

1 **Genome-wide fitness analysis identifies genes required for *in vitro* growth and**
2 **macrophage infection by African and Global Epidemic pathovariants of**
3 ***Salmonella Enteritidis***

4

5 Wai Yee Fong¹, Rocío Canals¹, Alexander V. Predeus¹, Blanca Perez-Sepulveda¹, Nicolas
6 Wenner¹, Lizeth Lacharme-Lora¹, Nicholas Feasey^{2,3}, Paul Wigley⁴ and Jay C. D. Hinton^{1*}

7

8 ¹Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary & Ecological Sciences,
9 University of Liverpool, Liverpool, United Kingdom

10 ²Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom

11 ³Malawi-Liverpool-Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre,
12 Malawi

13 ⁴Infection Biology & Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of
14 Liverpool, Neston, United Kingdom

15

16 *To whom correspondence should be addressed. Tel: +44 (0) 151 795 4573; Email:
17 jay.hinton@liverpool.ac.uk

18

19 Current Address: Wai Yee Fong, Department of Laboratory Medicine and Pathology, School of
20 Medicine, University of Washington, Seattle, United States of America; Rocío Canals, GSK Vaccines
21 Institute for Global Health S.R.L., Italy; Alexander V. Predeus, Wellcome Trust Sanger Institute,
22 Cambridge, United Kingdom; Nicolas Wenner, Biozentrum, University of Basel, Basel, CH-4056,
23 Switzerland

24

25 Keywords: *Salmonella Enteritidis*, transposon sequencing, essential genes, macrophage,
26 fitness

27

28 Data Summary: Illumina transposon insertion sequencing data have been deposited in
29 European Nucleotide Archive (ENA) repository (EMBL-EBI) under accession number
30 PRJEB52017. JBrowse genome browsers showing the precise location of transposon
31 insertions across the respective *S. Enteritidis* genomes are available at the URLs
32 <https://tinyurl.com/GECP125109> and <https://tinyurl.com/CEACD7795>. The pipeline for
33 bioinformatic processing and analysis of *S. Enteritidis* transposon insertion sequencing data
34 is available at the URL <https://github.com/apredeus/TRADIS>.

35

36 Data Statement: The authors confirm all supporting data, code and protocols have been
37 provided within the article or through supplementary data files.

38 **ABSTRACT**

39 *Salmonella* Enteritidis is the second most common serovar associated with invasive non-
40 typhoidal *Salmonella* (iNTS) disease in sub-Saharan Africa. Previously, genomic and
41 phylogenetic characterisation of *S. Enteritidis* isolates from human bloodstream led to the
42 discovery of the Central/Eastern African (CEAC) and West African clades, which were distinct
43 from the gastroenteritis-associated Global Epidemic clade (GEC). The African *S. Enteritidis*
44 clades have unique genetic signatures that include genomic degradation, novel prophage
45 repertoires and multi-drug resistance, but the molecular basis for the enhanced propensity of
46 African *S. Enteritidis* to cause bloodstream infection is poorly understood. We used transposon
47 insertion sequencing (TIS) to identify the genetic determinants of the GEC representative
48 strain P125109 and the CEAC representative strain D7795 for growth in three *in vitro*
49 conditions (LB or minimal NonSPI2 and InSPI2 growth media), and for survival and replication
50 in RAW 264.7 murine macrophages. We identified 207 *in vitro*-required genes that were
51 common to both *S. Enteritidis* strains and also required by *S. Typhimurium*, *S. Typhi* and
52 *Escherichia coli*, and 63 genes that were only required by individual *S. Enteritidis* strains.
53 Similar types of genes were required by both P125109 and D7795 for optimal growth in
54 particular media. Screening the transposon libraries during macrophage infection identified
55 177 P125109 and 201 D7795 genes that contribute to bacterial survival and replication in
56 mammalian cells. The majority of these genes have proven roles in *Salmonella* virulence. Our
57 analysis also revealed candidate strain-specific macrophage fitness genes, some of which
58 represent potential novel *Salmonella* virulence factors.

59

60 **IMPACT STATEMENT**

61 Invasive non-typhoidal *Salmonella* (iNTS) disease is a systemic infection that has a high case
62 fatality rate of 15% and is responsible for an estimated 66,500 deaths/year in sub-Saharan
63 Africa. The main causative agents are pathovariants of *Salmonella* Typhimurium, known as
64 *S. Typhimurium* ST313, and *Salmonella* Enteritidis (*S. Enteritidis*), known as Central/Eastern
65 African (CEAC) and West African *S. Enteritidis*. Whilst the African *S. Typhimurium*
66 pathovariant has been an active focus of research over the past decade, studies on African
67 *S. Enteritidis* have been lacking. We used transposon insertion sequencing (TIS) to identify
68 the genetic requirements of both African and Global Epidemic *S. Enteritidis* to grow *in vitro*
69 and to infect murine macrophages. To our knowledge, this is the first genome-wide functional
70 analysis of African *S. Enteritidis* under conditions relevant to infection of a mammalian host.
71 We show that the gene sets required for growth under laboratory conditions and macrophage
72 infection by African and Global Epidemic *S. Enteritidis* were broadly similar, and that the
73 majority of the genes that contribute to survival and replication in macrophage already have
74 proven roles in *Salmonella* virulence. Our analysis did identify candidate strain-specific
75 macrophage fitness genes, some of which could be novel *Salmonella* virulence factors.

76 **INTRODUCTION**

77 The majority of human pathogenic *Salmonella* belong to *S. enterica* subspecies 1, including
78 the human-restricted serovars *S. Typhi* and *S. Paratyphi* (causative agents of typhoid and
79 paratyphoid fever) and host-generalists *S. Typhimurium* and *S. Enteritidis* commonly
80 associated with gastroenteritis infections. In recent years, non-typhoidal *Salmonella* (NTS)
81 have emerged as the most common cause of community-onset bloodstream infections in sub-
82 Saharan Africa [1, 2]. This invasive non-typhoidal *Salmonella* disease (iNTS) manifests as a
83 febrile systemic illness resembling enteric fever that often lacks gastrointestinal symptoms,
84 and disproportionately affects young children (under the age of five) with co-morbidities such
85 as malnutrition, malaria or HIV infection or HIV-infected adults [3–6]. In 2017, iNTS disease
86 was responsible for 77,500 deaths globally, of which 66,500 deaths occurred in sub-Saharan
87 Africa [6]. The high case fatality-rate of iNTS (15%) [7] makes the disease a major health
88 problem.

89

90 Most cases of human iNTS infections across Africa are caused by multi-drug resistant
91 *S. Typhimurium* or *S. Enteritidis* variants that have characteristic genetic signatures that differ
92 from gastroenteritis-associated *Salmonella* [1, 2, 8, 9]. African invasive *S. Typhimurium*
93 isolates typically belong to the novel MLST sequence type 313 (ST313), which is distinct from
94 the ST19 type that includes most gastroenteritis-associated *S. Typhimurium* isolates [8, 10].
95 A similar theme of phylogeographic differences has been observed in the *S. Enteritidis* serovar:
96 two separate clades of African invasive *S. Enteritidis* have been identified, designated as the
97 Central/Eastern African (CEAC) and West African clades, as opposed to the gastroenteritis-
98 associated Global Epidemic clade (CEC) of *S. Enteritidis* [9]. Overall, the specific genomic
99 signatures of African invasive *Salmonella* included multi-drug resistance determinants, distinct
100 prophage repertoires and distinct patterns of genome degradation [8, 9, 11].

101

102 *S. Enteritidis* GEC strain P125109 and CEAC strain D7795 have been defined as the key
103 representative strains of the respective clades. P125109 was isolated from an outbreak of
104 human food poisoning in the United Kingdom in 1988 [12–14], while D7795 was isolated from
105 blood culture from a Malawian child in 2000 [9]. The genome sequences of P125109 and
106 D7795 were published in 2008 [12] and 2016 [9], respectively, and were recently reannotated
107 and improved with long-read sequencing [15].

108

109 To date, genome-wide functional analyses of *S. Enteritidis* focused on gastroenteritis-
110 associated *S. Enteritidis* in several *in vitro* conditions as well as during interaction with human
111 epithelial cells, avian macrophages, and an animal infection model [16–19]. Other approaches
112 investigated the role of specific genomic regions such as *Salmonella* Pathogenicity Islands
113 (SPIs) and Regions of Difference (RODs) [20–23]. However, there have been no previous
114 functional genomic analyses of African *S. Enteritidis*. The Feasey *et al.* [9] study remains the
115 sole study to have examined and compared the metabolic capabilities and virulence of African
116 and Global Epidemic *S. Enteritidis* using a variety of carbon sources and an avian infection
117 model. Because the primary intracellular niche of *Salmonella* during systemic infection,
118 however, is macrophages [24], it was important to generate a comprehensive description of
119 *S. Enteritidis* genes required for macrophage infection. To gain insights into how *S. Enteritidis*
120 CEAC D7795 causes disease, it was important to determine whether this pathovariant carries

121 novel virulence genes that have not been described previously in GEC P125109 or other
122 *Salmonella* serovars.

123

124 Here, we used transposon insertion sequencing (TIS) to characterise the gene functions of
125 the *S. Enteritidis* GEC P125109 and CEAC D7795 genomes in three different *in vitro* growth
126 conditions and during macrophage infection (Fig 1). TIS involves the random transposon
127 insertional mutagenesis and high-throughput sequencing of the *S. Enteritidis* genomes
128 following selection under different experimental conditions. The relative changes in
129 abundance of each transposon mutant before and after the treatment reflects the contribution
130 of each gene to survival and adaptation to a particular environment. TIS has been successfully
131 used in various bacteria species to define genetic requirements for bacterial viability and
132 fitness during *in vitro* growth and following infection of mammalian hosts and host cells [25–
133 33]. Our findings delineate the fitness landscapes of GEC P125109 and CEAC D7795 during
134 conditions relevant to mammalian host infection. We identified key similarities and differences
135 in gene requirements between the representatives of the two *S. Enteritidis* clades, coupled
136 with extensive correlation to other *Salmonella* serovars.

137

138 **MATERIALS AND METHODS**

139 **Bacterial strains and growth conditions**

140 Bacterial strains used in this study are shown in Table S1. Permission to work with the *S.*
141 *Enteritidis* CEAC strain D7795 was approved by the University of Malawi College of Medicine
142 Research Ethics Committee (COMREC ethics no. P.06/20/3071).

143

144 The Lennox formulation of Lysogeny Broth, (LB) was 10 g/L tryptone (Difco), 5 g/L yeast
145 extract (Difco), and 5 g/L NaCl (Sigma). LB agar was prepared by addition of 15 g/L Bacto
146 Agar to LB media prior to autoclaving. InSPI2 (pH 5.8, 0.4 mM inorganic phosphate [P_i]) and
147 NonSPI2 (pH 7.4, 25mM P_i) media are PCN-based synthetic minimal media [34, 35]. Terrific
148 broth (TB) (Sigma), a nutrient-rich medium for higher growth of bacteria [36], was prepared
149 according to the manufacturer's instructions. SOC media contained 20g/L tryptone, 5 g/L yeast
150 extract, 0.5 g/L NaCl, 2.5 mM KCl, 10 mM $MgCl_2$ and 20 mM glucose [37].

151

152 Bacterial cultures were inoculated from a single colony routinely and grown in 5 mL LB broth
153 in a sterile 30 mL screw-capped glass vial, for 16 h at 37°C with shaking at 220 rpm (this
154 procedure is referred to as 'overnight culture' unless otherwise described). For experiments,
155 bacterial cultures were grown in 25 mL media in 250 mL sterilised Erlenmeyer flasks, unless
156 otherwise indicated. When required, the antibiotic kanamycin (Km) was added to a final
157 concentration of 50 µg/mL, tetracycline (Tet) to 25 µg/mL, and gentamicin (Gm) to 20 µg/mL.

158

159 **Preparation of electro-competent cells and electroporation**

160 The electroporation of *S. Enteritidis* was carried out using an adaptation of the method of
161 Dower *et al.* [38].

162

163 For the preparation of electro-competent cells, overnight cultures were diluted 1:100 into 25
164 mL salt-free LB (unless otherwise indicated) and grown at 37°C (or 30°C for strains carrying
165 temperature-sensitive plasmids) at 220 rpm to OD_{600} 0.45 ± 0.05 . The appropriate antibiotic
166 was added for plasmid-carrying strains. For strains harbouring the λ Red recombination
167 plasmid pKD46, L-arabinose was added to a final concentration of 0.2%. Cells carrying the
168 pSIM5-tet plasmid were grown at 30°C to OD_{600} of 0.40 ± 0.05 and then incubated at 42°C for
169 15 min with shaking, to stimulate the expression of the λ Red recombinase.

170

171 At the desired OD_{600} , bacterial cells were transferred to 50 mL centrifuge tubes, chilled on ice
172 for 10 min, then pelleted by centrifugation at 4°C and 4,000 rpm for 10 min. Cells were washed
173 three times in 25 mL ice-cold sterile H₂O, and finally resuspended in 250 µL of ice-cold sterile
174 10% (v/v) glycerol. Cells were aliquoted into 50 µL volumes for electroporation reactions, or
175 storage at -80°C.

176

177 For electroporation, competent cells were mixed with 500 ng of DNA in electroporation
178 cuvettes (2 mm gap) and the reactions were electroporated (2.5 kV) using a MicroPulser
179 electroporator (Bio-Rad). Electroporated cells were recovered in 1 mL LB (unless otherwise
180 stated) at 37°C for 1 h (or 30°C for 2 h if the cells contained temperature-sensitive plasmids)

181 with shaking at 220 rpm, before plating on LB agar plates containing the appropriate antibiotic
182 to select for transformants.

183

184 **Construction of *S. Enteritidis* transposon mutant library**

185 Libraries of transposon insertion mutants were constructed in *S. Enteritidis* strains P125109
186 and D7795 using the EZ-Tn5™ <KAN-2> Insertion Kit (Lucigen) as previously described [31].
187 Briefly, transposome mixtures were prepared by mixing glycerol, TypeOne™ Restriction
188 Inhibitor (Lucigen), EZ-Tn5<KAN-2> transposon (at 0.1 pmol/µL) and EZ-Tn5 Transposase,
189 and electroporated into P125109 or D7795 competent cells. Electroporated cells were grown
190 in SOC media for 1 h, before plating on multiple LB agar plates containing 50 µg/mL Km
191 followed by overnight incubation at 37°C to select transformants. Following colony counting,
192 the transposon mutants were collected from the plates by adding LB liquid media, and pooling
193 together for growth in LB + Km⁵⁰ at 37°C overnight to generate the transposon mutant library.

194

195 **Construction of mutants in *S. Enteritidis* by λ Red recombineering**

196 Mutants were constructed using the λ Red recombination method [39]. The oligonucleotides
197 phoQ_KO_F and phoPQ_KO_R were used to amplify the Km resistance cassette from the
198 pKD4 plasmid. The polymerase chain reaction (PCR) product was electroporated into
199 P125109 cells containing the pSIM5-tet plasmid [40] and D7795 cells containing the pKD46-
200 aacC1 plasmid, respectively, to replace the *phoPQ* genes. Transformants were selected on
201 LB agar plates containing 25 µg/mL Tet or 20 µg/mL Gm at 37°C. Colony PCR was used to
202 confirm the presence of the deletion mutation in transformant colonies.

203

204 To generate non-polar, in-frame deletions of *phoPQ*, the corresponding Km-resistant
205 derivatives were transformed with the temperature-sensitive pCP20-tet [41] (for P125109) or
206 pCP20-Gm [42] (for D7795) plasmid that synthesises the FLP recombinase. Transformants
207 were selected by overnight growth at 30°C on LB agar plates containing Tet²⁵ or Gm²⁰,
208 followed by passaging on LB agar plates at 37°C to cure the pCP20 plasmid. Loss of the
209 antibiotic resistance cassette and pCP20 was confirmed by checking for loss of resistance to
210 Km and Tet (or Gm). Presence of the gene deletion was also confirmed by colony PCR.

211

212 Electro-competent cells of wild-type P125109 and D7795, and P125109 derivatives were
213 prepared following growth in LB media as described earlier. Because of the relatively low
214 electroporation efficiency of the D7795 derivative strains following growth in LB, electro-
215 competent cells of D7795 containing pKD46 and Km-resistant derivatives were prepared
216 following growth in TB media.

217

218 The construction of *Salmonella* mutants by FRT-mediated gene deletion generally involves a
219 subsequent P22 bacteriophage transduction into a clean wild-type background. However,
220 observations from P22 plaque assays performed with P125109 and D7795 (data not shown)
221 indicated that P22 did not infect these strains readily. To ensure that no unintended nucleotide
222 changes had been generated by the λ Red mutagenesis process, one *phoPQ* deletion mutant
223 per strain was whole-genome sequenced (MicrobesNG, Birmingham, UK). Bioinformatic
224 analysis of the sequencing data involved comparison with the genome of either P125109 and

225 D7795 [15], which confirmed that no unintended mutations had been introduced during the
226 recombineering process (data not shown).

