Since 𝑎 is strictly positive, we also
represented the absolute value of the mean drift (dotted line). That allows for comparing the magnitude
difference of the mean drift rate when 𝑧 or 𝑎 vary. We see that varying 𝑧 changes the mean drift rate more
strongly than similar variations of 𝑎 at a given value of 𝑧.
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98.48 ± 1.12% (𝑁 = 15), whereas participants who underwent the "face is right button" stimulus-212

response mapping, participants (𝑁 = 10) responded within 541 ± 30ms and an accuracy of 98.77 ±213

0.60%. The effect of the stimulus-response mapping on accuracy and response time was not sig-214

nificant (Tables 3 and 4). We do note however a marginal interaction effect between stimulus-215

response mapping and stimulus type on the accuracy of participants (𝑝 = 0.052, Table 1).216

These results show the uniformity of participant responses across mappings and stimuli. All217

participants, mappings and stimuli were considered together in the subsequent analyses.

Table 1. Within Subjects Effects on Accuracy

Cases Sum of Squares df Mean Square F p

Stimulus 1.249 × 10−5 1 1.249 × 10−5 0.299 0.590
Stimulus * S-R mapping 1.758 × 10−4 1 1.758 × 10−4 4.202 0.052
Residuals 9.623 × 10−4 23 4.184 × 10−5

218

Table 2. Within Subjects Effects on Response Times

Cases Sum of Squares df Mean Square F p

Stimulus 1201.903 1 1201.903 2.446 0.132
Stimulus * S-R mapping 370.446 1 370.446 0.754 0.394
Residuals 11303.230 23 491.445

Table 3. Between Subjects Effects on Accuracy

Cases Sum of Squares df Mean Square F p

S-R mapping 8.608 × 10−5 1 8.608 × 10−5 0.447 0.510
Residuals 0.004 23 1.926 × 10−4

Fitting on data219

The fitting of parameters was performed using the PyDDM (Shinn et al., 2020b) Python toolbox for220

both the nl-DDM and the DDM, minimizing the negative log-likelihood function. As participants221

in our experiment were shown two types of stimuli, we fitted a model per participant for each222

model type, resulting in 25 DDM and 25 nl-DDM fitted. In addition, 17 × 2 models of each type223

were computed for the Wagenmakers dataset (17 participants × 2 conditions = 34 models). Since224

the two datasets did not use the same number of parameters for each model, we performed a225

pairwise comparison of loss values over the models. To remove the possible effect of outliers, for226

which fitting would have failed, we removed the models for which the loss values were above the227

mean loss + standard deviation over all models. This resulted in the rejection of 11 participants ×228

conditions (7∕17 rejected in the Wagenmakers accuracy condition (41%), 2∕17 in the Wagenmakers229

speed condition (12%), and 2∕25 in our dataset (8%)), so 81% of all fitted models were kept.230

Comparison of loss values231

The first metric we used to compare themodels is the loss value after fitting. Fitting is done bymin-232

imizing the negative log-likelihood, which gives information on how close the curve of theoretical233

response times is to empirical response times histograms. For ameasure that takes into considera-234

tion the number of parameters and samples, we also computed the Bayesian Information Criterion235

(BIC). All the test results on fitting performance are summarized in Table 5.236
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Table 4. Between Subjects Effects on Response Times

Cases Sum of Squares df Mean Square F p

S-R mapping 1438.081 1 1438.081 0.179 0.676
Residuals 184867.754 23 8037.728

-410

-340

LogLoss (DDM) LogLoss (nlDDM)

Figure 5. Comparison of fitting loss values between the DDM and the nl-DDM. Error bars show the 95%
confidence interval on the mean values.

The comparison of loss values between model types (Figure 5) shows that the nl-DDM fits data237

significantly better than the DDM for the same number of parameters. Indeed, the loss values are238

significantly smaller in the nl-DDM compared to the DDM, with a moderate effect size (right-tailed239

paired 𝑡−test, 𝑡(47) = 2.18, 𝑡 = 2.241, 𝑝 = 0.015, 𝑑 = 0.324, 𝑁 = 48).240

We computed the Bayesian Information Criterion (BIC) for each model to establish a compar-241

ison of model performance that takes into account the sample size and number of parameters242

necessary for eachmodel. This is indeed necessary when comparing performance across datasets,243

since the number of conditions, and hence of parameters needed, is different. We observed that244

the nl-DDM fitted response time data significantly better than the DDM even when accounting for245

the number of parameters (Figure 6, 𝑡(47) = 2.18, 𝑡 = 2.207, 𝑝 = 0.016, 𝑑 = 0.319).246

Speed-accuracy trade-off247

We computed the behavior prediction of each model type to ensure that the results are consistent248

with empirical observations. For that, we used a metric described by Roitman and Shadlen (2002),249

whereby the loss is computed as the sum of the mean squared error on mean response time and250

the mean squared error on the predicted accuracy over all conditions. We observe that there is no251

-780

-640

BIC (DDM) BIC (nlDDM)

Figure 6. Comparison of the Bayesian Information Criterion (BIC) between the DDM and the nl-DDM. Error
bars show the 95% confidence interval on the mean values.
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Table 5. Left-tailed paired samples 𝑡-test on the quality of the fit between the nl-DDM and the DDM over all
fitted models (𝑁 = 52, 𝑑𝑓 = 51, 𝑡(51) = 1.675285). Significant 𝑝-values are marked with ∗.

