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ABSTRACT

Skeletal muscle gradually loses mass, strength, endurance, and oxidative capacity during aging.
While mitochondrial aging is associated with endoplasmic reticulum stress, fragmented
mitochondria, and decreased mitochondrial capacity, the genes associated with morphological
changes in mitochondria during aging still requires further elucidation. Further, it is not
completely understood how 3D mitochondrial networks and the specialization of mitochondria
are altered during aging. We measured changes in mitochondrial morphology and mitochondrial
connectivity during the aging of the mouse gastrocnemius muscle through serial block facing-
scanning electron microscopy and 3D reconstruction. We found changes in mitochondrial
network configuration, nanotunneling, size, shape, number, contact sites, cristae organizing
system (MICOS) dynamics and gene expression in skeletal muscle during aging. We also found
an association of OPA-1 and the MICOS complex in the gastrocnemius with mitochondrial
aging. Further, the loss of the MICOS complex was linked with decreased oxidative capacity and
altered mitochondrial metabolism. MICOS proteins decreased with age and mitochondrial
morphology was similar between aged skeletal muscle and that of young mice with MICOS
protein loss. In tandem, our data suggest a relationship between the MICOS complex and aging,
which could be potentially linked to disease states with additional 3D reconstruction.

Keywords: MICOS, aging, mitochondria, 3D morphometry; mitochondrial disease;
mitochondrion; nanotunnel; reconstruction; reticulum; serial block-face SEM; skeletal muscle.
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77  INTRODUCTION
78 The loss of muscle mass associated with aging, known as sarcopenia, impacts the quality
79  of life affecting both type I and type II fibers, but more so for type II fibers. The mitochondrial
80  free radical theory of aging (MRFTA) which proposes that the accumulation of reactive oxygen
81  species (ROS) byproducts causes damage that leads to aging !-3. The critical role of
82  mitochondrial oxidative stress in aging has been shown using mitochondrial-targeted
83  antioxidants, such as catalase targeted to mitochondria, in cardiac aging # and sarcopenia °. In
84  addition to the main function of generating cellular ATP by oxidative phosphorylation ¢, the
85  mitochondria play critical role in ROS signaling, calcium homeostasis, programmed cell death,
86  and regulation of innate immunity and stem cells. To carry out the tremendous variety of tasks,
87  mitochondria maintain finely regulated ultrastructures, through various mechanisms, one of
88  which is mitochondrial dynamic machinery through fission and fusion. Since their structure
89  changes dynamically as mitochondria shift from fission to fusion, many important mitochondrial
90  functions depend on their ultrastructure’~?, therefore, it is important to understand mitochondrial
91  structural changes over time. Essential mitochondrial functions are associated with the
92  mitochondrial inner membrane folds known as cristae, which house the oxidative
93  phosphorylation machinery® and various transporters. Our objective was to determine how
94  mitochondrial networks and individual mitochondrial structures change during aging. We
95  hypothesized that age-related oxidative stress causes increased mitochondrial mitophagy and
96  fragmentation over time with concomitant losses in mitochondrial cristae integrity.
97 Disruption of optic atrophy 1 (OPA-1), an inner membrane protein that regulates
98  mitochondrial fusion, causes mitochondrial fragmentation and affects the dimensions, shapes,
99  and sizes of the cristae ®. Disruption of Drpl, a protein associated with mitochondrial fission,
100  causes elongated mitochondria and resistance to remodeling of the cristae !*!!, Nanotunnels or
101  “mitochondria-on-a-string” are thin, double-membrane protrusions lacking cristae that allow
102 mitochondria to communicate across distances. Nanotunnels may increase in mitochondrial
103 disease '%!% and may be associated with mitochondrial dysfunction during aging. Mutations in
104  genes that regulate the morphology of cristae have been associated with aging cardiomyocytes 4.
105  These gene products are located at the crista junctions in the inner membrane and are a part of
106  the mitochondrial contact site and cristae organizing system (MICOS), which are important for
107  maintaining mitochondrial shape and size '°. DRP1 or OPA-1 loss can similarly affect
108  mitochondria morphology '%!7. Cristae membranes contain the electron transport chain
109  complexes and ATP synthase for ATP synthesis via oxidative phosphorylation '3-2°, Since
110 mitochondrial morphology affects function, altering the structure by knocking out MICOS-
111  associated genes or the GTPase of OPA-1 could alter the metabolism and function of
112 mitochondria during aging '#-2°, Critically, we predicted that MICOS-associated genes were lost
113 over age, therefore, loss of MICOS-associated genes would mimic loss in mitochondria
114  morphology observed across age.
115 To better understand the alterations of mitochondrial specialization ultrastructure in
116  aging, we compared size, shape, quantity, complexity, and branching of mitochondria using 3D
117  reconstructions of aged gastrocnemius, and we measured nano tunneling in mouse muscles at
118  these three ages. Multivariate analysis was used to identify changes in metabolites, the MICOS
119  complex, OPA-1, nano tunneling, mitochondrial complexity, and morphological changes to
120 better understand how mitochondrial specialization and structure change during aging.
121
122 RESULTS
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123 Aging Results in Smaller, Shorter, Poorly Connected Mitochondria with Decreased

124 Branching in Mouse Skeletal Muscle

125 The gastrocnemius is a mixed muscle with both oxidative fibers containing many

126  mitochondria and glycolytic fibers with few mitochondria. This heterogeneity makes the

127  gastrocnemius ideal to study changes in mitochondrial dynamics. Since many mitochondrial

128  functions depend on structure 7, it is important to examine mitochondrial structural changes

129  over time. We hypothesized that increasing mitochondrial mitophagy and fragmentation over
130  time is concomitant with losses in mitochondrial crista integrity.

131 Our objective was to determine how aging alters mitochondrial networks and individual
132 mitochondrial structure. We imaged gastrocnemius biopsies from young (3-month-old), mature
133 (l-year-old) and aged (2-year-old) mice by serial block-face scanning electron microscopy (SBF-
134 SEM) with resolutions of 10 um for the x- and y- planes and 50 um for the z-plane, which allows
135  visualization of the electron connectome. Approximately 50 intermyofibrillar (IMF)

136  mitochondria were segmented from each image stack (Figure 1A-C) and a 3D surface view was
137  generated (Figure 1A’’-C’’). We analyzed mitochondria sub-network volumes from four ROIs
138  with an average of 175 mitochondria for each mouse (n = 3), for a total of 500 mitochondria.

