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Key points

• Ultraliser creates spatial models of neuro-glia-vascular (NGV) structures with realistic geometries.

• Ultraliser creates high fidelity watertight manifolds and large scale volumes from centerline descriptions,
non-watertight surfaces, and binary masks.

• Resulting models enable scalable in silico experiments that can probe intricate structure-function rela-
tionships.

• The framework is unrivalled both in ease-of-use and in the accuracy of resulting geometry representing
a major leap forward in simulation-based neuroscience.
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Abstract

Ultraliser is a neuroscience-specific software framework capable of creating accurate and biologically
realistic 3D models of complex neuroscientific structures at intracellular (e.g. mitochondria and endoplas-
mic reticula), cellular (e.g. neurons and glia) and even multicellular scales of resolution (e.g. cerebral vas-
culature and minicolumns). Resulting models are exported as triangulated surface meshes and annotated
volumes for multiple applications in in silico neuroscience, allowing scalable supercomputer simulations
that can unravel intricate cellular structure-function relationships. Ultraliser implements a high per-
formance and unconditionally robust voxelization engine adapted to create optimized watertight surface
meshes and annotated voxel grids from arbitrary non-watertight triangular soups, digitized morphological
skeletons or binary volumetric masks. The framework represents a major leap forward in simulation-based
neuroscience, making it possible to employ high-resolution 3D structural models for quantification of sur-
face areas and volumes, which are of the utmost importance for cellular and system simulations. The power
of Ultraliser is demonstrated with several use cases in which hundreds of models are created for potential
application in diverse types of simulations. Ultraliser is publicly released under the GNU GPL3 license
on GitHub (BlueBrain/Ultraliser).

Keywords Ultrasturcture ·mesh reconstruction · surface & solid voxelization ·watertight · in silico ·molecular
simulations · reaction-diffusion simulations · optical imaging simulations · Ultraliser

Significance There is crystal clear evidence on the impact of cell shape on its signaling mechanisms. Structural
models can therefore be insightful to realize the function; the more realistic the structure can be, the further we
get insights into the function. Creating realistic structural models from existing ones is challenging, particularly
when needed for detailed subcellular simulations. We present Ultraliser, a neuroscience-dedicated frame-
work capable of building these structural models with realistic and detailed cellular geometries that can be used
for simulations.
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1 Introduction

It has been more than a 100 years since Santiago Ramón y Cajal (1854–1934) commenced his pioneering quest
to study the brain by elucidating its anatomical structures and establishing the neuron doctrine1. Nevertheless,
and so far, our knowledge is still incomplete, particularly at cellular and synaptic levels-of-detail2. Even with
the broad spectrum of research that followed Cajal’s leading efforts, taking into account the vast amount of
resulting data, it has been proven that conventional wet lab experiments alone are insufficient to unravel the
underlying function of the brain3. The generation of massive amounts of experimental data in addition to
the recent quantum leap in computing technologies have led to the renaissance of a complementary approach:
simulation neuroscience4. Mathematical modeling, computer simulations and terabytes of structural data re-
sulting from a myriad diversity of experiments are being successfully consolidated — with this approach we can
test our hypotheses and predict the quantitative behavior of complex biological processes5.

Data-driven models integrated with systematic computational methods can dramatically increase efficiency,
efficacy and reliability of simulations6, particularly when our experimental knowledge is fragmented5. An im-
portant question is whether we can reuse existing structural data to synthesize detailed, multiscale and biolog-
ically plausible three-dimensional (3D) models that can be integrated into simulation contexts to gain insights
into the cellular function. The interdependency of structure and function produces a kind of metaplasticity7

that requires performing simulations within geometrically realistic subdomains at ultrastructural resolutions in
which molecular reactions can be contained8.

Structural neuroscientific datasets are either acquired from a wide spectrum of imaging modalities, such
as imaging scanners and microscopes9–11 or digitally synthesized in supercomputer simulations to yield similar
structural characteristics of biological counterparts12–15. 3D models of structural data (on the scale of 100 nm -
1 mm) can be classified according to their digital representations into four principal formats: morphology skele-
tons, surface meshes, volumetric meshes and volumetric grids. Each representation (Supplementary Fig. S1)
is convenient for a specific category of simulation.

Morphology skeletons are point-and-diameter descriptions of either acyclic or cyclic graphs that can model
connectivity of neuronal arborizations16, astrocytic processes15 and dense vascular networks17,18. Aside from
their usage for topological and visual analysis19, these morphologies are used to conduct one-dimensional (1D)
compartmental simulations. Neuronal and glial morphologies are used in NEURON20 (neuron.yale.edu) to
simulate electrophysiology based on Hodgkin-Huxely ion channel formalism21, and vascular morphologies are
used to simulate blood flow in cerebral vasculature22,23.

Surface meshes are sets of vertices, edges and facets (ideally triangles) that can define the boundaries of 3D
structures, such as cellular membranes of neurons24 and astrocytes25 and tubular membranes of blood vessels26.
These meshes, if watertight, are extensively used in particle-based stochastic molecular simulations, for exam-
ple with the MCell simulator27,28(mcell.org). Volumetric meshes are derived from their surface counterparts to
model their interior volume with convenient discretization, for example, with tetrahedral29 or hexahedral30 sub-
domains. Such meshes are primarily used in reaction-diffusion simulations with STEPS31 (steps.sourceforge.net)
or Smoldyn32–34 (smoldyn.org).
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Cartesian volumetric grids use, alternatively, cubic discretization to model the interior volume, in which we
can account for the variations in optical properties of different regions of the tissue to simulate its interaction
with light35,36.

Generally, the same 3D model can be converted from one format to another to be used in hybrid or multi-
modal simulations; however, the principal format with which a given 3D model can be restructured into any
other format is a surface mesh that must be watertight37 (Supplementary Figs. S1b, S2). For instance, the
generation of a volumetric mesh from a surface input —using TetGen38, QuarTet39, GMsh40 or CGAL41—
requires the surface mesh to be watertight. TetWild can tetrahedralize non-watertight meshes, but it has lim-
ited performance29 and fails to handle complex biological models with realistic geometries42. Moreover, accu-
rate skeletonization of cerebral vasculature from microscopy stacks requires multimodal algorithms that com-
bine an input volume with its corresponding watertight mesh to create a morphological representation of the
network43–45. Therefore, to automate and systematize simulation workflows, watertightness is essential, not
only for the simulation per se, but also for data conversion from one representation to another.

On one level, and as a consequence of the segmentation challenges of electron microscopy (EM) volumes,
existing 3D mesh models of cellular and subcellular brain structures are expected to be fragmented and non-
watertight. This applies to manually segmented neuropil structures11 or even those segmented with state-of-the-
art deep neural networks46. Machine learning (ML) has helped automating the process47 allowing to generate a
massive amount of neuro-glia-vasculature (NGV) reconstructions that are disseminated online as demonstrated
by several research programs such as MICrONS48, FAFB-FFN149, and FlyEM Hemibrain50. Nevertheless, the
majority of the resulting reconstructions requires many person-years of effort for proofreading. Online collab-
orative efforts are introduced to accelerate the process51, which could be effective in resolving fragmentation
artifacts, but watertightness remains lacking.

On another level, there is a huge diversity of NGV morphological models that have been released publicly
to central databases, for instance, NeuroMorpho.Org16 and Brain Vasculature (BraVa)18. These models are only
appropriate for conducting 1D compartmental simulations; there are no existing frameworks that can convert
them, taking into consideration their structural artifacts, into watertight mesh models for applications in other
types of simulations. The key question therefore is, given an input 3D model in any of aforementioned formats,
can we reconstruct it in another format that can be systematically plugged into simulation environments for in
silico experimentation?