Measure 1 Measure 2 t df p Cohen’s d

LogLoss (DDM) - LogLoss (nlDDM) 2.241 47 0.015 0.324
BIC (DDM) - BIC (nlDDM) 2.207 47 0.016 0.319
Performance Loss (DDM) - Performance Loss (nlDDM) −0.357 47 0.639 −0.052

significant difference in terms of behavioral prediction capacity between the DDM and the nl-DDM252

(see Performance Loss, Table 5, and Figure 7).253

0.006

0.013

Perf. Loss 

(DDM)

Perf. Loss 

(nlDDM)

Figure 7. Comparison of loss computed on behavioral performance between the DDM and the nl-DDM. Error
bars show the 95% confidence interval on the mean values.

Comparison of parameters254

Although we fit the parameters separately for each stimulus type, we merge all the results to build255

relations between the parameters of the DDM and the parameters of the nl-DDM. Of the resulting256

fittedmodels, we rejected the participants that were rejected in our previous analysis (participants257

6 and 11). In addition, participant 22 was rejected due to a fitted boundary outside of the other258

models’ range. Hence, 44models were taken into account.259

Given the mathematical formalism described above, we expect to find a negative correlation260

between the decision boundaries of the two models. Indeed, while an increase in the boundary261

in the DDM results in increased accuracy and response times, a similar increase in the nl-DDM re-262

sults in decreased accuracy and response times. Our previous explanation of model parameters263

showed that both 𝑎 and 𝑘 in the nl-DDM impacted the decision boundaries. Therefore, the bound-264

ary of the DDM could be negatively correlated to either of these parameters. We also expect the265

parameter 𝑧 of the nl-DDM to be correlated negatively with the drift in the DDM. The reason for266

this can be derived from Figures 2 and 3: if we shift 𝑧 closer to 0, the negative and positive plateaus267

of Figure 3 will tend to be at the same level in absolute value. Averaging them, it means that the268

mean maximum drift will decrease towards zero as 𝑧 increases closer to the middle of the two269

boundaries ±𝑎. In other words, increasing 𝑧 will decrease the drift, hence the negative correlation.270

The correlation matrix of the nl-DDM and DDM parameters across all models is given in Figure271

8. Note that we only took into account our dataset for parameter comparison, and while fitting the272

models to this set, we assumed that the starting points followed a uniform distribution spanning273

the entire decision interval [−𝑎, 𝑎] for the nl-DDM, while we took a shorter interval for the DDM to274

avoid border effects. This difference in assumptions for the starting point distribution was com-275

pensated by fitting a non-decision time in the nl-DDM and taking the same value when fitting the276
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DDM.277

We first empirically show the relation between the parameters within the nl-DDM. We observe278

a strong negative correlation between 𝑎 the boundary and 𝑘 the time constant. This corresponds279

to their similar effect on the attractiveness of the correct response. Increasing either will make280

the decision more attractive, so to keep the same attractiveness of the correct response, if one in-281

creases, the other should decrease. In our data, since the accuracy is similar across all participants282

and conditions, and the noise term is kept constant, these two terms are strongly correlated. Note283

that the effect of each parameter is still different, as shown on Figure 2B and C. While increasing 𝑘284

deepens both wells, increasing 𝑎will not only deepen the wells but also pull them apart. Effectively,285

the relation between 𝑎 and 𝑘 is not linear, as seen on Figure 9.286

We also observed the known relations within DDM parameters in the correlationmatrix (Figure287

8). The starting point distribution, parameterized by its center 𝑥0 and half-width 𝑠𝑧, correlates to the288

boundary 𝑏 and the drift 𝜈. It could be expected, as the same response time for correct responses289

will necessitate faster integration of evidence (that is, accumulation to a bigger drift) if the starting290

point is further (smaller). Similarly, as the boundaries get stretched, the starting point distribu-291

tion also needs to become wider for similar response time shapes, hence the positive correlation292

between 𝑏 and 𝑠𝑧.293

Concerning the cross-model comparison, we observe that 𝑘 is negatively correlated to the DDM294

boundary 𝑏 and positively to 𝑥0. The link with the decision boundary is expected, as 𝑘 in the nl-295

DDM regulates the depth of the decision wells, that is, the time necessary to reach each decision.296

More specifically, increasing 𝑘makes the wells more attractive and hence results in fast decisions.297

Conversely, increasing the DDM boundary will result in longer response times as more time will be298

needed for the decision variable to reach the boundary, given the linear drift.299

We also observe a significant negative correlation between the parameter 𝑧 of the nl-DDM and300

the drift parameter of theDDM 𝜈. This relationshipwas also expected, as increasing the drift 𝜈 in the301

DDM results in faster correct decisions. Mirroring this effect, 𝑧 regulates the relative attractiveness302

of each decision well. As 𝑧 becomesmore negative, the correct decision (corresponding to decision303

boundary +𝑎) becomes more attractive, and hence correct decisions are made faster.304

Last, the position of the stable fixed-points, parameterized by 𝑎, is positively correlated to the305