139  Mitochondrial networks in aged mice showed largely interconnected mitochondria that were not
140  composed of a single reticulum (Figures 1A°”’—C’’”). We found that mitochondrial volume

141  decreased with age (Figures 1 A’”’—C’’) as did mitochondrial network volumes (Figure 1D). The
142 area and perimeter of mitochondria of samples from 2-year-old mice were significantly lower
143 than those from 3-month-old mice; however, there was no significant change for 1-year-old mice
144 compared to 3-month-old mice (Figures 1E-F). While there was some variability across the three
145  mice for each age cohort (SFigure 1), in general the trend showed a downwards trajectory

146  emblematic of increased fragmentation and smaller mitochondria. This showed that the size and
147  length of mitochondria change with age, but the specific complexity of mitochondria, which is
148  implicated with mitochondria communication, needed to be further elucidated.

149  We next measured mitochondrial complexity to better understand changes in mitochondrial

150  shape during aged mitochondrial complexity, quantification of the 2D form factor as a 3D shape,
151  as above. We hypothesize that less networks and simpler shape would occur as aging and

152 dysfunction continued. Previously established methods 2!?? were used to determine three
153  dimensional mitochondrial complexity from two dimensional form factor measurements
154  First, we first examined transverse (Figure 2A-C) and longitudinal (Figure 2A’-C’)

155  mitochondrial dimensions across ages in skeletal muscle. These measures showed networking
156  and broad mitochondria. Mitochondrial branching index (MBI) is the ratio of transverse (Figures
157  2A-C) to longitudinal (Figures 2A’-C’) branching, which better quantifies the orientation of the
158  branching, and MCI and MBI together measure mitochondria morphology 2!. We found that

159 MBI decreased across the age cohorts (Figure 2D). Since we observed in 3D reconstructions that
160  mitochondrial populations are heterogeneous and diverse, we utilized mito-typing, which is the
161  karyotyping-like method for arranging mitochondria 2!, to capture the diversity of IMF

162  mitochondria (Figure 2E). This analysis suggested at every volumetric measurement,

163  mitochondria were smaller and less complex with age. We also measured sphericity to further
164  understand changes in complexity. There was a progressive increase in sphericity with aging

165  (Figure 2F). When examining the specific three male mice sampled for each age cohort, some
166  variation exists for both metrics; however, the trends again clearly show sphericity stays

167  consistent while MBI decreases across age (SFigure 2). Together, these data suggest that

168  complexity decreases across all mitotypes with age.

21,22
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169
170  Mitochondrial Nanotunnels Change in Size and Amount with Aging in Skeletal Muscle
171 To quantify nanotunnels in skeletal muscle, we performed 3D reconstruction in mice at

172 three ages, measuring 550 mitochondria per mouse (n=3) using four different regions of interests
173 (ROIs). Although nanotunnels are reported to exist primarily in mitochondrial disease states 2,
174  we found them in all three ages of mice (Figures 3A—C). The diversity and heterogeneity in the
175  organization, sizing, and branching of nanotunnels necessitated mito-otyping (Figure 3D). We
176  found nanotunnels in a greater proportion of mitochondria in 1-year-old mice than in 2-year-old
177  mice (Figure 3E). However, the number of nanotunnels in each mitochondrion was significantly
178  less in the 2-year-old mice than the 3-month-old and 1-year-old mice (Figure 3F). The length and
179  diameter of nanotunnels increased in the older mice compared to the 3-month-old mice (Figures
180  3G—H), but the increase was significantly greater in the 1-year-old mice than the 2-year-old mice
181  (Figures 3G-J). These data show that nanotunnel structure, frequency, and length change during
182  aging.

183 Since we observed mitochondrial dynamics and cristae change with aging , we measured
184  transcripts for Opa-1, the gene associated with mitochondrial fusion, and CHCHD3 (Mic19),
185 CHCHDG6 (Mic25), and Mitofilin (Mic60), the genes for the principal MICOS complex subunits.
186  We used reverse-transcriptase qPCR (RT-qPCR) to determine the effect of aging on

187  transcription. Since aging causes fragmentation of mitochondria, a hallmark for this process is
188  loss of Opa-1 and MICOS complex proteins. We hypothesized that aging would also lead to
189  decreases in the associated MICOS complex proteins, confirming prior studies which have

190  found Opa-1 loss across aging '23-2°. We found progressive loss of both Opa-1 and MICOS
191 complex subunits, as measured by loss of transcripts for the proteins (SFigure 3A-D). In 1- and
192 2-year-old mice, the amount of mRNA made for the MICOS complex subunit genes or the Opa-
193 1 gene was less than half of that made in 3-month-old mice (SFigure 3A—C). Furthermore, for
194  all MICOS genes, there was a statistically significant decrease in the amount of mRNA over
195  time with a higher level of significance in 2-year-old mice. These data suggest a correlation

196  between mitochondrial morphologic changes and decreases in expression of genes for Opa-1
197  and MICOS subunits CHCHD3, CHCHDG6, and Mitofilin during aging; however, they are not
198 sufficient to demonstrate causation, therefore we did additional measurements to show that

199  reduced protein expression levels may be responsible for the morphologic changes.