227

228 **Passaging the *S. Enteritidis* transposon libraries in LB, NonSPI2 and InSPI2 media**

229 A 1.5 mL aliquot of the P125109 or D7795 transposon library was grown in 25 mL LB + Km⁵⁰
230 in a shaking water bath at 37°C, 220 rpm for 16 h. Cells harvested from 4 x 200 µL aliquots of
231 the bacterial overnight culture were stored at -80°C prior to genomic DNA extraction, to give
232 the Input sample. Another 1 mL of the bacterial culture was washed twice with phosphate
233 buffered saline (PBS) and resuspended in LB, NonSPI2 or InSPI2 media. A 1:100 dilution was
234 inoculated into 25 mL of LB, NonSPI2 or InSPI2 media (without antibiotic), respectively, in 250
235 mL Erlenmeyer flasks. Cultures were incubated in a shaking water bath at 37°C, 220 rpm until
236 early stationary phase (ESP) (passage 1). ESP was defined as the moment when the growth
237 of the bacterial culture in the respective growth media first reached a plateau, as measured
238 by OD₆₀₀ readings. The ESP timepoints for P125109 were 7 h (LB), 10 h (NonSPI2), 10 h
239 (InSPI2) and for D7795 were 6 h (LB), 24 h (NonSPI2), 24 h (InSPI2).

240

241 A total of two passages were performed in each growth medium. For LB passages, 250 µL
242 culture was transferred in each individual passage, following two washes with PBS. For
243 NonSPI2 and InSPI2 passages, to account for the reduced growth that occurred in the minimal
244 medium, a culture volume with OD₆₀₀ equivalent to the LB subculture inoculum was transferred
245 into the subsequent passage to make bacterial numbers as equivalent as possible. For
246 example, if LB passage 1 has an OD₆₀₀ of 2.0 and NonSPI2 passage 1 has an OD₆₀₀ of 1.0,
247 then 500 µL of NonSPI2 passage 1 was used to inoculate passage 2. Cells from 4 x 200 µL
248 aliquots of the second passage of LB (Output_LB), NonSPI2 (Output_NonSPI2) and InSPI2
249 (Output_InSPI2) were harvested and stored at -80°C until genomic DNA extraction.

250

251 **Infection of RAW 264.7 macrophages with *Salmonella***

252 For intra-macrophage replication assays with the wild-type and del-*phoPQ* derivatives of *S.*
253 *Enteritidis* and *S. Typhimurium* strains, 10⁶ RAW 264.7 macrophage cells (ATCC® TIB-71™)
254 were seeded in each well of 6-well plates (Sarstedt) 24 h prior to infection. Bacterial overnight
255 cultures were inoculated from a single bacterial colony into 25 mL LB, incubated shaking at
256 220 rpm and 37°C for 18 h. Inoculum size was standardised by adjusting the OD₆₀₀ of
257 overnight cultures to OD₆₀₀ 2.0, followed by resuspension in Dulbecco's Modified Eagle
258 Medium (DMEM; Thermo Fisher Scientific) supplemented with MEM non-essential amino
259 acids (NEAA) (Thermo Fisher Scientific; 10% final concentration) and L-glutamine (Thermo
260 Fisher Scientific; 2 mM final concentration). Prior to all macrophage infection experiments,
261 bacteria were opsonised with 10% BALB/c mouse serum (Charles River) in 10 volumes of
262 DMEM for 30 min on ice.

263

264 The macrophages were infected with *Salmonella* at a Multiplicity of Infection (MOI) of 5–10,
265 and infections were synchronised by 5 min centrifugation at 1,000 rpm at room temperature.
266 This was defined as time 0. After 30 min incubation at 37°C and 5% CO₂, cells were washed
267 three times with Dulbecco's phosphate-buffered saline (DPBS) and incubated with DMEM +
268 10% foetal bovine serum (FBS; Thermo Fisher Scientific) containing 100 µg/mL Gm for 1 h to
269 kill extracellular bacteria. For time points beyond 1.5 h post-infection, the cell culture media

270 was replaced with fresh DMEM + 10% FBS containing 10 µg/mL Gm. Intracellular bacterial
271 numbers were determined by lysis of infected macrophages at 1.5 h and 15.5 h post-infection
272 with 1% Triton X-100 (in DPBS). Serial dilutions of the cell lysates were plated onto LB agar
273 plates (containing antibiotics where necessary) and incubated overnight at 37°C for bacterial
274 enumeration. Replication fold-change was calculated using the intracellular numbers at 15.5
275 h vs. 1.5 h.

276

277 For macrophage infection with the *S. Enteritidis* P125109 and D7795 transposon libraries, 10⁶
278 RAW 264.7 macrophages were seeded in each well of 6-well plates 24 h before infection. A
279 1.5 mL aliquot of P125109 or D7795 transposon library was grown in 25 mL LB + Km⁵⁰ in a
280 shaking water bath at 37°C, 220 rpm for 16 h, and genomic DNA was isolated from two
281 different biological replicates as input samples (Input_LB_1 and Input_LB_2). OD₆₀₀ of the
282 overnight culture was measured and a bacterial inoculum equivalent to OD₆₀₀ = 5.0 was
283 prepared by pelleting and resuspending bacterial cells in appropriate volumes of DMEM
284 supplemented with MEM NEAA and L-glutamine; this equilibration step ensured that sufficient
285 bacterial cells (~1.4 x 10⁷ cells for P125109 and ~1.5 x 10⁷ cells for D7795) were used in
286 infection to represent the complexity of the transposon library. Macrophages were infected at
287 an MOI of 5–10 with mouse serum-opsonised bacteria, as described earlier. A total of 18 wells
288 were used in each infection per strain, with 6 wells set aside for the generation of bacterial
289 counts at 1.5 h and 12 h post-infection, and calculation of the fold-change replication of the
290 intracellular bacteria (12 h vs. 1.5 h).

291

292 At 12 h post-infection, macrophages were lysed with 1% Triton X-100. Macrophage lysates
293 containing intracellular bacteria from 12 wells were pooled into one 15 mL centrifuge tube and
294 centrifuged at 4,000 rpm for 5 min. The cell pellet was resuspended in 1 mL LB and transferred
295 to a flask containing 24 mL LB supplemented with Km⁵⁰ for 10 h growth at 37°C, 220 rpm
296 (Output_MAC). To determine the effect of 10 h growth in LB on the transposon library, a
297 fraction of the input library culture was sub-cultured in LB containing Km⁵⁰ for 10 h
298 (Output_LB_10h). Cells were harvested from the output transposon library cultures and stored
299 at -80°C until genomic DNA extraction.

300

301 **DNA manipulation and sequencing**

302 Genomic DNA was purified from all input and output library cultures using the Quick-DNA™
303 Miniprep Plus Kit (Zymo Research), following the manufacturer's instructions. To ensure that
304 sufficient genomic DNA was available for the preparation of Illumina DNA libraries, each DNA
305 sample comprised DNA extracted from 4 x 200 µL aliquots of the respective bacterial cell
306 samples. DNA concentrations (in ng/µL) were determined using the Qubit dsDNA High
307 Sensitivity Assay and the NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific).

308

309 For Illumina DNA library preparation, 2 µg of genomic DNA from each mutant pool was first
310 fragmented to an average size of 300–350 bp using the BioRuptor@Pico sonication system
311 (15 s ON 90 s OFF, 9 cycles). Illumina DNA library preparation was performed using
312 NEBNext® DNA Library Prep Master Mix Set for Illumina® (New England Biolabs), following
313 the manufacturer's instructions. Reaction products from each step of library preparation were
314 purified using AMPure XP beads (Beckman Coulter).

315

316 To amplify the transposon-flanking regions, transposon-specific forward oligonucleotides
317 (Table S1) were designed such that the first 10 bases of each Read 1 (R1) would be the
318 transposon sequence. A unique 6-base barcode was incorporated into the forward
319 oligonucleotide to allow the pooling of samples for multiplex sequencing in a single lane. 22
320 cycles of PCR [26, 31] were performed with NEBNext Q5 Hot Start HiFi polymerase using the
321 transposon-specific oligonucleotides and the Illumina reverse primer PE PCR Primer 2.0 for
322 each fragmented DNA sample, following the recommended denaturation, annealing and
323 extension temperatures and durations for NEBNext Q5 Hot Start HiFi polymerase. The
324 resulting DNA was quantified using Qubit dsDNA High Sensitivity Assay (Thermo Fisher
325 Scientific) and visualised on an Agilent High Sensitivity DNA chip (Agilent Technologies),
326 following the manufacturer's instructions. Finally, the amplified library was purified with
327 AMPure XP beads and eluted in 30 µL of molecular grade H₂O.

328

329 The list of Illumina DNA libraries generated in this study is given in Table S2. For sequencing,
330 the Illumina DNA libraries from P125109 and D7795 were pooled in a ratio corresponding to
331 the difference in estimated library complexity (which was initially defined by the number of
332 transformant colonies) between the two strains. The DNA libraries from RAW 264.7
333 macrophage infection experiments were pooled in the ratio of 3:1 (P125109:D7795). The DNA
334 libraries from *in vitro* passages in LB, NonSPI2, InSPI2 were pooled in the ratio of 2:1
335 (P125109:D7795); the ratio was revised following sequencing of the DNA libraries from
336 macrophage infection experiments, where the actual transposon library densities were
337 revealed to be ~200,000 unique insertions for P125109 and ~100,000 insertions for D7795.

338

339 QC assessment of the pooled DNA library and sequencing were performed by the Centre for
340 Genomic Research (CGR), University of Liverpool. Each library pool was size-selected to
341 250–500 bp, then paired-end sequenced in one lane on an Illumina HiSeq4000 at 2 x 150 bp
342 (for DNA libraries generated from macrophage infection experiments) or two lanes on an
343 Illumina NovaSeq6000 (SP mode) at 2 x 150 bp (for DNA libraries generated from *in vitro*
344 passage experiments) respectively. 15% of the bacteriophage φX174 genome, provided by
345 Illumina as a control, was added to each lane to overcome the low complexity of the bases
346 that followed the barcode in R1 [43].

347

348 **S. Enteritidis genome sequences and annotations**

349 The annotated complete long-read-based genome assemblies of *S. Enteritidis* P125109 and
350 D7795 are available in the National Center for Biotechnology Information (NCBI) Assembly
351 database (accession numbers [SAMN16552335](https://www.ncbi.nlm.nih.gov/assembly/SAMN16552335)[GCA_015240635.1](https://www.ncbi.nlm.nih.gov/assembly/GCA_015240635.1) [P125109] and
352 [SAMN16552336](https://www.ncbi.nlm.nih.gov/assembly/SAMN16552336)[GCA_015240855.1](https://www.ncbi.nlm.nih.gov/assembly/GCA_015240855.1) [D7795]) [15]. Orthologues between the *S. Enteritidis* and
353 other *Salmonella* strains presented in this study were identified using the pipeline described
354 at <https://github.com/apredeus/multi-bacpipe>. Briefly, Roary [44] was used to find protein-
355 coding orthologues, followed by nucleotide BLAST (blastn) to find conserved non-coding
356 sRNAs, genes encoding small proteins, and pseudogenes. Final validation of each annotation
357 was achieved manually by comparing the annotations to the locus tags in the published
358 P125109 annotation. Cluster of Orthologous Genes (COG) categories were assigned with
359 eggNOG-mapper v2 [45, 46] using the default parameters.

360

361 **Sequence analyses of the *S. Enteritidis* transposon library**

362 Bioinformatic processing and analysis of *S. Enteritidis* transposon insertion data followed the
363 general strategy described in [26, 31, 43], with modifications. The code and full description of
364 the pipeline are available at <https://github.com/apredeus/TRADIS>.

365

366 Raw sequencing data was demultiplexed using cutadapt v2.6 [47]. First, a barcode sequence
367 fasta file that included one sequence per sample was compiled, after which cutadapt was run
368 with options “cutadapt -O 34 -g file:barcodes.fa --discard-untrimmed”. This generated a set of
369 two paired-end fastq files for each sample. The reads were then aligned to the reference
370 genome using bwa v0.7.17-r1188 (using bwa mem algorithm). Aligned BAM files were sorted
371 and indexed using samtools v1.9 [48].

372

373 For further processing, two GFF annotation files were generated for each bacterial strain used
374 in the experiments. One file was used for deduplicated read counting and was obtained from
375 a general annotation file by changing the type of each feature that had a locus tag (ID) into
376 “gene”. The second GFF file was generated the same way, with additional change to the
377 annotated feature size: the last 10% of each annotated gene was removed. This annotation
378 file was used in essentiality analysis, since previous reports [43, 49] showed that insertions or
379 deletions in the last 10% of the gene are much less likely to cause a complete loss of function.

380

381 Following these steps, a series of additionally processed alignment (BAM) files was created.
382 First, picard MarkDuplicates v2.21.2 was used to remove PCR and optical duplicates from the
383 aligned reads. The resulting files were filtered using *cigar_filter.pl* to select only the reads that
384 align exactly at the start of R1 without softclipping. The resulting filtered BAM files were
385 converted into 1 nucleotide single-end BAM files using *make_1nt.pl* script to avoid counting
386 reads that spanned into the nearby genes. These alignment files were used for quantification
387 of deduplicated reads and used in DESeq2 analysis. In parallel, the filtered BAM files were
388 also converted into 1 nt unique insertion BAM files using *make_1nt_uniq.pl* script; these files
389 were used for essentiality analysis.

390

391 The resulting 1 nt BAM files were quantified using featureCounts v1.6.4 [50] with “-M -O --
392 fraction -t gene -g ID -s 0” options for DESeq2 analysis, and “-M -O -t gene -g ID -s 0” options
393 for essentiality analysis. This was done to account for multimapping reads: if only uniquely
394 mapping reads were considered, transposable and other repetitive elements looked falsely
395 essential. Indeed, if multimapping reads were discarded, genes that have multiple copies
396 (such as transposons) appear to have a zero transposon insertion rate, which in turn leads us
397 to the false conclusion of their essentiality.

398

399 **Essentiality analysis**

400 Essentiality analysis was done using the unique insertion counts. For consistency with our
401 DESeq2-based fitness analysis, we have re-implemented the essentiality analysis functions
402 of Bio-Tradis [43], specifically R functions *make_ess_table* and *calculate_essentiality*. Briefly,
403 the unique insertion counts were converted into an insertion index (that is, insertion sites
404 divided by gene length) [26], which followed the expected bimodal distribution. The distribution
405 histogram was used to fit two functions: exponential function for very low insertion indices

406 corresponding to the required genes, and gamma function for high insertion indices of the
407 dispensable genes. Using the obtained fits, the genes were classified as follows: if log-
408 likelihood of the exponent to gamma distribution was 2 or higher, the gene was deemed
409 “required”; if the ratio was below -2, it was deemed “not required”; genes with intermediate
410 insertion indices were reported as “ambiguous”. Due to the relatively low insertion densities in
411 our libraries, essentiality calls were not assigned for features shorter than 200 nt.

412

413 Data from the TIS-based study on *S. Typhimurium* ST313 D23580 [31] was used as a
414 comparator to identify common *Salmonella* genes that were required for growth under
415 laboratory conditions or during macrophage infection, and differences that might reflect unique
416 requirements for each serovar or the pathogenic niche inhabited by these bacteria. Due to the
417 substantial differences in the average number of unique insertions present in the transposon
418 library for *S. Enteritidis* GEC P125109, CEAC D7795 and *S. Typhimurium* D23580, we used
419 both deduplicated read counts and essentiality calls to identify robust differences.

420

421 Deduplicated read counts for LB input, LB output, and macrophage output for the three strains
422 were \log_2 -transformed and quantile-normalised. These values were then used to calculate a
423 log₂ fold-change between the libraries that was evaluated and found to follow an approximately
424 normal distribution (data not shown). Thus, we have selected the genes that were significantly
425 different in all three conditions in the particular strains according to t-test (P -value ≤ 0.05), and
426 also had differing essentiality calls. This approach allowed us to identify 63 genes that satisfied
427 both conditions. The resulting genes were visualised using Phantasus gene expression
428 analysis tool (<http://genome.ifmo.ru/phantasus-dev/>). K-means clustering of rows allowed us
429 to identify five distinct groups of genes, according to the strain they were required in (Fig S1).

430

431 **DESeq2-based fitness analysis**

432 Analysis of differential fitness was performed in R v4.0.2, using DEseq2 v1.28.1 [51] and a
433 simple study design (~ Condition) with default settings. Deduplicated raw read counts were
434 used as expression values. Each condition was represented by at least two biological
435 replicates. Results are shown in \log_2 fold-change. A cut-off of 2-fold-change and P -value < 0.05 was applied.

437

438 **Statistical analyses of intra-macrophage replication experiments**

439 Statistical analyses were performed with GraphPad Prism 7 (version 7.04). Ordinary one-way
440 ANOVA and the Bonferroni's multiple comparison test were used to determine differences in
441 intra-macrophage replication levels between different *Salmonella* strains. A P -value of less
442 than 0.05 was considered to be statistically significant.

