

1 **Mouse Skeletal Muscle Decrease in the MICOS Complex and Altered Mitochondrial
2 Networks with age**

3
4 Zer Vue*, Edgar Garza-Lopez*, Kit Neikirk*, Larry Vang, Heather Beasley, Jianqiang Shao,
5 Andrea G. Marshall, Amber Crabtree, Chantell Evans, Brittany Taylor, Trace A. Christensen,
6 Jacob Lam, Benjamin Rodriguez, Mark A. Phillips, Jamaine Davis, Anilkumar K. Reddy, Anita
7 M. Quintana, Sandra A. Murray, Vernat Exil, Bret C. Mobley, Jose A. Gomez#, Dao-Fu Dai#,
8 Antenor Hinton, Jr#

9
10 Affiliations:

11 Z.V., K.N., L.V., H.B., A.G.M., J.A.G., A.H.J.: Department of Molecular Physiology and
12 Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.

13 E.G., J.L., B.R.: Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242,
14 USA.

15 J.S.; Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA.

16 C.E.: Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708,
17 USA.

18 B.T.; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida,
19 Gainesville, FL, 32611, USA

20 T.A.C.:Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, MN, 55905, USA.

21 M.A.P.: Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331,
22 USA.

23 J.D.: Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry
24 Medical College, Nashville, TN 37208, USA.

25 A.M.Q.: Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968,
26 USA.

27 V.G.: Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN,
28 37232, USA.

29 S.A.M: Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh,
30 PA, 15260, USA.

31 V.E.: Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA,
32 52242, USA.

33 A.K.R.: Department of Medicine, Baylor College of Medicine, Houston, TX, 77001.

34 V.E.: Department of Pediatrics, Div. of Cardiology, St. Louis University School of Medicine, St.
35 Louis, MO, 63104, USA.

36 B.M.: Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, 37232
37 USA.

38 J.A.G.: Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232,
39 USA

40 D.D.: Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA,
41 52242, USA.

42
43
44 *These authors share co-first authorship.

45 #These authors share senior authorship.

47 Corresponding Author:
48 Antenor Hinton
49 Department of Molecular Physiology and Biophysics
50 Vanderbilt University
51 antenor.o.hinton.jr@Vanderbilt.Edu 319-383-3095
52

53 **Graphical Abstract:**

54
55 **ABSTRACT**
56 Skeletal muscle gradually loses mass, strength, endurance, and oxidative capacity during aging.
57 While mitochondrial aging is associated with endoplasmic reticulum stress, fragmented
58 mitochondria, and decreased mitochondrial capacity, the genes associated with morphological
59 changes in mitochondria during aging still requires further elucidation. Further, it is not
60 completely understood how 3D mitochondrial networks and the specialization of mitochondria
61 are altered during aging. We measured changes in mitochondrial morphology and mitochondrial
62 connectivity during the aging of the mouse gastrocnemius muscle through serial block facing-
63 scanning electron microscopy and 3D reconstruction. We found changes in mitochondrial
64 network configuration, nanotunneling, size, shape, number, contact sites, cristae organizing
65 system (MICOS) dynamics and gene expression in skeletal muscle during aging. We also found
66 an association of OPA-1 and the MICOS complex in the gastrocnemius with mitochondrial
67 aging. Further, the loss of the MICOS complex was linked with decreased oxidative capacity and
68 altered mitochondrial metabolism. MICOS proteins decreased with age and mitochondrial
69 morphology was similar between aged skeletal muscle and that of young mice with MICOS
70 protein loss. In tandem, our data suggest a relationship between the MICOS complex and aging,
71 which could be potentially linked to disease states with additional 3D reconstruction.
72

73 **Keywords:** MICOS, aging, mitochondria, 3D morphometry; mitochondrial disease;
74 mitochondrion; nanotunnel; reconstruction; reticulum; serial block-face SEM; skeletal muscle.

75
76

77 **INTRODUCTION**

78 The loss of muscle mass associated with aging, known as sarcopenia, impacts the quality
79 of life affecting both type I and type II fibers, but more so for type II fibers. The mitochondrial
80 free radical theory of aging (MRFTA) which proposes that the accumulation of reactive oxygen
81 species (ROS) byproducts causes damage that leads to aging ¹⁻³. The critical role of
82 mitochondrial oxidative stress in aging has been shown using mitochondrial-targeted
83 antioxidants, such as catalase targeted to mitochondria, in cardiac aging ⁴ and sarcopenia ⁵. In
84 addition to the main function of generating cellular ATP by oxidative phosphorylation ⁶, the
85 mitochondria play critical role in ROS signaling, calcium homeostasis, programmed cell death,
86 and regulation of innate immunity and stem cells. To carry out the tremendous variety of tasks,
87 mitochondria maintain finely regulated ultrastructures, through various mechanisms, one of
88 which is mitochondrial dynamic machinery through fission and fusion. Since their structure
89 changes dynamically as mitochondria shift from fission to fusion, many important mitochondrial
90 functions depend on their ultrastructure⁷⁻⁹, therefore, it is important to understand mitochondrial
91 structural changes over time. Essential mitochondrial functions are associated with the
92 mitochondrial inner membrane folds known as cristae, which house the oxidative
93 phosphorylation machinery⁸ and various transporters. Our objective was to determine how
94 mitochondrial networks and individual mitochondrial structures change during aging. We
95 hypothesized that age-related oxidative stress causes increased mitochondrial mitophagy and
96 fragmentation over time with concomitant losses in mitochondrial cristae integrity.

97 Disruption of optic atrophy 1 (OPA-1), an inner membrane protein that regulates
98 mitochondrial fusion, causes mitochondrial fragmentation and affects the dimensions, shapes,
99 and sizes of the cristae ⁸. Disruption of Drp1, a protein associated with mitochondrial fission,
100 causes elongated mitochondria and resistance to remodeling of the cristae ^{10,11}. Nanotunnels or
101 “mitochondria-on-a-string” are thin, double-membrane protrusions lacking cristae that allow
102 mitochondria to communicate across distances. Nanotunnels may increase in mitochondrial
103 disease ^{12,13} and may be associated with mitochondrial dysfunction during aging. Mutations in
104 genes that regulate the morphology of cristae have been associated with aging cardiomyocytes ¹⁴.
105 These gene products are located at the crista junctions in the inner membrane and are a part of
106 the mitochondrial contact site and cristae organizing system (MICOS), which are important for
107 maintaining mitochondrial shape and size ¹⁵. DRP1 or OPA-1 loss can similarly affect
108 mitochondria morphology ^{16,17}. Cristae membranes contain the electron transport chain
109 complexes and ATP synthase for ATP synthesis via oxidative phosphorylation ¹⁸⁻²⁰. Since
110 mitochondrial morphology affects function, altering the structure by knocking out MICOS-
111 associated genes or the GTPase of OPA-1 could alter the metabolism and function of
112 mitochondria during aging ¹⁸⁻²⁰. Critically, we predicted that MICOS-associated genes were lost
113 over age, therefore, loss of MICOS-associated genes would mimic loss in mitochondria
114 morphology observed across age.

115 To better understand the alterations of mitochondrial specialization ultrastructure in
116 aging, we compared size, shape, quantity, complexity, and branching of mitochondria using 3D
117 reconstructions of aged gastrocnemius, and we measured nano tunneling in mouse muscles at
118 these three ages. Multivariate analysis was used to identify changes in metabolites, the MICOS
119 complex, OPA-1, nano tunneling, mitochondrial complexity, and morphological changes to
120 better understand how mitochondrial specialization and structure change during aging.

121
122 **RESULTS**

123 **Aging Results in Smaller, Shorter, Poorly Connected Mitochondria with Decreased**
124 **Branching in Mouse Skeletal Muscle**

125 The gastrocnemius is a mixed muscle with both oxidative fibers containing many
126 mitochondria and glycolytic fibers with few mitochondria. This heterogeneity makes the
127 gastrocnemius ideal to study changes in mitochondrial dynamics. Since many mitochondrial
128 functions depend on structure⁷⁻⁹, it is important to examine mitochondrial structural changes
129 over time. We hypothesized that increasing mitochondrial mitophagy and fragmentation over
130 time is concomitant with losses in mitochondrial crista integrity.

131 Our objective was to determine how aging alters mitochondrial networks and individual
132 mitochondrial structure. We imaged gastrocnemius biopsies from young (3-month-old), mature
133 (1-year-old) and aged (2-year-old) mice by serial block-face scanning electron microscopy (SBF-
134 SEM) with resolutions of 10 μ m for the x- and y- planes and 50 μ m for the z-plane, which allows
135 visualization of the electron connectome. Approximately 50 intermyofibrillar (IMF)
136 mitochondria were segmented from each image stack (Figure 1A-C) and a 3D surface view was
137 generated (Figure 1A''-C''). We analyzed mitochondria sub-network volumes from four ROIs
138 with an average of 175 mitochondria for each mouse (n = 3), for a total of 500 mitochondria.
139 Mitochondrial networks in aged mice showed largely interconnected mitochondria that were not
140 composed of a single reticulum (Figures 1A'''-C''''). We found that mitochondrial volume
141 decreased with age (Figures 1 A'''-C'''') as did mitochondrial network volumes (Figure 1D). The
142 area and perimeter of mitochondria of samples from 2-year-old mice were significantly lower
143 than those from 3-month-old mice; however, there was no significant change for 1-year-old mice
144 compared to 3-month-old mice (Figures 1E-F). While there was some variability across the three
145 mice for each age cohort (SFigure 1), in general the trend showed a downwards trajectory
146 emblematic of increased fragmentation and smaller mitochondria. This showed that the size and
147 length of mitochondria change with age, but the specific complexity of mitochondria, which is
148 implicated with mitochondria communication, needed to be further elucidated.

149 We next measured mitochondrial complexity to better understand changes in mitochondrial
150 shape during aged mitochondrial complexity, quantification of the 2D form factor as a 3D shape,
151 as above. We hypothesize that less networks and simpler shape would occur as aging and
152 dysfunction continued. Previously established methods^{21,22} were used to determine three
153 dimensional mitochondrial complexity from two dimensional form factor measurements^{21,22}.
154 First, we first examined transverse (Figure 2A-C) and longitudinal (Figure 2A'-C')
155 mitochondrial dimensions across ages in skeletal muscle. These measures showed networking
156 and broad mitochondria. Mitochondrial branching index (MBI) is the ratio of transverse (Figures
157 2A-C) to longitudinal (Figures 2A'-C') branching, which better quantifies the orientation of the
158 branching, and MCI and MBI together measure mitochondria morphology²¹. We found that
159 MBI decreased across the age cohorts (Figure 2D). Since we observed in 3D reconstructions that
160 mitochondrial populations are heterogeneous and diverse, we utilized mito-typing, which is the
161 karyotyping-like method for arranging mitochondria²¹, to capture the diversity of IMF
162 mitochondria (Figure 2E). This analysis suggested at every volumetric measurement,
163 mitochondria were smaller and less complex with age. We also measured sphericity to further
164 understand changes in complexity. There was a progressive increase in sphericity with aging
165 (Figure 2F). When examining the specific three male mice sampled for each age cohort, some
166 variation exists for both metrics; however, the trends again clearly show sphericity stays
167 consistent while MBI decreases across age (SFigure 2). Together, these data suggest that
168 complexity decreases across all mitotypes with age.

169

170 **Mitochondrial Nanotunnels Change in Size and Amount with Aging in Skeletal Muscle**

171 To quantify nanotunnels in skeletal muscle, we performed 3D reconstruction in mice at
172 three ages, measuring 550 mitochondria per mouse (n=3) using four different regions of interests
173 (ROIs). Although nanotunnels are reported to exist primarily in mitochondrial disease states ¹²,
174 we found them in all three ages of mice (Figures 3A–C). The diversity and heterogeneity in the
175 organization, sizing, and branching of nanotunnels necessitated mito-otyping (Figure 3D). We
176 found nanotunnels in a greater proportion of mitochondria in 1-year-old mice than in 2-year-old
177 mice (Figure 3E). However, the number of nanotunnels in each mitochondrion was significantly
178 less in the 2-year-old mice than the 3-month-old and 1-year-old mice (Figure 3F). The length and
179 diameter of nanotunnels increased in the older mice compared to the 3-month-old mice (Figures
180 3G–H), but the increase was significantly greater in the 1-year-old mice than the 2-year-old mice
181 (Figures 3G–J). These data show that nanotunnel structure, frequency, and length change during
182 aging.

183 Since we observed mitochondrial dynamics and cristae change with aging , we measured
184 transcripts for *Opa-1*, the gene associated with mitochondrial fusion, and *CHCHD3* (*Mic19*),
185 *CHCHD6* (*Mic25*), and *Mitoflin* (*Mic60*), the genes for the principal MICOS complex subunits.
186 We used reverse-transcriptase qPCR (RT-qPCR) to determine the effect of aging on
187 transcription. Since aging causes fragmentation of mitochondria, a hallmark for this process is
188 loss of *Opa-1* and MICOS complex proteins. We hypothesized that aging would also lead to
189 decreases in the associated MICOS complex proteins, confirming prior studies which have
190 found *Opa-1* loss across aging ^{19,23–25}. We found progressive loss of both *Opa-1* and MICOS
191 complex subunits, as measured by loss of transcripts for the proteins (SFigure 3A–D). In 1- and
192 2-year-old mice, the amount of mRNA made for the MICOS complex subunit genes or the *Opa-1*
193 gene was less than half of that made in 3-month-old mice (SFigure 3A–C). Furthermore, for
194 all MICOS genes, there was a statistically significant decrease in the amount of mRNA over
195 time with a higher level of significance in 2-year-old mice. These data suggest a correlation
196 between mitochondrial morphologic changes and decreases in expression of genes for *Opa-1*
197 and MICOS subunits *CHCHD3*, *CHCHD6*, and *Mitoflin* during aging; however, they are not
198 sufficient to demonstrate causation, therefore we did additional measurements to show that
199 reduced protein expression levels may be responsible for the morphologic changes.

