
Detection of alternative isoforms of gene fusions from long-read
RNA-seq with FLAIR-fusion

Colette Felton1, Alison D Tang1, Binyamin Knisbacher3, Catherine J Wu2,3,4, Angela N
Brooks1*

1University of California Santa Cruz, Department of Biomolecular Engineering, Santa
Cruz, CA, 2Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA,
3Broad Institute of Harvard and MIT, , Cambridge, MA, 4 Brigham and Women’s Hospital,
Harvard Medical School, Department of Medicine, Boston, MA
*correspondence: anbrooks@ucsc.edu

Abstract

Gene fusions are important cancer drivers and drug targets, but are difficult to reliably
identify with short-read RNA-sequencing. Long-read RNA sequencing data are more
likely to span a fusion breakpoint and provide more sequence context around the
breakpoint. This allows for more reliable identification of gene fusions and for detecting
alternative splicing in gene fusions. Alternative splicing of fusions has been shown to be
a mechanism for drug resistance and altered levels of oncogenicity.  We have created
FLAIR-fusion, a computational tool to identify gene fusions and their isoforms from
long-read RNA-sequencing data. FLAIR-fusion can detect simulated fusions and their
isoforms with high precision and recall even with error-prone reads. It can also reliably
call known fusions in multiple cancer cell lines with no consistent effect of the library
preparation method used on total or previously validated fusions detected across cell
lines. To demonstrate potential clinical utilities, we ran FLAIR-fusion on amplicon
sequencing from multiple tumor samples and cell lines and detected alternative splicing
in the previously validated fusion PIWIL4-GUCYA2, which could have implications in the
treatment of lung cancers with this mutation. We also detect fusion isoforms from
long-read sequencing in chronic lymphocytic leukemias with and without a splicing
factor mutation, SF3B1 K700E, and find that up to 10% of gene fusions had more than
one unique isoform. Our results demonstrate that gene fusion isoforms can be
effectively detected from long-read RNA-sequencing and are important in the
characterization of the full complexity of cancer transcriptomes.

INTRODUCTION

Gene fusions are major somatic alterations with many established functions in
multiple cancer types1,2.Generally, gene fusions result from major translocations or
deletions where two previously separate genes are fused together and expressed under
a single promoter1,3. Previous work has shown that gene fusions are major drivers of
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about 16% of cancers and function as the sole driver in more than 1% of all cancers4.
Many cancer-driving fusions contain known oncogenes which make them more virulent,
while others contain exclusively genes oncogenic only within the fusion. An example of
an oncogene-containing fusion is the BCR-ABL1 fusion which is primarily found in
chronic myeloid leukemia (CML) and contains the ABL1 gene, which encodes a kinase
involved in cell growth and proliferation. Usually this gene is turned off, but when fused
to the BCR gene, it is always turned on under the BCR promoter. This results in a
strong proliferative cancer-promoting phenotype5.

Gene fusions can also be important diagnostic and prognostic markers in cancer
and can be very good targets for treatment. Also, because fusions are generally absent
in healthy tissues, they can provide a reliable marker for early detection of cancer6.
Specific fusions are also recurrent in certain cancer types and can act as markers for
the cancer type and severity7. Since they produce very unique chimeric proteins, they
are also promising antigens for targeted therapies. For instance, there is a very effective
treatment targeted to the BCR-ABL1 fusion8,9.

Gene fusions can be detected either at the DNA or RNA level through whole
genome or whole transcriptome sequencing10,11,12,13. Specific fusions can also be
detected through more rapid and targeted PCR methods14. While most high-throughput
sequencing has been done with short-read Illumina sequencing, it remains difficult to
separate gene fusions from mapping artifacts (reads mapping to multiple loci due to
similar sequence) as the short length of the reads means that the length of mappings in
chimeric reads is especially short and a very small fraction of reads at a locus will span
across the fusion breakpoint15,16. There are also short-read DNA sequencing tools that
use de novo assembly techniques and even diploid assembly17,18. These tools have high
false negative rates and unknown false positive rates19,20. They also only report
structural variation and do not help researchers understand the functional impact of the
mutation of the tumor. Consequently, running multiple short-read fusion detection tools
on a single sequencing dataset will generally yield completely different sets of predicted
fusions. Some of these tools are used in clinical research today, but the standard is
currently to run multiple tools and look for fusions shared between their outputs, as well
as doing extensive human curation and lab testing21.