443

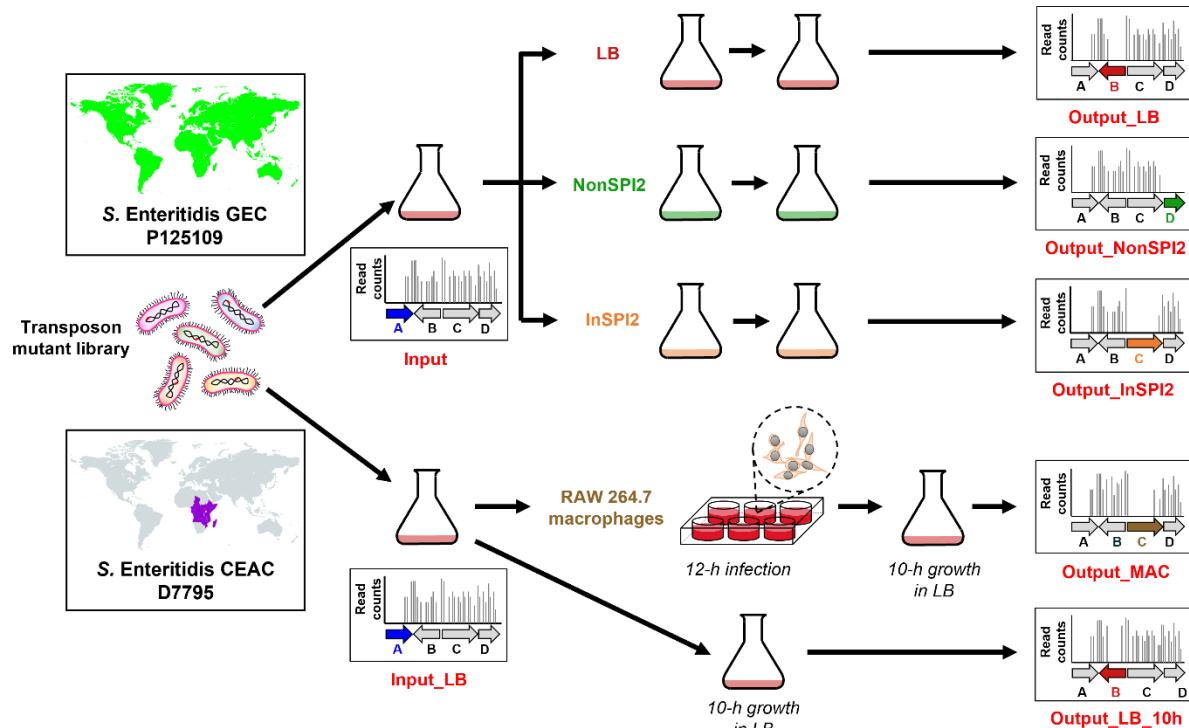
444 **RESULTS AND DISCUSSION**

445 **Characterisation of the *S. Enteritidis* P125109 and D7795 transposon libraries**

446 Transposon insertion libraries were constructed in the *S. Enteritidis* GEC representative strain
447 P125109 and CEAC representative strain D7795. Each pool of transposon mutants was grown
448 in LB (Input) and passaged two times successively at 37°C in three different growth media: a
449 nutrient rich medium, LB (Output_LB), an acidic phosphate-limiting PCN-based minimal media
450 that induces SPI-2 expression, designated InSPI2 (Output_InSPI2), and a neutral pH PCN-
451 based minimal media that does not induce SPI-2 expression, designated NonSPI2
452 (Output_NonSPI2) [34] (Fig 1).

453

454 Genomic DNA from the input and output samples was purified and prepared for high-
455 throughput Illumina sequencing of the DNA adjacent to the transposon. Sequencing was
456 performed on two lanes of an Illumina NovaSeq6000 system, generating a total of
457 1,048,450,846 paired-end reads (523,450,580 read pairs from the first lane and 525,000,266
458 read pairs from the second lane). The sequencing data were processed as described in
459 Materials and Methods. Table S2 shows the number of sequence reads obtained, the
460 sequenced reads that contained the transposon tag sequence, and the sequence reads that
461 were mapped to the respective *S. Enteritidis* genomes.


462

463 Sequence analyses of the input libraries identified 246,743 unique transposon insertion sites
464 in P125109 and 195,646 unique insertions in D7795, an average of one insertion per 19
465 nucleotides in the P125109 genome and one insertion per 24 nucleotides in the D7795
466 genome. The complete data sets are available for visualisation in two online JBrowse genome
467 browsers for the respective strains: <https://tinyurl.com/GECP125109> and
468 <https://tinyurl.com/CEACD7795>. The browsers show the transposon insertion profiles for the
469 chromosome and plasmid of *S. Enteritidis* (pSENV in P125109; pSEN-BT and pRGI00316 in
470 D7795). To yield maximum biological insight from the transposon mutagenesis experiment,
471 we employed our recent re-annotation of the coding genes and non-coding sRNA genes of
472 P125109 and D7795 [15], which was derived from a comparative genomic approach that
473 identified all the annotated genes of *S. Typhimurium* ST19 [52] and *S. Typhimurium* ST313
474 [53] that were carried by the two *S. Enteritidis* strains (Materials and Methods).

475

476 An insertion index was calculated for each gene by dividing the number of unique insertions
477 for any given gene by gene length; the data were used for essentiality analyses (Materials and
478 Methods), classifying genes as “required”, “not required” and “ambiguous”. “Required” genes
479 in this study included genes essential for bacterial viability (i.e. genes that when disrupted lead
480 to irreversible growth arrest or cell death), and genes that contribute strongly to fitness in a
481 particular environmental condition [31, 54]. The role of genes shorter than 200 nt in length
482 could not be defined robustly and was designated as “short”. The number of reads, transposon
483 insertion sites, insertion index, and the essentiality calls per gene for all conditions tested are
484 summarised in Table S3.

485

486

487 **Fig 1. Transposon-insertion sequencing (TIS) of both *S. Enteritidis* Global Epidemic clade**
488 **(GEC) strain P125109 and Central/Eastern African clade (CEAC) strain D7795**

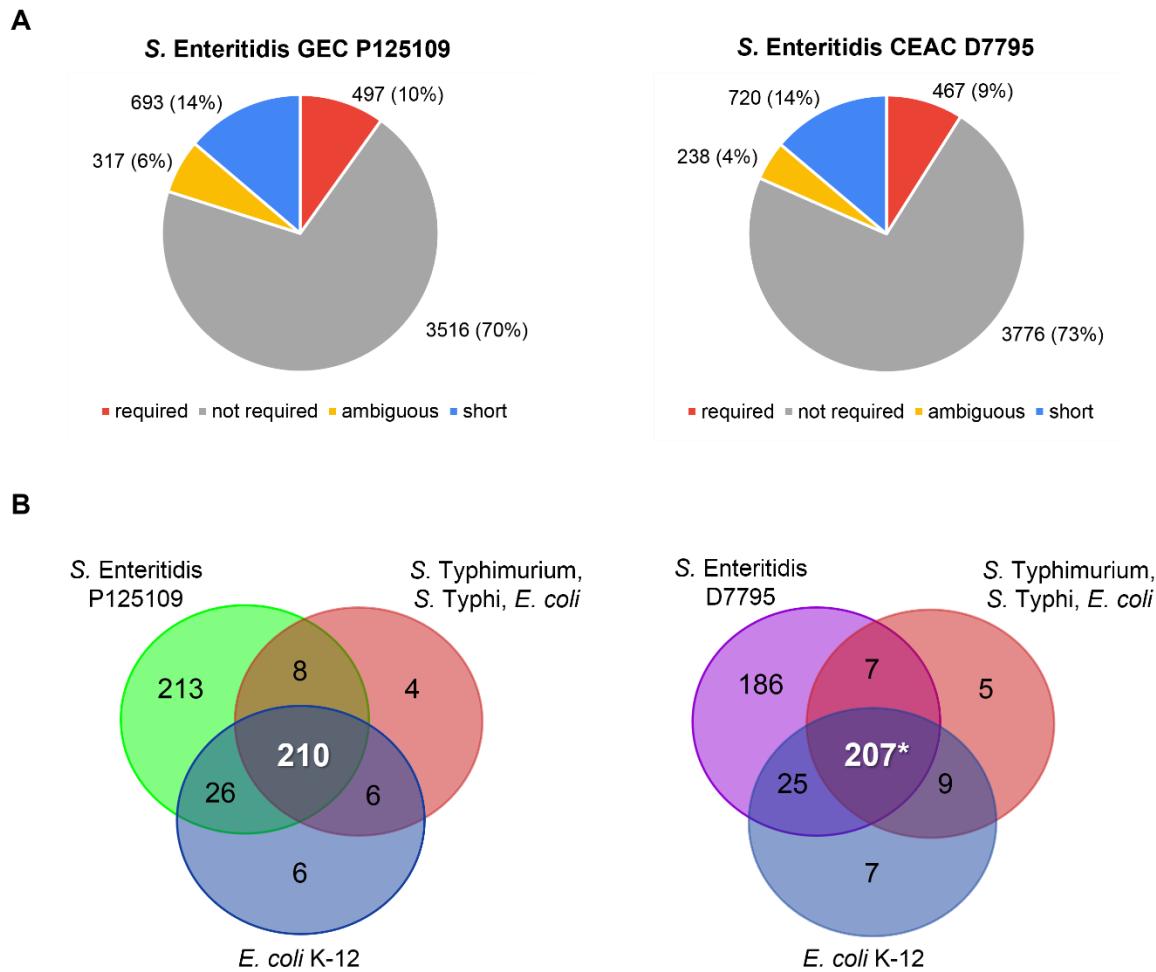
489 Schematic representation of the *S. Enteritidis* transposon libraries and growth conditions used in
490 this study. Experimental details are provided in Materials and Methods. The genes (A, B, C or D)
491 highlighted with colour in the five right-hand panels illustrate how required or fitness genes for a
492 particular environmental condition were identified.

493

494 **Identification of *S. Enteritidis* P125109 and D7795 genes required for *in vitro* growth**

495 Essentiality analysis of the *S. Enteritidis* GEC strain P125109 input library identified 497
496 required genes, 3516 dispensable genes and 317 ambiguous genes, with 693 genes being
497 classified as short (Fig 2). Of the 497 required genes (Table S3), 492 genes were located on
498 the chromosome and 5 genes were carried by the pSENV virulence plasmid (*traJ*, *samA*,
499 *samB*, *SEN_p0037* and *SEN_p0021*). To provide a functional context for the required genes,
500 we used eggNOG-mapper v2 to assign Cluster of Orthologous Genes (COG) functional
501 categories (Table S7). The majority of the required genes were involved in translation (J, 17%)
502 and cell wall biogenesis (M, 5%), followed by an approximately equal distribution between the
503 categories of transcription (K, 3%), replication (L, 3%), energy production (C, 3%) and various
504 metabolic processes (E, F, H and I). Ninety-six genes (16%) were classified in the “Poorly
505 Characterised” category, including 28 genes belonging to Regions of Difference (RODs) [12],
506 prophage regions and SPIs. Eleven SPI-associated genes were required by P125109 for *in*
507 *vitro* growth, including several *ssa* and *ttr* genes in SPI-2, *SEN0277* in SPI-6, and *SEN4250*
508 in SPI-10.

509


510 Essentiality analysis of the *S. Enteritidis* CEAC strain D7795 input library identified 467
511 required genes, 3776 dispensable genes, 238 ambiguous genes and 720 short genes (Fig 2).
512 Of the 467 required genes (Table S3), 465 genes were encoded in the chromosome and 2
513 genes (*samA* and *SEN_p0046*) were located on the virulence plasmid pSEN-BT; no required
514 genes were carried by the smaller plasmid pRGI00316. COG categories were assigned to the
515 D7795 reference genome as described earlier. As seen for P125109, the majority of the D7795
516 required genes are involved in translation (J, 18%), cell wall biogenesis (M, 9%), and
517 nucleotide metabolism (F, 7%). Nine required genes were associated with pathogenicity
518 islands, namely four SPI-2 genes (*ssaT*, *ssaH*, *ttrAB*), two SPI-6 genes (*SEN2077* and
519 *SEN2078*), two SPI-10 genes (*SEN4248* and *SEN4250*), and one SPI-14 gene (*SEN0801*).

520

521 **The 207 required genes shared between *S. Enteritidis* P125109 and D7795, and *S.*
522 *Typhimurium*, *S. Typhi* and *E. coli***

523 To put our essentiality analysis into context, we drew upon other studies that used similar TIS
524 approaches. The required genes of *S. Enteritidis* GEC P125109 and CEAC D7795 were
525 compared with the genetic requirements of *Salmonella* serovars Typhimurium and Typhi, and
526 *Escherichia coli*. We used two required gene sets: the first is a list of 228 essential genes
527 shared between *S. Typhimurium*, *S. Typhi* and *E. coli* [25], and the second list of 248 essential
528 genes identified in *E. coli* K-12 [49]. We found that a total of 207 genes were required in all
529 *S. Enteritidis*, *S. Typhimurium*, *S. Typhi* and *E. coli* strains (Fig 2). These 207 required genes
530 mainly encode the basic cellular machinery (e.g. DNA replication and protein translation) and
531 pathways vital for the growth of the bacteria, including cell wall biogenesis and cell division
532 (Table S4). Of the 6 and 9 genes identified as required in *S. Typhimurium*, *S. Typhi* and *E. coli*
533 but not in P125109 or D7795, respectively, most were designated as “short” genes (gene
534 length less than 200 nt) in either *S. Enteritidis* strain and therefore had not been assigned an
535 essentiality call. Such genes included *infA*, encoding translation initiation factor IF-1; *csrA*,
536 encoding a post-transcriptional regulator that regulates metabolism important for establishing
537 infection in the intestine [55]; *rpmD*, *rpmC* and *rpmH*, encoding 50S ribosomal proteins. The
538 *ispB* gene was the only one of these genes identified as not required in D7795. Overall, our

539 observations were in agreement with other reports: required genes are conserved among
540 bacterial strains within the same species or between different species [25, 27, 29, 31, 56].
541

542
543 **Fig 2. S. Enteritidis GEC P125109 and CEAC D7795 genes required for *in vitro* growth**

544 (A) Distribution of S. Enteritidis GEC P125109 (left panel) and CEAC D7795 (right panel) genes
545 into required, not required, ambiguous and short (gene length < 200 nt) categories. Full gene lists
546 are presented in Table S3. (B) Comparison of required genes identified in GEC P125109 and
547 CEAC D7795 with published gene essentiality studies for S. Typhimurium [25], S. Typhi [25] and
548 E. coli [25, 49]. Only genes that shared an orthologue in P125109 or D7795 were used in the
549 comparison. The asterisk (*) indicates that all the 207 D7795 genes were included in the 210
550 required P125109 genes (Table S4). Venn diagrams were generated using
551 <http://bioinformatics.psb.ugent.be/webtools/Venn/>.

552

553 **The 63 orthologous genes that are only required by *S. Enteritidis* or *S. Typhimurium***
554 **D23580**

555 The Venn comparisons in Fig 2 suggest there are approximately 200 genes that are only
556 required by *S. Enteritidis* but dispensable in *S. Typhimurium*, *S. Typhi* and *E. coli*. However,
557 the differences that arise from such direct comparisons involving different TIS-based studies
558 can be challenging to interpret, in part due to the differences in experimental protocols,
559 transposon library profiles and bioinformatic processing pipelines used by different
560 laboratories. Consequently, we made use of data from our recently published TIS-based
561 analysis of genetic requirements of *S. Typhimurium* ST313 D23580 for survival and growth
562 both *in vitro* and during macrophage infection [31] to identify differences in the genetic
563 requirements with *S. Enteritidis* P125109 and D7795. To address the issue of the different
564 insertion densities of the two *S. Enteritidis* transposon libraries (~200,000 each) and the *S.*
565 *Typhimurium* ST313 D23580 library (at least ~500,000), a customised pipeline (Materials and
566 Methods) was used to compare the three strains and to perform essentiality analysis. Both
567 essentiality calls (using insertion indices) and changes in abundance of read counts in three
568 conditions (LB input, LB output, and macrophage output) were used in the inter-strain
569 essentiality analysis.

570

571 A total of 63 orthologous genes were identified as differentially required by *S. Enteritidis*
572 P125109, D7795 and *S. Typhimurium* ST313 D23580, and broadly classified into five groups
573 (Fig S1). All 63 genes are >200 nt, indicating that their essentiality calls are reliable.
574 Identification of the chromosomal *cysS* gene as not required in *S. Typhimurium* ST313
575 D23580 provides support for our inter-strain essentiality analysis approach: a second
576 orthologous *cysS* gene is encoded by the pBT1 plasmid of D23580, and we have previously
577 shown experimentally that the chromosomal *cysS* gene is dispensable for growth [31].

578

579 Genes belonging to group 3 are of particular interest (Fig S1). Group 3 represents genes that
580 are not required by the two African *Salmonella* strains D7795 and D23580, but are required
581 by the GEC strain P125109. Pseudogenisation, and the consequent loss of gene function, is
582 linked to a restriction in host range of *Salmonella*, as observed for *S. Typhi* [57] and for the
583 switch from an enteric to an extra-intestinal lifestyle by African *S. Typhimurium* [11, 58]. For
584 the future, it will be important to determine whether the functions of these 22 genes are truly
585 dispensable for *S. Enteritidis* CEAC D7795 and *S. Typhimurium* ST313 D23580.