200

201 **Changes in Cristae and Mitochondria in Myotubes and Oxygen Respiration Rate Upon 202 Knockout of MICOS complex and *Opa-1***

203 The MICOS complex and OPA-1 are key players in mitochondrial biogenesis ^{15,19,26}, but
204 how their interactions regulate aging and mitochondrial ultrastructures is poorly understood. To
205 determine the role of OPA-1 and the MICOS complex in mitochondrial structure and
206 networking, we ablated the genes for *Opa-1* and the MICOS complex in isolated primary skeletal
207 muscle cells from 3-month-old mice. We isolated primary satellite cells, then differentiated
208 myoblasts to myotubes. Using CRISPR/Cas9 method (Table 2), and a control plasmid, we
209 knocked out the genes for MICOS complex components and *Opa-1* from skeletal muscle cells.
210 As observed previously, in vitro deletion of OPA-1 altered mitochondrial morphology ^{16,27,28}.
211 We measured 1250 mitochondria across 10 cells, with loss of *Opa-1* as a positive control for
212 mitochondrial morphological changes. Although *Opa-1* expression decreases with age ²⁹, the
213 effect of the MICOS complex being lost in mitochondria morphology is unknown. Using
214 transmission electron microscopy (TEM) images, we compared mitochondria and cristae in

215 myotubes from wild type (WT) and knockouts of *Opa-1* and *Mitofillin* genes, which are essential
216 for the organization of mitochondrial cristae^{30,31} (Figures 4A–C). Mitochondrial average area
217 decreased for both *Opa-1* and *Mitofillin* knockout myotubes (Figure 4D), while mitochondrial
218 circularity (the roundness and symmetry of mitochondria) and number increased for both *Opa-1*
219 and *Mitofillin* knockout myotubes (Figures 4E–F). For both *Opa-1* and *Mitofillin* knockouts, the
220 number of cristae per mitochondrion decreased, as did the cristae score and cristae surface areas
221 compared to the WT (Figures 4G–I). Cristae score measures the uniformity and regularity of
222 cristae compared to typical cristae, with a lower number representing abnormality and
223 dysfunction.

224 To further elucidate these changes in event of loss of other MICOS proteins, we also
225 compared WT with *Opa-1*, *CHCHD3*, and *CHCHD6* knockout myotubes (Figures 5A–D).
226 Knockout of MICOS subunit *CHCHD3* results in fragmented mitochondria with less *Opa-1* as
227 the cristae lose their normal structure³². Similarly, *CHCHD6* is important in maintaining crista
228 structure and its downregulation results in hollow cristae lacking an electron-dense matrix,
229 thereby inhibiting ATP production and cell growth^{31,33,34}. Mitochondrial average area decreased
230 for *Opa-1*, *CHCHD3*, and *CHCHD6* knockout myotubes (Figure 5E), while the circularity index
231 and the number of mitochondria, once normalized, increased (Figures 5F–G). For *Opa-1*,
232 *CHCHD3*, and *CHCHD6* knockouts, the number of cristae per mitochondrion decreased, as did
233 the cristae score and cristae surface area compared to the WT (Figures 5H–J). The least
234 significant change was seen in the *CHCHD3* knockout. Together, these data show quantitative
235 and structural changes in both mitochondria and cristae upon loss of MICOS proteins.

236 Loss of OPA-1 induces bioenergetic stress and decreased electron transport chain
237 function²⁸ and ablation of the MICOS complex alters mitochondrial capacity^{35,36}. We found that
238 loss of OPA-1 or *Mitofillin* in myotubes decreased basal oxygen consumption rate (OCR)
239 (Figures 4J–K) and decreased ATP-linked, maximum, and reserve capacity OCR (Figures 4L–
240 N). Although OPA-1 knockout myotubes exhibited a decrease in proton leak, which represents
241 protons that go from the mitochondria to matrix without producing ATP, *Mitofillin* knockouts
242 showed no significant difference (Figure 4O). In *Opa-1*, *CHCHD3*, and *CHCHD6* knockouts,
243 there was a decrease in basal, ATP-linked, maximum, and reserve capacity OCR compared to the
244 control (Figures 5K–O). Although proton leak OCR decreased in *Opa-1* and *CHCHD3* knockout
245 myotubes (Figure 5P), there was no significant difference between the control and *CHCHD6*.
246 The decrease in OCR may be attributed to smaller and fragmented mitochondria; mitochondrial
247 density decreases as fragmentation targets them for autophagy^{29,37}. Together, these results show
248 that MICOS and *Opa-1* are essential for normal respiration of muscle tissue.

249 TEM provides mitochondrial detail, but not 3D morphology; therefore, we used SBF-
250 SEM to look at the 3D structure of the mitochondria. Using myotubes with ablated genes for
251 *Opa-1* and MICOS complex subunits, as described above, we measured a total of 200
252 mitochondria across 10 cells. We compared mitochondria in WT, *Opa-1*, *Mitofillin*, *CHCHD3*,
253 and *CHCHD6* knockout myotubes (Figures 6A–E).

254 We found that compared to the elongated mitochondria in the WT, the 3D length was
255 much shorter in *Opa-1* and MICOS protein knockouts (Figure 6F). Similarly, the volume of
256 mitochondria was also less in *CHCHD3*, *CHCHD6*, *Mitofillin*, and *Opa-1* knockouts compared to
257 the control (Figure 6G). The 3D reconstruction data, in combination with the prior TEM results,
258 show how mitochondrial dynamics change with the loss of MICOS subunits.

259

260 **Metabolomics Show Key Metabolite Changes in Knockout of MICOS Complex Proteins**
261 **and *Opa-1* in Myotubes.**

262 To determine the global effects of loss of *Opa-1* or the MICOS complex in skeletal
263 muscle myotubes, we analyzed the metabolome to identify changes in metabolites that occurred
264 with changes in mitochondria and cristae. Principal component analysis (PCA) revealed distinct
265 populations in the control and the *Mitoflin* knockout strains, which suggested that their
266 genotypes contributed to the clustering (SFigure 4A). To identify metabolites with the most
267 robust ability to discriminate between true positives and false positives, we constructed a model
268 using analysis of variance (ANOVA) to determine several key metabolites that were statistically
269 significant (SFigure 4B). This unique metabolite signature revealed that *Mitoflin* plays a critical
270 role in regulating amino acid metabolism and steroidogenesis (SFigure 4C–D). Upregulation of
271 steroidogenesis pathways may result from the increased fluidity of membranes caused by
272 *Mitoflin*^{38,39}. We also measured the effect of ablation of genes for *CHCHD3* and *CHCHD6* in
273 skeletal muscle myotubes on bioenergetic metabolism. PCA revealed distinct populations in the
274 control and the *CHCHD3* and *CHCHD6* knockouts, which showed a similar profile (SFigure
275 5A). We constructed a model using ANOVA to determine which metabolite changes in
276 *CHCHD3* and *CHCHD6* knockouts were statistically significant (SFigure 5B). There was a loss
277 of protein synthesis and changes in carbohydrate metabolism (SFigure 5C–D). Loss of *Opa-1*
278 typically favors fatty acid synthesis, so these results showing increased carbohydrate metabolism
279 differ from previous *Opa-1* knockout responses^{40–42}. This atypical response was evident in the
280 increase in lactose and starch synthesis, but there was poor protein turnover, as seen in
281 methionine metabolism (SFigure 5D).

282
283

284 **DISCUSSION**

285 We demonstrated that either aging or loss of MICOS proteins in skeletal muscle resulted
286 in suboptimal mitochondria morphology, suggesting a correlation between aging and MICOS
287 protein expression. Previous studies used 3D focused ion beam-scanning electron microscopy
288 (FIB-SEM) to characterize the networking of the mitochondria in human⁴³ and mouse skeletal
289 muscle⁴⁴. Another report did quantitative 3D reconstructions using SBF-SEM to define the
290 morphological differences in the skeletal muscles of humans versus mice, and they compared
291 patients with primary mitochondrial DNA diseases with healthy controls²¹. To the best of our
292 knowledge, our current study is the first to use 3D reconstruction method as a novel approach to
293 study the connections between mitochondria and to determine how disconnections and reduced
294 mitochondrial communication altered in skeletal muscle aging.

295 Skeletal muscle highly mitochondrial dependent as well as mitochondria enriched and is
296 highly enriched in , which comprise ~6% of the cell volume and is well known to change with
297 aging⁴⁵. Gastrocnemius muscle has both type I slow-twitch muscle fibers and type II fast-twitch
298 muscle fibers; type I fibers are more effective for endurance, while type II fibers better support
299 short bursts of muscle activity^{45–47}. Our 3D morphologic data, however, did not permit
300 discrimination of the two fiber types, although we observed many variable muscle fibers within a
301 sample and between all differently aged cohorts. Futures studies may develop novel methods that
302 are able to distinguish fiber types to determine the changes in mitochondria. Past studies in
303 human skeletal muscle did this by taking two portion of samples and assessing fiber type via
304 SDS-PAGE⁴⁸.

305 Using 3D reconstructions, we found that all parameters of the mitochondria changed
306 during aging including smaller volume, area, and perimeter (Figure 1D-F), and the mitochondria
307 became less interconnected. This increased fragmentation suggests a decreased mitochondrial
308 fusion, in association with age-dependent decreases of OPA-1, which is a regulator of
309 mitochondrial fusion. We also saw a decrease in the MBI during aging, suggesting that
310 mitochondria decrease in networking, but their shape may not radically change as they increase
311 in sphericity as they age (Figure 2).

312 The change in morphology in aging mitochondria could be explained by the MFRTA,
313 which proposes that ROS alter other functions of mitochondria, including ATP production, as
314 they induce aging⁴⁹. Since oxidative stress has been linked to many diseases of aging (diabetes,
315 heart disease, sarcopenia, arthritis, kidney disease)⁵⁰, understanding the association between
316 aging and mitochondria is important.

317 We found nanotunnels, which are thin, double-membrane mitochondrial connections that
318 can transport proteins and nutrients, in all skeletal muscle samples. While healthy humans have
319 almost no nanotunnels²¹, we unexpectedly found a moderate number of nanotunnels in young 3-
320 month-old mice (Figures 3E–H), and a consistent increase of nanotunnels in the skeletal muscle
321 of 1-year-old mice. These structures may have an unclear beneficial role in skeletal muscle of
322 mice. Given the association of nanotunnels with human diseases, we predicted that the 2-year-
323 old “aged” mouse skeletal muscle would have the most nanotunnels, however the nanotunnel
324 number was quite heterogeneous in 2-year-old mice and less were observed^{12,51}. The 2-year-old
325 samples may have shown fewer nanotunnels due to the high rate of fragmentation (Figure 1) and
326 lack of connectedness (Figure 2) preventing nanotunnel formation. In contrast, perhaps the
327 remaining networks permitted the increased number of nanotunnels in 1-year moderately aged
328 samples. The presence of nanotunnels in the healthy 3-month-old mouse skeletal muscle
329 suggests significant differences in mouse versus human muscle²¹.

330 MICOS proteins play key regulatory roles in mitochondrial structure and function^{19,26,37}.
331 We determined by TEM 3D reconstructions that the loss of *Mitoflin*, *CHCHD3*, and *CHCHD6*
332 (Figures 4–5) resulted in fragmentation, disrupted cristae, and smaller mitochondria (Figures 4A–
333 I, Figures 4P–Y; Figure 5), similar to the loss of OPA-1, which is known to cause changes in
334 oxidative phosphorylation (Figures 4Z–AE)^{19,23,28}. Overall, mitochondria lacking the MICOS
335 genes had characteristics similar to those of aged mouse skeletal muscle (Figures 1–2). This
336 similarity in phenotype suggests there may be an association. Thus, changes in mitochondrial
337 morphology due to aging may be caused by a lack of MICOS gene expression. This is supported
338 by the RT-qPCR data that showed decreased *CHCHD3*, *CHCHD6*, *Mitoflin*, and *Opa-1*
339 transcription with aging (SFigure 3). Although there is a link between aging and loss of *Opa-1*
340^{24,29}, little is known about the role of the MICOS complex in aging. Changes in mitochondrial
341 architecture and loss of integrity may be caused by decreased MICOS proteins; thus, it will be
342 important to develop methods to restore MICOS proteins and *Opa-1* lost during aging to
343 decrease the deleterious effects of mitochondrial dysfunction. Although studies have examined
344 the role of knockouts on mitochondrial dynamics, few studies have examined how loss of
345 MICOS proteins may be restored to mitochondria^{23,52}.

346 Many studies have analyzed the mitochondrial metabolome using mouse skeletal muscles
347^{45,53–57}. We found that loss of *Mitoflin* affected cristae morphology (Figures 4G–H), decreased
348 oxidative phosphorylation (Figure 4J), and may have increased lipid and steroid synthesis, which
349 may be important for mitochondrial endoplasmic reticulum contact (MERC) regulation and
350 cristae formation. We found an increase in tryptophan and methyl histidine metabolism (SFigure

351 4D) and an increase in taurine metabolism and hypotaurine, a key sulfur-containing amino acid
352 for the metabolism of fats. Loss of *Opa-1* also changes amino acid and lipid metabolism, similar
353 to the loss of *Mitofilin*^{40–42}. Steroidogenesis, which makes the membrane less rigid, was
354 increased. Since the loss of *Mitofilin*, *CHCHD6*, or *CHCHD3* caused a loss of oxidative capacity
355 (Figure 4J-O; 5K-P), increased steroid synthesis may allow the cell to recover bioenergetic
356 functions, as steroid compounds decrease membrane viscosity, with the incorporation of estrogen
357³⁸. In the absence of *Mitofilin*, the cristae junctions and contact sites fall apart⁵⁸; thus, *Mitofilin* is
358 critical for maintaining cristae^{59,60}. Cells lacking *Mitofilin* may make steroids to help the
359 membrane to reconfigure broken cristae. Since the loss of *Opa-1* causes more MERCs³, loss of
360 *Mitofilin* may increase phospholipids (SFigure 4D) because of increased smooth MERCs, which
361 are associated with lipid changes⁶¹. This is supported by the fact that biosynthesis of
362 phosphatidylethanolamine and phosphatidylcholine and metabolism of arachidonic acid and
363 sphingolipid increased with loss of *Mitofilin* (SFigure 4D). Since these phospholipids aggregate
364 around MERCs and may shuffle into the ER, *Mitofilin* may be a critical gene for regulating
365 cristae morphology and with a key role in regulating mitochondrial metabolism, which is novel.

366 *Mitofilin* may be an important target in the future to restore energy production. Loss of
367 *Mitofilin* may lead to ER stress, which, via ATF4, activates amino acid transporters⁶² that further
368 activate mTORC1. ER stress activates mTORC as a result of a decrease in glucose⁵⁷. Critically,
369 mTORC1 affects glucose homeostasis⁶³, and this may lead to inefficiency in energy use. This
370 can result in changes in autophagy. Therefore, as a downstream effect of *Mitofilin* loss increasing
371 mTORC1, this may explain why deletion of MICOS in *Drosophila* increases autophagy³⁷.
372 Similarly, previously loss of *Opa-1* increases ER stress²⁸, and loss of *Mitofilin* may cause a
373 similar increase in amino acid catabolism. If ER stress activates amino acid transporters,
374 branched-chain amino acids could increase ER stress, resulting in a positive feedback loop that
375 affects the health of the cell, cellular energy, metabolism, and antioxidants. ER stress may also
376 be responsible for the poor performance and fragmentation of mitochondria (Figure 4-5). Loss of
377 *Mitofilin* may result in the breakdown of protein pathways that regulate ER stress. Other amino
378 acid pathways, such as homocysteine (SFigure 4D), are involved in triglyceride uptake and
379 increased intracellular cholesterol, suggesting that proteins like ATF4⁵⁷ and the MICOS
380 complex^{15,26} are important for aging. In particular, the MICOS components may prevent
381 mitochondrial fragmentation by blocking ER stress pathways in aging. Further studies are
382 needed to better understand the role of MICOS in MERCS formation and the relation between
383 smooth MERCS and lipid synthesis.