A few relevant re-meshing frameworks are capable of handling geometric topology and optimization is-
sues for relatively small scale structures (minuscule segments of spiny dendrites), such as GAMer52 and Vol-
RoverN53, but they are incapable of accomplishing watertightness and they cannot process any kind of mor-
phology skeletons. Other applications presented applicable solutions to construct polygonal meshes from mor-
phology skeletons, for (i) neurons such as NeuroTessMesh54, NeuroMorphoVis19, Neuronize55, AnaMorph56,
(ii) vasculature, such as VessMorphoVis26 and (iii) astrocytes25 (summarized in Supplementary Tables S1 and
S2). Nonetheless, the resulting meshes are neither optimized nor watertight (Supplementary Section 3), fur-
thermore they might have unrealistic geometries and structural deficits. We present Ultraliser to eliminate
the gap and address those challenges, all within a unique and efficient framework.
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2 Results

2.1 Ultraliser

Ultraliser is a neuroscience-specific framework capable of creating multiscale (from the subcellular scale up
to mesoscale circuits) and high fidelity 3D models of neuroscientific datasets that can be integrated in the context
of simulation-based experiments, aiming to understand the function. Ultraliser is consistent and uncondi-
tionally robust, as it can systematically build adaptively optimized watertight triangular meshes and large-scale
annotated volumes from input data models with multiple formats including: (i) ill-conditioned, fragmented
and self-intersecting polygonal meshes with irregular topologies, (ii) cyclic and acyclic morphological graphs,
(iii) single-channel volumetric stacks given with user-specified isovalues, (iv) binary volume masks segmented
from microscopy stacks, and (v) tetrahedral volumetric meshes.

Contrary to traditional remeshing applications that use geometry-based methods57 to repair the geometric
topology of non-watertight meshes, the core engine of Ultraliser is designed based on efficient voxelization
kernels that create intermediate high resolution proxy volumes, with which we can extract continuous surface
meshes that are adaptively optimized and watertight, refer to Figure 1 and Supplementary Figure S2. The
core library of Ultraliser is exploited to develop several applications that can be part of a large-scale software
ecosystem for establishing fully automated neuroscientific pipelines involving multimodal simulation systems.
The current version of Ultraliser integrates the following applications:

1. ultraMesh2Mesh, restructures an input polygonal surface mesh composed of a set of unorganized
triangles with no defined connectivity—i.e. a triangle soup—into a smooth, optimized, two-manifold
and watertight triangular surface mesh.

2. ultraMeshes2Mesh, a similar application to ultraMesh2Mesh, but it produces a single output
watertight mesh from a list of non-watertight input meshes that have existing spatial relationship.

3. ultraMesh2Volume, reconstructs 1-bit (one bit per voxel) and 8-bit (one byte per voxel) volumes from
an input mesh that is not necessarily watertight and might have severe geometric deficits including self-
intersecting facets, fragmented partitions and even floating vertices.

4. ultraVolume2Mesh, generates a watertight surface mesh from a single-channel volume stack. The
surface of the resulting mesh is established based on a user-specified isovalue or range of isovalues.

5. ultraMask2Mesh, a similar application to ultraVolume2Mesh, but it takes an input binary mask
that is typically segmented from microscopy stacks, where the isosurface is already reconstructed as a set
of voxels.

6. ultraNeuroMorpho2Mesh, converts an input acyclic graph representing a neuronal morphology
skeleton into an optimized and continuous membrane with a biologically realistic 3D somatic profile
reconstructed on a physically plausible basis. Spines can be also integrated along the dendritic surface if
the morphology is reconstructed in a digital microcircuit2, where synaptic locations are determined.
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7. ultraAstroMorpho2Mesh, converts an input astrocytic morphology containing branching pro-
cesses and endfeet surfaces into an optimized and continuous membrane surface.

8. ultraVessMorpho2Mesh, converts an input cyclic graph representing a large-scale vascular network
into an optimized, watertight and multi-partitioned mesh model with accurate branching geometries.

9. ultraCircuit2Volume, takes an input microcircuit and a configuration file, and produces a volu-
metric tissue model that is tagged with multiple optical properties. The configuration file describes the
annotation details of the circuit10.

In the following sections, we demonstrate the significance of Ultraliser for in silico neuroscience taking
into account several use cases that involve multiple types of input structural data including: non-watertight sur-
face meshes of cellular and subcellular structures segmented from EM volumes and NGV (neuronal, astrocytic
and vascular) morphologies that are either segmented from optical microscopy stacks or generated synthetically.

2.2 Remeshing cellular and subcellular structures of the NGV ensemble
58

In the context of a recent collaboration between EPFL and KAUST, we developed a multi-stage framework
(imaging, segmentation, modeling, simulation and visualization) to re-create the NGV ensemble in silico58.
This framework aims to advance our understanding of the substantial role of cytoscale structures and functions
in controlling brain energy metabolism. Our fundamental objective is to digitally reconstruct 3D structural
models of NGV structures with realistic geometries to fuel detailed subcellular simulations59,60, allowing us
to investigate the biochemical and biophysical properties of oligocellular networks61. Realizing the objectives
of this framework, however, has been impeded by the lack of availability of topologically accurate watertight
meshes with which we can conduct the simulations or even skeletonize the meshes extracted in the segmentation
stage (Fig. 2a).

We acquired a 750,000 cubic micron volume from layer IV of the somatosensory cortex of a two-week-
old rat. Within this volume, a total of 186 structures were labeled, segmented, and classified into (i) cellular
structures including: astrocytes, neurons, microglia, pericytes and oligodendrocytes, (ii) subcellular structures
including: nuclei, mitochondira and endoplasmic reticula (ER), (iii) other fragmented structures including a
few blood vessel segments and a group of myelinated axons and (iv) other non-identifiable structures. From
this collection, the following complete structures — that are of central significance to our modeling objectives
— were segmented: four astrocytes, four neurons, four microglia, four pericytes and a single oligodendrocyte
in addition to the mitochondria of all the cells and the ER of the astrocytes (Supplementary Section 5).

A surface mesh model corresponding to each structure is exported into a Wavefront OBJ file for qualita-
tive and quantitative analysis (Supplementary Tables S3 and S4). From those 17 cells and their subcellular
structures, only the meshes of three pericytes and astrocytic ER were verified to be watertight, but they had
poor geometric topologies. Meshes of the remaining cells were confirmed to be non-watertight; containing
thousands of non-manifold edges and vertices in addition to tens of self-intersecting polygons.

7
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We then re-meshed all the cellular and subcellular meshes using ultraMesh2Mesh to reconstruct corre-
sponding watertight manifolds that are accurate and geometrically optimized (Methods). Geometric accuracy,
tessellation and topology of the resulting meshes are subject to two principal parameters: voxelization resolu-
tion and number of optimization iterations. Resolution is defined by the number of voxels per micron used to
rasterize the input mesh. Geometric accuracy is primarily measured by the Hausdorff distance and difference
in volume between the input and output meshes.

To estimate the optimum values of these two parameters, we constructed five analysis matrices for an ex-
emplar mesh (Astrocyte 4, shown in Fig. 2b) in which we can apply those optimum values to other cellular
meshes in the block. Figure 2c illustrates four quantitative matrices showing the effect of varying the two prin-
cipal parameters on the Hausdorff distance, number of vertices, surface area and volume of the output mesh.
The number of vertices determines the footprint of the resulting mesh. Essentially, the lower this footprint
is, the better for processing. However, the lower it becomes, the values of the difference in volume and Haus-
dorff distance between resulting and original meshes are increasing, which implies altering shape or losing detail
— for example, of a spine located along a dendritic branch. Therefore, we must combine the volume analysis
and Hausdorff distance matrices to determine convenient values of voxelization resolution and optimization
iterations that could preserve the geometry and volume of the original mesh (Supplementary Section 4). Fig-

ure 2d shows the effect of using one, five and ten optimization iterations on the tessellation and topology of
the resulting mesh. The full analysis matrix is shown in Supplementary Figure S4. From this analysis, the
optimum values were estimated to be five voxels per micron and five optimization iterations. Those values are
then used to re-mesh all the cellular meshes in the block. Supplementary Figures S5 - S26 (summary in Ta-

ble S6) reveal detailed quantitative, qualitative and visual comparisons (the results for Astrocyte 2 are shown in
Figure 2e) between the input and output meshes of the complete cellular structures shown in Figure 2a.