DDM drift 𝜈. We have described earlier that 𝜈 was also related to 𝑧. It therefore seems that the306

drift is related to these two parameters. A formal analysis of the nl-DDM (see Methods) provides307

the following explanation: all three parameters 𝑎, 𝑘, and 𝑧, impact the speed at which the decision308

boundary is reached. While 𝑧 controls the relative attractiveness of the boundaries, both 𝑎 and 𝑘309

modulate their absolute attractiveness. An increase in either of them will result in faster response310

times for both correct and incorrect responses. In the DDM, two parameters impact the speed311

of responses: 𝜈 and the boundary 𝑏. Similarly, 𝑘 should be more related to the decision boundary312

given the previous correlation, and 𝑎 to the drift. Given the correlation between 𝑎 and 𝜈, we explain313

the observed correlation between 𝑎 and 𝑥0 due to the correlation between 𝜈 and 𝑥0.314

Weobservedmore precisely the intertwining of parameters through Principal Component Anal-315

ysis, keeping only the components corresponding to eigenvalues of the correlation matrix greater316

than 1. For clarity, we displayed for each principal component only the parameters with a loading317

in absolute value greater than 0.4, that is, parameters sharing at least 16% of variance with the318

component. We thus obtained 3 principal components, accounting for 82, 2% of the total variance,319

summarized in Table 6. The first principal component (PC1) accounts for 34.4% of the variance. We320

interpret it as the decision attractiveness, given that 𝑎 and 𝑘 share more than 90% of their variance321

with this component. The second component (PC2) is loaded mainly by 𝜈 and 𝑧, which relate to322

the decision speed. The fact that 𝑥0 shares its variance between both PC1 and PC2 is consistent323

with the fact that decision bias 𝑥0 contributes both to the decision attractiveness and to its speed.324

Finally, the third component (PC3) is strongly loaded (> 80% of shared variance) by 𝑠𝑧 and 𝑏, sug-325

gesting that it reflects the amount of information that needs to be integrated in order to make a326

decision, or the decision caution (Ratcliff and McKoon, 2008). Indeed, the greater the uncertainty327
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Figure 8. Correlation matrix of all parameters. 𝑎, 𝑘 and 𝑧 are parameters of the nl-DDM (marked in a circular
patch), while 𝑏, 𝜈, 𝑥0 and 𝑠𝑧 are parameters of the DDM. Pearson correlation coefficients were computed over
𝑁 = 44 observations.
⋆ ∶ 𝑝 < 0.05,⋆⋆ ∶ 𝑝 < 0.01,⋆⋆⋆ ∶ 𝑝 < 0.001.
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Figure 9. Correlation plots of DDM and nl-DDM parameters. The correlations were computed as Pearson’s
correlation coefficient.
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𝑠𝑧 associated with decision bias 𝑥0, the greater the amount of information needed to reach a deci-328

sion. In this case, PC3 would reflect this decision caution: the greater the uncertainty 𝑠𝑧 associated329

with decision bias 𝑥0, the more cautious onemust be, and in turn greater amounts of evidence one330

needs to process.

Table 6. Component Loadings

PC1 PC2 PC3 Uniqueness

𝑎 −0.942 0.104
𝑘 0.912 0.141
𝑥0 0.649 0.626 0.181
𝜈 −0.795 0.227
𝑧 0.780 0.320
𝑠𝑧 0.907 0.111
𝑏 0.847 0.166

Variance explained 0.344 0.242 0.236

331

Discussion332

We have presented in this paper a non-linear model of decision-making. This model is a form of333

generalized drift-diffusion model (Shinn et al., 2020b), and provides a framework in which individ-334

ual trajectories of the decision variable can have different shapes under the same global parame-335

ters (Figure 2D). Even without considering the single-trial fitting capability, we have shown that this336

model predicts behavioral data equally well as the DDM, with a slight but significant improvement337

in the goodness of fit. From the formalism we have described, it becomes clear that inter-trial338

variability in drift emerges from the dynamics of the system proposed, offering the possibility for339

further single-trial analyses and modelling.340

The interpretation of the nl-DDM parameters may seem counter-intuitive at first, in particular341

when considering that decisions are made faster when the boundaries are further apart. Indeed,342

we observe the opposite effect in the DDM. However, our correlation analysis provided insight343

into bridging the meaning of nl-DDM parameters to DDM parameters. The difference is that in the344

DDM, the gradient of the drift is constant, whereas it varies in decision space with the nl-DDM. By345

pulling the boundaries further apart, we effectively reduce the impact of one attractor on the other,346

making each of them more attractive. Therefore, a decision can be reached faster, at the price of347

accuracy. Similarly, increasing the drift in the DDM is equivalent to shifting the unstable fixed348

point towards the negative boundary in the nl-DDM, as they both result in fast correct responses.349

However, it must be noted that these parameters are not entirely equivalent as we did not find a350

perfect mapping between them, meaning that the nl-DDM is conceptually different from the DDM.351

We have shown that, while similar to the DWM (Prat-Ortega et al., 2021) derived from attractor352

models (Roxin and Ledberg, 2008), the nl-DDM is equivalent to it only in the absence of input. A353

question that remains open is that of the mechanism underlying this equation. From the reduc-354

tion computed in the paper by Roxin and Ledberg (2008), it would seem that a network of three355

populations could produce the dynamics we have described. However, the main assumption of356

the reduction was that the network was invariant through reflection. We argue that the mecha-357

nisms described by the nl-DDM are in fact similar to these of the DWM, but offer a broader range358

of application beyond the case of symmetrical models.359

Aquestion that arises fromour analyses is the different assumptionsmadeon the starting point.360