200

201  Changes in Cristae and Mitochondria in Myotubes and Oxygen Respiration Rate Upon
202  Knockout of MICOS complex and Opa-1

203 The MICOS complex and OPA-1 are key players in mitochondrial biogenesis '>1-26, but
204  how their interactions regulate aging and mitochondrial ultrastructures is poorly understood. To
205  determine the role of OPA-1 and the MICOS complex in mitochondrial structure and

206  networking, we ablated the genes for Opa-1 and the MICOS complex in isolated primary skeletal
207  muscle cells from 3-month-old mice. We isolated primary satellite cells, then differentiated

208  myoblasts to myotubes. Using CRISPR/Cas9 method (Table 2), and a control plasmid, we

209  knocked out the genes for MICOS complex components and Opa-1 from skeletal muscle cells.
210  As observed previously, in vitro deletion of OPA-1 altered mitochondrial morphology '6-7-%%,
211  We measured 1250 mitochondria across 10 cells, with loss of Opa-1 as a positive control for
212 mitochondrial morphological changes. Although Opa-1 expression decreases with age %°, the
213 effect of the MICOS complex being lost in mitochondria morphology is unknown. Using

214  transmission electron microscopy (TEM) images, we compared mitochondria and cristae in
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215  myotubes from wild type (WT) and knockouts of Opa-1 and Mitofilin genes, which are essential
216  for the organization of mitochondrial cristae 33! (Figures 4A—C). Mitochondrial average area
217  decreased for both Opa-1 and Mitofilin knockout myotubes (Figure 4D), while mitochondrial
218  circularity (the roundness and symmetry of mitochondria) and number increased for both Opa-1
219  and Mitofilin knockout myotubes (Figures 4E—F). For both Opa-1 and Mitofilin knockouts, the
220  number of cristae per mitochondrion decreased, as did the cristae score and cristae surface areas
221  compared to the WT (Figures 4G—I). Cristae score measures the uniformity and regularity of
222 cristae compared to typical cristae, with a lower number representing abnormality and

223 dysfunction.

224 To further elucidate these changes in event of loss of other MICOS proteins, we also

225  compared WT with Opa-1, CHCHD3, and CHCHD6 knockout myotubes (Figures SA-D).

226  Knockout of MICOS subunit CHCHD3 results in fragmented mitochondria with less Opa-1 as
227  the cristae lose their normal structure 3. Similarly, CHCHDG6 is important in maintaining crista
228  structure and its downregulation results in hollow cristae lacking an electron-dense matrix,

229  thereby inhibiting ATP production and cell growth 3!-33-34 Mitochondrial average area decreased
230  for Opa-1, CHCHD3, and CHCHDG6 knockout myotubes (Figure SE), while the circularity index
231  and the number of mitochondria, once normalized, increased (Figures SF—-G). For Opa-1,

232 CHCHD3, and CHCHD6 knockouts, the number of cristae per mitochondrion decreased, as did
233 the cristae score and cristae surface area compared to the WT (Figures SH-J). The least

234 significant change was seen in the CHCHD3 knockout. Together, these data show quantitative
235  and structural changes in both mitochondria and cristae upon loss of MICOS proteins.

236 Loss of OPA-1 induces bioenergetic stress and decreased electron transport chain

237  function 28 and ablation of the MICOS complex alters mitochondrial capacity *>3¢. We found that
238  loss of OPA-1 or Mitofilin in myotubes decreased basal oxygen consumption rate (OCR)

239  (Figures 4J-K) and decreased ATP-linked, maximum, and reserve capacity OCR (Figures 4L—
240  N). Although OPA-1 knockout myotubes exhibited a decrease in proton leak, which represents
241  protons that go from the mitochondria to matrix without producing ATP, Mitofilin knockouts
242 showed no significant difference (Figure 40). In Opa-1, CHCHD3, and CHCHD6 knockouts,
243  there was a decrease in basal, ATP-linked, maximum, and reserve capacity OCR compared to the
244  control (Figures 5K-O). Although proton leak OCR decreased in Opa-1 and CHCHD3 knockout
245  myotubes (Figure 5P), there was no significant difference between the control and CHCHDG.
246  The decrease in OCR may be attributed to smaller and fragmented mitochondria; mitochondrial
247  density decreases as fragmentation targets them for autophagy 2°*’. Together, these results show
248  that MICOS and Opa-1 are essential for normal respiration of muscle tissue.

249 TEM provides mitochondrial detail, but not 3D morphology; therefore, we used SBF-
250  SEM to look at the 3D structure of the mitochondria. Using myotubes with ablated genes for
251  Opa-1 and MICOS complex subunits, as described above, we measured a total of 200

252  mitochondria across 10 cells. We compared mitochondria in WT, Opa-1, Mitofilin, CHCHD?3,
253  and CHCHD6 knockout myotubes (Figures 6A-E).

254 We found that compared to the elongated mitochondria in the WT, the 3D length was
255  much shorter in Opa-1 and MICOS protein knockouts (Figure 6F). Similarly, the volume of
256  mitochondria was also less in CHCHD3, CHCHD6, Mitofilin, and Opa-1 knockouts compared to
257  the control (Figure 6G). The 3D reconstruction data, in combination with the prior TEM results,
258  show how mitochondrial dynamics change with the loss of MICOS subunits.

259
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260  Metabolomics Show Key Metabolite Changes in Knockout of MICOS Complex Proteins
261  and Opa-1 in Myotubes.

262 To determine the global effects of loss of Opa-1 or the MICOS complex in skeletal

263  muscle myotubes, we analyzed the metabolome to identify changes in metabolites that occurred
264  with changes in mitochondria and cristae. Principal component analysis (PCA) revealed distinct
265  populations in the control and the Mitofilin knockout strains, which suggested that their

266  genotypes contributed to the clustering (SFigure 4A). To identify metabolites with the most

267  robust ability to discriminate between true positives and false positives, we constructed a model
268  using analysis of variance (ANOVA) to determine several key metabolites that were statistically
269  significant (SFigure 4B). This unique metabolite signature revealed that Mitofilin plays a critical
270  role in regulating amino acid metabolism and steroidogenesis (SFigure 4C—-D). Upregulation of
271  steroidogenesis pathways may result from the increased fluidity of membranes caused by

272 Mitofilin 3%*°. We also measured the effect of ablation of genes for CHCHD3 and CHCHDG in
273 skeletal muscle myotubes on bioenergetic metabolism. PCA revealed distinct populations in the
274  control and the CHCHD3 and CHCHD6 knockouts, which showed a similar profile (SFigure
275  5A). We constructed a model using ANOVA to determine which metabolite changes in

276  CHCHD3 and CHCHDG6 knockouts were statistically significant (SFigure 5B) There was a loss
277  of protein synthesis and changes in carbohydrate metabolism (SFigure 5C-D). Loss of Opa-1
278  typically favors fatty acid synthesis, so these results showing increased carbohydrate metabolism
279  differ from previous Opa-1 knockout responses “°#2, This atypical response was evident in the
280 increase in lactose and starch synthesis, but there was poor protein turnover, as seen in

281  methionine metabolism (SFigure 5D).