586

587 **Identification of fitness genes of *S. Enteritidis* P125109 and D7795 during growth in LB,**
588 **NonSPI2 and InSPI2 *in vitro* conditions**

589 To build upon our identification of required genes in P125109 and D7795, we studied *in vitro*
590 fitness of the two *S. Enteritidis* strains by analysing the transposon mutants recovered after
591 two passages in three different growth media under laboratory conditions: LB, NonSPI2 and
592 InSPI2. The fitness genes required for growth in each media were identified by the insertion
593 index and essentiality analysis (Table S3).

594

595 Following two passages of the P125109 transposon library in complex LB media, 538 genes
596 were designated as required, which included genes that were required in the input as well as
597 genes that contributed to fitness for *in vitro* growth in LB: 531 genes in the chromosome and
598 7 genes in the pSENV plasmid. A total of 565 genes were required for optimal growth after

599 two passages in NonSPI2 minimal media: 561 genes in the chromosome and 4 genes in the
600 pSENV plasmid. Analysis of the InSPI2 output library identified 629 genes, with 622 genes
601 located in the chromosome and 7 genes in the pSENV plasmid. The overlap between the
602 required gene lists for input, LB output, NonSPI2 output and InSPI2 output was determined to
603 distinguish between the genes shared between all conditions and genes that were only
604 required under specific conditions. We identified 19 genes for LB, 14 genes for NonSPI2, and
605 48 genes for InSPI2 that were required only in the specific media; these genes were
606 categorised as LB-only, NonSPI2-only and InSPI2-only, respectively (Fig 3).

607

608 The P125109 LB-only required genes fall mainly into the major category of “Information
609 Storage and Processing”, with 7 out of 19 genes (36%) belonging to this category, followed
610 by 5 genes in the “Metabolism” major category (Table S4). Compared to the NonSPI2-only
611 and InSPI2-only fitness genes, fewer metabolism-related genes were required for optimal
612 growth in LB, which reflects the nutrient-rich LB environment [59]. Among the 19 LB-only
613 required genes, 6 genes (*xseB*, *cydA*, *recB*, *gidA*, *yjeA*, *arcA*) have been previously identified
614 as required by *S. Typhi* for growth in LB [26]. The *recB* gene, encoding an exonuclease subunit,
615 was also reported to be required by *S. Typhimurium* 14028 [30, 60] and *E. coli* [27] after
616 several passages in LB. The identification of *recB* gene in multiple TIS screens highlights the
617 importance of this gene for fitness in the LB environment.

618

619 The P125109 genes that were required for optimal growth in NonSPI2 and/or InSPI2 were
620 mostly metabolism-related genes, confirming the nutritional deficiencies encountered by the
621 bacteria grown in synthetic minimal media. Genes required for optimal growth in both NonSPI2
622 and InSPI2 included *pur* genes (for purine biosynthesis) and *aro* genes (for aromatic amino
623 acid biosynthesis). The InSPI2-only required genes included several genes associated with
624 SPIs and RODs; the *dksA* gene was also identified, which plays a key role in the stringent
625 response and has been experimentally validated as required for growth of *S. Typhimurium* in
626 minimal medium [61, 62].

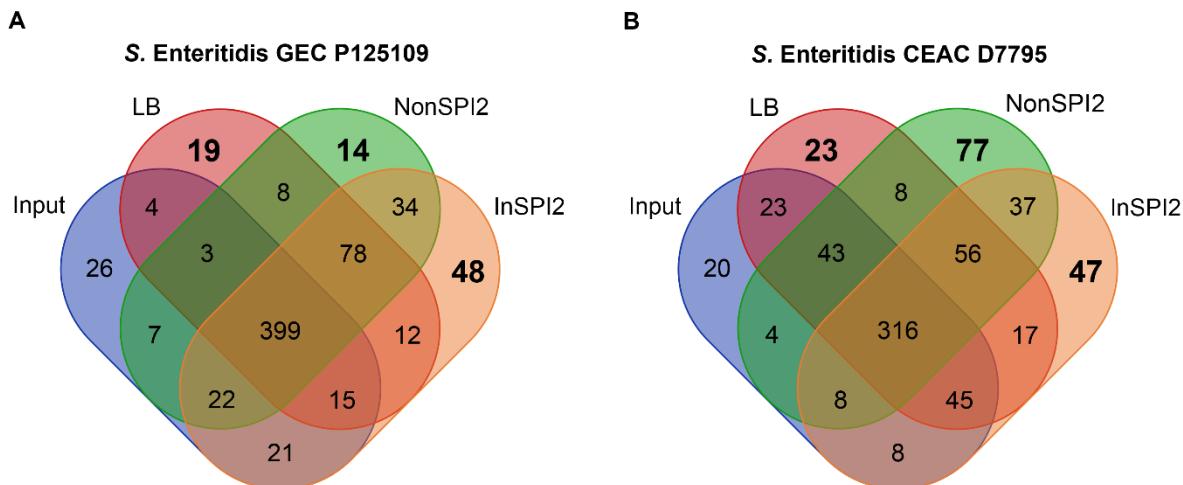
627

628 For CEAC strain D7795, 541 genes, 559 genes and 532 genes were designated as required
629 in LB, NonSPI2 and InSPI2 following two passages in the respective growth media. After
630 removing genes that had been identified as required in the input, there were 23 LB-only
631 required genes, 77 NonSPI2-only required genes and 47 InSPI2-only required genes (Fig 3).
632 As seen in P125109, most of the D7795 LB-only required genes were either involved in
633 “Metabolism” (13 out 23 genes; 54%) or “Information Storage and Processing” (6 out of 23
634 genes; 25%) processes. Five genes identified as required in D7795 for LB growth had been
635 reported to be required by *S. Typhimurium* previously: *ppiB*, a peptidyl-prolyl isomerase; *cydA*,
636 cytochrome oxidase d subunit and *crp*, cAMP-activated global transcriptional regulator [63]
637 and *rstB*, the sensor kinase of the *rstAB* two-component system, and *rnfD*, a component of
638 the electron transport chain [31].

639

640 Most of the D7795 genes identified as required for optimal growth in NonSPI2 and InSPI2
641 minimal media were, as expected, metabolism-related, including genes involved in amino acid
642 transport and metabolism (E), nucleotide transport and metabolism (F) and energy production
643 and conversion (C) (Table S4). Similar to P125109, the D7795 *dksA* gene was also identified
644 as required for growth in InSPI2 media. Several SPI-1 and SPI-2 genes and a SPI-1 effector

645 SopE were required for growth in NonSPI2, while two SPI-5 genes (*pipB* and *sORF26*) and
646 one ROD9 gene (*SEN1001*) were required for growth in InSPI2.


647

648 There were 78 and 56 genes designated as required in all growth media (LB, NonSPI2 and
649 InSPI2) for P125109 and D7795, respectively (Fig 3 and Table S4). These genes represent
650 the biological processes required by P125109 and D7795 for growth in laboratory conditions,
651 and include genes such as *ftsK*, *icdA*, *rpiA*, *yheN*, *rfa* and *atp* genes, which are also required
652 by *S. Typhimurium* ST19 14028 during *in vitro* growth [60, 64].

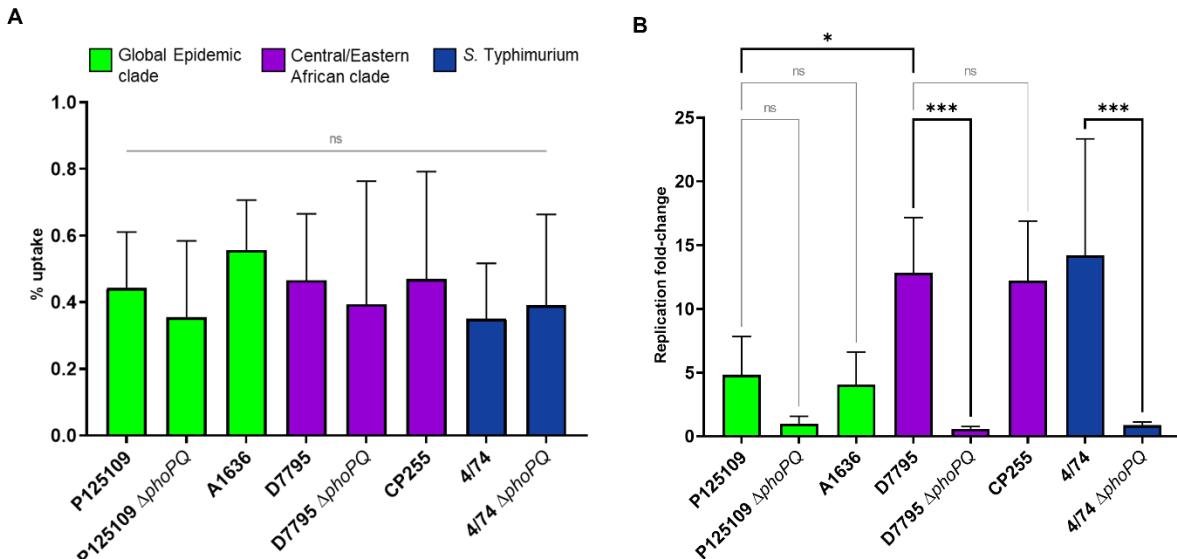
653

654 Overall, we conclude that similar functional categories of genes were required by both
655 P125109 and D7795 for optimal growth in LB, NonSPI2 and InSPI2, respectively. These genes
656 were mainly involved in energy production and conversion (C), carbohydrate transport and
657 metabolism (G), amino acid transport and metabolism (E), nucleotide transport and
658 metabolism (F) and transcription (K) (Fig S2).

659

660

661 **Fig 3. *S. Enteritidis* GEC P125109 and CEAC D7795 genes required for fitness in LB,
662 NonSPI2 and InSPI2 media**


663 The Venn diagrams compare the required genes in (A) P125109 or (B) D7795 with genes required
664 for optimal growth in LB, NonSPI2 and InSPI2 media in the respective strains (Table S4).
665 Generated using <http://bioinformatics.psb.ugent.be/webtools/Venn/>.

666

667 **S. Enteritidis D7795 survives and replicates better in macrophages than S. Enteritidis**
668 **P125109**

669 To date, virulence phenotypes of CEAC D7795 have only been assessed in an avian infection
670 model [9]. Survival and replication within macrophages is an important step in systemic
671 *Salmonella* infections [24]. We compared the interaction of *S. Enteritidis* GEC P125109 and
672 CEAC D7795 with RAW 264.7 macrophages, together with two additional *S. Enteritidis* strains,
673 A1636 and CP255. A1636 is a GEC isolate from Africa, while CP255 belongs to the same
674 Central/Eastern African clade as D7795 that originated from the Democratic Republic of
675 Congo [9, 15]. Δ phoPQ deletion mutants were constructed in P125109 and D7795 by λ Red
676 recombineering as negative controls for the infection studies. The PhoPQ two-component
677 regulatory system is required for the survival of *S. Typhimurium* within macrophages [65, 66],
678 and a previous genome-wide screen of *S. Enteritidis* P125109 Tn5 mutants showed that
679 *phoPQ* insertion mutants were negatively selected during murine infection [16]. The *S.*
680 *Typhimurium* ST19 strains 4/74 [67] and 4/74 Δ phoPQ [68] were also included for comparison.
681 All *S. Enteritidis* and *S. Typhimurium* strains tested in this experiment were taken up by RAW
682 264.7 macrophages at similar levels. Importantly, we found that the CEAC isolates showed
683 significantly higher levels of intra-macrophage replication than GEC isolates at 15.5 h post-
684 infection (Fig 4).

685

686

687 **Fig 4. *S. Enteritidis* CEAC D7795 displays higher levels of intra-macrophage survival and**
688 **replication than *S. Enteritidis* GEC P125109**

689 *S. Enteritidis* strains are colour-coded by clades, as defined by Feasey *et al.* [9]: green, GEC;
690 purple, CEAC. The *S. Typhimurium* 4/74 and 4/74 Δ phoPQ (blue) strains were included as
691 additional controls. (A) Uptake of *Salmonella* strains by RAW 264.7 macrophages, shown as the
692 percentage of the infecting inoculum recovered (CFU) at 1.5 h post-infection (p.i.). (B) Intra-
693 macrophage replication of *Salmonella*, shown as the ratio of intracellular bacteria (CFU) recovered
694 at 15.5 h p.i. compared to the CFU recovered at 1.5 h p.i., as fold-change. Both panels (A and B)
695 represent average values obtained from five independent experiments with three replicates each,
696 and error bars show standard deviation. Statistical tests used were one-way ANOVA, followed by
697 Bonferroni's multiple comparison test to compare selected pairs of means. ns, $P \geq 0.05$; *, $P < 0.05$;
698 ***, $P < 0.001$.

699

700 **Identification of fitness genes of *S. Enteritidis* P125109 and D7795 following**
701 **macrophage infection**

702 Having established that the CEAC strain D7795 survives and replicates better in macrophages
703 than GEC strain P125109, the respective transposon libraries were used to investigate the
704 process of intracellular infection of RAW 264.7 macrophages. Each pool of transposon
705 mutants was grown in LB (Input_LB) then passaged once through murine macrophages. Intra-
706 macrophage bacteria were recovered at 12 h post-infection and grown in LB for 10 h to
707 generate the output culture (Output_MAC). A fraction of the input was sub-cultured in LB for
708 10 h to ascertain the effect of growth in LB broth culture on the composition of the transposon
709 library (Output_LB_10h). Genomic DNA from the input and output samples was purified and
710 prepared for Illumina sequencing of DNA adjacent to the transposon, as described in Materials
711 and Methods. A total of 12 DNA libraries were sequenced on a single lane of an Illumina
712 HiSeq4000, generating a total of 340,375,208 paired-end reads. The number of sequence
713 reads that contained the transposon tag sequence, and the sequence reads that were uniquely
714 mapped to the respective *S. Enteritidis* genomes are presented in Table S2.

715

716 Genes that modulated the intracellular survival and replication of *Salmonella* in RAW 264.7
717 macrophages were identified by comparing the macrophage output samples with the input
718 samples and calculating the changes in frequency of reads mapped to each gene, expressed
719 as \log_2 (fold change) (FC) [31]. A gene is considered to exhibit differential fitness if its \log_2 FC
720 value is less than 1 (attenuated fitness) or greater than 1 (increased fitness) with a *P*-value <
721 0.05. Genes affecting growth in LB for 10 h were similarly identified by comparing the LB
722 output samples with the input samples. Required genes were identified from the input sample
723 using the insertion index and excluded from the list of differential fitness genes.

724

725 Following 12-h macrophage infection, a total of 479 P125109 genes were identified as
726 required from essentiality analysis of the input libraries. In total, transposon insertions in 327
727 genes were associated with attenuated replication within macrophages (Fig 5 and Table S5).
728 To identify genes important for fitness inside macrophages but not for growth in laboratory
729 media, we first compared the 327 macrophage-attenuated genes with the 124 genes that
730 showed attenuation in 10-h LB growth when disrupted by a transposon insertion (Table S5).
731 This analysis identified 227 genes that only attenuated fitness of P125109 during macrophage
732 infection, and not during 10-h growth in LB (Fig S3 and Table S4).