We took in both cases a uniform distribution, but while fitting our dataset, we assumed that this361

distribution spanned the whole decision space for the nl-DDM, while it was an interval [𝑥0 − 𝑠𝑧, 𝑥0 +362

𝑠𝑧] ⊆ [−𝑏, 𝑏] for the DDM, with ±𝑏 the decision boundaries of the DDM. By doing so, we wanted363
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to show that with fewer degrees of freedom, our model could fit behavioral data better than the364

DDM. The DDM assumes a global bias towards either boundary transcribed in the position of the365

starting point distributionwithin the decision interval. Variability in the starting point enables faster366

error responses (Ratcliff and Rouder, 1998). In our model, that could also be achieved by including367

starting point variability similarly to the DDM, that is by defining an interval [𝑥0−𝑠𝑧, 𝑥0+𝑠𝑧] ⊆ [−𝑎, 𝑎],368

with ±𝑎 the decision boundaries of the nl-DDM. It is the strategy that we have implemented while369

fitting the Wagenmakers’ dataset. However, this would have been an issue when comparing the370

twomodels as the starting point distributions fitted by the DDMand the nl-DDMdid not necessarily371

match. The most striking consequence of such a mismatch is the difference between the non-372

decision times of the two models. Indeed, the non-decision time of the nl-DDM would be close to373

theminimum response time displayed by a participant. At the same time, it would be smaller in the374

DDM, as the displacement of the decision variable from the bias to either decision boundary in the375

absence of noise is not instantaneous. To minimize this effect, we have also fitted the variability of376

the non-decision time for the Wagenmakers’ dataset, although introducing such variability in one377

model and not the other made the two models less comparable. One could also argue that we378

could have chosen a uniform starting point distribution for both models. The problem with this379

solution is that due to the linearity of the drift in the DDM, the resulting response time distributions380

would have had sharp edges, which are a direct consequence of starting close to the decision381

boundary. We thus fitted 𝑥0 and 𝑠𝑧 for the DDM and not for the nl-DDM when comparing the two382

models. That is, we fitted the starting point distribution for the DDM, but not for the nl-DDM.383

Weargue that drift and starting point variability are not independent, which is transcribed in the384

system’s dynamics we created. EEG research has shown a matching between pre-stimulus activity385

and confidence ratings in human participants (Wöstmann et al., 2019; Samaha et al., 2017). Pre-386

stimulus states aremodeled by the starting point and its variability, and in the DDM the drift relates387

to the quality of the stimulus being integrated (Gold and Shadlen, 2007), with more ambiguous388

stimuli corresponding to lower drift rates. Translated to the single-trial level, drift variability relates389

to the variation of how well the brain perceives and processes the stimulus (Ratcliff and McKoon,390

2008). In our model, the starting point directly impacts the evidence accumulation, allowing for391

a more uniform theory of decision-making than the DDM that includes explicit co-dependency of392

certain parameters. Some general forms of the DDM include a variance of the drift, which we have393

never considered here. In the current nl-DDM, we have not implemented such a possibility, as we394

assumed that the inter-trial variability of the drift simply emerged from the variability of the starting395

point. In neurophysiological terms, we assumed that the pre-stimulus arousal and expectations396

on the stimulus led to differences in the rate of evidence accumulation. This is supported by past397

observations, according to which pre-stimulus brain activation impact response times (Petro et al.,398

2019; Chen et al., 2020). Pre-stimulus brain activity also modifies perceptual (van Dijk et al., 2008)399

and pain (Taesler and Rose, 2016) thresholds. Therefore, depending on the pre-stimulus activity,400

decisions can be made, even in the absence of actual evidence (Barik et al., 2019; Wöstmann et al.,401

2019), or under ambiguous evidence (Rassi et al., 2019; Railo et al., 2021). Along the same lines,402

Kloosterman et al. (2019) have shown that biases were implemented through local changes in403

accumulation rate, which supports the intertwining of accumulation rate and pre-stimulus states.404

However, (Benwell et al., 2021; Samaha et al., 2017; Iemi et al., 2017; Lange et al., 2013) argue that405

pre-stimulus brain states should only affect the decision criterion, not how well participants could406

perceive the stimuli. Translating the signal-detection theory to the evidence-accumulation scheme407

(Ratcliff and Rouder, 2000), it means that pre-stimulus states should only be changing the decision408

boundary, or equivalently, changing the starting point, and not the drift rate. For example, Samaha409

et al. (2017) found that pre-stimulus alpha power did not impact the accuracy of visual evidence410

accumulated, but only the confidence in the decision. Wöstmann et al. (2019) found similar results411

with the auditory modality. Although these observations seem to contradict our assumption that412

the starting point should impact the evidence-accumulation process, both phenomena could co-413

exist, as indeedmore extreme starting points aremore attracted to the closer attractor. This results414
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in fast and confident observations, although little evidence has been accumulated (we would be415

located at a plateau in our model), that is, even if the stimulus was not well perceived.416