282

283

284  DISCUSSION

285 We demonstrated that either aging or loss of MICOS proteins in skeletal muscle resulted

286  in suboptimal mitochondria morphology, suggesting a correlation between aging and MICOS
287  protein expression. Previous studies used 3D focused ion beam-scanning electron microscopy
288  (FIB-SEM) to characterize the networking of the mitochondria in human** and mouse skeletal
289  muscle**. Another report did quantitative 3D reconstructions using SBF-SEM to define the

290  morphological differences in the skeletal muscles of humans versus mice, and they compared
291  patients with primary mitochondrial DNA diseases with healthy controls?!. To the best of our
292  knowledge, our current study is the first to use 3D reconstruction method as a novel approach to
293  study the connections between mitochondria and to determine how disconnections and reduced
294  mitochondrial communication altered in skeletal muscle aging.

295 Skeletal muscle highly mitochondrial dependent as well as mitochondria enriched and is
296  highly enriched in , which comprise ~6% of the cell volume and is well known to change with
297  aging®. Gastrocnemius muscle has both type I slow-twitch muscle fibers and type II fast-twitch
298  muscle fibers; type I fibers are more effective for endurance, while type II fibers better support
299  short bursts of muscle activity ~#’. Our 3D morphologic data, however, did not permit

300  discrimination of the two fiber types, although we observed many variable muscle fibers within a
301  sample and between all differently aged cohorts. Futures studies may develop novel methods that
302  are able to distinguish fiber types to determine the changes in mitochondria. Past studies in

303  human skeletal muscle did this by taking two portion of samples and assessing fiber type via

304 SDS-PAGE %,
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305 Using 3D reconstructions, we found that all parameters of the mitochondria changed

306  during aging including smaller volume, area, and perimeter (Figure 1D-F), and the mitochondria
307  became less interconnected. This increased fragmentation suggests a decreased mitochondrial
308 fusion, in association with age-dependent decreases of OPA-1, which is a regulator of

309  mitochondrial fusion. We also saw a decrease in the MBI during aging, suggesting that

310  mitochondria decrease in networking, but their shape may not radically change as they increase
311  in sphericity as they age (Figure 2).

312 The change in morphology in aging mitochondria could be explained by the MFRTA,
313 which proposes that ROS alter other functions of mitochondria, including ATP production, as
314  they induce aging #°. Since oxidative stress has been linked to many diseases of aging (diabetes,
315  heart disease, sarcopenia, arthritis, kidney disease)’’, understanding the association between

316  aging and mitochondria is important.

317 We found nanotunnels, which are thin, double-membrane mitochondrial connections that
318  can transport proteins and nutrients, in all skeletal muscle samples. While healthy humans have
319  almost no nanotunnels 2!, we unexpectedly found a moderate number of nanotunnels in young 3-
320  month-old mice (Figures 3E—H), and a consistent increase of nanotunnels in the skeletal muscle
321  of 1-year-old mice. These structures may have an unclear beneficial role in skeletal muscle of
322 mice. Given the association of nanotunnels with human diseases, we predicted that the 2-year-
323 old “aged” mouse skeletal muscle would have the most nanotunnels, however the nanotunnel
324 number was quite heterogeneous in 2-year-old mice and less were observed '2°!, The 2-year-old
325  samples may have shown fewer nanotunnels due to the high rate of fragmentation (Figure 1) and
326  lack of connectedness (Figure 2) preventing nanotunnel formation. In contrast, perhaps the

327  remaining networks permitted the increased number of nanotunnels in 1-year moderately aged
328  samples. The presence of nanotunnels in the healthy 3-month-old mouse skeletal muscle
329  suggests significant differences in mouse versus human muscle 2!.

330 MICOS proteins play key regulatory roles in mitochondrial structure and function
331  We determined by TEM 3D reconstructions that the loss of Mitofilin, CHCHD3, and CHCHD6
332 (Figures 4-5) resulted in fragmentation, disrupted cristae, and smaller mitochondria (Figures 4A—
333 1, Figures 4P-Y; Figure 5), similar to the loss of OPA-1, which is known to cause changes in

334  oxidative phosphorylation (Figures 4Z—AE) '*2328, Overall, mitochondria lacking the MICOS
335  genes had characteristics similar to those of aged mouse skeletal muscle (Figures 1-2). This

336  similarity in phenotype suggests there may be an association. Thus, changes in mitochondrial
337  morphology due to aging may be caused by a lack of MICOS gene expression. This is supported
338 by the RT-qPCR data that showed decreased CHCHD3, CHCHD®6, Mitofilin, and Opa-1

339  transcription with aging (SFigure 3). Although there is a link between aging and loss of Opa-1
340 22 little is known about the role of the MICOS complex in aging. Changes in mitochondrial
341  architecture and loss of integrity may be caused by decreased MICOS proteins; thus, it will be
342 important to develop methods to restore MICOS proteins and Opa-1 lost during aging to

343  decrease the deleterious effects of mitochondrial dysfunction. Although studies have examined
344  the role of knockouts on mitochondrial dynamics, few studies have examined how loss of

345  MICOS proteins may be restored to mitochondria 232,

346 Many studies have analyzed the mitochondrial metabolome using mouse skeletal muscles
347 #3357 We found that loss of Mitofilin affected cristae morphology (Figures 4G-H), decreased
348  oxidative phosphorylation (Figure 4J), and may have increased lipid and steroid synthesis, which
349  may be important for mitochondrial endoplasmic reticulum contact (MERC) regulation and

350  cristae formation. We found an increase in tryptophan and methyl histidine metabolism (SFigure

19,26,37
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351  4D) and an increase in taurine metabolism and hypotaurine, a key sulfur-containing amino acid
352 for the metabolism of fats. Loss of Opa-1 also changes amino acid and lipid metabolism, similar
353 to the loss of Mitofilin **-*2. Steroidogenesis, which makes the membrane less rigid, was

354  increased. Since the loss of Mitofilin, CHCHD6, or CHCHD3 caused a loss of oxidative capacity
355  (Figure 4J-O; 5K-P), increased steroid synthesis may allow the cell to recover bioenergetic