Subcellular meshes were re-meshed with higher voxelization resolution (10 voxels per micron) to ensure
resolving their fragmented and minuscule segments. Complete comparative analysis of the subcellular meshes
is shown in Supplementary Figures S29 - S53 (Table S7).

Resulting astrocytic meshes were therefore applicable for skeletonization, with which we have successfully
developed a novel pipeline to synthesize a digital reconstruction of the NGV ensemble at micrometer anatomical
resolution15. Moreover, all the resulting meshes were tetrahedralized using TetGen38 and Gmsh40 to create
corresponding volume, or simulation-ready, meshes for STEPS31 simulations with which we have successfully
completed the objectives of the collaboration. Simulation results are beyond the scope of this sequel.

2.3 Remeshing poorly segmented meshes with fragmented partitions and slicing artifacts

Dense reconstructions of brain circuits are made available with volume EM and advanced ML-based segmenta-
tion solutions, allowing us to render hundreds of thousands of cortical structures — including complete cells,
cell parts, cytoplasmic organelles and blood vessels — that are shared62 and made freely available online49,50,63,64.
A decent amount of the segmented structures are proofread to resolve false-split (fragmentation) and false-
merge (connectivity) errors. Nevertheless, pipelines involved in the segmentation process yield triangular mesh
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models characterized by sharp features, rough surfaces and high tessellation rates, leading to triangle soups with
giant numbers of geometric deficits. The meshes might have large discontinued partitions with overlapping
geometries (Figs. 3a, b, f ), gaps (Fig. 3j) and tiny disconnected fragments (Supplementary Fig. S75) due to
common slicing and misalignment artifacts65. Those poorly reconstructed and fragmented meshes cannot be ef-
fectively repaired — or remeshed to produce watertight counterparts — relying on geometric-based solutions57.
Thanks to its voxelization engine, Ultraliser can transparently handle these deficits and build a continuous,
adaptively tessellated and high resolution manifold of the entire structure with superior topology.

To accomplish this objective, we used ultraMesh2Mesh, with which the polygons of an input surface
mesh are independently rasterized into a volume grid, where self-intersecting and duplicate facets are implicitly
eliminated; they are rasterized to the same voxel or a neighboring one. This grid is then processed by isosurface
extraction kernels to produce an intermediate highly tessellated surface, which is smoothed, adaptively opti-
mized and finally verified to be watertight (Methods). Figure 3 demonstrates how effective Ultraliser can
be in processing an exemplar mesh —segmented from layer II/III of the visual cortex of a young rat— with
thousands of mesh partitions, self-intersections and other geometric artifacts. Supplementary Figures S55 -

S74 show comparative remeshing results for a small subset of meshes of pyramidal neurons (the full block is
shown in Supplementary Fig. S54) that were publicly provided by MICrONS program48,66. All the resulting
meshes are watertight and have a single mesh partition with a continuous manifold.

Segmented meshes suffering from slicing or alignment artifacts are, in certain cases, characterized by thin
gaps across their surfaces. Such gaps lead to surface discontinuity (Fig. 3j) or disconnected fragments of the
mesh (shown in red in Supplementary Fig. S75). Those gaps cannot be easily detected and might require
advanced and computationally intensive ML-based algorithms to identify and repair them. In our implemen-
tation, we extended the voxelization stage and integrated a 3-way solid voxelization algorithm, that is seamlessly
taking into account repairing those gaps, in which the interiors bounded by cell membranes are voxelized along
each axis independently and then merged into a single volume (Methods). Figures 3k, l, m illustrate the results
of remeshing a pyramidal neuron mesh with three obvious slicing artifacts (two of them exist on the soma and
one is located along a dendritic branch) into a continuous surface mesh at three different voxelization resolu-
tions. Supplementary Figure S75 illustrates a side-by-side comparison between an input mesh with several
artifacts and the resulting one from ultrasMesh2Mesh, in which all the gaps are filled to connect the dis-
connected fragments to the surface of the mesh to produce a continuous surface.

2.4 Generating biologically realistic neuronal meshes from digitized morphologies

There is a huge diversity of neuronal morphologies (mainly in SWC format) that is routinely used for sim-
ulating electrical activity in NEURON20 and its modern extensions67,68. Such diversity can be a significant
resource for performing meso-scale hybrid simulations combining electrophysiology with intracellular calcium
dynamics simultaneously69. However, this objective entails the development of a robust technique that can
construct biologically detailed and watertight neuronal mesh models consistent with their morphological coun-
terparts. Several applications were developed to create neuronal surface meshes from their corresponding mor-

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2022. ; https://doi.org/10.1101/2022.07.27.501675doi: bioRxiv preprint 

https://www.microns-explorer.org/
https://neuron.yale.edu
https://doi.org/10.1101/2022.07.27.501675
http://creativecommons.org/licenses/by/4.0/


Ultraliser Abdellah et al.

phologies (Supplementary Table S1). The majority was focused on building low-tessellated, non-watertight
and visually appealing mesh models that can be rapidly generated and efficiently used for visualization or in
visual analytics19,24,54,55,70. Only a few ones addressed the watertightness challenge, however, using simpli-
fied geometries and without support to integrate spine models56,71. We therefore implemented an application
(ultraNeuroMorpho2Mesh) capable of consolidating neuronal meshes combining both features, biolog-
ical realism and watertightness, irrespective to the conditions or topology of the input morphology.

To create an integrated mesh model of a spiny neuronal morphology, our implementation addressed four
principal challenges: (i) creating a plausible 3D somatic surface that can simulate the biological growth of the
soma relying merely on the initial segments of the neurites, (ii) creating neuritic arborization membranes with
non-overlapping geometries around their bifurcation points, irrespective to their branching angles, (iii) inte-
grating realistic spine models along the membranes of their dendritic branches, and finally (iv) optimization
and watertightness verification (Methods).

Digitized neuronal morphologies are composed of three distinct structural components: somata, neurities
and dendritic spines (Supplementary Fig. S76). Somata are typically approximated with geometric primi-
tives, mainly a sphere71, whose radius is computed based on the relative locations of the initial segments of each
neurite, or in some cases, cylinders72. Advanced traces digitize the soma into a two-dimensional (2D) contour
representing its projection along the optical axis. To reconstruct a plausible 3D somatic profile, we apply the
finite element method (FEM) approach73 to deform a volumetric model of an elastic sphere by pulling towards
each neurite in the morphology. This approach preserves the initial volume of the sphere, resulting into more
realistic somatic surface (Fig. 4a). Neurites are represented by directed acyclic graphs (DAGs) as a set of in-
terconnected nodes, each of which defines a 3D Cartesian position and radius (Fig. 4b), with which we can
reproduce cross-sectional variations and orientation of each segment in the morphology. A depth-first scheme
is used to construct a set of connected paths from the root node (or the soma) to the terminal ones. For each
path, a cross-sectional geometry is created as an independent proxy mesh (Fig. 4c) (Methods). The integra-
tion of the spines along dendritic membranes is optional; spines are not comprised by default within the mor-
phological descriptions of individual neurons loaded from SWC files. Spiny neurons are modeled after circuit
building2, where we can localize synapses and characterize their spine attributes. We designed a set of realistic
spine geometries (Supplementary Fig. S79) based on a few reconstructions of interneurons segmented from
the somatosensory cortex11. All the proxy meshes — of the soma, neurites and spines — are agglomerated and
rasterized in parallel to create a corresponding solid volume, with which the final mesh is generated (Methods).
Figure 4 illustrates the steps of building a mesh model of a spiny neuron from its morphology skeleton. The
resulting mesh is shown in detail in Supplementary Figure S80. Our implementation has been tested with a
group of 25 neurons with various morphological types16. Morphology files and resulting meshes are available in
the Supplementary Data.
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2.5 Generating astroglial meshes from complete synthetic morphologies

Complete astrocytic morphologies with endfeet reconstructions are sparse. NeuroMorpho.Org has ∼5,500
astrocytes , but none of them contains any endfeet descriptions; only the arborizations of perisynaptic and
perivascular processes. Based on a few reconstructions of complete astroglial morphologies11, we presented in
a recent study15 an effective method to synthesize biologically inspired, and complete, astrocytic morphologies
including endfeet patches (the skeleton of an astroglial morphology is shown Supplementary Fig. S77). The
objective of the study is to allow the creation of a huge diversity of astrocytic morphologies that can be used to
understand their structure-function relationship using molecular simulations.