The dynamics that we propose here are not the sole product of mathematical formalism and417

constraints, but have deep roots in empirical observations made in neurophysiological studies.418

More specifically, three phases can be identified in the decision trajectories: an initial inertia stage,419

a roughly linear evidence accumulation stage, and a plateau stage. The initial inertia relates di-420

rectly to the brain activation needed to integrate sensory evidence. Petro et al. (2019) and Chen421

et al. (2020) have shown in human EEG studies that depending on the brain activity prior to stim-422

ulus presentation changed the speed of responses. More specifically, they showed that the more423

pre-activated the required sensory area, the faster the decision. The nl-DDMmimics this behavior424

at the single-trial level: for trials starting close to the unstable fixed-point (that is, further from the425

correct decisionwell), the trajectories start with a plateau-like stage, whereby little evidence is accu-426

mulated because the brain would need to process the stimulusmore intensively in order to extract427

information from it, before integrating evidence faster. This initial inertia is circumvented by shift-428

ing the starting point closer to the decision well, resulting in faster and more accurate responses.429

The initial inertia in theDDM is referred to as the non-decision time and encompasses both sensory430

processing andmotor planning and execution processes. The nl-DDM assumes therefore that part431

of these processes participate in the decision process, which goes beyond the conceptualization432

of decision-making as a sequential process of sensation, perception and motion.433

A recent review fromEvans andWagenmakers (2020) shows the limitations of existing evidence-434

accumulation models. We try to address several of them with the present model, including the435

possibility for analyses beyond the global description of response times and the formulation of436

initial and final dynamic changes during the decision process. In particular, our formal description437

has shown that different shapes of decision trajectories can co-exist within the same framework,438

not solely because of noise, but because of meaningful variability. We expect this model to be439

further analyzed and used to gain insight into the single-trial dynamics of decisions.440

The present work did not include trials where the response is missing, which sometimes occur441

when participants need more time to decide. However, it could easily be implemented with a442

timeout. Typically, with a stronger constraint on response time in the experimental paradigm, it is443

likely that participants do not have time to give a response. One could imagine that the decision444

has not settled in either well at timeout, and this parameter could be taken into account in future445

works with different experimental paradigms.446

The current study only addressed the case where the input was presented at the beginning of447

the trial and affected the decision in a constant fashion. We could also imaginemore dynamic cases,448

where the input is processed over a finite amount of time and participants accumulate evidence449

solely during stimulus presentation, as has been done in past DDM analyses (Huk and Shadlen,450

2005; Shinn et al., 2020a). In non-stationary contexts, the input can be considered as a variation451

of 𝑧 in time. By shifting that parameter to either boundary, we make more trajectories attracted452

to the opposite boundary, hence increasing the likelihood of correct answers. In addition, it can453

be inferred from our formal analysis that changing 𝑧 means changing the drift rate. This change454

in input could also explain error-correcting behaviors (Rabbitt, 1966) and spontaneous changes of455

mind (Pleskac and Busemeyer, 2010). When the stimulus ends, the DDM is modified so that the456

drift is null, i.e. evidence is no longer accumulated. Therefore, changes of mind are the result of457

noise in the system. Conversely, stimulus termination could be modelled through shifting 𝑧 in the458

nl-DDM, which effectively modifies the drift-rate of the current decision, in a way that the decision459

variable could toggle towards the opposite boundary upon stimulus disappearance. Conceptually,460

the drift in the nl-DDM not only relates to the accumulation of evidence but also encompasses461

decision processes related to the post-processing of evidence.462
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Ideas and Speculations463

As mentioned above, the presence of two attractors offers an interesting perspective for when464

participants are asked to alter their perceptual responses during the trials. Indeed, not all types465

of evidence can extract the decision variable from the region of attraction of a fixed point with466

enough strength for a participant to change their mind. This has already been conceptualized467

in studies of perception (Hafemeister et al., 2010), whereby different representations can emerge,468

and participants can switch, consciously or not, fromone representation to the other (see Rolls and469

Treves, 1999, Chapters 4-6). The size of evidence, modeled by the position of the unstable fixed470

point 𝑧, can be estimated quantitatively from experimental parameters fixed by the experimenter,471

such as sound level and luminosity.472

In the past, attempts at single-trial fitting have been debated (Latimer et al., 2015; Zylberberg473

and Shadlen, 2016; Latimer et al., 2017). Maybe thismodel could explain the observationsmade by474

Latimer et al. (2015). Fitting of neural data (spiking data, similar to analyses in Latimer et al. (2015)475

and Gold and Shadlen (2001)) could give insight into the goodness of fit of this model with regards476

to the choice of the starting point and drift variance: the DDM assumes that they are two separate477

phenomena, and it is hard to extract any baseline excitation from behavioral data only. This could478

give us an indication on whether there is a link between the starting point and inter-trial variability479

of the drift, and whether the nl-DDM captures this interaction.480

Extending this model to multiple-choice situations is another interesting ground of research.481

The DDM is not easily applicable in such situations, whereas models such as the Linear Ballistic482