Long-read sequencing techniques have been used to improve gene fusion
detection22,23. Long-read sequencing with the Oxford Nanopore platform yields reads as
long as 2 megabases, although most reads average at about 1,000 base pairs24. They
are better than short reads for this application because their length allows for a larger
fraction of reads that span the fusion breakpoint, as well as being able to span repetitive
and otherwise problematic sequences. There are a couple of tools that focus on fusion
detection from long-read DNA sequencing, such as Sniffles and NanoSV25,26. They have
already been shown to have higher accuracy than short-read techniques. However, they
are also more expensive, as they use de novo assembly techniques and require very
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high read coverage. There are also multiple tools for identifying fusions from long-read
RNA-seq including LongGF27, and JAFFAL28, and AERON ,29. Neither tool currently has
any data for how it compares to existing methods.

Another advantage of long-read sequencing is that it provides more context
around the fusion breakpoint. This is particularly important in transcriptome sequencing
as it allows researchers to detect additional information about the gene fusion such as
alternative splicing. Abnormal alternative splicing has been shown to contribute to tumor
progression and can be especially impacted by splicing factor mutations30. Multiple tools
exist to detect alternative splicing and full-length isoforms from long-read sequencing,
which is something that cannot be done with short reads. These tools include both
FLAIR and StringTie231,32. Detecting the full-length expressed isoform of a gene fusion
allows for better protein product prediction and understanding of the functional output of
the fusion. This additional information could allow researchers to better understand drug
resistance in gene fusions. For instance, alternatively spliced isoforms of the BCR-ABL1
fusion have been shown to create a protein product, which has been identified as a new
target for therapies33,34. Splicing factor mutations are also common in certain cancer
types, which makes it important to be able to understand differential or aberrant splicing
of gene fusions and their effect on a tumor. When the splicing factor U2AF1 is mutated
at the S34F site, it has been shown to cause alternative splicing in the SLC34A2-ROS1
fusion, leading to upregulation of a more oncogenic isoform35.

We have developed FLAIR-fusion,a tool for a more comprehensive identification
of gene fusions from long-read RNA-seq, which also identifies gene fusion isoforms. We
compare FLAIR-fusion with existing long-read fusion tools on simulated and cancer cell
line sequencing data and find the FLAIR-fusion gives better or comparable performance
for gene fusion detection, while FLAIR-fusion is the only tool to report gene fusion
isoforms. Surprisingly, we find many chimeric reads, representing true gene fusions and
artifacts, even in PCR-free library preparation methods (direct CDNA and direct RNA)
which challenge assumptions on causes of chimeric artifacts. Applying FLAIR-fusion to
primary cancer samples, we find evidence of up to 10% of gene fusions having more
than one isoform in a primary chronic lymphocytic leukemia sample with a splicing
factor mutation. FLAIR-fusion allows for high-confident and systematic gene fusion
isoform detection from long-read sequencing, thus allowing cancer researchers to better
characterize gene fusion products and their potential clinical implications.

RESULTS

FLAIR-fusion was built to utilize the isoform detection capabilities of FLAIR31;
however, FLAIR-fusion is amenable to the usage of other transcript-isoform detection
methods such as StringTie232. First, fastq or fasta reads are run through FLAIR-align
and FLAIR-correct, which align using minimap2 and correct small deviations from splice
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sites in the alignment. Next, FLAIR-fusion is run, which first adds transcriptome
annotation to the genomic alignment, then extracts all multi-mapping reads from the
alignment. A subset of multi-mapping reads will be chimeric reads where
sub-sequences will map to multiple genomic positions (Figure 1, top panel).  For
chimeric reads mapping to non-genic regions, close mappings are condensed into a
single locus and filtered to ensure that they are farther apart than a user-defined
distance parameter. The default read support that FLAIR-fusion requires is 3, although
most analyses in this paper were run with a read support of 2 to match other tools.
Potential chimeras are then filtered by read support and mapping score. Since the
mitochondrial genome exists outside of the nucleus and therefore is unlikely to
biologically fuse to the nuclear genome, any chimeras including mitochondrial genes are
excluded. Chimeras containing known paralogous genes are excluded since those are
likely due to mismapping to other paralogs.