We therefore complemented this effort and integrated a specific application (ultraAstroMorpho2Mesh)
to create simulation-ready astrocytic meshes from their morphological counterparts. The mesh generation al-
gorithm is similar to that used to create neuronal meshes, but in addition, endfeet proxy geometries are created
using implicit surface modeling (Methods). Figure 5 illustrates the results for reconstructing a watertight astro-
cytic mesh that is consistent with its morphological description. We also tested the implementation with a group
of 25 astrocytes sampled from different cortical regions and created their corresponding watertight manifolds
(Supplementary Data).

2.6 Generating continuous cellular meshes from fragmented components

We extended the re-meshing pipeline and integrated another application (ultraMeshes2Mesh) that agglom-
erates a list of fragmented meshes —that are spatially overlapping— into a single and continuous watertight
mesh. This extension, however seamless, enables the reconstruction of ultrarealistic cellular models based on
existing meshing implementations (Supplementary Table S1), in which we can assemble 3D mesh models of
different cellular components generated independently by multiple third-party applications into a single water-
tight mesh with continuous surface (Methods). For instance, ultraNeuroMorpho2Mesh uses the FEM
to reconstruct a plausible 3D surface of the soma, but meanwhile, there are other advanced implementations
that use Hooke’s law and mass-spring models to reconstruct 3D somatic profiles with more realistic shapes,
which could ultimately improve the realism of resulting neuronal meshes. This can be demonstrated with the
Soma Reconstruction Toolbox in NeuroMorphoVis19, where users can fine tune the parameters of the soma
reconstruction algorithm and validate the resulting profile with respect to a segmented ground-truth mesh.
Supplementary Figure S81 provides an example of creating a watertight mesh of a spiny neuron from a set
of input meshes, each represents a single component of the neuron (soma, arbor, or even a spine). ultra-
Meshes2Mesh can therefore be seen as a complementary or post-processing application that can ensure the
watertightness of resulting mesh models of NGV cellular structures created by other software applications.

2.7 Generating vasculature meshes from corresponding graph networks

Another application is developed to create ‘multi-partitioned’ watertight mesh models of large-scale cerebral
vascular networks. This application is intended to confront the rising trend to automate the reconstruction of

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2022. ; https://doi.org/10.1101/2022.07.27.501675doi: bioRxiv preprint 

neuromorpho.org
https://github.com/BlueBrain/NeuroMorphoVis/wiki/Soma-Reconstruction
https://github.com/BlueBrain/NeuroMorphoVis
https://doi.org/10.1101/2022.07.27.501675
http://creativecommons.org/licenses/by/4.0/


Ultraliser Abdellah et al.

accurate 3D models of brain vasculature, with which we can analyze their structural angioarchitecture and char-
acterize their dynamic behavior17,75. The networks are typically segmented into vectorized graphs, i.e. center-
lines with point-and-diameter representations (the structure of a vascular morphology graph is shown in Sup-

plementary Fig. S78). Those graphs are becoming imperative for performing vascular simulations, whether
used in vectorized format in 1D compartmental simulations or being converted into alternative formats, for ex-
ample, into tetrahedral meshes that can be applied in reaction-diffusion simulations. Such simulations pave the
way to understand how our brains meet the energy demands of neuronal computations. Nevertheless, creating
such ‘simulation-ready’ vascular models from segmented data is challenging.

The first challenge is the fragmentation of the network. Even with current state-of-the-art imaging and
segmentation protocols, it is near impossible to reconstruct a full – and accurate – high resolution cerebral
vascular network segmented into a single and connected graph76. Resulting graphs are typically composed of
multiple disconnected partitions, which complicates the creation of watertight meshes if the partitions are self-
intersecting. The second challenge is the scale of segmented networks, which has been exponentially growing
due to the recent advances in lightsheet imaging and Clarity77,78, allowing to create whole-brain vascular maps
down to capillary level79. The third challenge is the segmentation quality of the vessel network; in particular
for small vessels, the quality is not optimum, and the resulting skeletons might have severe topological artifacts
around branching terminals. Therefore, typical meshing algorithms of branching structures would fail to build
watertight meshes of such complex geometries.

There are plenty of tools that can be used to visualize the graphs, but only a few are capable of visualizing
large-scale graphs26,80. Some tools26,54 can also create surface meshes from their corresponding morphologies,
but usually the results are not watertight, particularly for dense graphs. To fill this gap, we designed ultraV-
essMorpho2Mesh, a vasculature-specific application that can efficiently convert large-scale networks of vas-
cular morphologies into multi-partitioned and adaptively optimized watertight meshes with smooth branching
geometries. Our algorithm handles an input graph as a linear list of sections without the necessity to have prede-
fined connectivity information. Initially, the morphology skeleton is analyzed, where high frequency variations
in cross-sectional radii are filtered and short sections are eliminated (Fig. 6b). Each section in the graph is in-
dependently converted into a proxy mesh. However, and to guarantee the connectivity of branches along the
surface of the final mesh, we add multiple sphere meshes (icospheres) at both terminals of the section. All the
proxy meshes are then rasterized and converted into a solid volume, with which the final mesh is generated
(Methods).

Due to the cyclic nature of vascular graphs, there is a high possibility that our slice-based solid voxeliza-
tion algorithm will fail. We therefore use 3-way solid voxelization instead of 1-way voxelization, in which the
flood-filling algorithm is applied on every principal axis independently. Prior to the optimization stage, the dif-
ferent partitions in the polygonized mesh object are split and optimized individually. After optimization, these
partitions are regrouped again in a single mesh object (Methods). Figure 6 depicts the stages of processing a
fragmented vascular network towards reconstructing a high fidelity watertight surface mesh with multiple par-
titions. Supplementary Figure S83 shows the results of converting a more complex vascular network into a
watertight mesh with ultraVessMorpho2Mesh and ultimately into a tetrahedral one using TetGen38.
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2.8 Generating annotated 3D tissue volumes from digital circuits

We also extended Ultraliser to create annotated voxel-based tissue models from surface meshes of neuronal
morphologies. Voxel-based models are becoming essential, not only for visual analytics, but also for performing
in silico optical imaging experiments that simulate light interaction with brain tissue using physically plausible
Monte Carlo visualization10. Simulation applicability and even its accuracy are subject to two factors. First, the
derivation of advanced mathematical formalism of the radiative transfer equation (RTE) that could account
for absorption, scattering and, in certain cases, fluorescence. Second, the existence of biologically realistic 3D
models that account for (i) the optical properties of brain tissue across its different regions at microscopic levels
and (ii) the spectral properties of fluorescent dyes used in wet lab experiments for cell labeling.

What is missing then? RTE was extended to model light interaction with low- and high-scattering fluo-
rescent participating media35,81, recent experiments were able to build accurate 3D brain atlases mapping the
different optical properties of the tissue82, and fluorescence databases are available online, where spectral prop-
erties of common fluorescent dyes are provided. The only missing element is a robust application capable of
creating detailed biologically and optically accurate volume models of cortical circuits. To address this issue, we
implemented ultraCircuit2Volume.

Our implementation uses the information retrieved from the circuits that are digitally reconstructed by the
Blue Brain Project2,74. These circuits identify neuron types, their coordinates and orientation. Starting from
raw morphologies, corresponding surface meshes are generated either with Ultraliser directly or relying on
third-party applications, such as NeuroMorphoVis19. Meshes are then rasterized in voxel grids, where each
voxel is annotated with location-specific optical properties. In case of fluorescence, voxels corresponding to
intracellular spaces are annotated with the spectral parameters of fluorescent dyes (Methods). The resulting
volumes are used with recently developed in silico imaging simulators10 to create synthetic optical sections of
cortical tissue models, on physically plausible basis (shown in Fig. 7).