356  functions, as steroid compounds decrease membrane viscosity, with the incorporation of estrogen
357 3. In the absence of Mitofilin, the cristae junctions and contact sites fall apart °%; thus, Mitofilin is
358  critical for maintaining cristae >, Cells lacking Mitofilin may make steroids to help the

359  membrane to reconfigure broken cristae. Since the loss of Opa-1 causes more MERCs 3, loss of
360  Mitofilin may increase phospholipids (SFigure 4D) because of increased smooth MERCs, which
361  are associated with lipid changes ¢!. This is supported by the fact that biosynthesis of

362  phosphatidylethanolamine and phosphatidylcholine and metabolism of arachidonic acid and

363  sphingolipid increased with loss of Mitofilin (SFigure 4D). Since these phospholipids aggregate
364  around MERCs and may shuffle into the ER, Mifofilin may be a critical gene for regulating

365  cristae morphology and with a key role in regulating mitochondrial metabolism, which is novel.
366 Mitofilin may be an important target in the future to restore energy production. Loss of
367  Mitofilin may lead to ER stress, which, via ATF4, activates amino acid transporters 2 that further
368  activate mTORCI. ER stress activates mTORC as a result of a decrease in glucose *’. Critically,
369 mTORCI affects glucose homeostasis %, and this may lead to inefficiency in energy use. This
370  can result in changes in autophagy. Therefore, as a downstream effect of Mitofilin loss increasing
371  mTORCI, this may explain why deletion of MICOS in Drosophila increases autophagy *’.

372  Similarly, previously loss of Opa-1 increases ER stress 2%, and loss of Mitofilin may cause a

373  similar increase in amino acid catabolism. If ER stress activates amino acid transporters,

374  branched-chain amino acids could increase ER stress, resulting in a positive feedback loop that
375  affects the health of the cell, cellular energy, metabolism, and antioxidants. ER stress may also
376  be responsible for the poor performance and fragmentation of mitochondria (Figure 4-5). Loss of
377  Mitofilin may result in the breakdown of protein pathways that regulate ER stress. Other amino
378 acid pathways, such as homocysteine (SFigure 4D), are involved in triglyceride uptake and

379  increased intracellular cholesterol, suggesting that proteins like ATF4 57 and the MICOS

380  complex %26 are important for aging. In particular, the MICOS components may prevent

381  mitochondrial fragmentation by blocking ER stress pathways in aging. Further studies are

382  needed to better understand the role of MICOS in MERC formation and the relation between

383  smooth MERC and lipid synthesis.

384 Although Mitofilin is a key component of the MICOS complex, other components are
385  likely also important. The loss of CHCHD3 or CHCHDG6 leads to a decrease in and disassembly
386  of all Mitofilin subcomplex components in mammals, with abnormal cristae morphology and
387  growth defects **64%°, Downregulation of CHCHD3 is linked to type 2 diabetes 7°. In our

388  metabolomics enrichment dataset (SFigure 5D), loss of CHCHD3 or CHCHDG6 in mouse

389  myotubes resulted in a preference for alternative fuel sources, such as lactate, lactose, and

390 starches. Supplementation of healthy myotubes with galactose leads to a 30% increase in

391  oxidative capacity (i.e., OCR) due to an increase in AMPK phosphorylation and cytochrome ¢
392  oxidase (COX) activity, thereby forcing cells to become more oxidative to maintain ATP levels
393 7! In our samples, as oxidative metabolism decreased, anaerobic metabolism and lactate levels
394  increased, forcing cells to produce ATP by anaerobic glycolysis. However, long and high-level
395  exposure to D-galactose generates free radicals, which alter MERCs, cause mitochondrial
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396  dysfunction, and induce aging %72, This is the likely explanation for mitochondrial fragmentation
397  in aged samples and loss of the MICOS complex, which should be investigated further.

398 In conclusion, we present a quantitative evaluation of mitochondrial and cristae

399  morphology in mouse skeletal muscle using 3D reconstructions and TEM analysis. We found
400  oxidative differences upon loss of MICOS proteins. 3D reconstructions of nanotunnels in

401  mitochondria showed novel patterns with a moderate number of nanotunnels in young skeletal
402  mouse tissue and relatively low numbers in the most aged mouse skeletal muscles. Similar

403  changes in mitochondrial morphology were observed in aging muscles and for loss of MICOS
404  proteins in mouse skeletal muscle, and MICOS proteins decreased with age. This suggests a
405  relationship between the MICOS complex and aging, and further studies through 3D

406  reconstruction could elucidate the linkage between age-related muscle dysfunction, the MICOS
407  complex, and disease states in mitochondria.

408

409 EXPERIMENTAL PROCEDURES

410  Animal Care and Maintenance

411  All procedures for the care of mice were in accordance with humane and ethical protocols

412  approved by the University of lowa Animal Care and Use Committee (IACUC) following the
413  National Institute of Health (NIH) Guide for the Care and Use of Laboratory Animals as

414  described previously 8. All experiments used WT male C57B1/6]J mice housed at 22°C on a 12-
415  hour light, 12-hour dark cycle with free access to water and standard chow. Mice were

416  anesthetized with 5% isoflurane/95% oxygen.

417

418  RNA Extraction and RT-qPCR

419  Total RNA was extracted from tissue using TRIzol reagent (Invitrogen, cat #), purified with the
420  RNeasy kit (Qiagen Inc, cat #), and quantitated by the absorbance at 260 nm and 280 nm using a
421  NanoDrop 1000 (NanoDrop products, Wilmington, DE, USA) spectrophotometer. Total RNA
422 (~1 pg) was reverse-transcribed using a High-Capacity cDNA Reverse Transcription Kit

423  (Applied Biosciences, Carlsbad CA, cat #) followed by real-time quantitative PCR (qPCR)

424 reactions using SYBR Green (Life Technologies, Carlsbad, CA, cat #) 3. Triplicate samples for
425  qPCR (~50 ng) in a 384-well plate were placed into ABI Prism 7900HT instrument (Applied
426  Biosystems) programmed as follows: 1 cycle at 95°C for 10 min; 40 cycles of 95°C for 15 s;
427  59°C for 15 s, 72°C for 30 s, and 78°C for 10 s; 1 cycle of 95°C for 15 s; 1 cycle of 60°C for
428 15 s; and one cycle of 95°C for 15 s. Data were normalized to glyceraldehyde-3-phosphate

429  dehydrogenase (Gapdh), and results are shown as fold changes. qPCR primers were designed
430  using Primer-Blast or were previously published sequences 2® as shown in Table 1.