384 Although *Mitofilin* is a key component of the MICOS complex, other components are
385 likely also important. The loss of *CHCHD3* or *CHCHD6* leads to a decrease in and disassembly
386 of all *Mitofilin* subcomplex components in mammals, with abnormal cristae morphology and
387 growth defects^{33,64–69}. Downregulation of *CHCHD3* is linked to type 2 diabetes⁷⁰. In our
388 metabolomics enrichment dataset (SFigure 5D), loss of *CHCHD3* or *CHCHD6* in mouse
389 myotubes resulted in a preference for alternative fuel sources, such as lactate, lactose, and
390 starches. Supplementation of healthy myotubes with galactose leads to a 30% increase in
391 oxidative capacity (i.e., OCR) due to an increase in AMPK phosphorylation and cytochrome c
392 oxidase (COX) activity, thereby forcing cells to become more oxidative to maintain ATP levels
393⁷¹. In our samples, as oxidative metabolism decreased, anaerobic metabolism and lactate levels
394 increased, forcing cells to produce ATP by anaerobic glycolysis. However, long and high-level
395 exposure to D-galactose generates free radicals, which alter MERCS, cause mitochondrial

396 dysfunction, and induce aging^{2,72}. This is the likely explanation for mitochondrial fragmentation
397 in aged samples and loss of the MICOS complex, which should be investigated further.

398 In conclusion, we present a quantitative evaluation of mitochondrial and cristae
399 morphology in mouse skeletal muscle using 3D reconstructions and TEM analysis. We found
400 oxidative differences upon loss of MICOS proteins. 3D reconstructions of nanotunnels in
401 mitochondria showed novel patterns with a moderate number of nanotunnels in young skeletal
402 mouse tissue and relatively low numbers in the most aged mouse skeletal muscles. Similar
403 changes in mitochondrial morphology were observed in aging muscles and for loss of MICOS
404 proteins in mouse skeletal muscle, and MICOS proteins decreased with age. This suggests a
405 relationship between the MICOS complex and aging, and further studies through 3D
406 reconstruction could elucidate the linkage between age-related muscle dysfunction, the MICOS
407 complex, and disease states in mitochondria.

409 EXPERIMENTAL PROCEDURES

410 *Animal Care and Maintenance*

411 All procedures for the care of mice were in accordance with humane and ethical protocols
412 approved by the University of Iowa Animal Care and Use Committee (IACUC) following the
413 National Institute of Health (NIH) Guide for the Care and Use of Laboratory Animals as
414 described previously²⁸. All experiments used WT male C57Bl/6J mice housed at 22°C on a 12-
415 hour light, 12-hour dark cycle with free access to water and standard chow. Mice were
416 anesthetized with 5% isoflurane/95% oxygen.

417 *RNA Extraction and RT-qPCR*

418 Total RNA was extracted from tissue using TRIzol reagent (Invitrogen, cat #), purified with the
419 RNeasy kit (Qiagen Inc, cat #), and quantitated by the absorbance at 260 nm and 280 nm using a
420 NanoDrop 1000 (NanoDrop products, Wilmington, DE, USA) spectrophotometer. Total RNA
421 (~1 µg) was reverse-transcribed using a High-Capacity cDNA Reverse Transcription Kit
422 (Applied Biosciences, Carlsbad CA, cat #) followed by real-time quantitative PCR (qPCR)
423 reactions using SYBR Green (Life Technologies, Carlsbad, CA, cat #)⁷³. Triplicate samples for
424 qPCR (~50 ng) in a 384-well plate were placed into ABI Prism 7900HT instrument (Applied
425 Biosystems) programmed as follows: 1 cycle at 95°C for 10 min; 40 cycles of 95°C for 15 s;
426 59°C for 15 s, 72°C for 30 s, and 78°C for 10 s; 1 cycle of 95°C for 15 s; 1 cycle of 60°C for
427 15 s; and one cycle of 95°C for 15 s. Data were normalized to glyceraldehyde-3-phosphate
428 dehydrogenase (*Gapdh*), and results are shown as fold changes. qPCR primers were designed
429 using Primer-Blast or were previously published sequences²⁸ as shown in Table 1.

430 Table 1: qPCR Primers Used

Gene	Primers	
<i>Opa-1</i>	Forward	5'-ACCAGGAGACTGTGTCAA-3'
	Reverse	5'-TCTTCAAATAACCGCAGAGGTG-3'
<i>CHCHD3</i>	Forward	5'-GAAAAGAATCCAGGCCCTCCACGCGC-3'
	Reverse	5'-CAGTGCCTAGCACTTGGCACAAACCAGGAA-3'
<i>CHCHD6</i>	Forward	5'-CTCAGCATGGACCTGGTAGGCAGTGGC-3'
	Reverse	5'-GCCTCAATTCCCACATGGAGAAAGTGGC-3'
<i>Mitofillin</i>	Forward	5'-CCTCCGGCAGTGTTCACCTAGTAACCCCTT-3'
	Reverse	5'-TCGCCCCGTCGACCTTCAGCACTGAAAACCTAT-3'

433 *Isolation of Satellite Cells*

434 Satellite cell differentiation was performed as previously described^{16,28}. Cells were cultured at
435 37°C, 5% CO₂ Dulbecco's modified Eagle's medium (DMEM; GIBCO, cat #) supplemented
436 with 10% FBS (Atlanta Bio selected, cat #), and 1% penicillin-streptomycin (Gibco, Waltham,
437 MA, USA, cat #).

438

439 *CRISPR-Cas9 Knockouts*

440 After three days, myotubes were infected with adenovirus to produce the following knockouts—
441 control CRISPR/Cas9 (sc-418922), *CHCHD6* (Mic25) CRISPR (sc-425817), *CHCHD3* (Mic19)
442 CRISPR (sc-425804), and *mitofillin* (Mic60) CRISPR (sc-429376) (Santa Cruz Biotechnology,
443 California, US), with the use of guide RNA (Table 2). We incubated 2.5% relevant CRISPR,
444 2.5% RNAiMax (ThermoFisher Scientific; cat # 13778075), and 95% Opti-MEM (Gibco; cat
445 #31985070) in a tube for 20 minutes. Cells were washed twice with PBS after removal of the
446 medium and 800 µL of OPT-MEM and 200 µL of the CRISPR mixture were added to each well,
447 ran in triplicates. Cells were incubated for 4 hours at 37 C, 1.0 mL of DMEM medium was
448 added, cells were incubated overnight. The myotubes were then washed with PBS and the
449 medium was replaced. Experiments were performed between 3 and 7 days after infection for a
450 total of 6 days of differentiation.

451 Table 2: Guide RNA and Plasmids Used

Gene Name	Type of Plasmid	CAS Number
<i>Mitofillin</i>	CRISPR/Cas9 KO (m)	sc-429376
<i>CHCHD6</i>	CRISPR/Cas9 KO (m)	sc-425817
<i>CHCHD3</i>	CRISPR/Cas9 KO (m)	sc-425804
<i>Control</i>	CRISPR/Cas9 KO (m)	sc-418922

452

453 *Serial Block-Face Scanning Electron Microscope (SBF-SEM) Processing of Mouse Muscle
454 Fibers*

455 SBF-SEM preparation was performed as described previously^{17,27,74}. Running on a FEI/Thermo
456 Scientific Volumescope 2 SEM, a state-of-the-art SBF imaging system, we obtained 300–400
457 ultrathin (0.09 µm) serial sections from the blocks that were processed for conventional TEM.
458 All sections were collected onto formvar-coated slot grids (Pella, Redding CA), stained, and
459 imaged as previously described^{17,27,74}.

460

461 *Quantification of TEM Micrographs and Parameters Using ImageJ*

462 Quantification of TEM images was performed as described previously using the
463 NIH *ImageJ* software^{16,27}. Cells were divided into four quadrants and two quadrants were
464 selected randomly for complete analysis. From each individual, a minimum of 10 cells were
465 measured with three analyses to obtain accurate and reproducible values. If variability occurred,
466 the number of cells was expanded to 30 cells per individual to reduce the variability.

467

468 *Segmentation and Quantification of 3D SBF-SEM Images Using Amira*

469 Intermyofibrillar (IMF) mitochondria are located between myofibrils, arranged in pairs at the z-
470 band of each sarcomere, with 2D elongated tubular shapes⁷⁵. However, it is not known how
471 aging affects mitochondrial orientation, the structure of C-band sarcomeres, or the morphological
472 changes in incomplete fission known as nanotunnels. For each region of interest across the three
473 age groups, we analyzed 300 slices at 50 µm intervals at the transverse intervals.

474 For 3D reconstruction, SBF-SEM images were manually segmented in Amira as described
475 previously^{17,27}. All serial sections (300–400 slices) were loaded onto Amira and structural
476 features were traced manually on sequential slices of micrograph blocks. Structures in mice were
477 collected from 30–50 serial sections that were then stacked, aligned, and visualized using Amira
478 to make videos and quantify volumetric structures. An average of 500 total mitochondria across
479 four ROIs from 3 mice were collected for quantification. For 3D reconstruction of myotubes,
480 approximately 20 mitochondria from a minimum of 10 cells were collected. Quantification of
481 SBF-SEM images was performed as described previously¹⁷ using the Amira software (Thermo
482 Scientific).

483

484 *Data Analysis*

485 All SBF-SEM and TEM data were presented as the mean of at least three independent
486 experiments with similar outcomes. Results were presented as mean \pm standard error with
487 individual data points shown. Data with only two groups were analyzed using an unpaired, t-test.
488 For nanotunnel quantification, a Mann-Whitney test (unpaired, nonparametric) t-test was
489 performed between two groups. If more than two groups were compared, one-way ANOVA was
490 performed, and significance was assessed using Fisher's protected least significant difference
491 (LSD) test. GraphPad Prism software package was used for t-tests and ANOVA analyses (La
492 Jolla, CA, USA). For all statistical analyses, $p < 0.05$ indicated a significant difference. Higher
493 degrees of statistical significance (**, ***, ****) were defined as $p < 0.01$, $p < 0.001$, and $p <$
494 0.0001, respectively.

495

496 *Gas Chromatography-Mass Spectrometry (GC-MS)*

497 Samples were extracted for metabolites and prepared as previously designed⁷⁶. The profiling of
498 the metabolites was performed using TraceFinder 4.1 with standard verified peaks and retention
499 times. TraceFinder was used to compare metabolite peaks in each sample against an in-house
500 library of standards. TraceFinder was also used for GC-MS peak integration to obtain peak areas
501 for each metabolite. After this analysis, we used previously described protocols⁷⁷ to correct for
502 drift over time by using QC samples run at both the beginning and end of the sequence. The data
503 was then normalized to an internal standard to control for extraction, derivatization, and/or
504 loading effects.

505

506 *Liquid Chromatography-Mass Spectrometry (LC-MS)*

507 LC-MS was performed for myotubes as previously described⁷⁶. TraceFinder 4.1 software was
508 used for analysis and metabolites were identified based on an in-house library. Drift was
509 corrected for as described above⁷⁷. Data were normalized and further visualization and analysis
510 were performed on MetaboAnalyst 5.0⁷⁸.

511

512 *Analyzing Metabolomic Data*

513 Metabolomic analysis was performed as described previously⁷⁶ using the web service
514 MetaboAnalyst 5.0 (<https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml>, last
515 accessed on 8 February 2022) that combines machine learning methods and statistics to group
516 data using PCA, heat mapping, metabolite set enrichment analysis, and statistical analysis. One-
517 way ANOVA and Fisher's LSD multiple comparison test were also used. PCA uses score plots
518 to provide an overview of variance for the principal components. Heatmaps separate hierarchical
519 clusters leading to progressively larger clusters. Clusters are based on similarity using Euclidean

520 distance and Ward's linkage to minimize the clustering needed. Metabolite Set Enrichment
521 Analysis (MSEA), which determines whether a set of functionally related metabolites is altered,
522 can be used to identify consistent changes across many metabolites with similar roles.
523 Overrepresentation analysis determines whether a group of compounds is overrepresented in
524 comparison to pure chance and whether a group of metabolites have similar changes. In this
525 analysis, the fold enrichment was calculated by dividing the observed hits by the expected
526 metabolites. Expected number of hits are calculated by MetaboAnalyst 5.0. GraphPad Prism
527 software (La Jolla, CA, USA) was used for statistical analysis with data expressed as mean \pm
528 standard deviation, and one-tailed p-values ≤ 0.01 were considered significant.
529

530 *Measurement of OCR Using Seahorse*

531 Using an XF24 extracellular flux (XF) bioanalyzer (Agilent Technologies/Seahorse Bioscience,
532 North Billerica, MA, USA), OCR was measured for *Opa-1*, *CHCHD3*, *CHCHD6*, or *Mitofillin*
533 knocked down cells as previously described²⁸. Three independent experiments were performed
534 with four to six replicates for each time and for each condition and representative data from the
535 replicates are shown.

536 **ACKNOWLEDGEMENTS**

537 We would like to thank Melanie McReynolds for her advice on processing metabolomic samples
538 and Mariya Sweetwyne for her advice as an aging expert. This work was supported by
539 UNCF/BMS EE United Negro College Fund/Bristol-Myers Squibb E.E. T-32, number
540 DK007563 entitled Multidisciplinary Training in Molecular Endocrinology to Z.V.; Just
541 Postgraduate Fellowship in the Life Sciences Fellowship to H.K.B.; NSF MCB #2011577I to
542 S.A.M.; The UNCF/BMS E.E. Just Faculty Fund, Burroughs Wellcome Fund Career Awards at
543 the Scientific Interface Award, Burroughs Wellcome Fund Ad-hoc Award, NIH Small Research
544 Pilot Subaward to 5R25HL106365-12 from the NIH PRIDE Program, DK020593, Vanderbilt
545 Diabetes and Research Training Center for DRTC Alzheimer's Disease Pilot & Feasibility
546 Program to A.H.J. Its contents are solely the responsibility of the authors and do not necessarily
547 represent the official view of the NIH. The funders had no role in study design, data collection
548 and analysis, decision to publish, or preparation of the manuscript.

549 **550 CONFLICT OF INTEREST**

551 The authors declare that they have no conflict of interest.

552 **553 CONSENT FOR PUBLICATION**

554 All authors have agreed to the final version of this manuscript.

555 **556 DATA AVAILABILITY STATEMENT**

557 The data that support the findings of this study are available from the corresponding author upon
558 reasonable request.