Accumulator model (Brown and Heathcote, 2008) are. We argue that the current model would483

require structural changes in its formulation, without however changing its essence, for such sit-484

uations to be implemented. Indeed, the trajectory of the decision variable is here modelled in a485

one-dimensional space, where the possible alternatives are represented as attractors. Its multiple-486

choice variant would require several other attractors. In 1𝐷 space however, adding more stable487

fixed-points will result in two issues. First and foremost, travelling from one alternative to another488

may require passing through other decision wells, which seems incoherent with behavior. It seems489

counter-intuitive that a person has to make a decision before travelling to another decision state.490

Second, adding more stable fixed-points requires the implementation of as many unstable fixed-491

points between two stable fixed-points (see nl-DDM formalism), which would mean that the num-492

ber of parameters to fit increases by 2 when adding one choice. A simpler solution would be to493

switch to a 2𝐷 space, so there could still be a central unstable fixed-point, and the position of each494

stable fixed-point in 2𝐷 space would be determined by the subjective preference of each alterna-495

tive.496

Methods and Materials497

Drift-Diffusion Model498

The Drift-diffusion model (Ratcliff, 1978) is characterized by a linear accumulation disturbed by499

additive noise. Formally, this can be written as the following Langevin equation (Equation (6)):500

𝑑𝑥 = 𝜈𝑑𝑡 +𝑁(𝑡) , (6)

where 𝑥 represents the decision variable, an abstract quantity representing the state of the deci-501

sion, 𝑑𝑥 its infinitesimal variation in time 𝑑𝑡, and 𝑁(𝑡) is a Gaussian white noise, parameterized by502

its standard deviation 𝜎. Figure 10 gives a representation of this model.503

Evidence is accumulated following Equation (6) until a decision boundary𝐴 > 0 or−𝐴 is reached.504

Typically, the positive boundary corresponds to correct decisions and the negative one to incorrect505

responses.506

Finally, the starting point of accumulation is called the bias and is defined as a single point507

within the two boundaries. In general forms of this model, it is also possible to consider that the508

starting point is drawn from a uniform distribution centered around the bias 𝑥0 and of width 2𝑠𝑧,509
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Figure 10. Description of the Drift-Diffusion Model (DDM). The decision state is represented through a
decision variable that travels from a starting point that can be drawn for example from a uniform distribution,
centered around 𝑥0 and of width 2𝑠𝑧. The decision state is represented through a decision variable 𝑥 traveling
from a starting point (for example, drawn from a uniform distribution, centered around 𝑥0 and of width 2𝑠𝑧. It
is represented as "SP" on the figure) to a boundary ("Correct boundary" or "Incorrect boundary") under the
influence of a constant drift (dotted line). The trajectory is also impacted by white noise so that real
trajectories are similar to the thin blue lines. From the stimulus onset, the decision process is delayed by a
certain non-decision time (𝑇𝑛𝑑 ). Over an ensemble of decisions, response time distributions of correct and
error responses can be estimated, as displayed here.
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such that [𝑥0 − 𝑠𝑧, 𝑥0 + 𝑠𝑧] ⊆] − 𝐴,𝐴[ (Laming, 1968), or from other parametric distributions (Ratcliff510

and Rouder, 1998). We will consider uniformly distributed starting points in our fitting to provide511

a fair comparison of the two models without loss of generality.512

The boundary separation represents the speed-accuracy trade-off. Indeed, if this separation is513

bigger, decisions are less impacted by noise and hence more accurate, but at the same time, they514

will take longer to reach from a given starting point. In contrast, the drift mainly impacts the speed515

of response, as a higher drift will lead to faster correct responses and longer incorrect responses.516

Fitting is typically done globally over response times. In fact, the trajectories defined by the517

equation cross the decision boundaries, forming a response time distribution usually compared518

to an exponentially modified Gaussian. In order to obtain a close fit, it is necessary to define a519

non-decision time (noted 𝑇𝑛𝑑 ), which corresponds to the time necessary for sensory processing of520

the stimulus, motor planning and execution, independently of the decision process.521

Data collection and processing522

In order to test the quality of the fitting of the proposedmodel, we use response times froma classi-523

fication task performed by humans described thereafter. The paradigm was initially implemented524

to assess the relation between response times and emotion valence of visual stimuli.525

Classification task with different sensory modalities526

We first tested the quality of the nl-DDM by fitting it to data we collected. 25 (11 female, 14 male)527

healthy right-handed participants aged 27.72 ± 8.96 (mean ± standard deviation) with normal or528

corrected-to-normal vision and hearing took part in a perceptual classification task experiment.529

EEG brain activity was also recorded (not reported here). The experiment was performed under530

the local ethics committee approval of the Comité d’Ethique de la Recherche Paris-Saclay (CER-531

Paris-Saclay, invoice notice nb. 102). An interview preceded the experiment to check with the532

participants for non-inclusion criteria (existing neurological and psychiatric disorders, uncorrected533

visual and hearing deficiencies). Participants were presented at each trial with images of faces or534

images of numbers, and had to respond with mouse clicks to report what stimulus they perceived.535

A sound accompanied images of numbers to suppress any ambiguity. Participants were instructed536

to respond using their right hand. To control for possible differences in motor response speeds537

between the two fingers, one group of participants (𝑁 = 15) was instructed to report faces with538

a left click and numbers with a right click ("face is left button" stimulus-response mapping), while539

the other (𝑁 = 10) was given the opposite instruction ("face is right button" stimulus-response540

mapping). Responses were constrained to two seconds after stimulus onset. No feedback on the541

performance was given to participants. At each trial, each stimulus had a 50% chance of occurring.542