431  Table 1: gPCR Primers Used

Gene Primers

Opa-1 Forward 5’-ACCAGGAGACTGTGTCAA-3’
Reverse 5’-TCTTCAAATAAACGCAGAGGTG-3’

CHCHD3 Forward 5’-GAAAAGAATCCAGGCCCTTCCACGCGC-3’
Reverse 5’-CAGTGCCTAGCACTTGGCACAACCAGGAA-3’

CHCHD6 Forward 5’-CTCAGCATGGACCTGGTAGGCACTGGGC-3’
Reverse 5’-GCCTCAATTCCCACATGGAGAAAGTGGC-3’

Mitofilin Forward 5’-CCTCCGGCAGTGTTCACCTAGTAACCCCTT-3’
Reverse 5’-TCGCCCGTCGACCTTCAGCACTGAAAACCTAT-3’

432
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433 Isolation of Satellite Cells

434  Satellite cell differentiation was performed as previously described 128, Cells were cultured at
435  37°C, 5% CO; Dulbecco’s modified Eagle’s medium (DMEM; GIBCO, cat #) supplemented
436  with 10% FBS (Atlanta Bio selected, cat #), and 1% penicillin-streptomycin (Gibco, Waltham,
437  MA, USA, cat #).

438

439  CRISPR-Cas9 Knockouts

440  After three days, myotubes were infected with adenovirus to produce the following knockouts—
441  control CRISPR/Cas9 (sc-418922), CHCHDG6 (Mic25) CRISPR (sc-425817), CHCHD3 (Mic19)
442 CRISPR (5c-425804), and mitofilin (Mic60) CRISPR (sc-429376) (Santa Cruz Biotechnology,
443  California, US), with the use of guide RNA (Table 2). We incubated 2.5% relevant CRISPR,
444  2.5% RNAiMax (ThermoFisher Scientific; cat # 13778075), and 95% Opti-MEM (Gibco; cat
445  #31985070) in a tube for 20 minutes. Cells were washed twice with PBS after removal of the
446  medium and 800 pL. of OPT-MEM and 200 pL of the CRISPR mixture were added to each well,
447  ran in triplicates. Cells were incubated for 4 hours at 37 C, 1.0 mL of DMEM medium was

448  added, cells were incubated overnight. The myotubes were then washed with PBS and the

449  medium was replaced. Experiments were performed between 3 and 7 days after infection for a
450  total of 6 days of differentiation.

451  Table 2: Guide RNA and Plasmids Used

Gene Name Type of Plasmid CAS Number
Mitofilin CRISPR/Cas9 KO (m) sc-429376
CHCHDG6 CRISPR/Cas9 KO (m) sc-425817
CHCHD3 CRISPR/Cas9 KO (m) sc-425804
Control CRISPR/Cas9 KO (m) sc-418922

452

453  Serial Block-Face Scanning Electron Microscope (SBF-SEM) Processing of Mouse Muscle

454  Fibers

455  SBF-SEM preparation was performed as described previously !7-*”-74, Running on a FEI/Thermo
456  Scientific Volumescope 2 SEM, a state-of-the-art SBF imaging system, we obtained 300—400
457  ultrathin (0.09 um) serial sections from the blocks that were processed for conventional TEM.
458  All sections were collected onto formvar-coated slot grids (Pella, Redding CA), stained, and
459  imaged as previously described 72774,

460

461  Quantification of TEM Micrographs and Parameters Using ImageJ

462  Quantification of TEM images was performed as described previously using the

463  NIH ImageJ software 1?7, Cells were divided into four quadrants and two quadrants were

464  selected randomly for complete analysis. From each individual, a minimum of 10 cells were
465  measured with three analyses to obtain accurate and reproducible values. If variability occurred,
466  the number of cells was expanded to 30 cells per individual to reduce the variability.

467

468  Segmentation and Quantification of 3D SBF-SEM Images Using Amira

469  Intermyofibrillar (IMF) mitochondria are located between myofibrils, arranged in pairs at the z-
470  band of each sarcomere, with 2D elongated tubular shapes 7°. However, it is not known how
471  aging affects mitochondrial orientation, the structure of C-band sarcomeres, or the morphological
472  changes in incomplete fission known as nanotunnels. For each region of interest across the three
473  age groups, we analyzed 300 slices at 50 um intervals at the transverse intervals.
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474  For 3D reconstruction, SBF-SEM images were manually segmented in Amira as described

475  previously 7?7, All serial sections (300—400 slices) were loaded onto Amira and structural

476  features were traced manually on sequential slices of micrograph blocks. Structures in mice were
477  collected from 30-50 serial sections that were then stacked, aligned, and visualized using Amira
478  to make videos and quantify volumetric structures. An average of 500 total mitochondria across
479  four ROIs from 3 mice were collected for quantification. For 3D reconstruction of myotubes,
480  approximately 20 mitochondria from a minimum of 10 cells were collected. Quantification of
481  SBF-SEM images was performed as described previously !7 using the Amira software (Thermo
482  Scientific).

483

484  Data Analysis

485  All SBF-SEM and TEM data were presented as the mean of at least three independent

486  experiments with similar outcomes. Results were presented as mean + standard error with

487  individual data points shown. Data with only two groups were analyzed using an unpaired, t-test.
488  For nanotunnel quantification, a Mann-Whitney test (unpaired, nonparametric) t-test was

489  performed between two groups. If more than two groups were compared, one-way ANOV A was
490  performed, and significance was assessed using Fisher’s protected least significant difference
491  (LSD) test. GraphPad Prism software package was used for t-tests and ANOVA analyses (La
492  Jolla, CA, USA). For all statistical analyses, p < 0.05 indicated a significant difference. Higher
493  degrees of statistical significance (**, *** ***%*) were defined as p <0.01, p <0.001, and p <
494  0.0001, respectively.