559 **560 AUTHOR CONTRIBUTIONS**

561 Z.V., E.G., L.V., J.S., H.K.B., S.A.M., M.A.P., A.H.J., J.A.G., and D.D. conceived and designed
562 research; A.G.M., A.C., L.V., Z.V., T.A.C., B.C.M., J.L., H.K.B., B.R., C.E., D.D., A.H.J., and

564 J.A.G. performed experiments; J.D., K.N, J.S., E.G., Z.V., J.L., B.R., T.A.C., A.K.R., A.M.Q.,
565 V.E., E.G., D.D., , J.A.G., and A.H.J. analyzed data; B.T, K.N, J.S., E.G., Z.V., S.A.M., A.M.Q.,
566 V.E., H.K.B., A.C., A.G.M., J.D., M.A.P., D.D., J.A.G., and A.H.J.. interpreted results of
567 experiments and prepared figures; K.N, E.G., Z.V., J.S., S.A.M., L.V., A.G.M., M.A.P., A.K.R.,
568 B.C.M., B.T., C.E., A.C., H.K.B., D.D., J.A.G., and A.H.J. drafted manuscript, edited, and
569 revised manuscript; A.H.J., D.D., and J.A.G. approved final version of manuscript.

570
571 **REFERENCES**
572

573 1. Bratic A, Larsson N-G. The role of mitochondria in aging. *The Journal of clinical*
574 *investigation*. 2013;123:951–957.

575 2. Barja G. The mitochondrial free radical theory of aging. *Progress in molecular biology and*
576 *translational science*. 2014;127:1–27.

577 3. Rowland AA, Voeltz GK. Endoplasmic reticulum–mitochondria contacts: function of the
578 junction. *Nature reviews Molecular cell biology*. 2012;13:607–615.

579 4. Dai D-F, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, Gollahon K,
580 Martin GM, Loeb LA, Ladiges WC, Rabinovitch PS. Overexpression of catalase targeted to
581 mitochondria attenuates murine cardiac aging. *Circulation*. 2009;119:2789–2797.

582 5. Xu H, Ranjit R, Richardson A, Van Remmen H. Muscle mitochondrial catalase expression
583 prevents neuromuscular junction disruption, atrophy, and weakness in a mouse model of
584 accelerated sarcopenia. *J Cachexia Sarcopenia Muscle*. 2021;12:1582–1596.

585 6. Friederich M, Hansell P, Palm F. Diabetes, oxidative stress, nitric oxide and mitochondria
586 function. *Current diabetes reviews*. 2009;5:120–144.

587 7. Renken CW. The structure of mitochondria. 2004.

588 8. Cogliati S, Enriquez JA, Scorrano L. Mitochondrial cristae: where beauty meets
589 functionality. *Trends in biochemical sciences*. 2016;41:261–273.

590 9. Kühlbrandt W. Structure and function of mitochondrial membrane protein complexes. *BMC*
591 *biology*. 2015;13:1–11.

592 10. Otera H, Ishihara N, Mihara K. New insights into the function and regulation of
593 mitochondrial fission. *Biochimica et Biophysica Acta (BBA)-Molecular Cell Research*.
594 2013;1833:1256–1268.

595 11. Favaro G, Romanello V, Varanita T, Desbats MA, Morbidoni V, Tezze C, Albiero M,
596 Canato M, Gherardi G, De Stefani D. DRP1-mediated mitochondrial shape controls calcium
597 homeostasis and muscle mass. *Nature communications*. 2019;10:1–17.

598 12. Vincent AE, Turnbull DM, Eisner V, Hajnóczky G, Picard M. Mitochondrial Nanotunnels.
599 *Trends Cell Biol*. 2017;27:787–799.

600 13. Zhang L, Trushin S, Christensen TA, Bachmeier BV, Gateno B, Schroeder A, Yao J, Itoh K,
601 Sesaki H, Poon WW. Altered brain energetics induces mitochondrial fission arrest in
602 Alzheimer's Disease. *Scientific reports*. 2016;6:1–12.

603 14. Zhang J, He Z, Fedorova J, Logan C, Bates L, Davitt K, Le V, Murphy J, Li M, Wang M,
604 Lakatta EG, Ren D, Li J. Alterations in mitochondrial dynamics with age-related
605 Sirtuin1/Sirtuin3 deficiency impair cardiomyocyte contractility. *Aging Cell*. 2021;20:e13419.

606 15. Kozjak-Pavlovic V. The MICOS complex of human mitochondria. *Cell and tissue research*.
607 2017;367:83–93.

608 16. Lam J, Katti P, Biete M, Mungai M, AshShareef S, Neikirk K, Lopez EG, Vue Z,
609 Christensen TA, Beasley HK. A Universal Approach to Analyzing Transmission Electron
610 Microscopy with ImageJ. *bioRxiv*. 2021.

611 17. Garza-Lopez E, Vue Z, Katti P, Neikirk K, Biete M, Lam J, Beasley HK, Marshall AG,
612 Rodman TA, Christensen TA, Salisbury JL, Vang L, Mungai M, AshShareef S, Murray SA,
613 Shao J, Streeter J, Glancy B, Pereira RO, Abel ED, Hinton A. Protocols for Generating
614 Surfaces and Measuring 3D Organelle Morphology Using Amira. *Cells*. 2022;11:65.

615 18. Rampelt H, Zerbes RM, van der Laan M, Pfanner N. Role of the mitochondrial contact site
616 and cristae organizing system in membrane architecture and dynamics. *Biochimica et
617 Biophysica Acta (BBA)-Molecular Cell Research*. 2017;1864:737–746.

618 19. Hu C, Shu L, Huang X, Yu J, Gong L, Yang M, Wu Z, Gao Z, Zhao Y, Chen L. OPA1 and
619 MICOS Regulate mitochondrial crista dynamics and formation. *Cell death & disease*.
620 2020;11:1–17.

621 20. Friedman JR, Mourier A, Yamada J, McCaffery JM, Nunnari J. MICOS coordinates with
622 respiratory complexes and lipids to establish mitochondrial inner membrane architecture.
623 *Elife*. 2015;4:e07739.

624 21. Vincent AE, White K, Davey T, Philips J, Ogden RT, Lawless C, Warren C, Hall MG, Ng
625 YS, Falkous G. Quantitative 3D mapping of the human skeletal muscle mitochondrial
626 network. *Cell reports*. 2019;26:996–1009.

627 22. Koopman WJH, Visch H-J, Verkaart S, van den Heuvel LWPJ, Smeitink JAM, Willems
628 PHGM. Mitochondrial network complexity and pathological decrease in complex I activity
629 are tightly correlated in isolated human complex I deficiency. *Am J Physiol Cell Physiol*.
630 2005;289:C881-890.

631 23. Zheng J, Croteau DL, Bohr VA, Akbari M. Diminished OPA1 expression and impaired
632 mitochondrial morphology and homeostasis in Aprataxin-deficient cells. *Nucleic acids*
633 *research*. 2019;47:4086–4110.

634 24. Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana-Cabrera R, Semenzato M,
635 Menabò R, Costa V, Civiletto G, Pesce P. The OPA1-dependent mitochondrial cristae
636 remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. *Cell*
637 *metabolism*. 2015;21:834–844.

638 25. Khin PP, Hong Y, Yeon M, Lee DH, Lee JH, Jun H-S. Dulaglutide improves muscle
639 function by attenuating inflammation through OPA-1-TLR-9 signaling in aged mice. *Aging*
640 (*Albany NY*). 2021;13:21962–21974.

641 26. Li H, Ruan Y, Zhang K, Jian F, Hu C, Miao L, Gong L, Sun L, Zhang X, Chen S.
642 Mic60/Mitoflin determines MICOS assembly essential for mitochondrial dynamics and
643 mtDNA nucleoid organization. *Cell Death & Differentiation*. 2016;23:380–392.

644 27. Hinton A, Katti P, Christensen TA, Mungai M, Shao J, Zhang L, Trushin S, Alghanem A,
645 Jaspersen A, Geroux RE. A comprehensive approach for artifact-free sample preparation and
646 assessment of mitochondrial morphology in tissue and cultured cells. *bioRxiv*. 2021.

647 28. Pereira RO, Tadinada SM, Zasadny FM, Oliveira KJ, Pires KMP, Olvera A, Jeffers J,
648 Souvenir R, McGlaulin R, Seei A. OPA 1 deficiency promotes secretion of FGF 21 from
649 muscle that prevents obesity and insulin resistance. *The EMBO journal*. 2017;36:2126–2145.

650 29. Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M, Favaro G, Ciciliot S, Soriano
651 ME, Morbidoni V, Cerqua C, Loeffler S, Kern H, Franceschi C, Salvioli S, Conte M, Blaauw
652 B, Zampieri S, Salviati L, Scorrano L, Sandri M. Age-Associated Loss of OPA1 in Muscle
653 Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial
654 Senescence. *Cell Metab*. 2017;25:1374–1389.e6.

655 30. John GB, Shang Y, Li L, Renken C, Mannella CA, Selker JM, Rangell L, Bennett MJ, Zha J.
656 The mitochondrial inner membrane protein mitoflin controls cristae morphology. *Molecular*
657 *biology of the cell*. 2005;16:1543–1554.

658 31. Ding C, Wu Z, Huang L, Wang Y, Xue J, Chen S, Deng Z, Wang L, Song Z, Chen S.
659 Mitoflin and CHCHD6 physically interact with Sam50 to sustain cristae structure. *Scientific*
660 *reports*. 2015;5:1–11.

661 32. Darshi M, Taylor SS. Mitochondrial ChCHD3 acts as a Scaffold for Mitoflin, Sam50 and
662 PKA. 2008.

663 33. An J, Shi J, He Q, Lui K, Liu Y, Huang Y, Sheikh MS. CHCM1/CHCHD6, novel
664 mitochondrial protein linked to regulation of mitoflin and mitochondrial cristae
665 morphology. *Journal of Biological Chemistry*. 2012;287:7411–7426.

666 34. Ott C, Dorsch E, Fraunholz M, Straub S, Kozjak-Pavlovic V. Detailed analysis of the human
667 mitochondrial contact site complex indicate a hierarchy of subunits. *PloS one*.
668 2015;10:e0120213.

669 35. Kondadi AK, Anand R, Reichert AS. Functional interplay between cristae biogenesis,
670 mitochondrial dynamics and mitochondrial DNA integrity. *International journal of*
671 *molecular sciences*. 2019;20:4311.

672 36. Stephan T, Brüser C, Deckers M, Steyer AM, Balzarotti F, Barbot M, Behr TS, Heim G,
673 Hübner W, Ilgen P. MICOS assembly controls mitochondrial inner membrane remodeling
674 and crista junction redistribution to mediate cristae formation. *The EMBO journal*.
675 2020;39:e104105.

676 37. Wang L, Hsu T, Lin H, Fu C. Drosophila MICOS knockdown impairs mitochondrial
677 structure and function and promotes mitophagy in muscle tissue. *Biology Open*.
678 2020;9:bio054262.

679 38. Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin C-T, Buddo KA, Fix AM, Smith CA,
680 Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD.
681 17 β -Estradiol Directly Lowers Mitochondrial Membrane Microviscosity and Improves
682 Bioenergetic Function in Skeletal Muscle. *Cell Metabolism*. 2018;27:167-179.e7.

683 39. Kitajima Y, Ono Y. Estrogens maintain skeletal muscle and satellite cell functions. *Journal*
684 *of Endocrinology*. 2016;229:267–275.

685 40. Wasilewski M, Semenzato M, Rafelski SM, Robbins J, Bakardjiev AI, Scorrano L. Optic
686 Atrophy 1-Dependent Mitochondrial Remodeling Controls Steroidogenesis in Trophoblasts.
687 *Current Biology*. 2012;22:1228–1234.

688 41. Sarzi E, Seveno M, Angebault C, Milea D, Rönnbäck C, Quilès M, Adrian M, Grenier J,
689 Caignard A, Lacroux A, Lavergne C, Reynier P, Larsen M, Hamel CP, Delettre C, Lenaers
690 G, Müller A. Increased steroidogenesis promotes early-onset and severe vision loss in
691 females with OPA1 dominant optic atrophy. *Human Molecular Genetics*. 2016;25:2539–
692 2551.

693 42. Chao de la Barca JM, Fogazza M, Rugolo M, Chupin S, Del Dotto V, Ghelli AM, Carelli V,
694 Simard G, Procaccio V, Bonneau D, Lenaers G, Reynier P, Zanna C. Metabolomics
695 hallmarks OPA1 variants correlating with their in vitro phenotype and predicting clinical
696 severity. *Hum Mol Genet*. 2020;29:1319–1329.

697 43. Dahl R, Larsen S, Dohlmann TL, Qvortrup K, Helge JW, Dela F, Prats C. Three-dimensional
698 reconstruction of the human skeletal muscle mitochondrial network as a tool to assess
699 mitochondrial content and structural organization. *Acta Physiol (Oxf)*. 2015;213:145–155.

700 44. Glancy B, Hartnell LM, Malide D, Yu Z-X, Combs CA, Connelly PS, Subramaniam S,
701 Balaban RS. Mitochondrial reticulum for cellular energy distribution in muscle. *Nature*.
702 2015;523:617–620.

703 45. Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R. Depressed
704 mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal
705 muscles. *The Journal of physiology*. 2003;551:491–501.

706 46. Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function,
707 in health and disease. *Wiley Interdisciplinary Reviews: Systems Biology and Medicine*.
708 2020;12:e1462.

709 47. Lin I-H, Chang J-L, Hua K, Huang W-C, Hsu M-T, Chen Y-F. Skeletal muscle in aged mice
710 reveals extensive transformation of muscle gene expression. *BMC genetics*. 2018;19:1–13.

711 48. Galpin AJ, Raue U, Jemiolo B, Trappe TA, Harber MP, Minchev K, Trappe S. Human
712 skeletal muscle fiber type specific protein content. *Anal Biochem*. 2012;425:175–182.

713 49. Sanz A, Stefanatos RK. The mitochondrial free radical theory of aging: a critical view.
714 *Current aging science*. 2008;1:10–21.

715 50. Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and
716 oxidative stress. *Toxicology and applied pharmacology*. 2006;212:167–178.

717 51. Lavorato M, Iyer VR, Dewight W, Cupo RR, Debattisti V, Gomez L, Fuente SD la, Zhao Y-
718 T, Valdivia HH, Hajnóczky G, Franzini-Armstrong C. Increased mitochondrial
719 nanotunneling activity, induced by calcium imbalance, affects intermitochondrial matrix
720 exchanges. *PNAS*. 2017;114:E849–E858.

721 52. Liu T, Woo JA, Bukhari MZ, LePochat P, Chacko A, Selenica MB, Yan Y, Kotsiviras P,
722 Buosi SC, Zhao X. CHCHD10-regulated OPA1-mitofillin complex mediates TDP-43-
723 induced mitochondrial phenotypes associated with frontotemporal dementia. *The FASEB
724 Journal*. 2020;34:8493–8509.

725 53. de La Barca JMC, Arrázola MS, Bocca C, Arnauné-Pelloquin L, Iuliano O, Tcherkez G,
726 Lenaers G, Simard G, Belenguer P, Reynier P. The metabolomic signature of Opa1
727 deficiency in rat primary cortical neurons shows aspartate/glutamate depletion and
728 phospholipids remodeling. *Scientific reports*. 2019;9:1–8.