Each participant performed 480 classification trials, split into 8 blocks of 60 trials each. Between543

each block, participants were offered a break of free duration. Each trial followed the sequence544

described in Figure 11. First, a central red cross appeared on the screen, indicating a pause period.545

After 1.5 second, the cross became white as a signal for trial start. The white cross stayed for 1.5546

second, after which a video clip of visual noise appeared: 9 frames of noise of 100 ms each were547

displayed. After the noise clip, a last frame of random visual noise was presented, and the stimulus548

appeared on top of it. The last frame stayed intact until the end of the trial, and the stimulus was549

displayed over it for 200𝑚𝑠. The trial was terminated upon participant response or timed out after550

2 seconds. A trial lasted for about 5 seconds, resulting in blocks of about 5minutes each.551

We used face sketches as used in Yang et al. (2020), which were generated from the Radboud552

Face Dataset (Langner et al., 2010). Number stimuli were generated at the beginning of the session553

for each participant, under the constraint that they were 3-digit integers. In total, 10 different face554

stimuli and 10 different number stimuli were used for each participant.555
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Figure 11. Timeline of a single trial. Each trial is preceded by a rest period, followed by a baseline period
(necessary for EEG processing, not reported here), each lasting 1.5 seconds. A noise clip consisting of 9
random-dot frames of 100ms each indicates the arrival of the stimulus in a non-stimulus-specific fashion. The
stimulus then appears on a noisy visual background for 100ms. The same noisy background frame then lasts
until the participant’s response and times out after 2 seconds otherwise.

Pre-existing dataset from Wagenmakers et al. (2008)556

To discard the possibility of better performances emerging from the fitting algorithm or data acqui-557

sition, we also lead our analyses on a pre-existing dataset taken from Wagenmakers et al. (2008).558

17 human participants performed a classification task, as they were randomly presented with real559

or invented words. The invented words were generated from real words by changing a vowel, and560

the real words were labeled in three categories depending on their frequency (frequent, rare, or561

very rare). In total, stimuli were split into 4 categories of interest. Each participant performed 20562

blocks of 96 trials each, with as many invented words as real words in each block. Participants563

were given the additional instruction to define the speed-accuracy trade-off in each block: they564

alternated between blocks where speed was emphasized and blocks where accuracy was more565

important. Responses were limited to 3 seconds, and trials with response times below 180 ms566

were discarded to avoid anticipatory responses. More details can be found in Wagenmakers et al.567

(2008), and the dataset can be accessed from here.568

Behavioral analyses569

We are interested in comparing model parameters between the DDM and the nl-DDM. It is impor-570

tant to check whether participants’ performance across stimulus-responsemappings and stimuli is571

coherent in terms of response times and accuracy. Indeed, the experimental paradigmwe defined572

entails two types of stimuli and two motor commands for the choices. In addition, we have cre-573

ated two experimental groups, which were instructed to respond with opposite motor commands.574

First, we computed the percentage of stimuli in each class to verify that the stimuli were globally575

equiprobable for each participant. Since we designed the experiment to display each stimulus with576

the sameprobability at each trial, we expect this number to be close to 50%. Otherwise, participants577

could opt for a strategy that prioritizes one response against the other. Then, we performed two578

mixed-model ANOVAs, testing response times and accuracy respectively. The stimulus-response579

mapping was considered a between-subject factor and the stimulus type a within-subject factor.580

Data fitting581

The classical way of fitting evidence-accumulationmodels is by fitting onedrift for each stimulus cat-582

egory separately. In that case, the positive and negative boundaries still correspond to correct and583

incorrect responses respectively, and the starting points are taken from the same distribution re-584

gardless of the stimulus. Consequently, one pair of boundaries ±𝐵, themiddle of the starting point585

distribution 𝑥0 and its half-width 𝑠𝑧, and two drifts 𝜈0 and 𝜈1 (corresponding respectively to "face"586

and "number+sound" trials) have to be fitted in the DDM. Similarly, one pair of stable fixed points587

(attractors, also corresponding to the decision boundaries) ±𝑎, one time scale 𝑘 and two unstable588

fixed points 𝑧0 and 𝑧1 (repellers, that will tune the drift in the "face" and "number+sound" stimuli589
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respectively) are needed for the nl-DDM. In both cases we fix the noise parameter to 𝜎 = 0.3. As590

explained by Ratcliff (1978), since the speed-accuracy trade-off is determined by the boundary sep-591

aration, fitting two parameters among drift, boundary, and noise is constraining enough. Hence,592