Next, fusion breakpoints are determined by first referring to the position of the
end of the genomic mappings on the fastq read, ensuring that the inferred breakpoint is
where the read switches mapping to a separate genomic locus. Second, possible
breakpoints are clustered by read support, with the breakpoint with the highest read
support being selected for each locus. The mappings are checked for proximity to the
start site of the gene, which is evidence for the fusion being expressed and is later used
to score the fusion. Next, chimeric reads with mappings closer in genomic distance than
the user-defined distance are filtered out. Chimeric reads are further filtered by the
arrangement of mappings on the fastq read, where the portions of the read that are
mapped to different regions of the genome should be arranged directly adjacent to each
other on the read. This filter removes regions that multimap due to sequence similarity
and also  library preparation artifacts causing central adapters. The chimeric reads are
then filtered by proximity to splice sites, since gene fusion breakpoints are more likely to
occur in introns and are represented in RNA as being at splice sites (Figure 1, middle
panel).

Finally, FLAIR-fusion filters by both gene coverage and fastq read coverage. For
the gene coverage filter, we check that the mapping doesn’t cover the entirety of the
gene as these chimeric reads were likely due to cDNA or library preparation artifacts by
visual inspection.  For the read coverage filter we check that the combined chimeric
mappings cover the majority of the read. Chimeric reads that pass all filters are
categorized as gene fusions.

Next, FLAIR-fusion detects the fusion isoforms by first splitting the fusion
mappings into two files, with those mapping to one locus of a fusion in one file and
those mapping to the other locus in a second file. FLAIR-collapse is then run on each
file independently, with a file of reads attached to the isoforms they support being
generated. FLAIR-fusion then matches the reads supporting each isoform of the fusion
at each locus to each other. For instance, if a group of reads support both isoform A and
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B at locus 1 as well as isoform C at locus 2, FLAIR-fusion would report the full-length
isoforms A-C and B-C. FLAIR-fusion generates five primary outputs - two .tsv files with
the predicted fusions and predicted isoforms, two .bed files with the fusion reads and
collapsed isoforms, and a .txt file with the chimeras that were filtered out.

Performance on simulated data

To test the ability of FLAIR-fusion to correctly identify gene fusions, we ran it on
data simulated to closely match biological gene fusions. This dataset included
simulating multiple isoforms of both loci involved in the gene fusion. For each fusion,
two protein-coding genes were randomly selected from the Gencode v37 annotations38.
For each of these genes a breakpoint was randomly selected within the gene, then each
isoform of one gene was fused to a unique isoform of its fusion partner. This mode of
simulation allows us to explore both gene fusions and their isoforms. For each
simulated sample, we simulated up to 50 gene fusions with background gene
expression of 6000 randomly selected protein-coding genes.

We then used Badread39 to simulate Nanopore reads at different coverage and
quality levels, then ran FLAIR-fusion on the resulting fastqs. Badread simulates read
identities from a beta distribution, but using mean, max, and standard deviation
parameters. The mean, max, and standard deviation parameters for high, average, and
low quality reads were (95,100,4), (87.5,97.5,5), and (75,90,8), respectively. We
analyzed 4 replicates each of 3 different Nanopore sequencing quality levels and 4
levels of coverage. A fusion was considered detected if the genes in the reported fusion
were identical to the genes selected in the simulation process. An isoform was
considered correctly identified if the intron chain present in the fusion was identical to
that portion of the intron chain present in the reference.

FLAIR-fusion was found to have >80% recall and >70% precision on high-quality
and medium quality Nanopore reads at all coverage levels (Figure 2A). While
FLAIR-fusion maintained high precision in the low-quality read samples, it struggled to
identify fusions in these samples, primarily due to low mapping quality and fidelity. All of
the fusions that were missed in the higher-quality samples were also due to low
mapping quality. Some fusions, especially those with only a single exon at one locus,
didn’t reliably have chimeric mappings even in high coverage samples.