729 54. Bocca C, Nzoughet JK, Leruez S, Amati-Bonneau P, Ferré M, Kane M-S, Veyrat-Durebex
730 C, de La Barca JMC, Chevrollier A, Homedan C. A plasma metabolomic signature involving
731 purine metabolism in human optic atrophy 1 (OPA1)-related disorders. *Investigative
732 ophthalmology & visual science*. 2018;59:185–195.

733 55. de La Barca JMC, Simard G, Sarzi E, Chaumette T, Rousseau G, Chupin S, Gadras C,
734 Tessier L, Ferré M, Chevrollier A. Targeted metabolomics reveals early dominant optic
735 atrophy signature in optic nerves of Opa1delTTAG/+ mice. *Investigative ophthalmology &
736 visual science*. 2017;58:812–820.

737 56. Garcia-Cazarin ML, Snider NN, Andrade FH. Mitochondrial isolation from skeletal muscle.
738 *JoVE (Journal of Visualized Experiments)*. 2011;:e2452.

739 57. Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. Surviving Stress: Modulation
740 of ATF4-Mediated Stress Responses in Normal and Malignant Cells. *Trends Endocrinol
741 Metab.* 2017;28:794–806.

742 58. Cristae undergo continuous cycles of membrane remodelling in a MICOS-dependent
743 manner. *EMBO reports.* 2020;21:e49776.

744 59. Hessenberger M, Zerbes RM, Rampelt H, Kunz S, Xavier AH, Purfürst B, Lilie H, Pfanner
745 N, van der Laan M, Daumke O. Regulated membrane remodeling by Mic60 controls
746 formation of mitochondrial crista junctions. *Nat Commun.* 2017;8:15258.

747 60. Tarasenko D, Barbot M, Jans DC, Kroppen B, Sadowski B, Heim G, Möbius W, Jakobs S,
748 Meinecke M. The MICOS component Mic60 displays a conserved membrane-bending
749 activity that is necessary for normal cristae morphology. *J Cell Biol.* 2017;216:889–899.

750 61. Rieusset J. The role of endoplasmic reticulum-mitochondria contact sites in the control of
751 glucose homeostasis: an update. *Cell death & disease.* 2018;9:1–12.

752 62. Han J, Back SH, Hur J, Lin Y-H, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S,
753 Hatzoglou M. ER-stress-induced transcriptional regulation increases protein synthesis
754 leading to cell death. *Nature cell biology.* 2013;15:481–490.

755 63. Zhang X, Wang X, Yuan Z, Radford SJ, Liu C, Libutti SK, Zheng XFS. Amino acids-
756 Rab1A-mTORC1 signaling controls whole-body glucose homeostasis. *Cell Reports.*
757 2021;34:108830.

758 64. Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, Ellisman MH,
759 Taylor SS. ChChd3, an inner mitochondrial membrane protein, is essential for maintaining
760 crista integrity and mitochondrial function. *Journal of biological chemistry.* 2011;286:2918–
761 2932.

762 65. Piñero-Martos E, Ortega-Vila B, Pol-Fuster J, Cisneros-Barroso E, Ruiz-Guerra L, Medina-
763 Dols A, Heine-Suñer D, Lladó J, Olmos G, Vives-Bauzá C. Disrupted in schizophrenia 1
764 (DISC1) is a constituent of the mammalian mitochondrial contact site and cristae organizing
765 system (MICOS) complex, and is essential for oxidative phosphorylation. *Human Molecular
766 Genetics.* 2016;25:4157–4169.

767 66. Genin EC, Plutino M, Bannwarth S, Villa E, Cisneros-Barroso E, Roy M, Ortega-Vila B,
768 Fragaki K, Lespinasse F, Pinero-Martos E. CHCHD 10 mutations promote loss of
769 mitochondrial cristae junctions with impaired mitochondrial genome maintenance and
770 inhibition of apoptosis. *EMBO molecular medicine.* 2016;8:58–72.

771 67. Park Y-U, Jeong J, Lee H, Mun JY, Kim J-H, Lee JS, Nguyen MD, Han SS, Suh P-G, Park
772 SK. Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in
773 collaboration with Mitofillin. *Proceedings of the National Academy of Sciences.*
774 2010;107:17785–17790.

775 68. Genin EC, Bannwarth S, Lespinasse F, Ortega-Vila B, Fragaki K, Itoh K, Villa E, Lacas-
776 Gervais S, Jokela M, Auranen M, Ylikallio E, Mauri-Crouzet A, Tyynismaa H, Vihola A,
777 Augé G, Cochaud C, Sesaki H, Ricci J-E, Udd B, Vives-Bauza C, Paquis-Flucklinger V.
778 Loss of MICOS complex integrity and mitochondrial damage, but not TDP-43 mitochondrial
779 localisation, are likely associated with severity of CHCHD10-related diseases. *Neurobiology*
780 of Disease. 2018;119:159–171.

781 69. Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K,
782 Berg-Alonso L, Kageyama Y, Serre V, Moore DG, Verschueren A, Rouzier C, Le Ber I,
783 Augé G, Cochaud C, Lespinasse F, N'Guyen K, de Septenville A, Brice A, Yu-Wai-Man P,
784 Sesaki H, Pouget J, Paquis-Flucklinger V. A mitochondrial origin for frontotemporal
785 dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. *Brain*.
786 2014;137:2329–2345.

787 70. Eramo MJ, Lisnyak V, Formosa LE, Ryan MT. The ‘mitochondrial contact site and cristae
788 organising system’ (MICOS) in health and human disease. *The Journal of Biochemistry*.
789 2020;167:243–255.

790 71. Martin CR, Preedy VR, Rajendram R. Assessments, Treatments and Modeling in Aging and
791 Neurological Disease: The Neuroscience of Aging. Academic Press; 2021: 1-608.

792 72. Kandlur A, Satyamoorthy K, Gangadharan G. Oxidative Stress in Cognitive and Epigenetic
793 Aging: A Retrospective Glance. *Frontiers in Molecular Neuroscience*. 2020;13. Available at
794 <https://www.frontiersin.org/article/10.3389/fnmol.2020.00041>. Accessed March 17, 2022.

795 73. Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, Aziz S, Johnson JI, Bugger H,
796 Zaha VG, Abel ED. Mitochondrial energetics in the heart in obesity-related diabetes: direct
797 evidence for increased uncoupled respiration and activation of uncoupling proteins.
798 *Diabetes*. 2007;56:2457–2466.

799 74. Neikirk K, Vue Z, Katti P, Shao J, Christensen TA, Lopez EG, Marshall A, Palavicino-
800 Maggio C, Ponce J, Alghanem A. Systematic Transmission Electron Microscopy-Based
801 Identification of Cellular Degradation Machinery. *bioRxiv*. 2021.

802 75. Vendelin M, Béraud N, Guerrero K, Andrienko T, Kuznetsov AV, Olivares J, Kay L, Saks
803 VA. Mitochondrial regular arrangement in muscle cells: a “crystal-like” pattern. *American*
804 *Journal of Physiology-Cell Physiology*. 2005;288:C757–C767.

805 76. Phillips MA, Arnold KR, Vue Z, Beasley HK, Garza-Lopez E, Marshall AG, Morton DJ,
806 McReynolds MR, Barter TT, Hinton A. Combining Metabolomics and Experimental
807 Evolution Reveals Key Mechanisms Underlying Longevity Differences in Laboratory
808 Evolved *Drosophila melanogaster* Populations. *International Journal of Molecular Sciences*.
809 2022;23:1067.

810 77. Li B, Tang J, Yang Q, Li S, Cui X, Li Y, Chen Y, Xue W, Li X, Zhu F. NOREVA:
811 normalization and evaluation of MS-based metabolomics data. *Nucleic acids research*.
812 2017;45:W162–W170.

813 78. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J. MetaboAnalyst 4.0:
814 towards more transparent and integrative metabolomics analysis. *Nucleic acids research*.
815 2018;46:W486–W494.

816 **(13) SUPPORTING INFORMATION**

817 **(14) TABLES**

818 **(15) FIGURE LEGEND**

819 **Figure 1:** Decreased mitochondrial size and volume in skeletal muscle of aged mice in SBF-
820 SEM 3D reconstructions.

821 (A-C) Representative SBF-SEM orthoslice for skeletal muscle. (A'-C') 3D reconstructions of
822 mitochondria (various colors) in skeletal muscle mouse tissues of different ages overlaid
823 on ortho slices. (A''-C'') 3D reconstructed and isolated mitochondria for clear visualization.
824 (A'-C'') Pseudo-colored individual mitochondria in skeletal muscle to differentiate micro-level
825 changes. (A, A', A'') The 2D ortho slice, the overlay of the 2D ortho slice, and the 3D
826 reconstruction with individually colored mitochondria in tissue from 3-month-old mice. (B, B',
827 B'') The 2D ortho slice, the overlay of the 2D ortho slice, and the 3D reconstruction with
828 individually colored mitochondria in tissue from 1-year-old mice. (C, C', C'') The 2D ortho
829 slice, the overlay of the 2D ortho slice, and the 3D reconstruction with individually colored
830 mitochondria in tissue from 2-year-old mice. (D-F) Quantification of 3D reconstructions, with
831 each dot representing the overall average of all mitochondria quantified for each mouse. (D)
832 Mitochondrial volume in skeletal muscle of different ages. (E-F) Mitochondrial area and
833 perimeter in skeletal tissues of different ages. Significance values * $p \leq 0.05$, *** $p \leq 0.0001$.
834

835 **Figure 2:** SBF-SEM 3D reconstruction in skeletal muscle of aged mice.

836 (A-C) 3D reconstruction of individually colored mitochondria from a transverse view for mouse
837 skeletal tissues of different ages. (A'-C') 3D reconstruction of individually colored mitochondria
838 from a longitudinal view in skeletal muscle tissues of different ages. (D) MBI for mitochondria
839 in tissues of different ages, with each dot representing the overall average mitochondria
840 quantified for each of the three mouses. (F) Sphericity of mitochondria in skeletal muscle of
841 different ages, with dots representing the average of all mitochondria quantified for each of the
842 three mouses. (E) Representative examples of 3D reconstruction of mitochondria in skeletal
843 muscle of different ages organized by volume. Significance values *** $p \leq 0.0001$.
844

845 **Figure 3.** Mitochondrial nanotunnels in skeletal mouse tissue.

846 (A-C) TEM tracing showing identified nanotunnels across aged cohorts in skeletal mouse tissue.
847 (D) Representative examples of 3D reconstruction of nanotunnels in tissues of different ages
848 organized by volume. (E-H) Quantification comparing frequency, average nanotunnel amount,
849 nanotunnel length, and diameter of nanotunnels, respectively, across aged cohorts. (I) Histogram
850 showing frequency of various nanotunnel lengths for each age group. (J) Histogram showing
851 frequency of various nanotunnel diameters for each age group. ** $p \leq 0.01$, *** $p \leq 0.0001$.
852

853 **Figure 4.** Knockout of *Mitofillin* or *Opa-1* in myotubes results in changes in mitochondria,
854 cristae, and oxygen consumption rates.

855 (A-C) Representative images of mitochondria and cristae from myotubes of OPA-1 and *Mitofillin*
856 knockout mice compared to WT. (D) Mitochondrial area in myotubes of *Opa-1*, and *Mitofillin*
857 knockout mice compared to WT. (E) Circularity index, measuring the roundness and symmetry
858 of mitochondria, in myotubes of *Opa-1* and *Mitofillin* knockout mice compared to WT. (F) The

859 number of mitochondria in myotubes of *Opa-1* and *Mitoflin* knockout mice compared to WT.
860 **(G)** Quantification of individual cristae in myotubes of *Opa-1* and *Mitoflin* knockout mice
861 compared to WT. **(H)** Cristae scores measuring the uniformity and idealness of cristae in
862 myotubes of *Opa-1* and *Mitoflin* knockout mice compared to WT. **(I)** Surface area of the
863 average cristae in myotubes of *Opa-1* and *Mitoflin* knockout mice compared to WT. **(J)** OCR in
864 myotubes of *Opa-1* and *Mitoflin* knockout mice compared to WT. **(K)** Basal OCR, the net
865 respiration rate once non-mitochondrial respiration has been removed, in myotubes of *Opa-1*,
866 and *Mitoflin* knockout mice compared to WT. **(L)** ATP-linked respiration, shown from intervals
867 4–7 in the OCR graphs, was determined by the addition of oligomycin (an inhibitor of
868 respiration), thus representing the respiration dependent on ATP, in myotubes of *Opa-1* and
869 *Mitoflin* knockout mice compared to WT. **(M)** Maximum OCR, represented by the peak from
870 intervals 7–11 once non-mitochondrial respiration was deducted, in myotubes of *Opa-1* and
871 *Mitoflin* knockout mice compared to WT. **(N)** The reserve capacity, which is represented by the
872 difference between basal OCR and maximum OCR, in myotubes of *Opa-1* and *Mitoflin*
873 knockout mice compared to WT. **(O)** Proton leak, representing non-phosphorylating electron
874 transfer, in myotubes of *Opa-1* and *Mitoflin* knockout mice compared to WT.
875 Significance values ** $p \leq 0.01$, *** $p \leq 0.001$, **** $p \leq 0.0001$.

876
877 **Figure 5.** Knockout of MICOS complex proteins in myotubes results in changes in
878 mitochondria, cristae, and oxygen consumption rates.
879 **(A–D)** Representative images of mitochondria and cristae from myotubes of *Opa-1*, *CHCHD3*,
880 and *CHCHD6* knockout mice compared to WT. **(E)** Mitochondrial area in myotubes of
881 *CHCHD3*, *CHCHD6*, and *Opa-1* knockout mice compared to WT. **(F)** Circularity index in
882 myotubes of *CHCHD3*, *CHCHD6*, and *Opa-1* knockout mice compared to WT. **(G)**
883 Mitochondria in myotubes of *CHCHD3*, *CHCHD6*, and *Opa-1* knockout mice compared to WT.
884 **(H)** Quantification of individual cristae in myotubes of *CHCHD3*, *CHCHD6*, and *Opa-1*
885 knockout mice compared to WT. **(I)** Cristae score in myotubes of *CHCHD3*, *CHCHD6*, and
886 *Opa-1* knockout mice compared to WT. **(J)** Surface area of the average cristae in myotubes of
887 *CHCHD3*, *CHCHD6*, and *Opa-1* knockout mice compared to WT. **(K)** OCR in myotubes of
888 *CHCHD3*, *CHCHD6*, and *Opa-1* knockout mice compared to WT. **(L)** Basal OCR in myotubes
889 of *CHCHD3*, *CHCHD6*, and *Opa-1* knockout mice compared to WT. **(M)** ATP-linked
890 respiration in myotubes of *CHCHD3*, *CHCHD6*, and *Opa-1* knockout mice compared to WT.
891 **(N)** Maximum OCR in myotubes of *CHCHD3*, *CHCHD6*, and *Opa-1* knockout mice compared
892 to WT. **(O)** The reserve capacity in myotubes of *CHCHD3*, *CHCHD6*, and *Opa-1* knockout mice
893 compared to WT. **(P)** Proton leak in myotubes of *Opa-1*, *CHCHD3*, and *CHCHD6*, knockout
894 mice compared to WT. Significance values * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, ****
895 $p \leq 0.0001$.