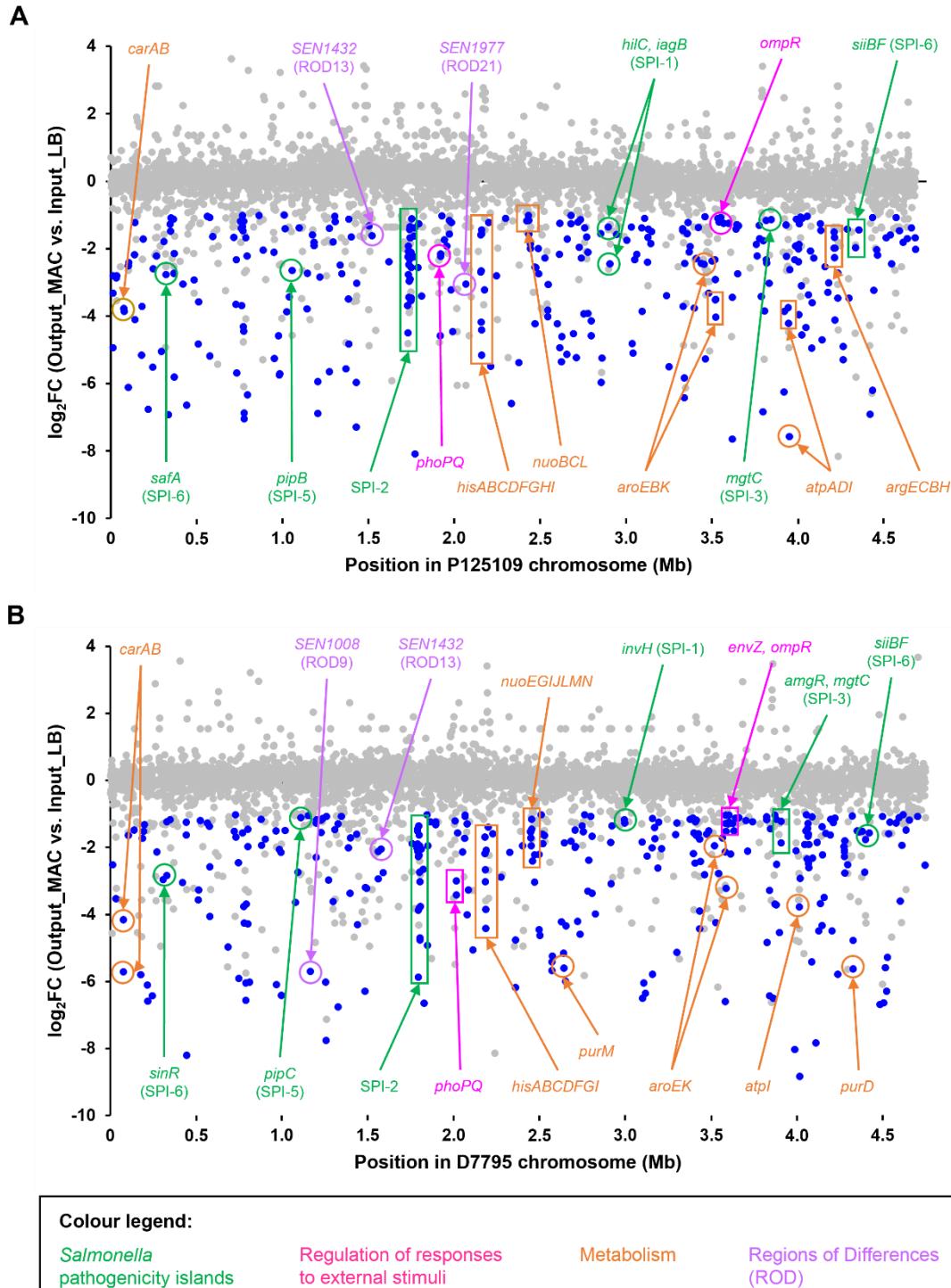
733

734 The resulting 227 genes were then cross-referenced with genes required for growth in the LB,
735 NonSPI2 and InSPI2 *in vitro* laboratory conditions tested in this study (Fig S3). We identified
736 a total of 320 genes that were “macrophage-associated”. Of these, 177 genes were
737 “macrophage-specific”, only having reduced fitness during macrophage infection with no
738 impact upon growth *in vitro* (Fig S3 and Table S4). The terms “macrophage-specific” and
739 “macrophage-associated” have been defined previously [31], and are explained in the legend
740 to Fig S3.

741

742 The 177 “macrophage-specific” P125109 genes included many well-characterised genes
743 important for intra-macrophage survival of *S. Typhimurium*, such as 22 SPI-2 genes, *mgtC*
744 from SPI-3, and several global regulatory systems that control *Salmonella* virulence (e.g.
745 *ompR*, *phoQ*, *ssrB*). Two SPI-1 genes, *hilC* and *iagB*, were also identified. There were 74

746 genes related to various metabolic processes, including arginine biosynthesis (*arg* genes),
747 histidine biosynthesis (*his*) genes, the TCA cycle (*sucD*) and oxidative phosphorylation (*ndh*),
748 reflecting the nutritional stresses encountered by the bacteria within the macrophage
749 environment. Three genes only present in P125109 were also identified as “macrophage-
750 specific”, namely *SEN0912* (encoding a hypothetical protein) and two tRNA genes (*tRNA-Ala*
751 and *tRNA-Thr*). No genes from the ROD9 region were identified, despite reports that ROD9-
752 associated genes played a role in virulence in macrophage and animal infection [16, 20, 69].
753 Based on COG classifications, the majority of the 177 “macrophage-specific” genes were
754 associated with nucleotide transport and metabolism (F, 17%), amino acid transport and
755 metabolism (E, 10%), transcription (K, 8%) and translation (J, 9%).


756

757 Genes important for intra-macrophage fitness of D7795 were identified as described earlier.
758 Essentiality analysis of the input sample identified 432 required genes, and these genes were
759 excluded from the list of genes that caused differential fitness in macrophage infection.
760 Transposon insertions in 329 genes caused attenuation ($\log_2\text{FC} < -1$, $P < 0.05$) during RAW
761 macrophage infection (Fig 5). Of the 329 genes, 78 genes exhibited reduced fitness during
762 growth in LB for 10 h. Cross-referencing the 251 genes with the genes required for *in vitro*
763 growth under laboratory conditions identified a total of 325 “macrophage-associated” genes
764 and 201 “macrophage-specific” genes (Fig S3 and Table S4). Similar to the findings for
765 P125109, the 201 D7795 “macrophage-specific” genes are primarily located in the SPI regions.
766 Specifically, most of the attenuated mutants were located in SPI-2; several others were
767 identified in SPI-3 (*SEN3578*, *amgR*, *mgtC*), SPI-4 (*siiF*), SPI-5 (*pipC*), SPI-6 (*SEN0286*) and
768 SPI-10 (*SEN4249*). Transposon insertions in *SEN1008* from ROD9 (SPI-19) also attenuated
769 macrophage fitness. Distribution of the COG functional categories of the “macrophage-specific”
770 genes is broadly similar to that in P125109, with nucleotide transport and metabolism (F) and
771 amino acid transport and metabolism (E) genes forming the largest categories.

772

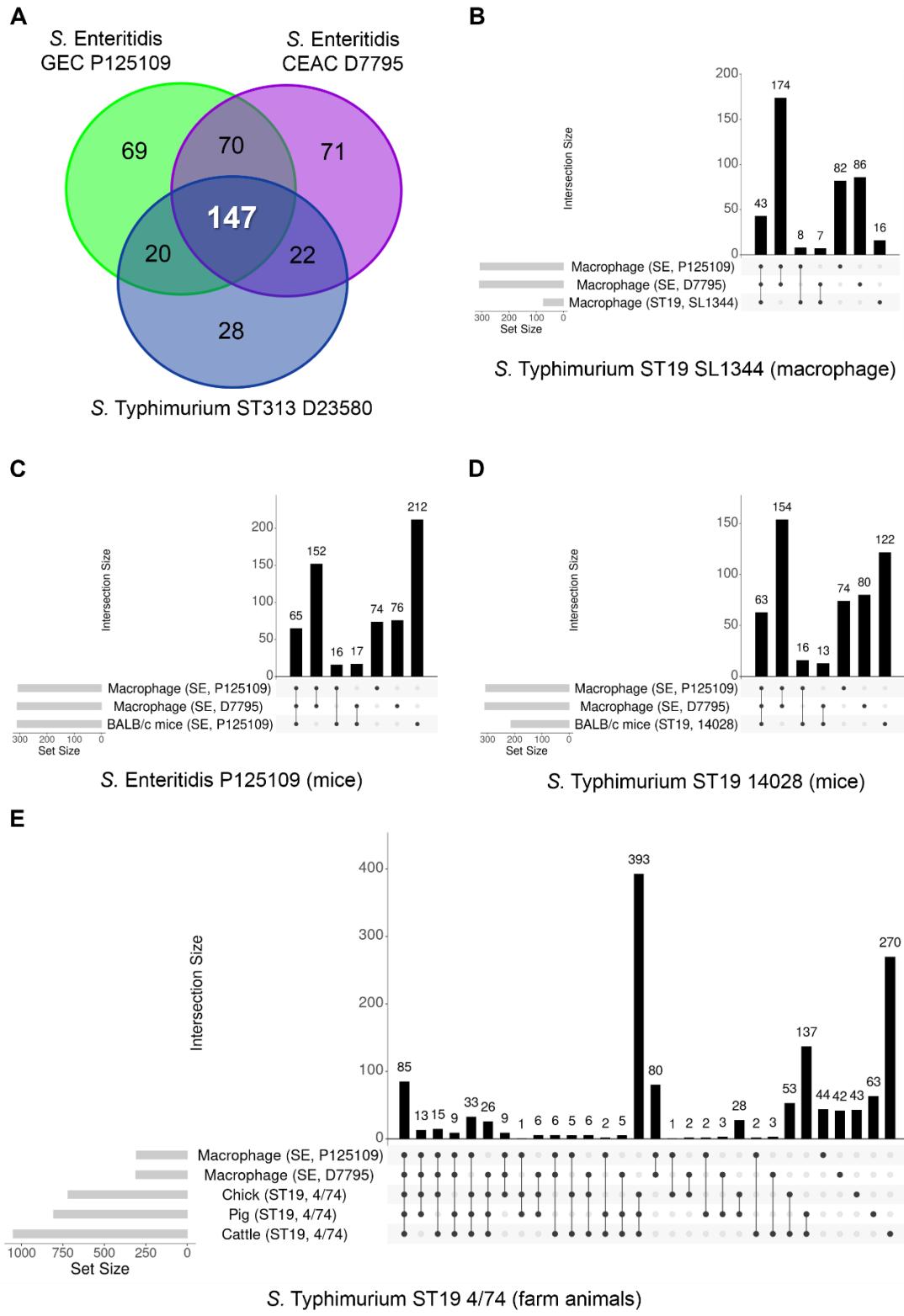
773 Transposon insertion in 61 P125109 and 18 D7795 genes resulted in increased fitness in
774 macrophage infection ($\log_2\text{FC} > 1$, $P < 0.05$), and include the *rfa/rfb* genes that are responsible
775 for lipopolysaccharide (LPS) O-antigen biosynthesis (Table S5). Increased intra-macrophage
776 fitness conferred by transposon disruption in the *rfa/rfb* genes was also observed in *S.*
777 *Typhimurium* infection of RAW 264.7 macrophages [31, 70]. The *rfb* genes are involved in O-
778 antigen synthesis while the *rfa* genes mediate LPS core synthesis [71]. As noted by Canals *et*
779 *al.* [31], *Salmonella* mutants lacking the LPS O-antigen are phagocytosed at higher levels than
780 wild-type strains by murine macrophages [72]. This likely accounts for the increased number
781 of *S. Enteritidis* *rfa/rfb* mutants recovered in the macrophage output, and reiterates the
782 importance of interpreting the results of a mutant screen in the context of the experimental
783 model used [63, 70].

784

785

786 **Fig 5. Macrophage-attenuated genes of *S. Enteritidis* GEC P125109 and CEAC D7795**

787 The *S. Enteritidis* GEC P125109 and CEAC D7795 transposon libraries were used to infect RAW
 788 264.7 macrophages for 12 h. Relative abundance of each mutant was determined by comparing
 789 the frequency of sequenced reads mapped to each gene after the infection (Output_MAC) to the
 790 initial inoculum (Input_LB). Each position on the x-axis represents the starting nucleotide position
 791 of each gene locus on the *Salmonella* chromosome, and the y-axis represents the log₂(fold change)
 792 of changes in abundance of mapped reads. Loci with significant reduction in abundance (log₂FC
 793 < -1, $P < 0.05$) are shown in blue (attenuated fitness). Grey dots include both loci with significant
 794 increase in abundance (log₂FC > 1, $P < 0.05$) and loci with $P \geq 0.05$. DeSeq2 analysis of the TIS
 795 macrophage data is presented in Table S5.


796 **S. Enteritidis P125109 and D7795 genes that modulate intra-macrophage fitness are**
797 **required for virulence in other *Salmonella* serovars**

798 The S. Enteritidis GEC P125109 and CEAC D7795 genes associated with differential fitness
799 in macrophage infection were compared with other infection models and *Salmonella* serovars.
800 Genes affecting intra-macrophage fitness of S. Typhimurium ST313 D23580 [31] were
801 identified by re-processing and analysis of the data using pipelines described in Materials and
802 Methods. Genes required for *Salmonella* infection in other serovars and/or infection models
803 were retrieved from published data sets using parameters established by the authors of the
804 original papers [16, 70, 73, 74]. Only orthologous genes were used in the comparisons.

805

806 We found that mutation of a total of 147 genes caused attenuated macrophage infection for
807 S. Enteritidis P125109, D7795 and S. Typhimurium ST313 D23580 (Fig 6 and Table S6).
808 There was also significant overlap with genes required for *Salmonella* virulence in mice and
809 other infection models, demonstrating that S. Enteritidis shares many virulence genes in
810 common with other serovars (Fig 6). Many of these genes include the well-characterised
811 regulatory systems that control *Salmonella* virulence (the *phoPQ* two-component regulators
812 and *ompR*, an element of the *ompR-envZ* two-component regulatory system), and SPI-2
813 genes that encode structural components of the type III secretion system, and genes involved
814 in purine and aromatic amino acids biosynthesis (Table S6 and Fig S4).

815

816

817 **Fig 6. Genes that modulate intra-macrophage fitness of *S. Enteritidis* GEC P125109 and**

818 CEAC D7795 are required for virulence in other infection models

819 Macrophage-attenuated genes in *S. Enteritidis* GEC P125109 and CEAC D7795 were compared

820 with genes associated with virulence in macrophage for (A) *S. Typhimurium* ST313 D23580 [31];

821 (B) ST19 SL1344 [70]; P125109 [16] and for *S. Typhimurium* ST19 14028 in BALB/c mice [73];

822 and for *S. Typhimurium* ST19 4/74 in food-related animal infection models [74]. Only orthologous

823 genes were included in the analyses (Table S6). UpSet plots were generated using Intervene [75].

824 **S. Enteritidis D7795 and S. Typhimurium ST313 D23580 do not share novel virulence**
825 **factors**

826 We used the TIS data to search for genes involved in intra-macrophage virulence that were
827 only found in African *Salmonella* strains. Focusing on the three-way comparison between *S.*
828 *Enteritidis* GEC P125109, CEAC D7795 and *S. Typhimurium* ST313 D23580, 22 genes were
829 identified as modulating macrophage fitness in invasive African *Salmonella* strains D7795 and
830 D23580 but not in gastroenteritis-associated P125109 (Fig 6). Cross-referencing these 22
831 genes with *Salmonella* virulence genes identified previously [16, 70, 73, 74] showed that all
832 22 genes have been implicated in at least one other infection model (Table S6). We conclude
833 that no novel virulence factors that modulate intra-macrophage fitness are shared by the two
834 African *Salmonella* strains.

835

836 **Candidate novel macrophage fitness genes that were unique to *S. Enteritidis* P125109**
837 **or D7795**

838 The three-way comparison between *S. Enteritidis* GEC P125109, CEAC D7795 and *S.*
839 *Typhimurium* ST313 D23580 identified mutations in 69 P125109 genes and 71 D7795 genes
840 that attenuated intra-macrophage fitness (Fig 6). We investigated the role of these 69 and 71
841 genes in other infection models or in *S. Typhimurium*, and did a detailed comparison against
842 genes identified in other published studies [16, 70, 73, 74]. We identified a total of 22 P125109
843 genes and 39 D7795 genes that were only associated with attenuated macrophage fitness in
844 a single strain (Tables 1 and 2). These 22 and 39 genes represent candidate novel virulence
845 genes for P125109 and D7795 respectively, and include strain-specific genes (i.e. genes
846 without orthologues in the other *Salmonella* strains referenced in this study) (e.g. *SEN0912* in
847 P125109 and three tRNA genes of D7795, locus tags D7795_02738, D7795_03122 and
848 D7795_04774) and genes with orthologues in the other *Salmonella* strains and serovars that
849 were not associated with attenuated fitness during macrophage infection (e.g. *lipB*::Tn5,
850 *gatR*::Tn5, *hscB*::Tn5, *rnfE*::Tn5 and *sopD2*::Tn5 are attenuated in D7795 but not in P125109,
851 *S. Typhimurium* D23580 and/or LT2). Experimental validation of these candidates by
852 individual gene deletion mutation will be necessary to verify a role in intra-macrophage
853 replication.