495

496  Gas Chromatography-Mass Spectrometry (GC-MS)

497  Samples were extracted for metabolites and prepared as previously designed’®. The profiling of
498  the metabolites was performed using TraceFinder 4.1 with standard verified peaks and retention
499  times. TraceFinder was used to compare metabolite peaks in each sample against an in-house
500 library of standards. TraceFinder was also used for GC-MS peak integration to obtain peak areas
501  for each metabolite. After this analysis, we used previously described protocols 77 to correct for
502  drift over time by using QC samples run at both the beginning and end of the sequence. The data
503  was then normalized to an internal standard to control for extraction, derivatization, and/or

504  loading effects.

505

506  Liquid Chromatography-Mass Spectrometry (LC-MS)

507 LC-MS was performed for myotubes as previously described’®. TraceFinder 4.1 software was
508  used for analysis and metabolites were identified based on an in-house library. Drift was

509  corrected for as described above 77. Data were normalized and further visualization and analysis
510  were performed on MetaboAnalyst 5.0 8.

511

512 Analyzing Metabolomic Data

513  Metabolomic analysis was performed as described previously 7° using the web service

514  MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml, last

515  accessed on 8 February 2022) that combines machine learning methods and statistics to group
516  data using PCA, heat mapping, metabolite set enrichment analysis, and statistical analysis. One-
517  way ANOVA and Fisher’s LSD multiple comparison test were also used. PCA uses score plots
518  to provide an overview of variance for the principal components. Heatmaps separate hierarchical
519  clusters leading to progressively larger clusters. Clusters are based on similarity using Euclidean
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520  distance and Ward’s linkage to minimize the clustering needed. Metabolite Set Enrichment

521  Analysis (MSEA), which determines whether a set of functionally related metabolites is altered,
522  can be used to identify consistent changes across many metabolites with similar roles.

523  Overrepresentation analysis determines whether a group of compounds is overrepresented in
524  comparison to pure chance and whether a group of metabolites have similar changes. In this
525  analysis, the fold enrichment was calculated by dividing the observed hits by the expected

526  metabolites. Expected number of hits are calculated by MetaboAnalyst 5.0. GraphPad Prism
527  software (La Jolla, CA, USA) was used for statistical analysis with data expressed as mean +
528  standard deviation, and one-tailed p-values < 0.01 were considered significant.

529

530  Measurement of OCR Using Seahorse

531  Using an XF24 extracellular flux (XF) bioanalyzer (Agilent Technologies/Seahorse Bioscience,
532 North Billerica, MA, USA), OCR was measured for Opa-1, CHCHD3, CHCHDG, or Mitofilin
533 knocked down cells as previously described?®. Three independent experiments were performed
534  with four to six replicates for each time and for each condition and representative data from the
535  replicates are shown.

536
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817 (14) TABLES

818  (15) FIGURE LEGEND

819  Figure 1: Decreased mitochondrial size and volume in skeletal muscle of aged mice in SBF-
820  SEM 3D reconstructions.

821 (A-C) Representative SBF-SEM orthoslice for skeletal muscle. (A’-C”) 3D reconstructions of
822  mitochondria (various colors) in skeletal muscle mouse tissues of different ages overlaid

823  on ortho slices. (A’’-C*”) 3D reconstructed and isolated mitochondria for clear visualization.
824  (A’-C”’) Pseudo-colored individual mitochondria in skeletal muscle to differentiate micro-level
825  changes. (A, A’, A”’) The 2D ortho slice, the overlay of the 2D ortho slice, and the 3D

826  reconstruction with individually colored mitochondria in tissue from 3-month-old mice. (B, B’,
827  B”’) The 2D ortho slice, the overlay of the 2D ortho slice, and the 3D reconstruction with

828  individually colored mitochondria in tissue from 1-year-old mice. (C, C’, C**) The 2D ortho
829  slice, the overlay of the 2D ortho slice, and the 3D reconstruction with individually colored

830  mitochondria in tissue from 2-year-old mice. (D-F) Quantification of 3D reconstructions, with
831  each dot representing the overall average of all mitochondria quantified for each mouse. (D)
832  Mitochondrial volume in skeletal muscle of different ages. (E-F) Mitochondrial area and

833  perimeter in skeletal tissues of different ages. Significance values * p< 0.05, **** p <0.0001.
834

835  Figure 2: SBF-SEM 3D reconstruction in skeletal muscle of aged mice.

836  (A-C) 3D reconstruction of individually colored mitochondria from a transverse view for mouse
837  skeletal tissues of different ages. (A’-C”) 3D reconstruction of individually colored mitochondria
838  from a longitudinal view in skeletal muscle tissues of different ages. (D) MBI for mitochondria
839 in tissues of different ages, with each dot representing the overall average mitochondria

840  quantified for each of the three mouses. (F) Sphericity of mitochondria in skeletal muscle of
841  different ages, with dots representing the average of all mitochondria quantified for each of the
842  three mouses. (E) Representative examples of 3D reconstruction of mitochondria in skeletal

843  muscle of different ages organized by volume. Significance values **** p <0.0001.

844

845  Figure 3. Mitochondrial nanotunnels in skeletal mouse tissue.

846  (A-C) TEM tracing showing identified nanotunnels across aged cohorts in skeletal mouse tissue.
847 (D) Representative examples of 3D reconstruction of nanotunnels in tissues of different ages
848  organized by volume. (E-H) Quantification comparing frequency, average nanotunnel amount,
849  nanotunnel length, and diameter of nanotunnels, respectively, across aged cohorts. (I) Histogram
850  showing frequency of various nanotunnel lengths for each age group. (J) Histogram showing
851  frequency of various nanotunnel diameters for each age group. ** p < 0.01, **** p <0.0001.
852

853  Figure 4. Knockout of Mitofilin or Opa-1 in myotubes results in changes in mitochondria,

854  cristae, and oxygen consumption rates.