2.9 Comparative analysis with existing frameworks

To demonstrate the critical significance of Ultraliser and its accompanying applications, we performed de-
tailed quantitative and qualitative comparisons with relevant open source frameworks that are used for remesh-
ing and mesh reconstruction from morphologial skeletons of neurons (Supplementary Table S1) and vascular
networks (Supplementary Table S2). Comparative results and their analysis are discussed in detail in Supple-

mentary Section 13. From the comparisons presented in Supplementary Figures S85 - S89, Ultraliserhas
demonstrated obvious superiority in terms of topology, tessellation, watertightness and its robust performance.

3 Conclusion

Biologically realistic simulations are indispensable for revealing the structure-function relationships within and
among brain cells. Driven by a quantum leap in computing technologies, in silico brain research is complement-
ing in vivo and in vitro methods. Meanwhile, advances in imaging technologies and automated ML-based seg-
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mentation algorithms are boosting the creation of detailed and anatomically realistic 3D neuroscientific models
that are fueling simulation-based research. The goal of Ultraliser is to provide a systematic and robust frame-
work for creating accurate watertight meshes and high resolution annotated volumes of 3D brain structures that
can be integrated in multimodal supercomputer simulations. On one level, Ultraliser unconditionally rec-
tifies non-watertight mesh models that cannot be repaired with existing remeshing solutions. On another level,
it has native support to create ultrarealistic watertight meshes and annotated volumes of NGV models from
their morphological descriptions. The framework has a modular and extensible architecture, making it possible
to integrate further relevant applications that are of paramount importance in structural systems neuroscience.
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Methods

Ultraliser: an overview

Ultraliser is an unconditionally robust and optimized framework dedicated primarily to in silico neuro-
science research, allowing to generate high fidelity and multiscale (from subcellular and up to multicellular
scales of resolution: 100 nm - 1 mm) 3D neuroscientific models — such as: nuclei, mitochondria, endoplasmic
reticula, neurons, astrocytes, pericytes, neuronal branches with dendritic spines, minicolumns with thousands
of neurons and large networks of cerebral vasculature — with realistic geometries. Ultraliser implements an
effective voxelization-based remeshing engine that can rasterize non-watertight surface meshes —in the form of
triangular soups— into high resolution volumes, with which we can reconstruct topologically accurate, adap-
tively optimized and watertight surface manifolds (Supplementary Fig. S1). In addition to their importance for
accurate quantitative analysis, resulting models are primarily intended to automate the process of conducting
supercomputer simulations of neuroscience experiments; complementing in vivo and in vitro techniques. Wa-
tertight triangular meshes are used for (i) performing 3D particle simulations, (ii) mesh-based skeletonization,
in which accurate morphologies of cellular structures are obtained for performing 1D compartmental simula-
tions and (iii) tetrahedralization, where we can generate tetrahedral volume meshes for 3D reaction-diffusion
simulations. Annotated volumetric tissue models are also used in in silico imaging studies, where we can sim-
ulate optical imaging experiments with brightfield or fluorescence microscopy10. Ultraliser’s workflow is
graphically illustrated in Figure 1 and a detailed schematic showing the ecosystem and relationship between its
different modules is illustrated in Supplementary Figure S2.

The code is open sourced under the GNU General Public License version 3.0 (GPL), and is available for free
on GitHub at https://github.com/BlueBrain/Ultraliser. Documentation and tutorials are available online at
https://github.com/BlueBrain/Ultraliser/wiki. Quantitative and qualitative analysis scripts used in this study
are also open sourced and integrated into NeuroMorphoVis19 (github.com/BlueBrain/NeuroMorphoVis). Im-
ages, movies and datasets produced in this study are publicly available on Zenodo (10.5281/zenodo.7105941).

Data structures

Ultraliser is a C++ based library accompanied by several usecase-specific applications that can generate 3D
models in two principal formats: watertight triangular surface manifolds and annotated, or tagged, volumes
from a diverse set of input data formats including (i) digitized morphology skeletons, (ii) fragmented, self-
intersecting and non-watertight polygonal surface meshes, (iii) binary volume masks, (iv) grayscale volumes,
and (v) tetrahedral volume meshes (Supplementary Fig. S1a). Resulting watertight meshes can be further
processed and converted into morphology skeletons or volume meshes relying on existing mesh-based skele-
tonization or tetrahedralization applications respectively.

Morphology skeletons Neuroscientific 3D models with branching topologies —that are traced from optical
microscopy stacks, for example: neurons, astrocytes and vasculature— are segmented, digitized and typically
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stored as morphology skeletons. 3D models acquired with electron microscopy11,58 are further processed and
converted into morphology skeletons using skeletonization83,84. Neuronal morphologies are commonly stored
in the standardized SWC file format16. This format is also used to store processes of astroglial cells, but it does
not account for any endfeet information, which is typically stored as trianglular patches and requires custom
file formats that can combine branching and surface data15,25. The SWC format is adopted by the NeuroMor-
pho.Org16 database, which contains hundreds of thousands of neuronal and astrocytic morphologies collected
from a huge diversity of experiments. The SWC format has been also adapted to store cerebral arterial arboriza-
tions, for instance the datasets of the Brain Vasculature (BraVa)18 database (cng.gmu.edu/brava). Ultraliser
has full support to load SWC morphologies of neurons, astrocytes and cerebral vasculature. Moreover, it sup-
ports loading customized file formats such as (i) H5 morphologies that were defined within the scope of the
Human Brain Project85 and (ii) the VMV format that is used to store vascular morphologies supported by Vess-
MorphoVis26. Morphology skeletons are represented by a list of connected morphological samples, where each
sample has a unique identifier, 3D Cartesian coordinate, cross-sectional radius, and optionally an index char-
acterizing the type of the branch it belongs to. A pair of adjacent samples defines a segment or an edge, and
a concatenated list of adjacent edges between two branching points defines a section or strand. In memory,
morphologies are stored as a linear list of sections, where each section has a unique index and references to its
parent and child sections. Those references are used to reconstruct the hierarchical organization of the mor-
phology when required. The structures of neuronal, astrocytic and vascular morphologies are illustrated in
Supplementary Figures S76, S77 and S78 respectively.

Polygonal surface meshes Ultraliserhas native support to import and export polygonal surface meshes with
multiple file formats including those that are commonly used for visual analytics with Blender86 (blender.org)
or MeshLab87 (meshlab.net), such as OBJ and PLY, and also those required for 3D printing, molecular simu-
lations and conversion into tetrahedral meshes by tetrahedralization applications38,39 such as STL and OFF file
formats. The meshes downloaded from the MICrONS program48 are stored in H5 files based on the HDF588

library. Although this format is not standard, it is straightforward to reconstruct the triangulation of the mesh.
Ultraliser implements two complementary data structures to store ‘triangular’ surface meshes. The first data
structure Ultraliser::Mesh is a light version that only stores vertices and triangles. It has low memory footprint,
allowing to perform most of the operations that do not necessitate any details of surface normals, edges or patch
connectivity. The other data structure Ultraliser::AdvancedMesh is much more advanced and stores further
information including surface normals, edges, connectivity between vertices, edges and triangles. This structure
has been adopted fromMeshFix89 and adapted to address the essential requirements needed to accomplish the
objectives of the framework. It is mainly used for repairing any geometric deficits in the mesh, detecting frag-
mented mesh partitions, removing self-intersecting triangles and also for watertighntess verification.