854

855 **Table 1 Candidate novel macrophage fitness genes in *S. Enteritidis* P125109**

Name	Product	P125109 ID	SEN ID	D7795 ID	D23580 ID	LT2 ID	P125109 log ₂ FC
No orthologue in D7795, D23580 or LT2							
<i>SEN0912</i>	hypothetical protein	P125109_01026	SEN0912	NONE	NONE	NONE	-1.41
<i>tRNA-Ala</i>	tRNA-Ala(ggc)	P125109_02722	#N/A	#N/A	#N/A	#N/A	-2.28
<i>tRNA-Thr</i>	tRNA-Thr(ggt)	P125109_04470	#N/A	#N/A	#N/A	#N/A	-3.47
Present in D7795, D23580 and/or LT2 but only attenuated in P125109							
<i>tpke11</i>	NONE	P125109_00013	NONE	D7795_00014	STMMW_ncRNA_1	NONE	-3.32
<i>yabC</i>	conserved hypothetical protein	P125109_00141	SEN0121	D7795_00143	STMMW_01261	STM0120	-1.23
<i>yaeD</i>	conserved hypothetical protein	P125109_00284	SEN0256	D7795_00285	STMMW_02532	STM0248	-5.05
<i>SEN0328</i>	hypothetical protein	P125109_00373	SEN0328	D7795_00374	STMMW_04151	STM0345	-2.14
<i>SEN0532</i>	hypothetical protein	P125109_00595	SEN0532	D7795_00602	STMMW_06191	STM0551	-1.64
<i>sucD</i>	succinyl-CoA synthetase alpha chain	P125109_00774	SEN0689	D7795_00799	STMMW_07961	STM0739	-1.35
<i>SEN0907</i>	putative ion:amino acid symporter	P125109_01022	SEN0907	D7795_01047	STMMW_10141	STM1003	-1.01
<i>yedD</i>	putative lipoprotein	P125109_01175	SEN1044	D7795_01257	STMMW_19441	STM1964	-3.78
<i>cheZ</i>	chemotaxis protein CheZ	P125109_01224	SEN1088	D7795_01307	STMMW_18981	STM1915	-1.81
<i>IrhA</i>	NADH dehydrogenase operon transcriptional regulator	P125109_02623	SEN2312	D7795_02672	STMMW_23521	STM2330	-1.57
<i>iagB</i>	cell invasion protein	P125109_03091	SEN2719	D7795_03189	STMMW_28391	STM2877	-2.45
<i>ygbK</i>	conserved hypothetical protein	P125109_03136	SEN2756	D7795_03234	STMMW_28801	STM2917	-1.59
<i>SORF75</i>	NONE	P125109_03192	NONE	D7795_03290	STMMW_29261	NONE	-1.75
<i>yggT</i>	putative membrane protein	P125109_03353	SEN2944	D7795_03449	STMMW_30621	STM3101	-1.50
<i>glpR</i>	glycerol-3-phosphate regulon repressor	P125109_03805	SEN3348	D7795_03904	STMMW_35121	STM3523	-1.25
<i>prlC</i>	oligopeptidase A	P125109_03882	SEN3417	D7795_03981	STMMW_35831	STM3594	-1.28
<i>wecG</i>	probable UDP-N-acetyl-D-mannosaminuronic acid transferase	P125109_04235	SEN3734	D7795_04333	STMMW_39041	STM3929	-1.26
<i>serB</i>	putative phosphoserine phosphatase	P125109_04914	SEN4334	D7795_05011	STMMW_45211	STM4578	-1.38
<i>yjjY</i>	conserved hypothetical protein	P125109_04937	SEN4355	D7795_05034	STMMW_45421	STM4599	-2.03

856 P125109 ID = P125109 locus tags from re-annotation [15]; SEN ID = *S. Enteritidis* identifiers;
 857 D23580 = *S. Typhimurium* ST313 strain D23580; LT2 = *S. Typhimurium* ST19 strain LT2

858

859 **Table 2 Candidate novel macrophage fitness genes in *S. Enteritidis* D7795**

Name	Product	D7795 ID	SEN ID	P125109 ID	D23580 ID	LT2 ID	D7795 log ₂ FC
No orthologue in P125109, D23580 and LT2							
<i>group_972</i>	tail fiber assembly protein	D7795_02043	NONE	NONE	NONE	NONE	-1.33
<i>tRNA-Arg</i>	tRNA-Arg(cct)	D7795_02738	NONE	#N/A	#N/A	#N/A	-1.64
<i>tRNA-Arg</i>	tRNA-Arg(acg)	D7795_03122	NONE	#N/A	#N/A	#N/A	-3.08
<i>tRNA-Gly</i>	tRNA-Gly(gcc)	D7795_04774	NONE	#N/A	#N/A	#N/A	-5.59
<i>group_1609</i>	hypothetical protein, partial	D7795_05141	NONE	NONE	NONE	NONE	-1.28
Present in P125109, D23580 and/or LT2 but only attenuated in D7795							
<i>yacC</i>	conserved hypothetical protein	D7795_00194	SEN0172	P125109_00193	STMMW_01731	STM0167	-1.33
<i>SEN0286</i>	transposase (fragment)	D7795_00327	SEN0286	P125109_00326	STMMW_03133	NONE	-1.24
<i>queA</i>	S-adenosylmethionine:tRNA ribosyltransferase-isomerase	D7795_00442	SEN0387	P125109_00436	STMMW_04741	STM0404	-1.26
<i>tgt</i>	queuine tRNA-ribosyltransferase %3B tRNA-guanine transglycosylase	D7795_00443	SEN0388	P125109_00437	STMMW_04751	STM0405	-1.64
<i>lipB</i>	lipoate-protein ligase B (lipoate biosynthesis protein B)	D7795_00703	SEN0604	P125109_00677	STMMW_07001	STM0635	-4.97
<i>phoL</i>	PhoH-like ATP-binding protein	D7795_00738	SEN0638	P125109_00713	STMMW_07341	STM0669	-1.52
<i>nagC</i>	N-acetylglucosamine repressor	D7795_00752	SEN0646	P125109_00727	STMMW_07401	STM0682	-1.02
<i>sopD2</i>	putative sopD2 type III secretion system effector protein	D7795_01014	SEN0876	P125109_00989	STMMW_09831	STM0972	-2.06
<i>pipC</i>	cell invasion protein	D7795_01153	SEN0954	P125109_01070	STMMW_11021	STM1090	-1.12
<i>fliD</i>	flagellar hook associated protein (FliD)	D7795_01261	SEN1048	P125109_01179	STMMW_19401	STM1960	-1.27
<i>fliC</i>	flagellin	D7795_01262	SEN1049	P125109_01180	STMMW_19381	STM1959	-1.17
<i>motB</i>	motility protein B	D7795_01300	SEN1081	P125109_01217	STMMW_19051	STM1922	-1.19
<i>flihA</i>	flagellar biosynthesis protein FlihA	D7795_01310	SEN1090	P125109_01227	STMMW_18961	STM1913	-1.14
<i>rnfE</i>	putative electron transport complex protein rnfE	D7795_01882	SEN1593	P125109_01796	STMMW_14571	STM1454	-1.89
<i>ydiV</i>	conserved hypothetical protein	D7795_01999	SEN1700	P125109_01912	STMMW_13511	STM1344	-1.24
<i>SEN2359</i>	conserved hypothetical protein	D7795_02722	SEN2359	P125109_02673	STMMW_23991	STM2377	-1.03
<i>hscB</i>	Co-chaperone protein hscB	D7795_02906	SEN2520	P125109_02858	STMMW_25571	STM2540	-1.98

Name	Product	D7795 ID	SEN ID	P125109 ID	D23580 ID	LT2 ID	D7795 log ₂ FC
<i>pphB</i>	possible serine/threonine protein phosphatase	D7795_03219	SEN2745	P125109_03121	STMMW_28701	STM2907	-1.28
<i>icc</i>	conserved hypothetical protein	D7795_03541	SEN3026	P125109_03444	STMMW_31431	STM3183	-1.27
<i>gatR</i>	galactitol utilization operon repressor	D7795_03624	SEN3097	P125109_03525	STMMW_32621	STM3262	-1.16
<i>SraG</i>	NONE	D7795_03646	NONE	P125109_03547	STMMW_ncRNA_221	NONE	-1.57
<i>greA</i>	transcription elongation factor	D7795_03664	SEN3132	P125109_03565	STMMW_32981	STM3299	-1.18
<i>damX</i>	DamX protein	D7795_03865	SEN3311	P125109_03766	STMMW_34751	STM3485	-1.29
<i>mtlR</i>	mannitol operon repressor (mannitol repressor protein)	D7795_04081	SEN3509	P125109_03982	STMMW_36751	STM3687	-1.18
<i>asnA</i>	asparagine synthetase A	D7795_04282	SEN3691	P125109_04183	STMMW_38611	STM3877	-2.93
<i>yneB</i>	putative aldolase	D7795_04494	SEN3868	P125109_04397	STMMW_40431	STM4078	-1.13
<i>yjaG</i>	conserved hypothetical protein	D7795_04594	SEN3955	P125109_04498	STMMW_41221	STM4169	-1.06
<i>dgkA</i>	diacylglycerol kinase	D7795_04646	SEN4005	P125109_04550	STMMW_41861	STM4236	-1.53
<i>yjfl</i>	conserved hypothetical protein	D7795_04792	SEN4136	P125109_04696	STMMW_43141	STM4370	-1.59
<i>yjfO</i>	putative exported protein	D7795_04801	SEN4145	P125109_04705	STMMW_43231	STM4379	-1.24
<i>pepA</i>	cytosol aminopeptidase	D7795_04888	SEN4230	P125109_04792	STMMW_44231	STM4477	-1.03
<i>repA2</i>	CDO50996.1	D7795_05036	SEN_p0018	P125109_04939	SLT-BT0121	PSLT023	-1.97
<i>pefB</i>	CDO50994.1	D7795_05038	SEN_p0016	P125109_04941	SLT-BT0111	PSLT019	-1.30
<i>traY</i>	CDO51040.1	D7795_05058	SEN_p0063	P125109_04972	SLT-BT0801	PSLT076	-1.82

860 D7795 ID = D7795 locus tags from re-annotation [15]; SEN ID = *S. Enteritidis* identifiers; D23580
 861 = *S. Typhimurium* ST313 strain D23580; LT2 = *S. Typhimurium* ST19 strain LT2

862

863 PERSPECTIVE

864 Since the identification of genetic variants of *S. Typhimurium* and *S. Enteritidis* that are highly
 865 associated with bloodstream infections in sub-Saharan Africa, only the *S. Typhimurium*
 866 pathovariant has been an active focus of research [76]. Functional genomic studies involving
 867 African *S. Enteritidis* have lagged behind. Here, we used a global mutagenesis approach to
 868 compare gene function between bloodstream infection-associated *S. Enteritidis* CEAC strain
 869 D7795 and gastroenteritis-associated GEC strain P125109. Our findings reveal broad
 870 similarities between the gene sets required for growth under laboratory conditions and
 871 macrophage infection by P125109 and D7795. The majority of these genes were also
 872 important for fitness in other *Salmonella* serovars and infection models. We identified 39 genes
 873 that could encode candidate novel virulence factors for *S. Enteritidis* CEAC strain D7795 and
 874 are worthy of further investigation.

875

876 **ACKNOWLEDGEMENTS**

877 We are grateful to present and former members of the Hinton laboratory for valuable
878 discussions, particularly Yan Li and Hermione Webster, and appreciated Paul Loughnane's
879 masterful technical assistance. We thank John Kenny, Pia Koldkjær, Anita Lucaci and
880 Charlotte Nelson for their expertise in library preparation for Illumina sequencing, and the
881 Centre for Genomic Research at the University of Liverpool for the use of the BioRuptor@Pico
882 sonication system.

883

884 **AUTHOR CONTRIBUTIONS**

885 Conceptualization: W.Y.F and R.C.; Data curation: W.Y.F, A.P. and B.P.S; Formal analysis:
886 W.Y.F and A.P.; Funding acquisition: J.C.D.H.; Investigation: W.Y.F. and A.P.; Methodology:
887 W.Y.F and R.C.; Project administration: W.Y.F. and J.C.D.H.; Resources: N.W., L.L., N.F. and
888 P.W.; Software: A.P.; Supervision: W.Y.F., P.W. and J.C.D.H.; Validation: W.Y.F; Visualisation:
889 W.Y.F and A.P.; Writing – original draft: W.Y.F and J.C.D.H.; Writing – review & editing: W.Y.F,
890 R.C., A.P., B.P.S, N.W., L.L., N.F., P.W. and J.C.D.H.

891

892 **FUNDING INFORMATION**

893 This work was supported by a Wellcome Trust Senior Investigator award [grant number
894 106914/Z/15/Z] to J.C.D.H. For the purpose of open access, the authors have applied a CC
895 BY public copyright licence to any Author Accepted Manuscript version arising from this
896 submission.

897

898 **CONFLICTS OF INTEREST**

899 R.C. was employed by the University of Liverpool at the time of the study and is now an
900 employee of the GSK group of companies.

901

902 **REFERENCES**

- 903 1. **Reddy EA, Shaw A V., Crump JA.** Community-acquired bloodstream infections in
904 Africa: a systematic review and meta-analysis. *Lancet Infect Dis* 2010;10:417–432.
- 905 2. **Marchello CS, Dale AP, Pisharody S, Rubach MP, Crump JA.** A systematic review
906 and meta-analysis of the prevalence of community-onset bloodstream infections among
907 hospitalized patients in Africa and Asia. *Antimicrob Agents Chemother* 2020;64:1–16.
- 908 3. **Uche IV, MacLennan CA, Saul A.** A systematic review of the incidence, risk factors
909 and case fatality rates of invasive nontyphoidal *Salmonella* (iNTS) disease in Africa
910 (1966 to 2014). *PLoS Negl Trop Dis* 2017;11:e0005118.
- 911 4. **Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, et al.** Global burden of
912 invasive nontyphoidal *Salmonella* disease, 2010. *Emerg Infect Dis* 2015;21:941–949.
- 913 5. **Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA.** Invasive non-
914 typhoidal salmonella disease: an emerging and neglected tropical disease in Africa.
915 *Lancet* 2012;379:2489–2499.
- 916 6. **Stanaway JD, Parisi A, Sarkar K, Blacker BF, Reiner RC, et al.** The global burden
917 of non-typhoidal salmonella invasive disease: a systematic analysis for the Global
918 Burden of Disease Study 2017. *Lancet Infect Dis* 2019;19:1312–1324.
- 919 7. **Marchello CS, Birkhold M, Crump JA, Martin LB, Ansah MO, et al.** Complications

920 and mortality of non-typhoidal salmonella invasive disease: a global systematic review
921 and meta-analysis. *Lancet Infect Dis* 2022;30:99:1–14.

922 8. **Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, et al.** Epidemic multiple
923 drug resistant *Salmonella* Typhimurium causing invasive disease in sub-Saharan Africa
924 have a distinct genotype. *Genome Res* 2009;19:2279–2287.

925 9. **Feesey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J, et al.** Distinct *Salmonella*
926 Enteritidis lineages associated with enterocolitis in high-income settings and invasive
927 disease in low-income settings. *Nat Genet* 2016;48:1211–1217.

928 10. **Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, et al.** Intracontinental
929 spread of human invasive *Salmonella* Typhimurium pathovariants in sub-Saharan
930 Africa. *Nat Genet* 2012;44:1215–1221.

931 11. **Pulford C V., Perez-Sepulveda BM, Canals R, Bevington JA, Bengtsson RJ, et al.**
932 Stepwise evolution of *Salmonella* Typhimurium ST313 causing bloodstream infection
933 in Africa. *Nat Microbiol* 2021;6:327–338.

934 12. **Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, et al.**
935 Comparative genome analysis of *Salmonella* Enteritidis PT4 and *Salmonella*
936 Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways.
937 *Genome Res* 2008;18:1624–1637.

938 13. **Barrow PA.** Experimental infection of chickens with *Salmonella enteritidis*. *Avian Pathol*
939 1991;20:145–153.

940 14. **Barrow PA, Lovell MA.** Experimental infection of egg-laying hens with *Salmonella*
941 enteritidis phage type 4. *Avian Pathol* 1991;20:335–348.

942 15. **Perez-Sepulveda BM, Predeus A V., Fong WY, Parry CM, Cheesbrough J, et al.**
943 Complete genome sequences of African *Salmonella enterica* serovar Enteritidis clinical
944 isolates associated with bloodstream infection. *Microbiol Resour Announc*;10. Epub
945 ahead of print 25 March 2021. DOI: 10.1128/MRA.01452-20.

946 16. **Silva CA, Blondel CJ, Quezada CP, Porwollik S, Andrews-Polymenis HL, et al.**
947 Infection of mice by *Salmonella enterica* serovar Enteritidis involves additional genes
948 that are absent in the genome of serovar Typhimurium. *Infect Immun* 2012;80:839–849.

949 17. **Shah DH, Zhou X, Kim HY, Call DR, Guard J.** Transposon mutagenesis of *Salmonella*
950 enterica serovar Enteritidis identifies genes that contribute to invasiveness in human
951 and chicken cells and survival in egg albumen. *Infect Immun* 2012;80:4203–4215.

952 18. **Jayeola V, McClelland M, Porwollik S, Chu W, Farber J, et al.** Identification of novel
953 genes mediating survival of *Salmonella* on low-moisture foods via transposon
954 sequencing analysis. *Front Microbiol* 2020;11:1–12.

955 19. **Raspoet R, Shearer N, Appia-Ayme C, Haesebrouck F, Ducatelle R, et al.** A
956 genome-wide screen identifies *Salmonella* Enteritidis lipopolysaccharide biosynthesis
957 and the HtrA heat shock protein as crucial factors involved in egg white persistence at
958 chicken body temperature. *Poult Sci* 2014;93:1263–9.

959 20. **Das S, Ray S, Arunima A, Sahu B, Suar M.** A ROD9 island encoded gene in
960 *Salmonella* Enteritidis plays an important role in acid tolerance response and helps in
961 systemic infection in mice. *Virulence* 2020;11:247–259.