5 parameters have to be fitted per participant for the DDM, against 4 for the nl-DDM. In addition,593

fitting requires one non-decision time 𝑇𝑛𝑑 per stimulus type. The non-decision time and the start-594

ing point distribution are intertwined in the case of the DDM. Therefore, as trajectories starting595

closer to the boundary will reach it faster than trajectories starting further away, it is necessary to596

constrain either of these to provide comparison grounds between the nl-DDM and the DDM. For597

this reason, we first fit the nl-DDM and use the computed non-decision times as fixed parameters598

in the DDM.599

We used the PyDDM toolbox (Shinn et al., 2020b, see: pyddm.readthedocs.io) for the fitting,600

minimizing the log-loss function and an implicit resolution. The explicit resolution is indeed im-601

practical with the nl-DDM, which does not allow for explicit solutions when 𝑧 is not centered. The602

log-likelihood is such that themore negative, the closer themodeled distribution of response times603

is to the empirical response time histogram.604

Fitting Wagenmakers et al. (2008)605

For this dataset, we reproduced the methods of Wagenmakers et al. (2008) by fitting the same606

parameters as in that paper for the DDM: the "accuracy" condition was first fitted globally for all607

participants, with a single boundary, starting point, non-decision time and noise term. In addition,608

the starting point and non-decision time variability were fit. One drift was computed per stimulus609

type, resulting in 4 drift terms: 𝜈1, 𝜈2, 𝜈3, 𝜈𝑁𝑊 , corresponding respectively to frequent, rare, very rare610

and non-existent word stimuli. Hence, each model consisted of 10 parameters. Then, the same611

drifts, non-decision times (with its variability), and starting point variability were kept to fit the612

boundary and starting point in the "speed" condition.613

Weperformed this analysis for each participant separately formore comparison grounds, while614

the original paper fitted all participants’ response times together.615

Given our formal analysis, we fitted a single 𝑎, 𝑘, noise, and starting point interval (centered616

around zero) parameters and one 𝑧 per stimulus type (𝑧1, 𝑧2, 𝑧3, 𝑧𝑁𝑊 ), resulting in 8 parameters,617

on the "accuracy" trials. Then, we fit again 𝑎, all other parameters fixed, on the "speed" condition.618

We did not fit the middle point of the starting point interval because 𝑧 should fulfill this role, and619

not the non-decision time variability because the dynamics of the trajectories account for delayed620

onsets of the maximum drift rate depending on the starting point.621

As previously, we used PyDDM (Shinn et al., 2020b) with log-loss minimization and implicit res-622

olution.623

Performance comparison624

We used two metrics to compare the fitting performance of both models. First, we compared pair-625

wise the loss scores, here the Negative Log-Likelihood, obtained after fitting. For our hypothesis626

to be validated, we expected the nl-DDM losses to be lower than these of the DDM. This metric627

assesses the shape of the predicted distribution of response times.628

Since the fitting on both datasets was performed using a different number of parameters and
samples, we also computed the Bayesian Information Criterion for each model, defined as:

𝐵𝐼𝐶 = log(sample size) × 𝑛parameters + 2 × (Negative Log-Likelihood) .

That way, a penalty for more samples and parameters is considered.629

Another interesting metric to compare decision models is their capacity to predict behavior.630

Indeed, one goal of the decision models we consider is to provide a theoretical description of indi-631

vidual speed-accuracy trade-offs. A good model predicts mean response times and error rates as632

close as possible to the empirical quantities. The metric we used to quantify the speed-accuracy633
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trade-off is described in Roitman and Shadlen (2002), which associates a squared error to any de-634

viation from the empirical mean response time and accuracy rate, summed over all conditions.635

Mathematically, this translates into a loss of the form:636

𝐿 =
∑

conditions
(RT − R̂T)2 + (accuracy − ̂accuracy)2 (7)

Note that the accuracy is computed as the ratio of correct responses over all responses, and637

lies within [0 ∶ 1], while the response times are provided in seconds. Since the mean response638

time is shorter than 1 s and of the order of a few hundred milliseconds, this metric scales speed639

and accuracy similarly.640

Hence, we compare each loss pairwise, using three repeated-measure one-sidedpaired-sample641

𝑡-tests. Indeed, we want to test whether the nl-DDM is better than the DDM with these three met-642

rics, hence testing the hypothesis lossnl-DDM < lossDDM. Since we are comparing 3 losses, we set the643

threshold for significance to 𝛼 = 0.017, corresponding to the Bonferroni-corrected 5% threshold.644

Comparison of parameters645

For a better empirical understanding of the parameters of the nl-DDM, we computed the Pearson’s646

correlation coefficients of the nl-DDM parameters over all conditions and participants, using only647

our dataset, that is, over 𝑁 = 50 observations. This allows supporting the observations we have648

noted in the formalism part. Indeed, since fewer parameters were fitted in this case than for the649

Wagenmakers’ dataset, the comparison becomes more straightforward. From the 25 participants,650

we obtained 50 fits per model type by duplicating for each stimulus type the boundaries and time651

constant terms, hence separating the stimulus types and obtaining 25 × 2 fits per model type. The652

models were filtered as previously based on the quality of the fit over all models. 6 models were653

thus rejected (12% of the total), limiting the comparison to 44 fits of each model type.654

First, we computed the correlation matrix between all the parameters of both models. This
allows for a first look into first-order interactions between model parameters, within and across
model types. The correlation coefficients were computed using Pearson’s 𝜌, defined as:

𝜌𝑥,𝑦 =
cov(𝑥, 𝑦)
𝜎𝑥𝜎𝑦

.

Next, to compare parameters of the DDM to parameters of the nl-DDM more quantitatively,655

we performed principal component analysis on the correlation matrix of DDM and nl-DDM fitted656

parameters. The goal is indeed to find howparameters relate to each other. This becomes possible657

by observing the coefficients of the decomposition matrix.658
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