896
897 **Figure 6.** Loss of OPA-1 or MICOS complex proteins in myotubes decreases mitochondrial size
898 and length.
899 **(A–E)** Representative images showing 3D reconstructions of mitochondria in myotubes of *Opa-1*,
900 *Mitoflin*, *CHCHD3*, and *CHCHD6* knockout mice compared to WT. **(F)** Mitochondrial 3D
901 length in myotubes of *Opa-1*, *Mitoflin*, *CHCHD3*, and *CHCHD6* knockout mice compared to
902 WT. **(G)** Mitochondrial volume on log scale in myotubes of *Opa-1*, *Mitoflin*, *CHCHD3*, and
903 *CHCHD6* knockout mice compared to WT. Significance value **** $p \leq 0.0001$.

905 **Supplementary:**

906

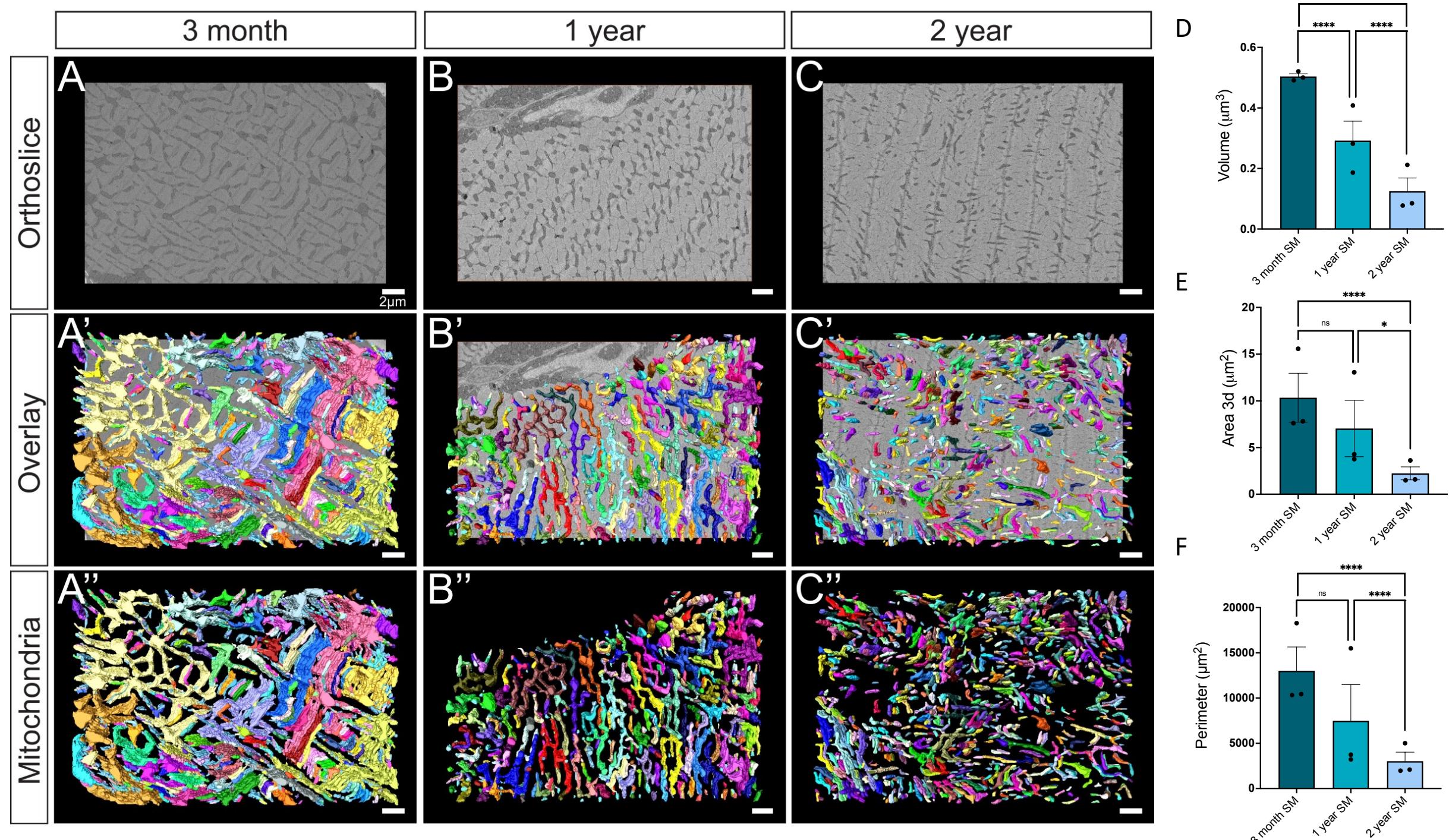
907 **Figure 1:** The (A) volume (B) 3D area, and (C) perimeter of the average mitochondria in each of
908 the three individual mice for the age cohorts, all shown on log scale. The (D) volume (E) 3D
909 area, and (F) perimeter quantified on log scale with each dot representing one of the
910 approximately 550 mitochondria analyzed for each age cohorts.

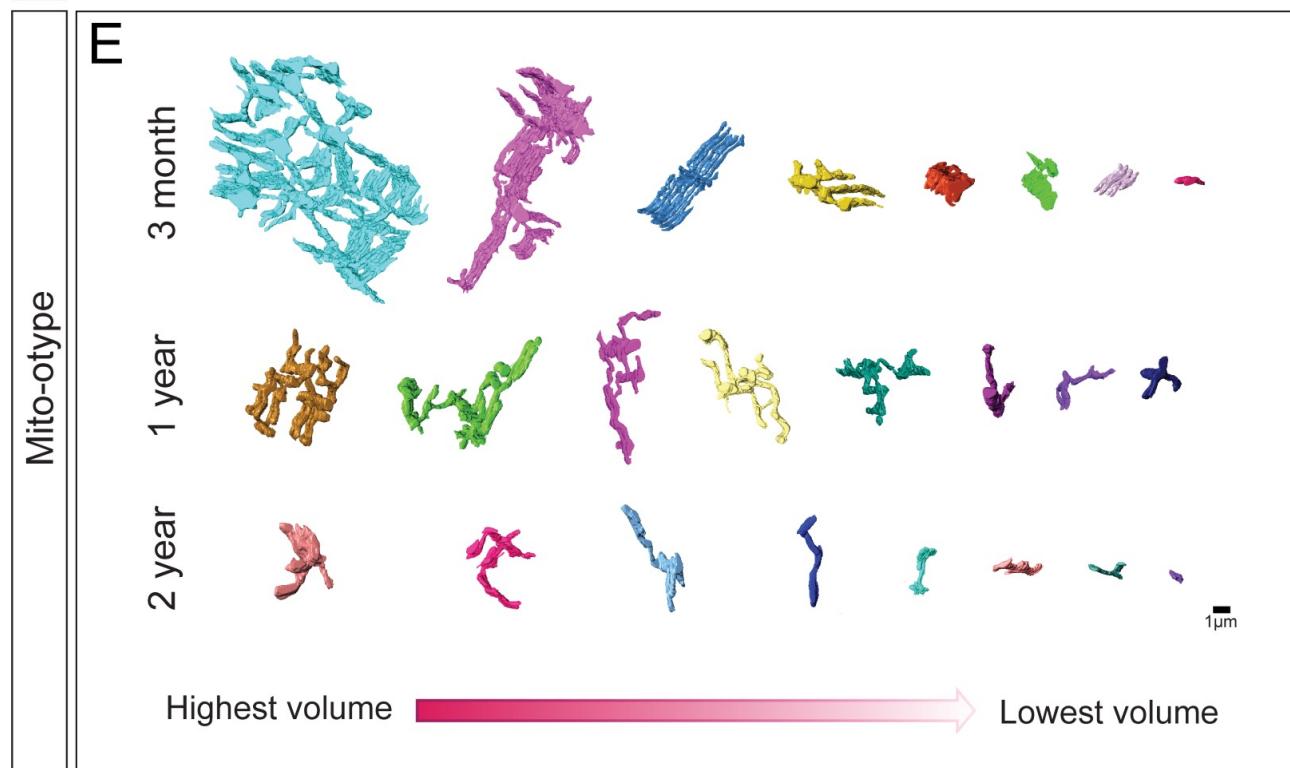
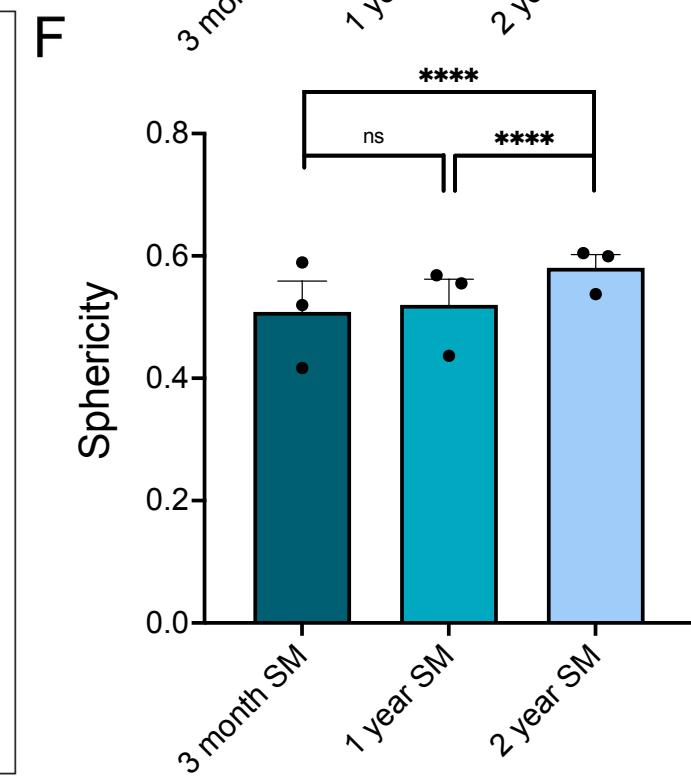
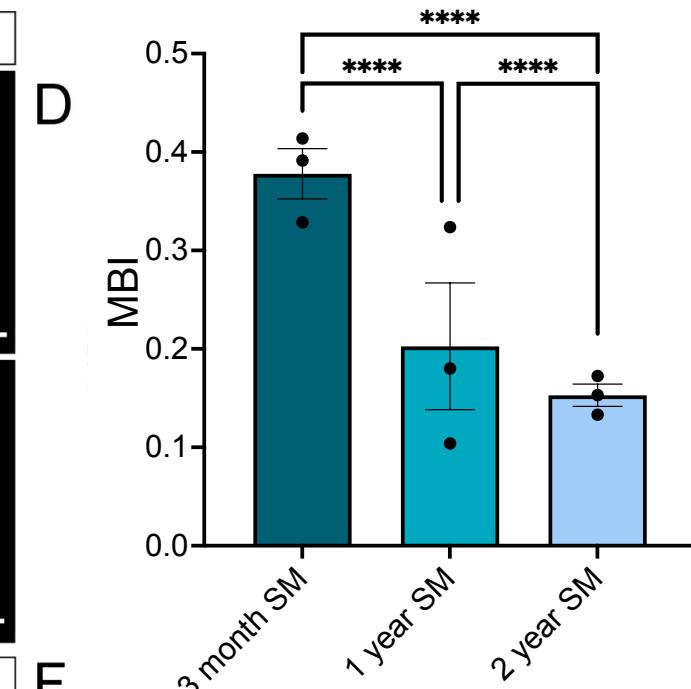
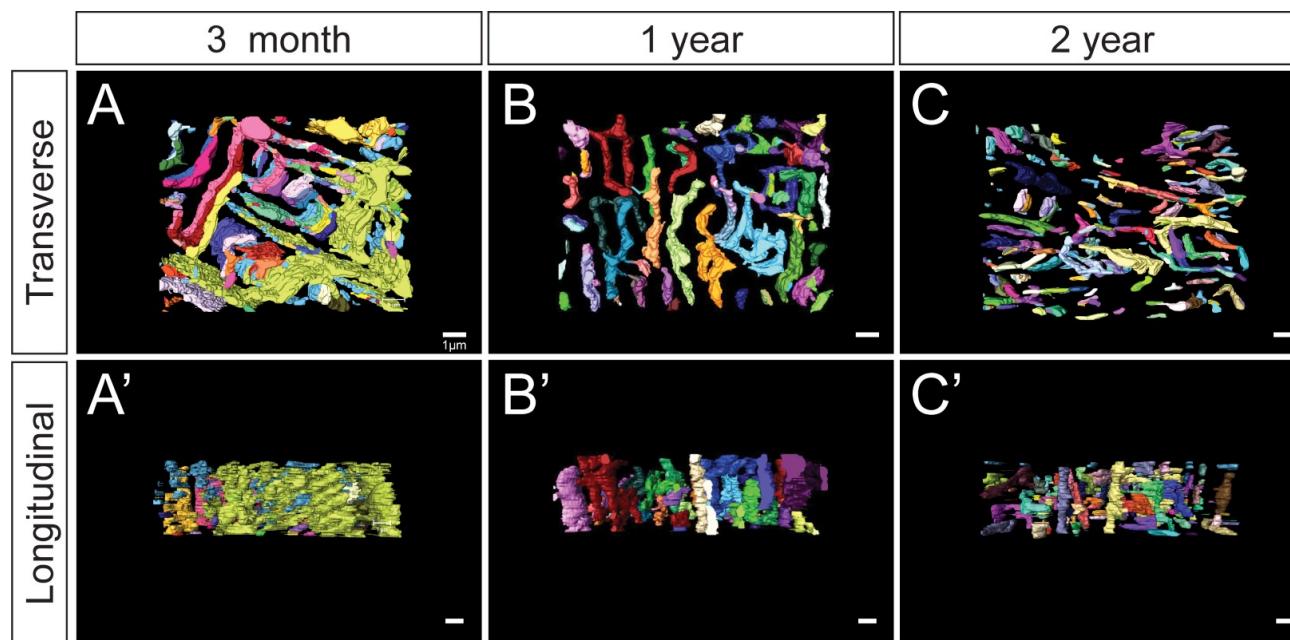
911