962 21. **Arunima A, Swain SK, Ray S, Prusty BK, Suar M.** RpoS-regulated SEN1538 gene
963 promotes resistance to stress and influences *Salmonella enterica* serovar Enteritidis
964 virulence. *Virulence* 2020;11:295–314.

965 22. **Ray S, Das S, Panda PK, Suar M.** Identification of a new alanine racemase in
966 *Salmonella* Enteritidis and its contribution to pathogenesis. *Gut Pathog* 2018;10:30.

967 23. **Espinosa RA, Silva-Valenzuela CA, Amaya FA, Urrutia Ítalo M, Contreras I, et al.**
968 Differential roles for pathogenicity islands SPI-13 and SPI-8 in the interaction of
969 *Salmonella* Enteritidis and *Salmonella* Typhi with murine and human macrophages. *Biol*
970 *Res* 2017;50:1–7.

971 24. **Gogoi M, Shreenivas MM, Chakravortty D.** Hoodwinking the Big-Eater to Prosper:
972 The *Salmonella* -Macrophage Paradigm. *J Innate Immun* 2019;11:289–299.

973 25. **Barquist L, Langridge GC, Turner DJ, Phan MD, Turner AK, et al.** A comparison of
974 dense transposon insertion libraries in the *Salmonella* serovars Typhi and Typhimurium.
975 *Nucleic Acids Res* 2013;41:4549–4564.

976 26. **Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L, et al.** Simultaneous assay
977 of every *Salmonella Typhi* gene using one million transposon mutants. *Genome Res*
978 2009;19:2308–2316.

979 27. **Rousset F, Cabezas-Caballero J, Piastra-Facon F, Fernández-Rodríguez J,
980 Clermont O, et al.** The impact of genetic diversity on gene essentiality within the
981 *Escherichia coli* species. *Nat Microbiol*;6. Epub ahead of print 2021. DOI:
982 10.1038/s41564-020-00839-y.

983 28. **Poulsen BE, Yang R, Clatworthy AE, White T, Osmulski SJ, et al.** Defining the core
984 essential genome of *Pseudomonas aeruginosa*. *Proc Natl Acad Sci U S A*
985 2019;116:10072–10080.

986 29. **Canals R, Xia X-Q, Fronick C, Clifton SW, Ahmer BMM, et al.** High-throughput
987 comparison of gene fitness among related bacteria. *BMC Genomics* 2012;13:212.

988 30. **Khatiwara A, Jiang T, Sung SS, Dawoud T, Kim JN, et al.** Genome scanning for
989 conditionally essential genes in *Salmonella enterica* serotype Typhimurium. *Appl
990 Environ Microbiol* 2012;78:3098–3107.

991 31. **Canals R, Chaudhuri RR, Steiner RE, Owen S V., Quinones-Olvera N, et al.** The
992 fitness landscape of the African *Salmonella* Typhimurium ST313 strain D23580 reveals
993 unique properties of the pBT1 plasmid. *PLoS Pathog* 2019;15:e1007948.

994 32. **Karash S, Kwon YM.** Iron-dependent essential genes in *Salmonella* Typhimurium.
995 *BMC Genomics* 2018;19:610.

996 33. **Kingsley RA, Langridge G, Smith SE, Makendi C, Fookes M, et al.** Functional
997 analysis of *Salmonella* Typhi adaptation to survival in water. *Environ Microbiol*
998 2018;20:4079–4090.

999 34. **Löber S, Jäckel D, Kaiser N, Hensel M.** Regulation of *Salmonella* pathogenicity island
1000 2 genes by independent environmental signals. *Int J Med Microbiol* 2006;296:435–447.

1001 35. **Kröger C, Colgan A, Srikumar S, Händler K, Sivasankaran SK, et al.** An infection-
1002 relevant transcriptomic compendium for *Salmonella enterica* serovar Typhimurium. *Cell
1003 Host Microbe* 2013;14:683–695.

1004 36. **Tartoff KD, Hobbs CA.** Improved media for growing plasmid and cosmid clones.
1005 *Bethesda Res Lab Focus* 1987;9:12.

1006 37. SOC Medium. *Cold Spring Harb Protoc* 2018;2018:pdb.rec098863.

1007 38. **Dower WJ, Miller JF, Ragsdale CW.** High efficiency transformation of *E.coli* by high
1008 voltage electroporation. *Nucleic Acids Res* 1988;16:6127–6145.

1009 39. **Datsenko KA, Wanner BL.** One-step inactivation of chromosomal genes in
1010 *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci U S A* 2000;97:6640–5.

1011 40. **Koskineni S, Pränting M, Gullberg E, Näsvall J, Andersson DI.** Activation of cryptic
1012 aminoglycoside resistance in *Salmonella enterica*. *Mol Microbiol* 2011;80:1464–1478.

1013 41. **Kintz E, Davies MR, Hammarlöf DL, Canals R, Hinton JCD, et al.** A BTP1 prophage
1014 gene present in invasive non-typhoidal *Salmonella* determines composition and length
1015 of the O-antigen of the lipopolysaccharide. *Mol Microbiol* 2015;96:263–275.

1016 42. **Doublet B, Douard G, Targant H, Meunier D, Madec J-YY, et al.** Antibiotic marker
1017 modifications of λ Red and FLP helper plasmids, pKD46 and pCP20, for inactivation of
1018 chromosomal genes using PCR products in multidrug-resistant strains. *J Microbiol
1019 Methods* 2008;75:359–361.

1020 43. **Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ, et al.** The TraDIS toolkit:

1021 sequencing and analysis for dense transposon mutant libraries. *Bioinformatics* 2016;32:1109–1111.

1022

1023 44. **Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, et al.** Roary: rapid large-scale 1024 prokaryote pan genome analysis. *Bioinformatics* 2015;31:3691–3693.

1025 45. **Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, et al.** Fast 1026 genome-wide functional annotation through orthology assignment by eggNOG-mapper. 1027 *Mol Biol Evol* 2017;34:2115–2122.

1028 46. **Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, et al.** 1029 EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology 1030 resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res* 2019;47:D309–D314.

1031

1032 47. **Martin M.** Cutadapt removes adapter sequences from high-throughput sequencing 1033 reads. *EMBnet.journal* 2011;17:10.

1034 48. **Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al.** The Sequence 1035 Alignment/Map format and SAMtools. *Bioinformatics* 2009;25:2078–2079.

1036 49. **Goodall ECA, Robinson A, Johnston IG, Jabbari S, Turner KA, et al.** The essential 1037 genome of *Escherichia coli* K-12. *MBio* 2018;9:e02096-17.

1038 50. **Liao Y, Smyth GK, Shi W.** FeatureCounts: An efficient general purpose program for 1039 assigning sequence reads to genomic features. *Bioinformatics* 2014;30:923–930.

1040 51. **Love MI, Huber W, Anders S.** Moderated estimation of fold change and dispersion for 1041 RNA-seq data with DESeq2. *Genome Biol* 2014;15:1–21.

1042 52. **Kröger C, Dillon SC, Cameron ADS, Papenfort K, Sivasankaran SK, et al.** The 1043 transcriptional landscape and small RNAs of *Salmonella enterica* serovar Typhimurium. 1044 *Proc Natl Acad Sci U S A* 2012;109:E1277–E1286.

1045 53. **Canals R, Hammarlöf DL, Kröger C, Owen S V., Fong WY, et al.** Adding function to 1046 the genome of African *Salmonella* Typhimurium ST313 strain D23580. *PLoS Biol* 1047 2019;17:e3000059.

1048 54. **Rancati G, Moffat J, Typas A, Pavelka N.** Emerging and evolving concepts in gene 1049 essentiality. *Nat Rev Genet* 2018;19:34–49.

1050 55. **Potts AH, Guo Y, Ahmer BMM, Romeo T.** Role of CsrA in stress responses and 1051 metabolism important for *Salmonella* virulence revealed by integrated transcriptomics. 1052 *PLoS One* 2019;14:e0211430.

1053 56. **Grazziotin AL, Vidal NM, Venancio TM.** Uncovering major genomic features of 1054 essential genes in Bacteria and a methanogenic Archaea. *FEBS J* 2015;282:3395– 1055 3411.

1056 57. **Holt KE, Thomson NR, Wain J, Langridge GC, Hasan R, et al.** Pseudogene 1057 accumulation in the evolutionary histories of *Salmonella enterica* serovars Paratyphi A 1058 and Typhi. *BMC Genomics* 2009;10:1–12.

1059 58. **Okoro CK, Barquist L, Connor TR, Harris SR, Clare S, et al.** Signatures of adaptation 1060 in human invasive *Salmonella* Typhimurium ST313 populations from sub-Saharan 1061 Africa. *PLoS Negl Trop Dis* 2015;9:e0003611.

1062 59. **Sezonov G, Joseleau-Petit D, D'Ari R.** *Escherichia coli* physiology in Luria-Bertani 1063 broth. *J Bacteriol* 2007;189:8746–8749.

1064 60. **Wang Z, Zhu S, Li C, Lyu L, Yu J, et al.** Gene essentiality profiling reveals a novel 1065 determinant of stresses preventing protein aggregation in *Salmonella*. *Emerg Microbes 1066 Infect* 2022;11:1554–1571.

1067 61. **Azriel S, Goren A, Rahav G, Gal-Mor O.** The stringent response regulator DksA is 1068 required for *Salmonella enterica* serovar Typhimurium growth in minimal medium, 1069 motility, biofilm formation, and intestinal colonization. *Infect Immun* 2015;84:375–384.

1070 62. **Cohen H, Adani B, Cohen E, Piscon B, Azriel S, et al.** The ancestral stringent

1071 response potentiator, DksA has been adapted throughout *Salmonella* evolution to
1072 orchestrate the expression of metabolic, motility, and virulence pathways. *Gut*
1073 *Microbes*;14. Epub ahead of print 1 January 2022. DOI:
1074 10.1080/19490976.2021.1997294.

1075 63. **Barquist L, Boinett CJ, Cain AK.** Approaches to querying bacterial genomes with
1076 transposon-insertion sequencing. *RNA Biol* 2013;10:1161–1169.

1077 64. **Mandal RK, Jiang T, Kwon YM.** Genetic determinants in *Salmonella enterica* serotype
1078 Typhimurium required for overcoming *in vitro* stressors in the mimicking host
1079 environment. *Microbiol Spectr*. Epub ahead of print 8 December 2021. DOI:
1080 10.1128/Spectrum.00155-21.

1081 65. **Petersen E, Miller SI.** The cellular microbiology of *Salmonellae* interactions with
1082 macrophages. *Cell Microbiol* 2019;21:1–8.

1083 66. **Thompson JA, Liu M, Helaine S, Holden DW.** Contribution of the PhoP/Q regulon to
1084 survival and replication of *Salmonella enterica* serovar Typhimurium in macrophages.
1085 *Microbiology* 2011;157:2084–2093.

1086 67. **Rankin JD, Taylor RJ.** The estimation of doses of *Salmonella typhimurium* suitable for
1087 the experimental production of disease in calves. *Vet Rec* 1966;78:706–707.

1088 68. **Colgan AM, Kröger C, Diard M, Hardt W-D, Puente JL, et al.** The impact of 18
1089 ancestral and horizontally-acquired regulatory proteins upon the transcriptome and
1090 sRNA landscape of *Salmonella enterica* serovar Typhimurium. *PLoS Genet*
1091 2016;12:e1006258.

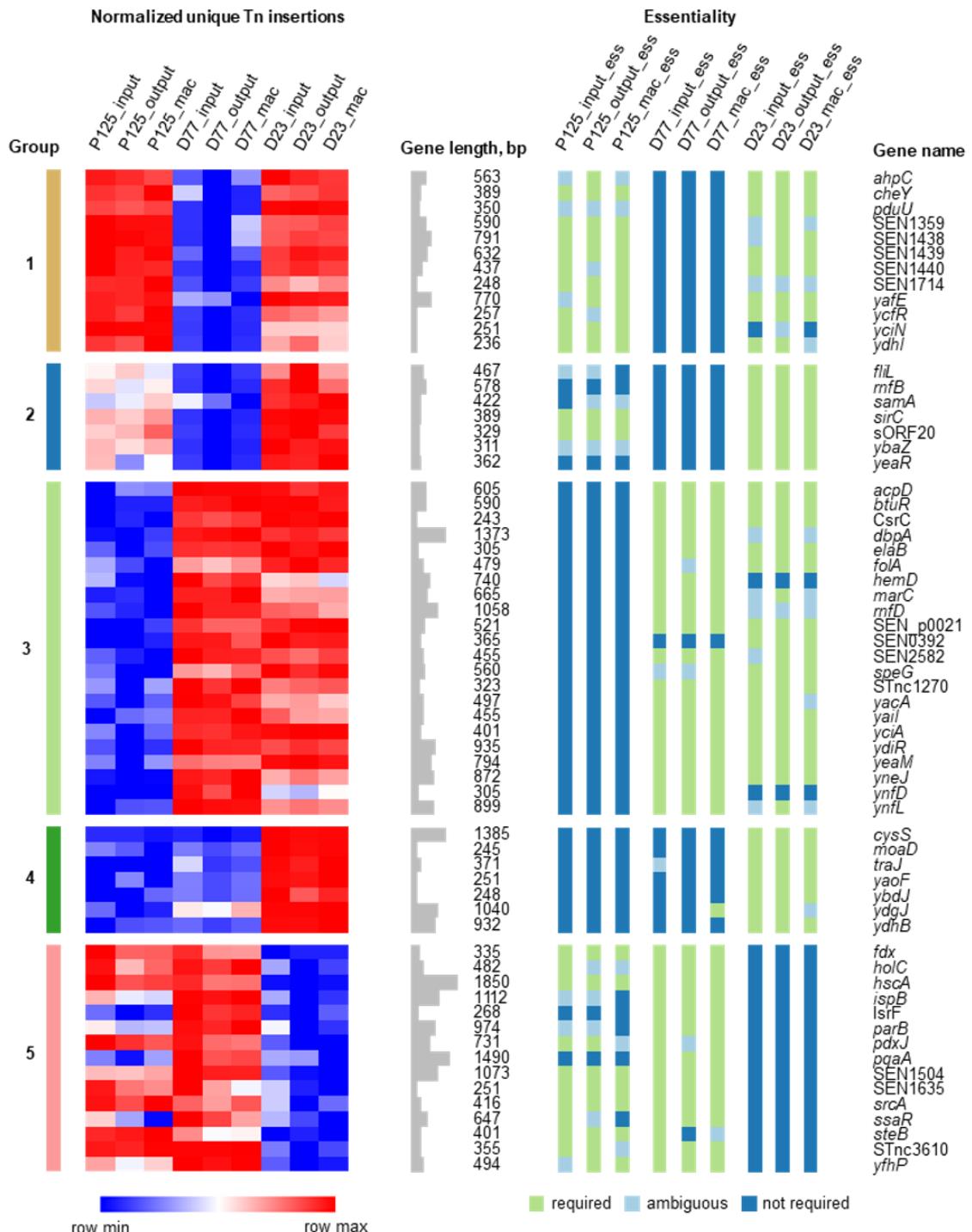
1092 69. **Das S, Ray S, Ryan D, Sahu B, Suar M.** Identification of a novel gene in ROD9 island
1093 of *Salmonella* Enteritidis involved in the alteration of virulence-associated genes
1094 expression. *Virulence* 2018;9:348–362.

1095 70. **Venturini E, Svensson SL, Maaß S, Gelhausen R, Eggenhofer F, et al.** A global
1096 data-driven census of *Salmonella* small proteins and their potential functions in bacterial
1097 virulence. *microLife* 2020;1:1–20.

1098 71. **Schnaitman CA, Klena JD.** Genetics of lipopolysaccharide biosynthesis in enteric
1099 bacteria. *Microbiol Rev* 1993;57:655–682.

1100 72. **Hölzer SU, Schlumberger MC, Jäckel D, Hensel M.** Effect of the O-antigen length of
1101 lipopolysaccharide on the functions of type III secretion systems in *Salmonella enterica*.
1102 *Infect Immun* 2009;77:5458–5470.