FLAIR-fusion’s isoform-level recall and precision followed similar trends, with
60% recall and precision in high-quality and medium-quality reads but lower recall in
low-quality reads (Figure 2B). However, in medium to high-quality Nanopore reads,
FLAIR-fusion was able to correctly identify up to 6 unique isoforms in a single fusion,
following the isoform across the fusion breakpoint. The isoforms that were missed were
ones that have been previously shown to be difficult to detect, such as shorter isoforms
that contain a subset of exons of a longer fusion31.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502364doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502364
http://creativecommons.org/licenses/by/4.0/


We also compared FLAIR-fusion to two other tools for long-read fusion detection,
JAFFAL28 and LongGF27. Since neither of these tools is able to identify fusion isoforms,
we simply compared based on fusion detection. We ran all tools requiring consistent
minimum fusion support of two reads. No other parameters were standardized due to
the lack of user-defined parameters in JAFFAL and LongGF. All of the tools showed an
effect of read coverage on fusion recall in low-quality reads (Figure 2C-D,
Supplemental Table 1). On the simulated dataset, FLAIR-fusion outperformed both
JAFFAL (p<0.001) and LongGF (p<0.001) at multiple coverage and read quality levels
(Figure 2C-D, Supplemental Table 2).

Detecting clinically-relevant fusion isoforms on amplicon sequencing data

To illustrate the importance of detecting the isoforms of gene fusions, we ran
FLAIR-fusion on an amplicon sequencing dataset from Suzuki et al40. This dataset
contains cDNA amplicon Nanopore sequencing of fusions from multiple tumor types and
cell lines, which is an ideal dataset to detect alternative isoforms given increased read
coverage  These fusions have been shown to be important cancer drivers or markers of
pathogenicity. All of these fusions have been experimentally validated by PCR and their
breakpoints validated by Sanger sequencing (Suzuki et al.). FLAIR-fusion is able to
correctly identify all of these important cancer fusions and identify their breakpoints, but
in addition was able to identify alternative splicing in PIWIL4-GUCY1A2, EFHD1-UBR3
and ERGIC2-CHRNA6. However, some of this splicing was at low abundance (< 5% of
total fusion reads), so we focused on the alternative splicing in PIWIL4-GUCY1A2. In
this fusion there is an alternative isoform that makes up 13% of reads with a skipped
exon in PIWIL4. PIWIL4 has been previously identified as a pro-migratory and
anti-apoptotic factor in breast cancer that would make a good therapeutic target36.
Understanding the expressed isoforms of this gene in tumors will allow for better
designed therapies that cannot be evaded by alternative splicing.

Effect of library preparation method on chimeras and fusion detection

To investigate the ability of FLAIR-fusion to detect known fusions in
whole-transcriptome data, we used Nanopore sequencing data generated from 5 cancer
cell lines of different tissue types with well-characterized gene fusions41. This dataset
also allowed us to investigate the impact of library preparation method on fusion
detection as they used cDNA, direct-cDNA, and direct-RNA (dRNA) approaches. This is
important because the more common cDNA library preparation method uses PCR
amplification, which can introduce artifactual chimeras through incomplete elongation42.
Both direct-cDNA and dRNA do not use PCR amplification, although they still require
reverse transcription. Understanding which library preparation method is best for
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detecting fusions with long-read Nanopore sequencing is important for the wider
adoption of this method in the future.

We hypothesized that the cDNA samples would have the highest levels of
chimeras due to PCR. We exclude mappings to paralogs because they represent error
or ambiguity in the mapping software, not potential biological artifacts. We found that
our hypothesis was not supported, and the cDNA samples had a similar number or
fewer chimeras per read than direct-cDNA or dRNA (Figure 3A). This suggests that
PCR amplification artifacts are not a major cause of most chimeras, as previously
thought. We found that genes with higher expression have more chimeras (r > 0.9, p <
0.001) in all library prep methods (Supplementary Figure 1).