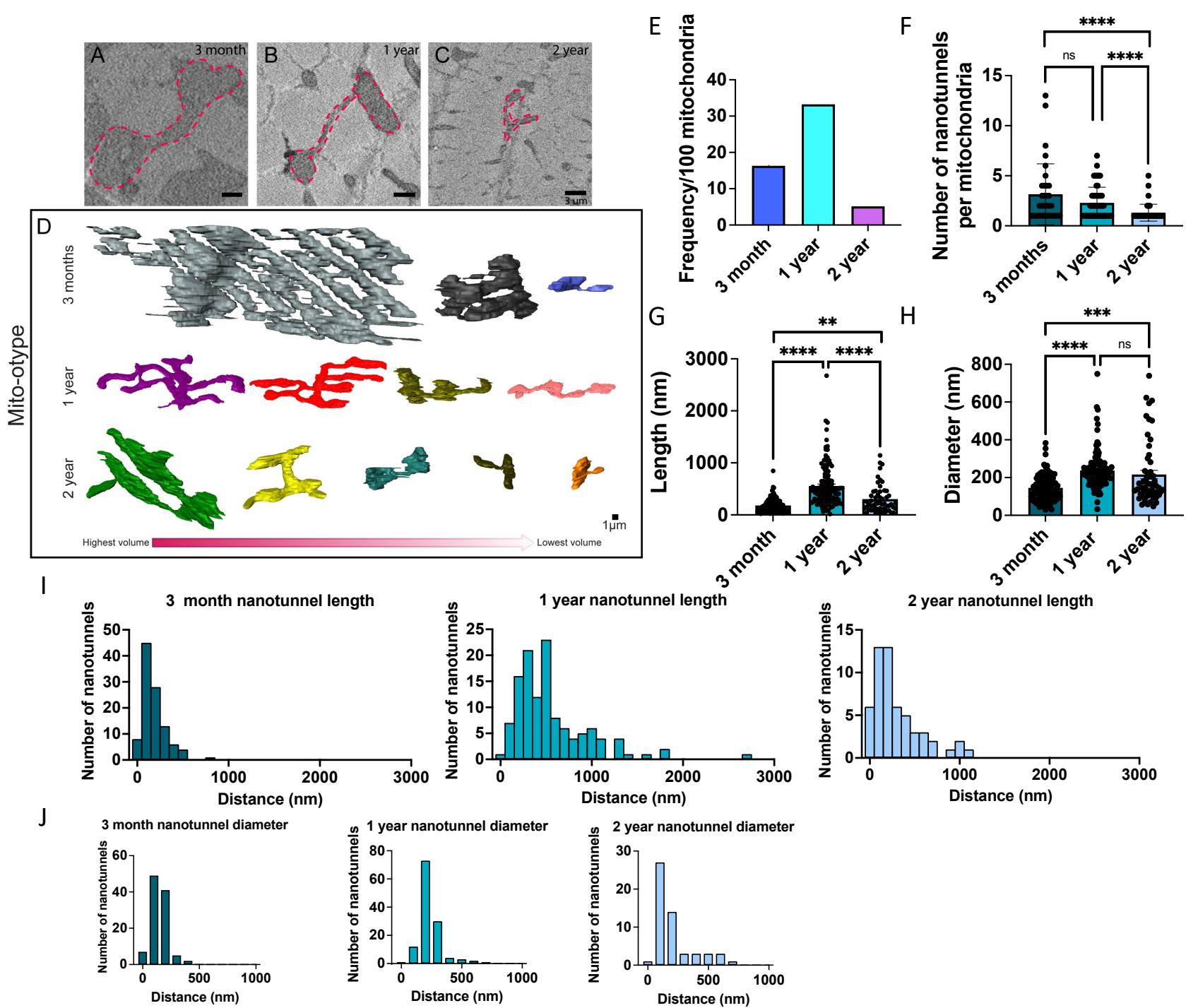
912 **Figure 2:** The (A) mitochondria branching index (MBI) and (B) sphericity of the average
913 mitochondria in each of the three individual mice for the age cohorts. Combined data of mice for
914 (C) MBI and (D) sphericity with each dot representing one of the approximately 550
915 mitochondria analyzed for each age cohorts.

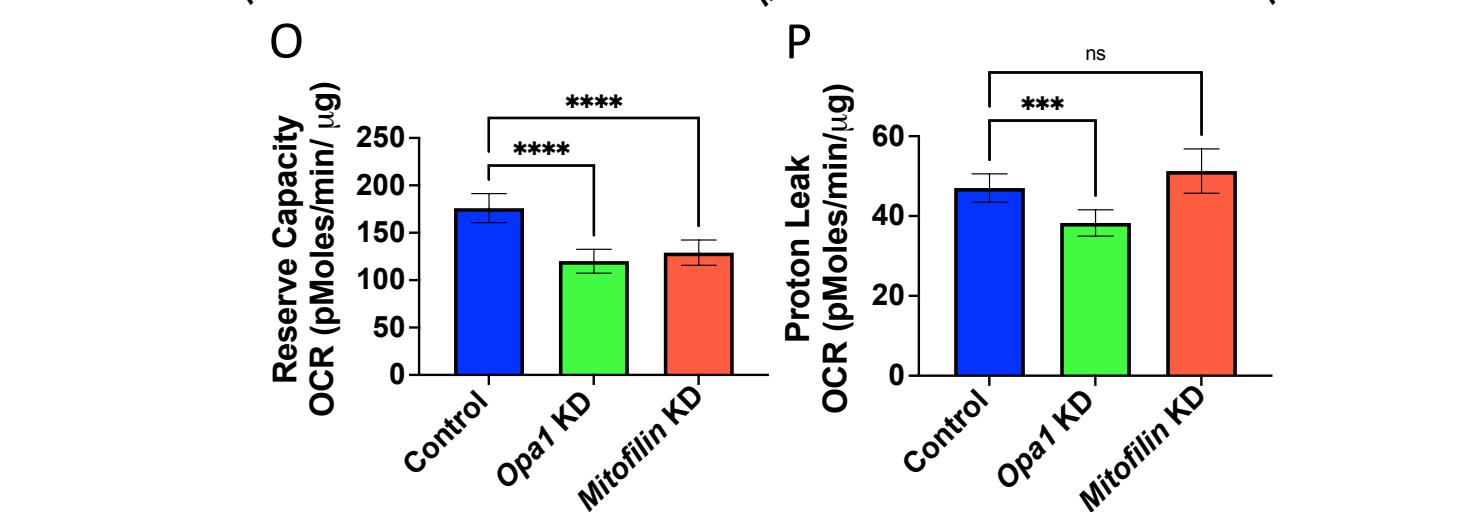
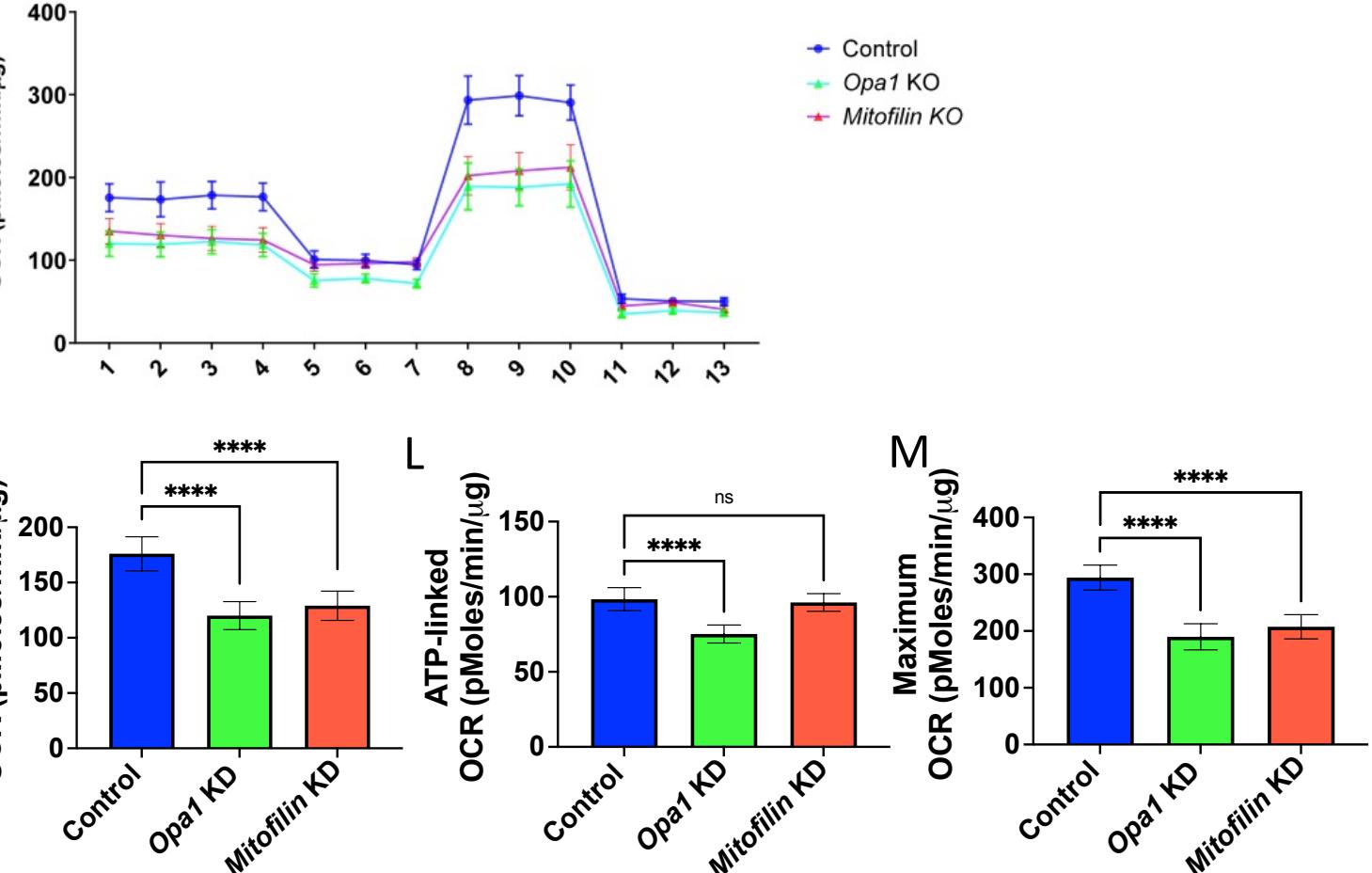
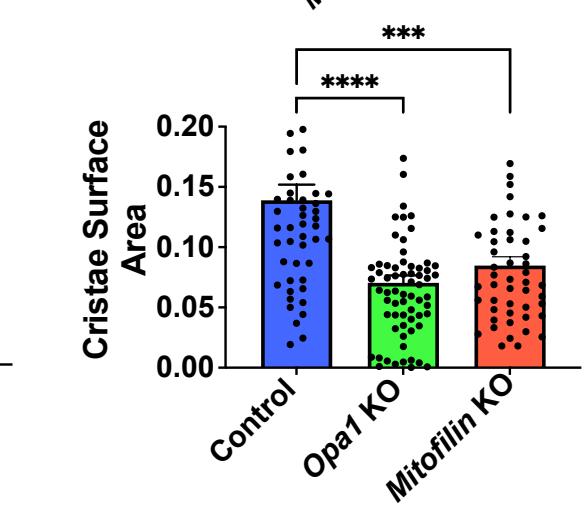
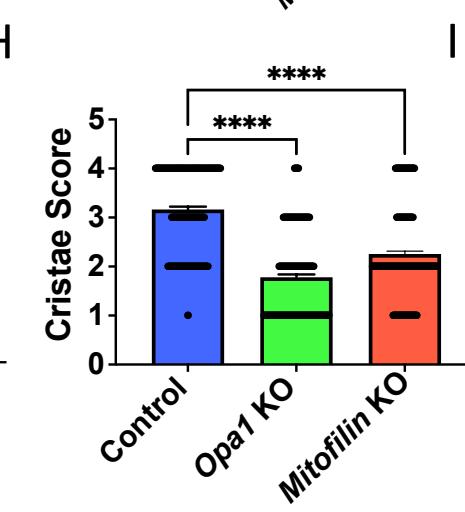
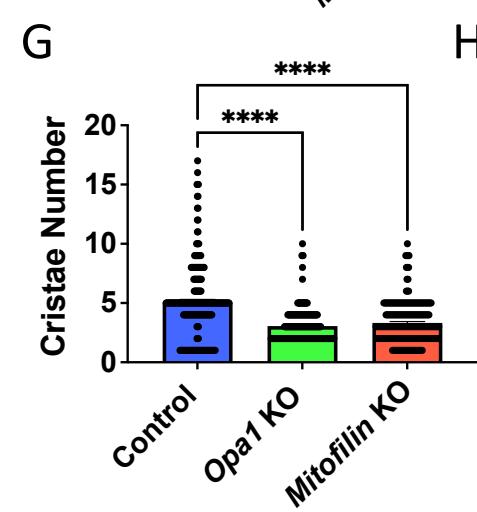
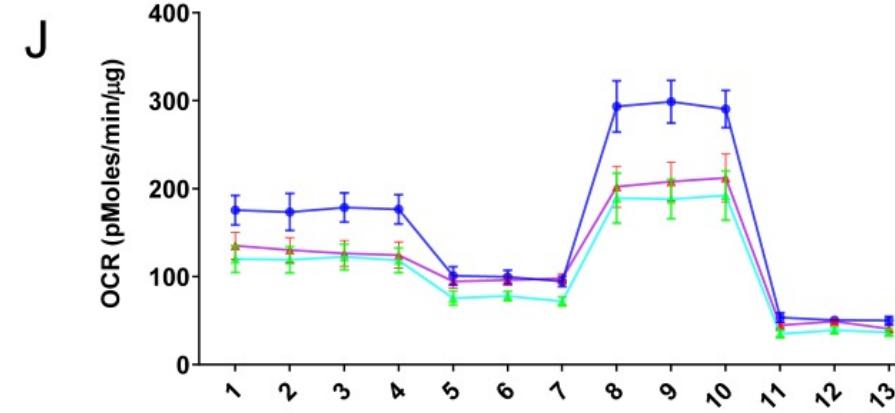
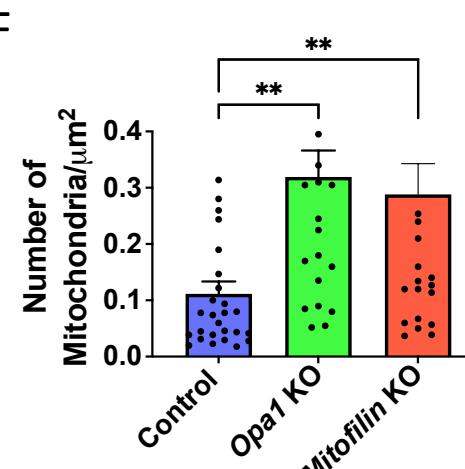
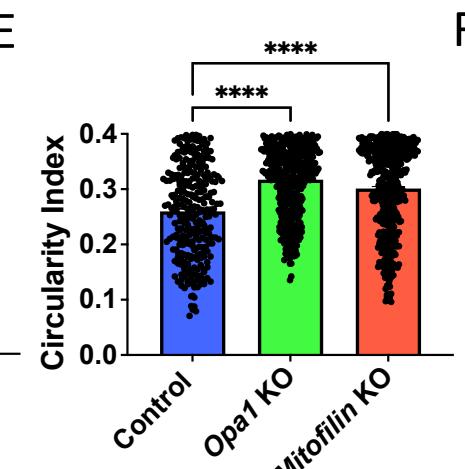
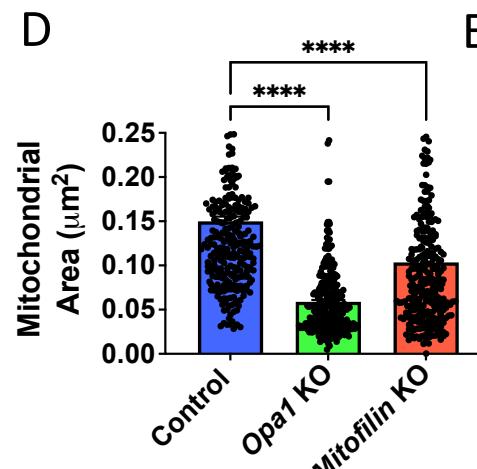
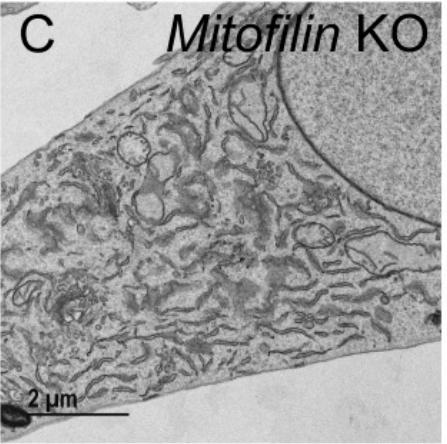
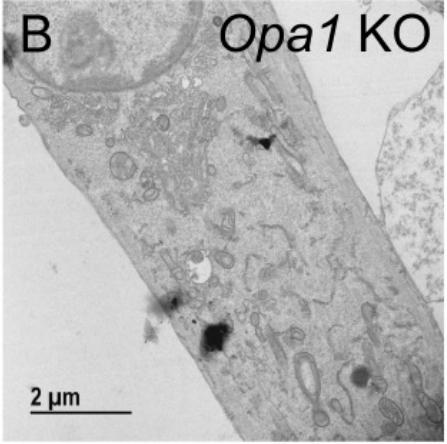
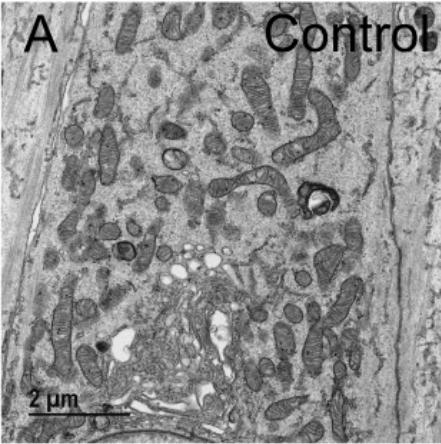
916