855  (A-C) Representative images of mitochondria and cristae from myotubes of OPA-1 and Mitofilin
856  knockout mice compared to WT. (D) Mitochondrial area in myotubes of Opa-1, and Mitofilin
857  knockout mice compared to WT. (E) Circularity index, measuring the roundness and symmetry
858  of mitochondria, in myotubes of Opa-1 and Mitofilin knockout mice compared to WT. (F) The
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859  number of mitochondria in myotubes of Opa-1 and Mitofilin knockout mice compared to WT.
860  (G) Quantification of individual cristae in myotubes of Opa-1 and Mitofilin knockout mice

861  compared to WT. (H) Cristae scores measuring the uniformity and idealness of cristae in

862  myotubes of Opa-1 and Mitofilin knockout mice compared to WT. (I) Surface area of the

863  average cristae in myotubes of Opa-1 and Mitofilin knockout mice compared to WT. (J) OCR in
864  myotubes of Opa-1 and Mitofilin knockout mice compared to WT. (K) Basal OCR, the net

865  respiration rate once non-mitochondrial respiration has been removed, in myotubes of Opa-1,
866  and Mitofilin knockout mice compared to WT. (L) ATP-linked respiration, shown from intervals
867  4—7 in the OCR graphs, was determined by the addition of oligomycin (an inhibitor of

868  respiration), thus representing the respiration dependent on ATP, in myotubes of Opa-1 and

869  Mitofilin knockout mice compared to WT. (M) Maximum OCR, represented by the peak from
870  intervals 7—11 once non-mitochondrial respiration was deducted, in myotubes of Opa-1 and

871  Mitofilin knockout mice compared to WT. (N) The reserve capacity, which is represented by the
872  difference between basal OCR and maximum OCR, in myotubes of Opa-1 and Mitofilin

873  knockout mice compared to WT. (O) Proton leak, representing non-phosphorylating electron
874  transfer, in myotubes of Opa-1 and Mitofilin knockout mice compared to WT.

875  Significance values ** p <0.01, *** p <0.001, **** p <0.0001.

876

877  Figure 5. Knockout of MICOS complex proteins in myotubes results in changes in

878  mitochondria, cristae, and oxygen consumption rates.

879  (A-D) Representative images of mitochondria and cristae from myotubes of Opa-1, CHCHD3,
880  and CHCHD6 knockout mice compared to WT. (E) Mitochondrial area in myotubes of

881 CHCHD3, CHCHDG, and Opa-1 knockout mice compared to WT. (F) Circularity index in

882  myotubes of CHCHD3, CHCHD6, and Opa-1 knockout mice compared to WT. (G)

883  Mitochondria in myotubes of CHCHD3, CHCHD6, and Opa-1 knockout mice compared to WT.
884  (H) Quantification of individual cristae in myotubes of CHCHD3, CHCHD6, and Opa-1

885  knockout mice compared to WT. (I) Cristae score in myotubes of CHCHD3, CHCHD6, and
886  Opa-1 knockout mice compared to WT. (J) Surface area of the average cristae in myotubes of
887 CHCHD3, CHCHDG, and Opa-1 knockout mice compared to WT. (K) OCR in myotubes of
888 CHCHD3, CHCHDG, and Opa-1 knockout mice compared to WT. (L) Basal OCR in myotubes
889 of CHCHD3, CHCHDG, and Opa-1 knockout mice compared to WT. (M) ATP-linked

890  respiration in myotubes of CHCHD3, CHCHD6, and Opa-1 knockout mice compared to WT.
891  (N) Maximum OCR in myotubes of CHCHD3, CHCHDG6, and Opa-1 knockout mice compared
892  to WT. (O) The reserve capacity in myotubes of CHCHD3, CHCHD6, and Opa-1 knockout mice
893  compared to WT. (P) Proton leak in myotubes of Opa-1, CHCHD3, and CHCHD®6, knockout
894  mice compared to WT. Significance values * p <0.05, ** p <0.01, *** p <0.001, ****

895  p<0.0001.

896

897  Figure 6. Loss of OPA-1 or MICOS complex proteins in myotubes decreases mitochondrial size
898  and length.

899  (A-E) Representative images showing 3D reconstructions of mitochondria in myotubes of Opa-
900 1, Mitofilin CHCHD3, and CHCHD6 knockout mice compared to WT. (F) Mitochondrial 3D
901 length in myotubes of Opa-1, Mitofilin, CHCHD3, and CHCHD6 knockout mice compared to
902  WT. (G) Mitochondrial volume on log scale in myotubes of Opa-1, Mitofilin, CHCHD3, and
903  CHCHDG6 knockout mice compared to WT. Significance value **** p <(0.0001.
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905  Supplementary:

906

907  Figure 1: The (A) volume (B) 3D area, and (C) perimeter of the average mitochondria in each of
908 the three individual mice for the age cohorts, all shown on log scale. The (D) volume (E) 3D
909 area, and (F) perimeter quantified on log scale with each dot representing one of the

910  approximately 550 mitochondria analyzed for each age cohorts.

911

912  Figure 2: The (A) mitochondria branching index (MBI) and (B) sphericity of the average

913  mitochondria in each of the three individual mice for the age cohorts. Combined data of mice for
914  (C) MBI and (D) sphericity with each dot representing one of the approximately 550

915  mitochondria analyzed for each age cohorts.

916

917  Figure 3. Transcription of Opa-1 and MICOS genes in aging mouse muscle.

918  (A-D) Fold changes in the amount of OPA-1 and MICOS gene transcripts in mitochondria of
919  myocytes of 3-month-old, 1-year-old, and 2-year-old mice as measured by RT-qPCR. (A) Opa-1
920  transcripts. (B) Mitofilin transcripts. (C) CHCHD?3 transcripts. (D) CHCHDG6 transcripts.

921  Significance values * p < 0.05, ** p <0.01, *** p <0.001, **** p <0.0001.

922

923  Figure 4. (A) Metabolite PCA and (B) T-test comparing myotubes for control to Mitofilin

924 knockout mice. (C) Heatmap showing the relative abundance of ions and (D) Enrichment

925  analysis of metabolites, which links together several similarly functioning metabolites, with the
926  relative abundance for Mitofilin knockout.

927

928  Figure 5. (A) Metabolite PCA and (B) ANOVA test comparing control to myotubes of

929  CHCHD3 and CHCHD6 knockout mice (C) Heatmap showing the relative abundance of ions for
930  control and (D) enrichment analysis metabolite for CHCHD3 and CHCHD6 knockout mice.

931
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