We also wanted to know whether higher levels of chimeras correlated with higher
levels of filtered fusions detected (Figure 3B). Since the number of raw chimeras are
orders of magnitude greater than the number of experimentally validated fusions, we
hypothesized that there would be no correlation between the number of chimeras and
the number of fusions if the filtering is perfect. However, we found a significant
correlation between total chimeras and putative fusions (corr=0.48, p<0.001). There is
no correlation between chimeras and numbers of experimentally verified reference
fusions, so this does not reflect underlying genomic instability. It is instead likely that this
result reflects the remaining presence of artifactual chimeras among the final set of
putative fusions, showing that there are still advances to be made in fusion detection.

Although there was no difference in the total number of chimeras found in
different library prep methods, we wanted to identify whether there was any difference in
the properties of the chimeras that might shed light on any different processes that
created the chimeras. To do this, we analyzed the reasons why the chimeras were
filtered out of the putative fusion set (Figure 3C). We found no significant difference in
chimeras supported by a single read, with low mapping quality, or involving
mitochondrial genes. dRNA had significantly fewer chimeras between paralogous genes
and closely mapping genes. Although all chimeras were measured per read to control
for sequencing depth, dRNA did have lower average sequencing depth on average than
the direct-cDNA or cDNA samples. This may explain the lower number of paralogous
chimeras, as lower coverage samples will detect fewer lower-expression genes with
paralogs. There is also a significant increase in chimeras between genes with a short
genomic distance between them in the direct-cDNA samples.

Using a dataset of fusions in these cell lines that had been previously validated
by at least two publications28, we compared the recall of FLAIR-fusion on cell lines
sequenced with different library preparation methods. We found no significant difference
in fusion recall between the different library preparation methods (Figure 2D). We chose
not to analyze precision on this set as there is a lack of a true negative set due to the
possibility of real but not previously validated fusions.
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We also compared the recall of FLAIR-fusion to JAFFAL and LongGF on this
dataset, running the tools as described above with standardized fusion support of two
reads. We find no significant difference between the performance of these tools on any
of the cell lines sequenced, which have a range of 1-53 experimentally validated fusions
(Supplemental Figure 2). While the tools have comparable recall of the experimentally
validated fusions, the other fusions they detect in each sample vary. To better
understand this variability between tools, we took the set of putative fusions that
JAFFAL and LongGF report but FLAIR-fusion filters out and identified at what filtering
steps FLAIR-fusion removed them (Figure 3F). We found that both tools have less
stringency with mapping scores than FLAIR-fusion. LongGF is unique in not filtering out
fusions containing mitochondrial genes, while JAFFAL has the least removal of
chimeras with close genomic mappings (< 5kbp distance).

Detection of gene fusion isoforms in whole-transcriptome primary cancer samples

To assess the ability of FLAIR-fusion to detect alternative splicing in gene fusions
in primary cancer samples, we applied it to 6 chronic lymphocytic leukemia (CLL)
samples that were sequenced with Nanopore using a cDNA library preparation31. These
samples were also sequenced with short-read Illumina sequencing and two of the
leading short-read fusion detection tools, STAR-fusion and Arriba, were run on these
samples. One of the CLL samples is wild type in the splicing gene SF3B1, while the
other has the SF3B1 K700E hotspot mutation which has been shown to cause
transcriptome-wide changes in splicing31. We also sequenced 3 replicates of a wild-type
B-cell sample as a control. We hypothesized that we would be able to detect alternative
splicing in gene fusions detected in the K700E sample. Two replicates of each genotype
were sequenced with Nanopore Minion, while one replicate was sequenced using the
Nanopore Promethion. The samples sequenced with the Minion had an average of
0.5M reads, which was not enough coverage to detect fusions. Therefore, all further
analysis was performed on the sample sequenced with the Promethion, which had an
average of 50M reads.

First, we compared the differences in fusion detection between all short-read and
long-read tools on the CLL SF3B1 WT sample. We found that all tools except JAFFAL
detect a similar total number of fusions, with JAFFAL detecting an order of magnitude
more fusions than other tools (Figure 4A). However, the overlap between fusions
detected in short-read tools is two orders of magnitude smaller than the total fusions
detected by those tools, while the majority of fusions detected by the long-read tools are
in common between all three tools (Figure 4A-B). All tools detect one fusion,
BIRC3–REXO2.