Volumetric models sampled on 3D Cartesian grids Ultraliser processes and creates volume models sam-
pled uniformly on 3D Cartesian grids. Ultraliser can import and export several volume formats including:
1-bit binary volumes (in BIT/HDR format), 8-, 16-, 32- and 64-bit volumes (in RAW/HDR and NRRD for-
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mats) and TIFF image stacks. The HDR file is an ASCII file that contains the volume dimensions, i.e. the
number of voxels along each axis, and the precision of the data. Ultraliser::Volume implements three different
types of grids. Ultraliser::BitVolumeGrid uses bit-arrays90 (Ultraliser::BitArray) to represent every voxel in
the volume by a single bit in memory. The voxel is either set or unset; this is sufficient to voxelize the interior
of a polygonal mesh. By default and unless otherwise specified, this data structure is used by the voxelization
kernels, making it possible to process large scale volumes efficiently with reduced memory footprint. Ultra-

liser::UnsignedVolumeGrid stores every voxel in the volume in either 1, 2, 3, or 4 byte(s) in memory, allowing
to define a grayscale volume. Ultraliser::VoxelGrid stores a list of attributes per voxel, for example: its value,
an index representing the optical properties of a participating medium or a sub-region in the volume it belongs
too. This data structure is mainly used for creating tagged volumes that are needed to create physically plausible
visualizations that can simulate optical imaging experiments35,81.

Voxelization and volume reconstruction

Voxlization is the process of creating 3D volumes of geometric models either from their parametric represen-
tations or from polygonal or polyhedral, tetrahedral and hexahedral meshes. Voxelization is classified into two
categories: surface and solid voxelization. Surface voxelization creates volumetric shells representing boundaries
of surface manifolds as a series of connected voxels–if no holes exist on the surface, while solid voxelization fills
their interiors91.

Surface voxelization We implemented a fast data-parallel surface voxelization algorithm, which sets all the vox-
els that overlap with any triangle in a given mesh using conservative rasterization92. In contrary to standard
rasterization, the conservative criterion guarantees that a voxel is filled if it is partially overlapping or even touch-
ing a triangle. The algorithm can reconstruct a volumetric shell corresponding to the extent of a given triangle
soup, even in the presence of self-intersecting triangles, non-manifold edges and non-manifold vertices93. The
bounding box of each voxel is computed from its three-dimensional index and side length. For every triangle
in the mesh, a box-triangle intersection test is performed to rasterize all the polygons in the mesh and create a
volumetric shell that reflects the surface of the mesh94. Note that all the n-gons (n > 3) in the input mesh are
automatically split into triangles prior to voxelization.

Solid voxelization Conventional solid voxelization algorithms in computer graphics require a watertight man-
ifold to successfully voxelize its interior into occupancy grids. By definition, a watertight mesh consists of a com-
pact manifold that has clearly defined inside and does not contain any holes across its surface; that is if the surface
is punctured with a hypodermic needle trying to fill it with water, it will not leak. A triangular mesh is guaran-
teed to be watertight – if and only if – it has no self-intersecting triangles, zero non-manifold edges, zero non-
manifold vertices, and no boundary edges (Supplementary Section 4). In reality, and unfortunately, neurosci-
entific mesh models segmented from microscopy stacks have ill topologies with hundreds or even thousands of
self-intersections, non-manifold edges and vertices and even fragmented mesh partitions. Major contributions

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2022. ; https://doi.org/10.1101/2022.07.27.501675doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501675
http://creativecommons.org/licenses/by/4.0/


Ultraliser Abdellah et al.

have been introduced to fix the topology of these meshes using geometric mesh conditioning52,95, nevertheless,
their solutions are neither robust nor scalable, based on trials. Therefore, existing solid voxelization algorithms
would fail to handle detailed mesh reconstructions with realistic geometries. Contrary to traditional methods,
we present an efficient data-parallel, slice-based solid voxelization algorithm that does not entail an input water-
tight mesh. Initially, the surface voxelization algorithm converts a given triangular mesh into a volumetric shell
in a uniformly sampled 3D Cartesian grid. The rasterization is binary, where each voxel in the grid is either set
or cleared. The interior of the shell can be filled using 3D flood-filling. However, this algorithm is accompanied
with extensive computational loads and cannot be easily parallelized. Our algorithm is based on 2D flood-filling
that can be implemented in parallel. The 2D flood-filling kernel is applied independently to each slice in the vol-
ume. The aggregate result is exactly similar to what can be accomplished with 3D flood-filling, but in much less
time.

3-way solid voxelization By default, the solid voxelization algorithm is applied on a per-slice-basis along the
Z-axis of a given volume grid, where each slice is processed, or flood-filled, in a separate thread, independently.
Certain structures, for example vascular morphologies – represented with cyclic graphs – have loops. In the
general case, the flood-filling algorithm is unable to identify any internal boundaries beyond the first one de-
tected. Therefore, running the flood-filling kernel along a single axis will fail to capture the entire geometry of
an input mesh. To resolve this constraint, we implemented a 3-way solid voxelization algorithm which processes
the volume along the X, Y and Z axes to produce three volume grids that are combined later with a logical AND-
ing operation to obtain the final grid. This approach makes it possible to resolve all the loops in a given cyclic
structure.

Mesh reconstruction

The binary volume resulting from the voxelization operation is then processed to reconstruct a smooth, op-
timized and watertight triangular mesh in four principal steps: (i) isosurface polygonization, (ii) Laplacian
smoothing, (iii) adaptive or non-adaptive mesh optimization and (iv) watertightness verification.

Isosurface polygonization Ultraliser integrates efficient implementations of two popular isosurface extrac-
tion algorithms: the default marching cubes (MC) algorithm96 and its superior, dual marching cubes (DMC)97.
MC is relatively faster than DMC, but in certain cases it cannot reproduce rough surfaces with high frequency
structures or sharp edges, while DMC can preserve thin surface features without excessive tessellation. The
DMC algorithm reconstructs quadrilateral patches, but for consistency, every tetragon –or quadrilateral– cre-
ated is divided and stored as two triangles with a shared edge. Moreover, MC cannot handle complex trian-
gulation configurations, leading to self-intersecting faces and consequently non-watertight meshes. Adaptive
optimization and watertightness verification are, however, implemented in subsequent stages whether any of
the two algorithms is used for surface reconstruction. Therefore, using MC or DMC would ultimately yield an
optimized and watertight mesh.
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Surface smoothing Due to the finite resolution of volumes, and their discretized nature, polygonal meshes
reconstructed from those volumes exhibit zigzagged or ‘staircase’ artifacts on their surfaces (Supplementary

Fig. S1a). Such artifacts distort the organic appearance of the resulting meshes, unless surface smoothing is
applied. We therefore use the Laplacian operator to remedy those staircase artifacts in an iterative scheme. Ini-
tially, we build a list of neighbor vertices and faces for each vertex. In each iteration, it uses the aforementioned
lists to compute a smoothing kernel for each vertex, applies it and then updates the mesh surface to prepare it
for the next iteration. To compute the kernel, we identify the difference between the vertex and the arithmetic
sum of the neighbour vertices, each weighted by their average cotangent. To compute the average cotangent,
we use the two cotangents calculated from the two neighboring vertices of the edge formed by the vertex to the
neighbour. To obtain the smoothed vertex, we linearly interpolate between the original vertex, and the original
vertex weighted by the kernel. The interpolating parameter, also called the smoothing value, is an input to the
algorithm chosen by the user, which must be greater than zero to have an effect. Additionally, an inflate param-
eter –also provided by the user– can be specified to dampen the shrinking effect on thin parts of the mesh. This
parameter is used in the same form as the smoothing value, but with the opposite effect, and its value must be
less than zero to have an effect.

Mesh optimization Irrespective to the applied surface extraction algorithm, the tessellation of the reconstructed
surface depends primarily on the resolution of the volume grid that is used to sample and voxelize the input
mesh. For convenience, the resolution is set in terms of number of voxels per microns. The resolution is a
free parameter that is either controlled by the user or automatically set based on the axis-aligned bounding box
(AABB) of the input mesh, the size of the finest detail in the mesh and the scale or focus of the potential ex-
periment in which the resulting mesh will be plugged in. Ultraliser takes advantage of binary volume grids,
in which each voxel is represented in memory with a single bit; it is therefore capable of creating large scale vol-
umes which can resolve the finest features of an object, for example: the ultrastructure of a dendritic spine in
tall-tufted layer 5 pyramidal neurons98. With such resolutions, the reconstructed mesh is excessively tessellated,
possibly with tens of millions of polygons, whose practicality is undoubtedly questionable. Ultraliser in-
tegrates a mesh optimization module that can adaptively refine highly tessellated meshes to create optimized
counterparts with preserved features. The mesh optimization module extends an existing implementation99

that uses an angle-based approach for adaptive tessellation and normal-based smoothing to guarantee the qual-
ity of the resulting surface. The optimization process includes: surface smoothing, normal smoothing, flat
coarsening, dense coarsening and also adaptive optimization.