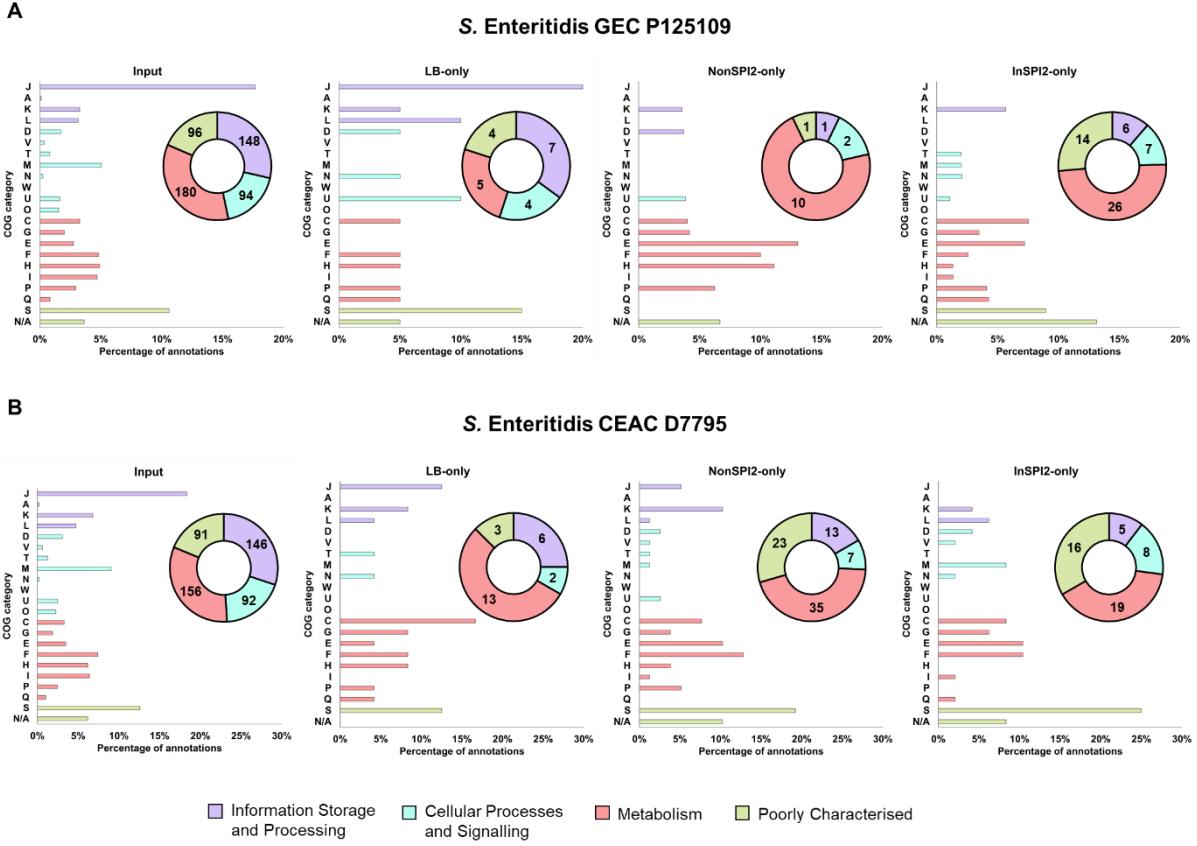
1103 73. **Silva-Valenzuela CA, Molina-Quiroz RC, Desai P, Valenzuela C, Porwollik S, et al.**
1104 Analysis of two complementary single-gene deletion mutant libraries of *Salmonella*
1105 Typhimurium in intraperitoneal infection of BALB/c mice. *Front Microbiol* 2016;6:1455.


1106 74. **Chaudhuri RR, Morgan E, Peters SE, Pleasance SJ, Hudson DL, et al.**
1107 Comprehensive assignment of roles for *Salmonella* Typhimurium genes in intestinal
1108 colonization of food-producing animals. *PLoS Genet* 2013;9:e1003456.

1109 75. **Khan A, Mathelier A.** Intervene: a tool for intersection and visualization of multiple
1110 gene or genomic region sets. *BMC Bioinformatics* 2017;18:1–8.

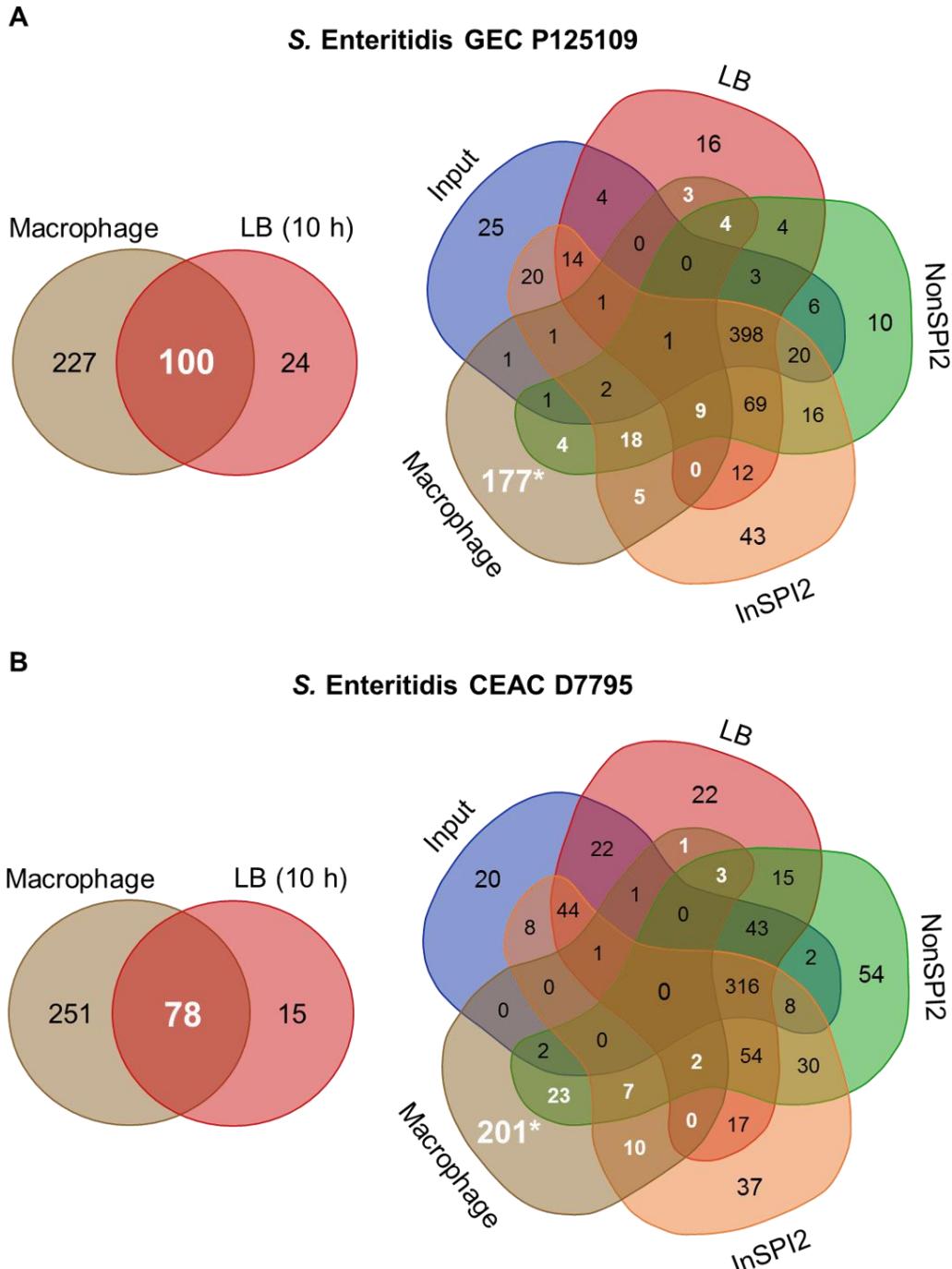
1111 76. **Piccini G, Montomoli E.** Pathogenic signature of invasive non-typhoidal *Salmonella* in
1112 Africa: implications for vaccine development. *Hum Vaccines Immunother* 2020;00:1–
1113 16.

1114


1115 **SUPPLEMENTARY DATA**

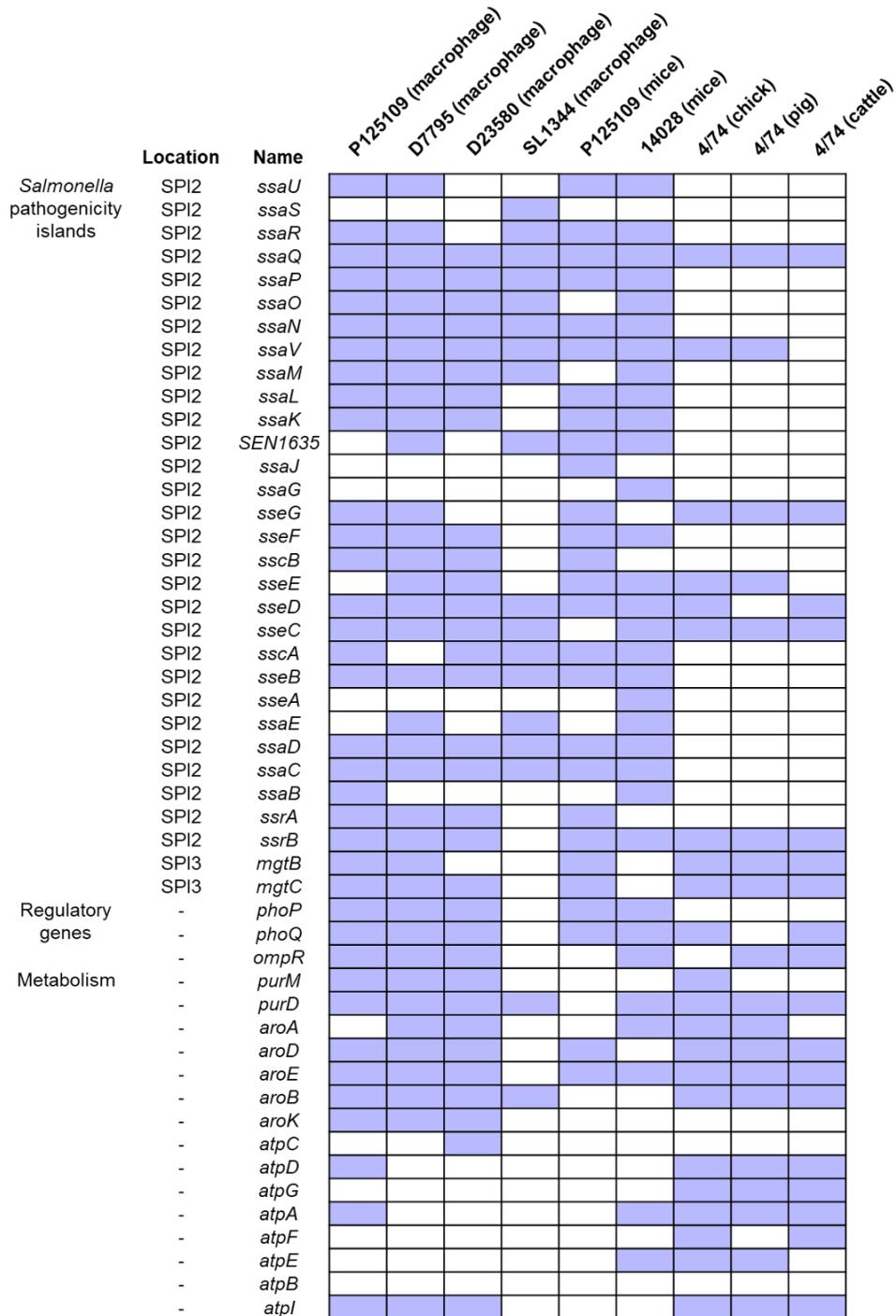
1116

1117 **Fig S1. Inter-strain essentiality analysis identifies 63 genes that are differentially required**
 1118 **between *S. Enteritidis* P125109, *S. Enteritidis* D7795 and *S. Typhimurium* D23580**


1119 Transposon insertion read counts are represented as a heat map, with red indicating many
 1120 insertions and blue indicating very few insertions. Essentiality calls (based on insertion indices)
 1121 from LB input, LB output and macrophage output libraries are represented by green and blue
 1122 squares. Samples included: P125_input (P125109 LB input), P125109_output (P125109 LB
 1123 output), P125_mac (P125109 macrophage output), D77_input (D7795 LB input), D77_output
 1124 (D7795 LB output), D77_mac (D7795 macrophage output), D23_input (D23580 LB input),
 1125 D23_output (D23580 LB output) and D23_mac (D23580 macrophage output).

1126

1127 **Fig S2. Distribution of Cluster of Orthologous Genes (COG) annotations in genes required**
1128 **by S. Enteritidis P125109 and D7795 for optimal growth in LB, NonSPI2 and InSPI2**


1129 Doughnut charts (insets) show the distribution of COG annotations in the four major functional
1130 categories (Information Storage and Processing, Cellular Processes and Signalling, Metabolism,
1131 Poorly Characterised), with total numerical counts in each major category shown. “Input” bar chart
1132 shows COG annotations from all genes identified as required in the respective S. Enteritidis Input
1133 libraries (497 genes for P125109 and 467 genes for D7795), whereas the “LB-only”, “NonSPI2-
1134 only” and “InSPI2-only” bar charts considered only the genes specific to that growth media (Fig 3).
1135 COG categories: J, Translation, ribosomal structure and biogenesis; A, RNA processing and
1136 modification; K, Transcription; L, Replication, recombination and repair; D, Cell cycle control, cell
1137 division, chromosome partitioning; V, Defense mechanisms; T, Signal transduction mechanisms;
1138 M, Cell wall/membrane/envelope biogenesis; N, Cell motility; W, Extracellular structures; U,
1139 Intracellular trafficking, secretion, and vesicular transport; O, Posttranslational modification, protein
1140 turnover, chaperones; C, Energy production and conversion; G, Carbohydrate transport and
1141 metabolism; E, Amino acid transport and metabolism; F, Nucleotide transport and metabolism; H,
1142 Coenzyme transport and metabolism, I, Lipid transport and metabolism; P, Inorganic ion transport
1143 and metabolism; Q, Secondary metabolites biosynthesis, transport and catabolism; S, Function
1144 unknown; N/A, not assigned.

1145

1146 Fig S3. Macrophage-specific and macrophage-associated genes in *S. Enteritidis* P125109
1147 and D7795

1148 Genes that modulated the intracellular survival and replication of *Salmonella* in RAW 264.7
1149 macrophages (identified by \log_2FC [Output_MAC vs. Input_LB] < -1 and P -value < 0.05) were
1150 compared with genes affecting growth in LB for 10 h (two-way Venn diagram in both panels A and
1151 B). The resulting 227 and 251 macrophage-attenuated fitness mutants in P125109 and D7795,
1152 respectively, were then compared with the genes required for *in vitro* growth under laboratory
1153 conditions (five-way Venn diagram). The numbers highlighted in white represent the
1154 “macrophage-associated” genes, and the numbers highlighted with an asterisk (*) represent the
1155 “macrophage-specific” genes. Venn diagrams were generated using
1156 <http://bioinformatics.psb.ugent.be/webtools/Venn/>.

1157

1158 **Fig S4. Macrophage-fitness genes in *S. Enteritidis* P125109 and D7795 with reported roles**
 1159 **in other *Salmonella* infection models**

1160 The figure shows 49 genes that are required for macrophage fitness in *S. Enteritidis* P125109
 1161 and/or D7795 as identified in this study, and their reported roles in other *Salmonella* infection
 1162 models. Blue box indicates the gene is involved in *Salmonella* fitness in the specified strain and
 1163 infection model. D23580 (macrophage) = *S. Typhimurium* ST313 D23580 in macrophage infection
 1164 [31]; SL1344 (macrophage) = *S. Typhimurium* ST19 SL1344 in macrophage infection [70];
 1165 P125109 (mice) = *S. Enteritidis* P125109 in BALB/c mice infection [16]; 14028 (mice) = *S.*
 1166 *Typhimurium* ST19 14028 in BALB/c mice infection [73]; and 4/74 (chick), 4/74 (pig), 4/74 (cattle)
 1167 = *S. Typhimurium* ST19 4/74 in food-related animal infection models [74].

1168

1169 **Table S1.** Bacterial strains and oligonucleotides used in this study.

1170

1171 **Table S2.** Illumina DNA libraries generated in this study and number of sequenced reads for
1172 each sample at every step.

1173

1174 **Table S3.** Number of reads, transposon insertion sites, insertion index, and essentiality call
1175 per gene. Samples included: P125109 input (for LB, NonSPI2 and InSPI2), P125109 LB
1176 (output), P125109 NonSPI2 (output), P125109 InSPI2 (output), P125109 input (macrophage),
1177 P125109 macrophage (output), P125109 LB_10h (output), D7795 input (for LB, NonSPI2 and
1178 InSPI2), D7795 LB (output), D7795 NonSPI2 (output), D7795 InSPI2 (output), D7795 input
1179 (macrophage), D7795 macrophage (output) and D7795 LB_10h (output).

1180

1181 **Table S4.** Raw data for figures.

1182

1183 **Table S5.** Analysis of the TIS macrophage data. Read counts for the two inputs and two
1184 outputs (LB_10h and macrophage), and \log_2 fold-changes and adjusted P -values for the
1185 comparative analysis of each coding gene and non-coding sRNA in *S. Enteritidis* P125109
1186 and D7795.

1187

1188 **Table S6.** Comparison of macrophage-attenuated genes in *S. Enteritidis* GEC P125109 and
1189 CEAC D7795 with genes associated with virulence in other *Salmonella* serovars and infection
1190 models: *S. Typhimurium* ST313 D23580 [31] and ST19 SL1344 [70] in macrophage infection;
1191 P125109 [16] and *S. Typhimurium* ST19 14028 in BALB/c mice infection [73]; and *S.*
1192 *Typhimurium* ST19 4/74 in food-related animal infection models [74].

1193

1194 **Table S7.** Cluster of Orthologous Genes (COGs) categories assigned by eggNOG mapper