Of the fusions detected by FLAIR-fusion in the SF3B1 K700E tumor, 10% had >1
unique isoform, compared to 5% in the SF3B1 WT tumor (Figure 4C-D). In addition,
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none of the SF3B1 WT fusions had alternative splicing in both of the genes involved in
the fusion, while 2.5% of fusions in the SF3B1 K700E tumor had alternative splicing in
both loci. One of these fusions, MAX–CHURC1, has one isoform with the retention of
exon 2 in MAX and the skipping of exon 3 in CHURC1, while the other isoform has the
skipping of exon 1 in MAX and the retention of exon 3 in CHURC1 (Figure 4E). These
could not be deconvoluted by short reads because of the lack of reads spanning the full
transcript. Another fusion with alternative splicing in the SF3B1 K700E sample is the
SPIDR–UBE2V2 fusion. In the SPIDR gene, one isoform appears to have the chimeric
junction after exon 4, while the other isoform has the chimeric junction after exon 6.
However, there is an annotated isoform that skips exons 5 and 6, so this structure can
be representative of an underlying genomic breakpoint in the intron after exon 6 with
alternative splicing causing different chimeric junctions in the RNA. (Figure 4F). Again,
this is a structure that can be uniquely identified and understood with long-read
sequencing and FLAIR-fusion.

DIscussion
Long-read sequencing provides much longer reads and therefore more context

around fusion breakpoints. While some tools have used long-reads for fusion detection,
none have fully taken advantage of the ability to detect both gene fusions and their
full-length isoforms at the same time, allowing for a more complete functional
interpretation of the fusion. We developed FLAIR-fusion, a tool for the detection of gene
fusions and their isoforms from long-read RNA-sequencing data. This tool is able to do
splice site correction of all reads, gather chimeric reads, and then apply a number of
specific filters to identify true fusion reads. It then identifies the isoforms at each locus
involved in a fusion, then combines those to identify full-length fusion isoforms matched
across the fusion breakpoint. Although we used real and simulated Nanopore
sequencing data, other long-read transcriptome data with higher sequencing accuracy
such as R2C2-cDNA/Nanopore or cDNA/PacBio would be expected to have increased
accuracy (Figure 2)37.

Using simulated reads, we were able to show that FLAIR-fusion is able to detect
both gene fusions and their full-length isoforms with high sensitivity and precision. On
the simulated dataset, FLAIR-fusion also outperformed two other long-read fusion
detection methods, JAFFAL and LongGF. We also used FLAIR-fusion to analyze
amplicon sequencing of multiple previously identified fusions in lung cancer.
FLAIR-fusion detected all expected fusions and detected alternative splicing at a
physiologically-relevant level in the PIWIL4-GUCY1A2 fusion.

We also determined that most chimeras are likely not formed via PCR artifacts,
as dRNA and direct-cDNA sequenced samples that were prepared without PCR
showed similar numbers of chimeras to cDNA samples prepared with PCR. We also
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found that the expression of a gene is highly correlated to the number of chimeric reads,
which suggests that the process creating these artifacts is not due to specific repetitive
sequence in the reads. Chimeras are also observed in DNA sequencing libraries,
indicating that the process is not driven by reverse transcriptase enzymes43. At the
moment, there is no evidence to implicate any specific part of the library preparation
process in chimera formation.

We also showed that tools for fusion detection from long-read data have much
more concurrence than tools using short-read data, showing that long-read fusion
identification is based on more robust data that allows consistent conclusions. We
detected interesting differences in the alternative splicing of fusions between an SF3B1
WT sample and an SF3B1 K700E sample, indicating that SF3B1 K700E may cause
more alternative splicing of fusions. However, this result is exploratory and needs to be
repeated with deeper sequencing on more samples. Finally, we identified complex
alternative isoforms of gene fusions in a SF3B1 K700E leukemia sample. These
structures could only be resolved by long read sequencing and FLAIR-fusion. This is
more evidence that the combination of FLAIR-fusion and long-read sequencing is
uniquely useful to better characterize fusions in primary tumor samples.