Watertightness verification The optimized meshes are guaranteed to have good topology and convenient poly-
gonization, nevertheless, their watertightness is not guaranteed; the optimizer might introduce self-intersecting
triangles depending on surface complexity and roughness. Watertightness has been addressed by extending an
existing solution based onMeshFix89 that uses a heuristic iterative approach that strives to reconstruct a single
compact manifold with neither degeneracies nor self-intersections from a low quality input.
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Meshes with multiple partitions In certain cases, 3D models of cellular structures are not composed of a single
and continuous object (or partition), but rather of multiple fragmented objects that could be spatially overlap-
ping. This fragmentation is common due to labeling or tracing artifacts that arise during the segmentation of
cellular models characterized with complex or thin structures100 such as astrocytes, neurons or microglia (refer
to Supplementary Table S3 - Partitions). Applying mesh reconstruction kernels to segmented volume stacks of
such cellular models will result in polygonal surface meshes with multiple partitions, in which each partition is
isolated as an independent set of polygons, nevertheless, and is still part of the mesh. Mesh analysis applications
expect a watertight mesh to have a single partition represented as a set of connected vertices, edges and faces
on a continuous manifold. Processing fragmented meshes with multiple partitions requires special handling to
avoid generating incomplete or even non-watertight meshes. We allow the user to choose either to process the
largest partition in the mesh and remove the other ones or to preserve all the partitions in the mesh. In the latter
case, each partition is split and treated as an independent mesh object during the optimization. Afterwards, all
the partitions are grouped together in a single mesh objects.

Watertight mesh generation from input triangle soup

Triangular soups of fragmented non-watertight meshes are processed to create watertight counterparts in two
steps: voxelization and isosurface polygonization. Initially, the input mesh is triangulated, in which each poly-
gon (n-gon: n > 3) in the mesh is split into a list of corresponding triangles. The AABB of the mesh is then com-
puted. Based on the dimensions of this AABB and the voxelization resolution (in voxels per micron) defined by
the user, a binary 3D volume grid is created to cover the spatial extent of this AABB. The mesh is converted into
a volumetric shell using surface voxelization, where every triangle along the surface of the mesh is independently
rasterized in the volume grid. The interior of the resulting volumetric shell is then filled using solid voxelization;
a 2D flood-filling kernel is applied independently to every slice in the grid along the Z-axis. If the input mesh was
suspected to have loops, 3-way solid voxelization is then performed, in which the flood-filling kernel is applied
along the X, Y and finally the Z axis. In the second stage, the binary volume grid is processed by a user-selected
isosurface polygonization kernel (MC or DMC) to reconstruct a low-quality triangular mesh. This mesh is
then post-processed to generate an optimized watertight manifold in three steps: (i) surface smoothing using
the Laplacian operator, (ii) re-tesselation to remove unnecessary small triangles resulting from the polygoniza-
tion process, and (iii) watertightness verification, ensuring that all self-intersecting triangles, boundary edges,
floating vertices and non-manifold edges and vertices are removed.

Watertight mesh generation from input morphology skeletons

The conversion of morphology skeletons into watertight meshes is performed in two steps: (i) creation of in-
termediate proxy meshes that can be accurately rasterized into volumetric grids and (ii) applying the remeshing
routine used to create watertight meshes from triangle soups. These proxy meshes are known to be spatially over-
lapping and self-intersecting, but they are only used to rasterize the geometry of every section in the morphology
into the volume grid. We implemented two algorithms to build these proxy-meshes. The first one converts ev-
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ery section in the morphology into an independent mesh. Each mesh is overlapping with its adjacent ones that
correspond to parent and child sections in the morphology. To guarantee the continuity between the neigh-
boring sections at their branching points, packing spheres are added. The radius of every sphere is computed
based on the largest terminal sample of all the sections connected at the respective branching point. This algo-
rithm is optimum to reconstruct vasculature meshes from their corresponding morphologies and, in general,
can be applied to handle structures with cyclic graphs. The other algorithm computes the longest connected
paths along the graph of an input morphology to create a proxy mesh, not on a per-section-basis, but rather
on a per-path-basis. Every path is a continuous list of samples that can represent an individual section or an
aggregate of two adjacent sections or more. This algorithm is well suited to handle morphologies with directed
acyclic graphs, including neuronal arborizations and astroglial processes. As illustrated in Supplementary Fig-

ures S76, S77 and S78, each section in the morphology is composed of a sequence of samples, each defines a
position and radius. For each section, or path, a mesh is reconstructed by resampling the corresponding seg-
ments using the cubic Hermite spline interpolation. The positions and tangents of the new samples are defined
by Supplementary Equations 1 and 2. To avoid loops or self-intersections between the different sections in
the reconstructed mesh, the tangent at each original segment point is computed using the Centripetal Catmull-
Rom spline formulation, that uses the positions of the previous and next samples to the current segment, as
shown by Supplementary Equations 3 and 4. Once all new samples of the section are computed, a sectional
geometry in the form of circumference is used to interpolate along the path to construct a connected vertex
assembly in the form of a tubular mesh (Supplementary Section 9).

Watertight mesh generation from input volumes

Input volumes are directly converted into watertight meshes using isosurface polygonization followed by water-
tightness verification. 1-bit volumes, binary volumes or segmented masks are directly processed to reconstruct
a surface mesh. However, n-bit grayscale volumes, where n is 8, 16, 32 or 64, require specifying an additional
parameter to complete the process: the isovalue, with which an isosurface is segmented and used for surface
reconstruction.

Volume generation from input meshes or morphologies

Volume generation is implicit; it is automatically implemented within the remeshing pipeline during the vox-
elization stage. Unless specified, resulting volumes are binary, in which every voxel is represented by a single
bit, and therefore, these volumes are not annotated to account for any variations across the spatial extent of
the volume. To create annotated volumes, Ultraliser::VoxelGrids are used for voxelization, in which we can
assign annotation indices to every voxel in the grid. Volumes can be exported into BIN (1-bit), RAW (8-bit) and
NRRD (8-bit) files.
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Tetrahedralization

Ultraliser reads tetrahedral meshes for the purpose of data conversion between formats, i.e. to create water-
tight surface meshes and volumes from tetrahedral inputs using ultraTet2Surface. However, it does not
implement any tetrahedral mesh generators within its pipeline to create meshes in a direct manner. For this
purpose, we rely on existing implementations, mainly TetGen38 (tetgen.org) andGmsh40 (gmsh.info), which
can complement our pipeline to create tetrahedral volumetric meshes from the watertight meshes created by
Ultraliser.

Generating biologically realistic neuronal meshes from digitized morphologies

A 3D somatic profile is created based on a finite element method (FEM) approach73. The algorithm takes into
account the coordinates of the initial segments of the neurites that only emanate from to the soma. The con-
nected neurites are identified in a pre-processing step, in which the distance between their initial segments to the
center of the soma is evaluated and relatively compared with respect to its average radius. The soma is initially
modeled by a tetrahedral icosahedron (or icosphere) approximating the mean radius of the soma. Projective
mapping is then applied, where cross-sectional areas of the initial segments of the connected neurites are pro-
jected onto the ico-sphere. Vertices located within every projection surface are selected and grouped together to
identify their center. Simultaneously, a pulling force is applied at every center to deform the ico-sphere towards
the neurites, giving it a realistic profile.