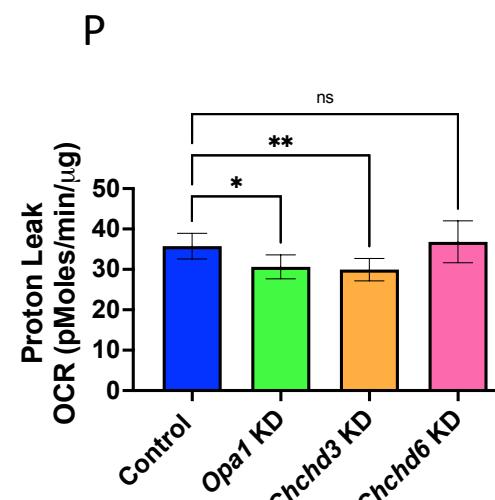
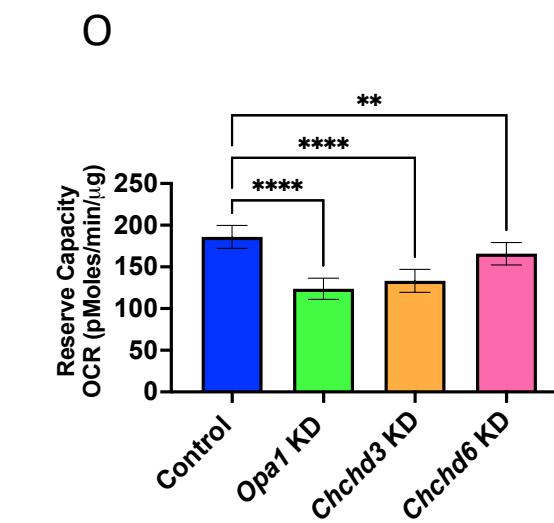
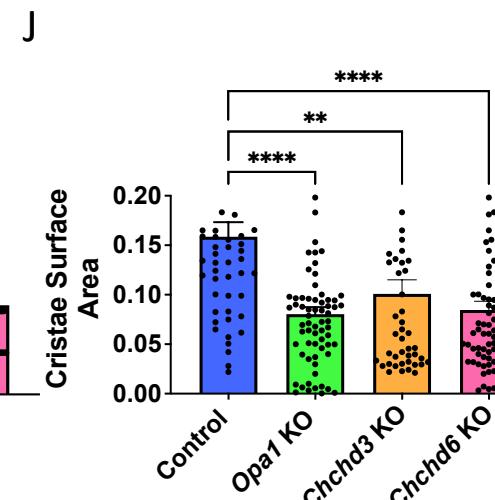
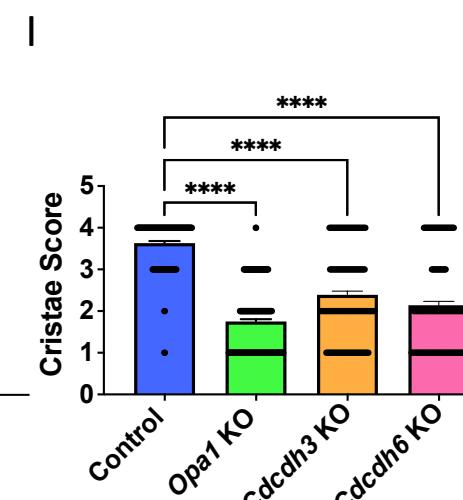
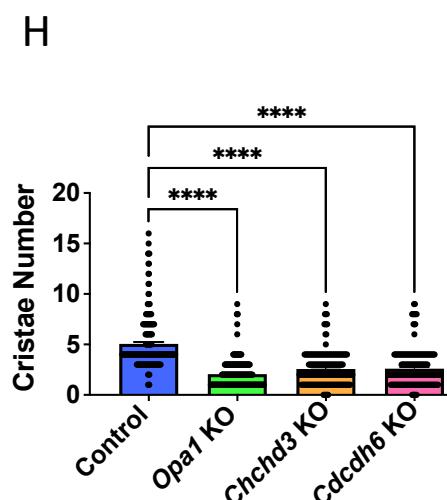
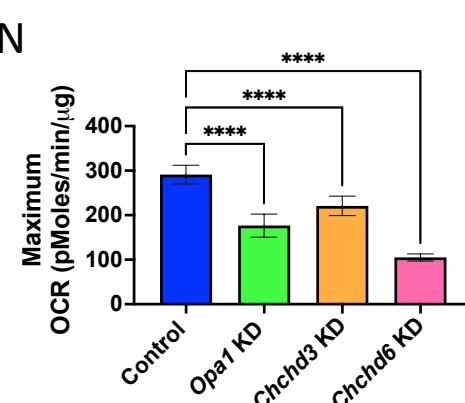
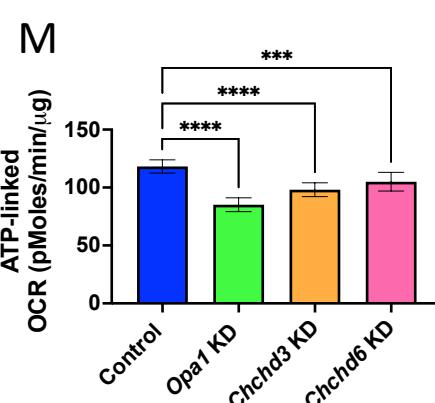
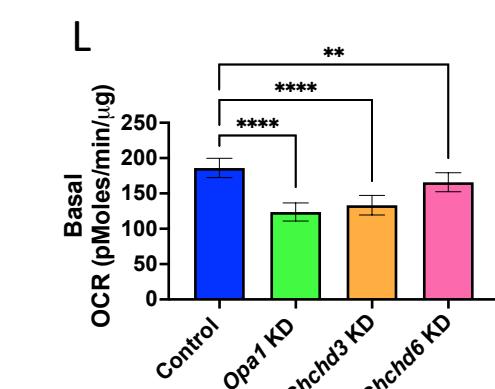
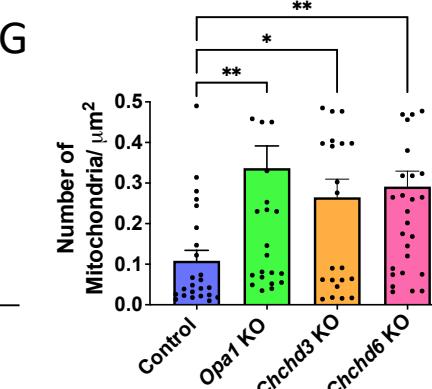
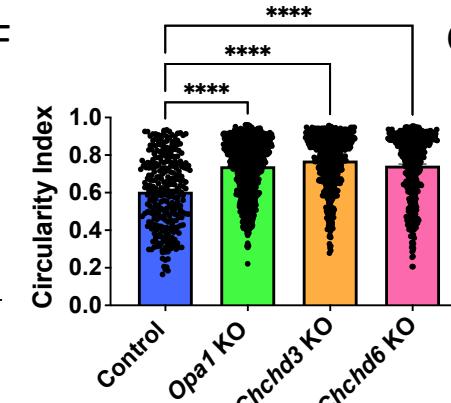
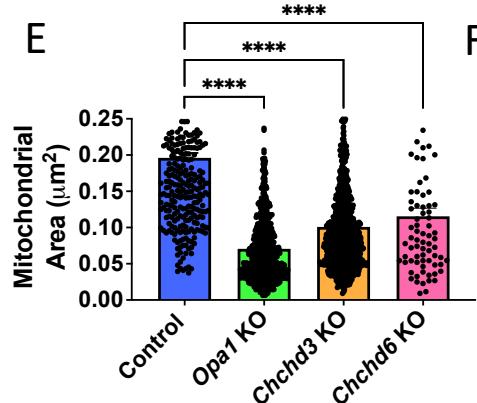
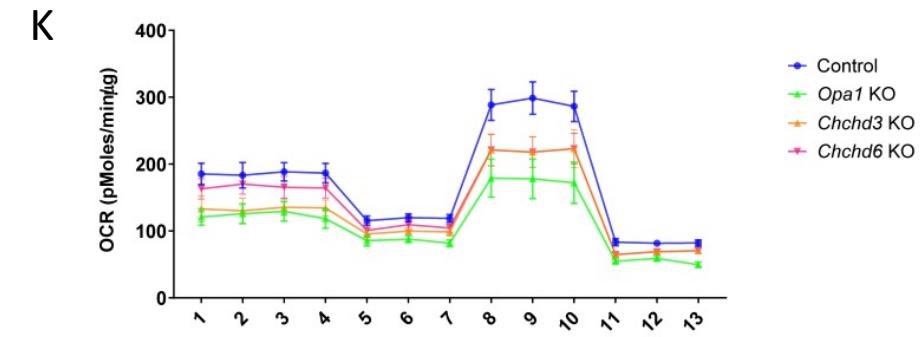
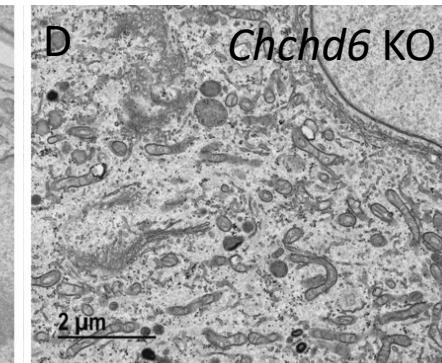
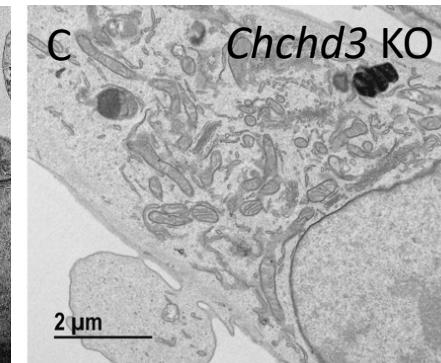
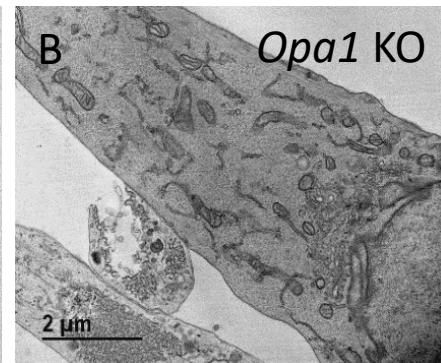
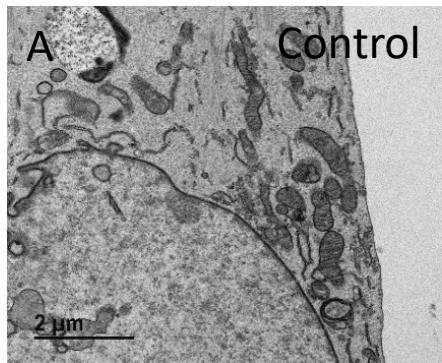
917 **Figure 3.** Transcription of *Opa-1* and MICOS genes in aging mouse muscle.
918 (A-D) Fold changes in the amount of OPA-1 and MICOS gene transcripts in mitochondria of
919 myocytes of 3-month-old, 1-year-old, and 2-year-old mice as measured by RT-qPCR. (A) *Opa-1*
920 transcripts. (B) *Mitofillin* transcripts. (C) *CHCHD3* transcripts. (D) *CHCHD6* transcripts.
921 Significance values * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, **** $p \leq 0.0001$.


922





923 **Figure 4.** (A) Metabolite PCA and (B) T-test comparing myotubes for control to *Mitofillin*
924 knockout mice. (C) Heatmap showing the relative abundance of ions and (D) Enrichment
925 analysis of metabolites, which links together several similarly functioning metabolites, with the
926 relative abundance for *Mitofillin* knockout.


927













928 **Figure 5.** (A) Metabolite PCA and (B) ANOVA test comparing control to myotubes of
929 *CHCHD3* and *CHCHD6* knockout mice (C) Heatmap showing the relative abundance of ions for
930 control and (D) enrichment analysis metabolite for *CHCHD3* and *CHCHD6* knockout mice.

















931