METHODS

FLAIR-fusion pipeline: FLAIR-fusion is a python tool for fusion detection from long
reads. There is the option of starting from a .fastq file or a .bam file, although if starting
from a mapped .bam file, the alignment must be run with –secondary=yes to allow for
chimeric mappings. If starting from a .fastq file, the pipeline first runs the FLAIR-align
module, which runs minimap2 with the desired options. It then converts the minimap2
.bam file to a .bed file, as the default .bed file that minimap2 produces doesn’t include
chimeric reads. The FLAIR-correct module is then run on the .bed file, which corrects
splice sites with an error of a few base pairs. The corrected reads are then compared to
the transcriptome and each read assigned to the correct gene. Next, all reads that map
multiple times are extracted from the .bed file. Paralogous mappings are identified and
moved to the metadata file, then fusions involving non-genic regions are grouped and
collapsed. Next, we read through the .sam file and identify how the mappings are
located on the .fastq read. If the mappings overlap or are too far apart, the chimera is
moved to the metadata file. Other filters include: fusions involving mitochondrial genes,
fraction of fastq read covered by mappings, genomic distance between mappings,
shortest distance to promoter of mappings, distance to splice site of breakpoint, fraction
mapping covers gene (<.95), and length of mapped sequence. Chimeras that pass all
filters are classified as gene fusions. Their reads are written to the prefixReads.bed file,
and the fusions are written to the prefixFusions.bed file. If the user does not specify -ij,
FLAIR-fusion next identifies gene isoforms in the gene fusions by first separating the
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prefixReads.bed into two files, separating the different mapping loci for each fusion.
Each file is then individually run through FLAIR-collapse using the –generate-map
option, which collapses the reads at each locus into isoforms and produces a file that
associates reads with isoforms. Next, using that file, FLAIR-fusion matches the isoforms
detected at each locus involved in a fusion to the other locus, generating full length
isoforms across the fusion breakpoint. FLAIR-fusion also has many options for running
and adding/removing filters that can be found at
https://github.com/cafelton/FLAIR-fusion.

Fusion simulations: First, 50 protein coding genes are randomly selected from the
gencode 37 annotations and all isoforms of those genes are retrieved. Next, a random
breakpoint is generated in each gene and the gene is matched with a random partner
from the set. The minimum total isoforms of the two genes in the pair is identified, then
that minimum number of fusion isoforms is generated from the gene pair. Once all
simulated fusions are generated, 6000 other random genes are selected from the
annotation and added to the simulated reference transcriptome. That simulated
reference transcriptome is then run via Badreads with different coverage levels and
qualities as follows:
High-quality nanopore reads: badread simulate --reference ref.fasta --quantity 50x
--error_model random \

--qscore_model ideal --glitches 0,0,0 --junk_reads 0 --random_reads 0 \
--chimeras 0 --identity 95,100,4 --start_adapter_seq "" --end_adapter_seq "" \
| gzip > reads.fastq.gz

Medium-quality nanopore reads: badread simulate --reference ref.fasta --quantity 50x \
| gzip > reads.fastq.gz

Bad-quality nanopore reads: badread simulate --reference ref.fasta --quantity 50x
--glitches 1000,100,100 \

--junk_reads 5 --random_reads 5 --chimeras 10 --identity 75,90,8 \
| gzip > reads.fastq.gz

These parameters were previously defined by the Badreads team and can be found on
their GitHub at https://github.com/rrwick/Badread.

Tool comparisons: For tool comparison on both the simulated and cell line data, we ran
FLAIR-fusion with default settings except for k=2, which sets the minimum reads
covering a fusion to two and sets it on par with the other tools. For LongGF, minimap2
was run with the same parameters as used in FLAIR-align, then LongGF was run with
the command:
LongGF sorted.bam gencode.v37.annotation.gtf 100 50 200
JAFFAL was run on all files with the command:
<path to JAFFA>/tools/bin/bpipe run <path to JAFFA>/JAFFAL.groovy fastq.gz
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For the JAFFAL output, fusions reported as PotentialTransSplicing are excluded from
the analysis to maintain a minimum read support level of 2 across all tools. Fusions
were classed as true positives if both gene loci detected were correct. We also allowed
fusions mapping to paralogous loci to be classed as true positives. We reported
breakpoints on the fusion gene level, so any alternative fusion breakpoints (specifically
from JAFFAL) were not counted separately.

Sample sequence access: SGNex ONT cell line sequencing is available at
https://github.com/GoekeLab/sg-nex-data. CLL patient data was sequenced as
described in Tang et al 31.
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Figure 1: FLAIR-Fusion pipeline for fusion isoform detection

Figure 1: After reads are mapped and splice sites are corrected using FLAIR-align and FLAIR-correct,  
reads that map to multiple loci are identified (top panel). Next, multiple filters are applied to separate 
mapping or library preparation errors from true fusions. A subset of key filters are shown: ensuring genomic 
distance between mappings, checking that the mappings don’t include overlapping sequence, and 
checking that the breakpoint between the mappings is at a splice site (middle panel). Finally, isoforms are 
identified separately for each locus in a fusion and then combined to create full-length gene fusion isoforms 
(bottom panel).
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Figure 2: FLAIR-Fusion outperforms other methods on simulated data

Figure 2: FLAIR-Fusion outperforms other methods on simulated data A+B Precision (true positives 
found(TP)/total fusions found) and recall (TP/total set of true fusions) of FLAIR-fusion for multiple coverage 
levels and simulated read qualities (see Methods), n=4 unique simulated transcriptomes. A fusion-level, B 
isoform level, with up to 10 simulated isoforms per fusion. C Precision and D recall of FLAIR-fusion, 
JAFFAL, and LongGF on the same simulated dataset as A+B. Almost all comparisons between tools are 
significant, for values see Supplementary Table 1. E Alignment of the fusion isoforms of the 
amplicon-sequenced PIWIL4-GUCY1A2 fusion. The first number in the fusion isoform label is the number 
of supporting reads for that isoform. A selection of the annotated isoforms of these genes is also shown 
with HUGO isoform IDs from gencode 38. Note that there is an inversion between these loci.
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Figure 3: A Chimeras or B fusions identified by FLAIR-fusion per million reads across ONT sequencing of 
MCF7, A549, Hct116, HepG2, and K562 cell lines with cDNA, direct-cDNA, and direct-RNA library 
preparation methods. C Comparison of different FLAIR-fusion filters for removing chimeras to identify 
differences in sources of chimeras between library preparation methods. This is only for the MCF-7 cell line. 
Chimeric reads for each library prep method were normalized by sequencing depth, then converted to a 
fraction of 1. D Recall of FLAIR-Fusion on MCF7(n known fusions = 53), K562 (n=6), and Hct116 (n=2) cell 
lines. HCT-115 and HEP-G2 were excluded due to lack of known fusions. No significant difference in fusion 
detection based on library prep method for each cell line was found. E Fraction of MCF7 fusions called by 
JAFFAL and LongGF that are also called by FLAIR-fusion. Of the MCF7 fusion calls thrown out by 
FLAIR-fusion, the filter in FLAIR-fusion is indicated.

Figure 3: Library preparation method has no effect on chimeras found
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Figure 4: FLAIR-fusion detects alternative splicing in gene fusions in CLL SF3B1 
K700E tumor samples

Figure 4: A Upset plot comparing performance of short-read tools STAR-fusion and Arriba and long-read 
tools FLAIR-fusion, LongGF, and JAFFAL on a CLL K700E WT sample. The red box highlights the greater 
overlap of the long-read tools compared to the short-read tools. B Shows fraction of fusions shared between 
each pair of short-read and long-read fusion detection tools. C Comparison of the fraction of gene fusions 
detected by FLAIR-fusion with alternative splicing at at least one of the fusion loci in SF3B1 WT to SF3B1 
K700E. D Same as B, but there must be unique alternative splicing at both fusion loci. E Alignment of the 
fusion isoforms of the MAX-CHURC1 fusion in the SF3B1 K700E sample. A selection of the annotated 
isoforms of these genes is also shown. Note that there is an inversion between these loci. F Alignment of the 
SPIDR-UBE2V2 fusion with a selection of annotated isoforms.
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