Every tree corresponding to an individual neurite in the morphology is then processed and converted into
a proxy mesh. As aforementioned, proxy meshes are not watertight, but they are essential to reconstruct a
volumetric shell in the following voxelization stage. Mesh branching at bifurcation (or trifurcation) points is
not explicitly implemented; most mesh branching algorithms at small branching angles (less than 30°) fail to
reconstruct an organic and accurate bifurcation geometry. To guarantee continuous branching, whatever the
conditions at the bifurcation point, we implemented an exhaustive algorithm that builds all the possible paths
starting from the soma and until the terminal segments. At every section in the morphology, the algorithm re-
constructs all the path combinations between the section itself, its parent section and the child sections. These
formed paths are considered as independent polylines with thickness. Each segment of the path is resampled
using the cubic Hermite spline interpolation to compute the positions and tangents of the new generated in-
termediate nodes. Once all new nodes of the path are computed, to mesh the complete polyline, a sectional
geometry in the form of circumference is placed at the origin of coordinates of the plane defined by the position
and the tangent at each node. The tangent of the node is taken as the normal vector of the plane. Finally, since
the sectional geometry keeps the same number of vertices along the path, the vertex assembly consists in a simple
connection between the already sorted vertices.

To improve the realism of the resulting mesh models, we extracted ∼50 spine meshes (Supplementary

Fig. S79) from the four neurons shown in Supplementary Figures S10 - S13. Each neuronal mesh is loaded in
Blender, where spine geometries are visually identified. Afterwards, and for each spine, we created a bounding
box covering its spatial extent and overlapping with the dendritic section it emanates from. We then applied, per
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spine, a mesh intersection operator to extract its geometry as an independent object. The spines are oriented
along the Y-axis after identifying their base and apex. Spine geometries are then processed to clean any self-
intersecting facets along their surfaces, optimized and finally exported as independent mesh objects.

Generating astroglial meshes from complete synthetic morphologies

In terms of representation, processes of astroglial cells are similar to neuronal arborizations, except that they
have relatively compact extents and star-shaped structure, and are excessively oversampled in certain cases15.
Moreover, astrocytic morphologies contain triangular surface patches that represent their endfeet geometries
(Supplementary Fig. S77). Therefore, the same routine used to reconstruct neuronal meshes is applied to
build astrocytic somata and processes. We then extended the implementation to generate endfeet proxy meshes
using implicit surfaces. Endfeet patches are composed of a set of connected triangles and their respective vertices,
and each vertex has a specific diameter that accounts for thickness at this particular vertex. Implicit surface
modeling requires sufficient vertex density to avoid fragmented mesh partitions. Accordingly, we resample the
surface of every endfoot patch, in which the distance between any two connected vertices across the patch is
greater than the thickness of the endfoot. Following to the rasterization of the somatic and processes proxy
meshes, resulting endfeet proxy meshes are rasterized to create a continuous volume shell of the entire astrocyte
morphology. Surface reconstruction routines (MC or DMC) are directly applied on the resulting volume shell
without applying solid voxelization. During the surface optimization process, all the internal mesh partitions are
automatically removed. The partition with largest surface area (or tessellation), which represents the astrocytic
membrane, remains.

Generating continuous cellular meshes from fragmented components

In general, ultraMeshes2Mesh can compile a group of individual meshes into a single mesh object. If the in-
put meshes are not spatially overlapping at all, then the resulting mesh will be composed of multiple partitions.
In case that all the input meshes are overlapping, the output mesh will have a single partition with a continuous
manifold. We therefore can use this application to generate ultrarealistic structural mesh models of neurons or
astrocytes relying on a combination of already existing methods that are summarized in Supplementary Ta-

ble S1. For neurons, we can use the Soma Reconstruction Toolbox in NeuroMorphoVis19 and create a plausible
somatic mesh. Skin modifiers in Blender (blender.org) can also be used to generate neuronal arborizations with
organic-looking or realistic branching structure24. These individual meshes —of the soma and arborizations—
can be combined together to generate a single mesh object with a continuous cellular surface. If spine meshes are
available101, even at a later stage, we can also integrate them along the dendritic surface of the resulting mesh to
create an integrated spiny mesh model of the neuron (as shown in Supplementary Figure S81). Nevertheless,
it is the responsibility of the user to ensure that all the meshes of the cellular components (soma, neurites and
spines) are spatially overlapping without having any gaps either between parent and child sections or between
the soma and the all branches that originate from it, to be able to establish a single continuous surface manifold.
ultraMeshes2Mesh loads a list of meshes grouped in a single input directory and computes an aggregate
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bounding volume, with which we can identify the spatial extent of the resulting mesh. Based on the voxeliza-
tion resolution specified by the user, a binary volume grid is created, where the input meshes are rasterized, in
parallel. The interior of the grid is filled with solid voxelization to create a homogeneous volume, with which
the surface mesh is reconstructed, optimized and verified to be watertight.

Creating vasculature meshes from corresponding graph networks

Frequently, vascular skeletons vectorized from optical microscopy stacks are excessively oversampled. We ac-
cordingly apply adaptive resampling to every section in the morphology to remove any unnecessary samples
while preserving its structure. In certain cases, resampling reduces the total number of samples by 60-70%, thus
lessening the tessellation of the proxy meshes created on a per-section-basis. To avoid fragmentation artifacts, we
identify the samples with the least radii across the entire morphology, with which we can identify the most con-
venient voxelization resolution needed to preserve the integrity of the final vascular mesh, avoiding the structural
fragmentation that arise due to surface smoothing and optimization. Samples with comparatively small radii
–or zero-radius samples– are interpolated, and short sections with zero-length edges are eliminated. To ensure
continuity between interconnected sections, i.e. smooth and accurate branching geometries, we add packing
spheres (explicit ico-spheres) at the terminal samples of each section. Proxy geometries are then created on a
per-section-basis and rasterized in a volume grid. Packing spheres are also rasterized to yield a continuous shell
of voxels for every partition in the morphology. To avoid flood-filling vascular loops, 3-way solid voxelization is
applied. The resulting volume grid is finally used for mesh reconstruction and optimization.
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Data sources

Cellular and subcellular NGV meshes segmented from the volume shown in Figure 2 are provided by the
collaborating co-authors affiliated with KAUST. Neuronal meshes shown in Figure 3, Supplementary Fig-

ures S55 - S75 and Supplementary Figures S85 are publicly available from the MICrONS program48. Neu-
ronal morphologies shown in Figure 4, Supplementary Figures S80 - S81 and Supplementary Figure S86

are publicly available from NeuroMorpho.Org16. Astrocytic morphologies (Figure 5 and Supplementary Fig-

ure S82) are provided by Eleftherios Zisis15. Vascular morphologies (rat’s cerebral microvasculature) shown in
Figure 6 and Supplementary Figures S83 - S84 are courtesy of Bruno Weber22, University of Zürich (UZH).
The vascular morphology of the arterial arborizations shown in Supplementary Figure S88 is available from
the Brain Vasculature (BraVa) database18 (cng.gmu.edu/brava).

Supplementary Data

Supplementary Data 1 contains the input (non-watertight) surface meshes of the block (shown in Figure 2a)
reconstructed within the context of the EPFL-KAUST collaboration, and the corresponding output (water-
tight) meshes generated by Ultraliser. Supplementary Data 2 contains a set of 20 non-watertight meshes
that were randomly selected from the block shown in Supplementary Figure S54 and another set of the their
watertight counterparts. Supplementary Data 3 contains a set of 25 neuronal morphologies with different
morphological types and their corresponding watertight meshes. Supplementary Data 4 contains a set of 25
synthetic astroglial morphologies15 and their corresponding watertight meshes. Supplementary Data 5 con-
tains the vascular morphology (shown in Supplementary Fig. S83) and a corresponding multi-partitioned
watertight mesh. Supplementary Data 6 contains the datasets used for the comparative analysis shown in
Supplementary Section 13. Neuronal, astrocytic and vascular morphologies are stored in SWC, H5 and VMV
file formats respectively. The file structures of the SWC and VMV formats are publicly available online. The
H5 files of the complete astrocyte cells can be made available from corresponding authors upon request. All the
surface meshes are stored either in Wavefront OBJ or in PLY files. Additional STL meshes are generated to be
used for TetGen to create corresponding tetrahedral meshes. All the input and generated data files are publicly
available on Zenodo (10.5281/zenodo.7105941).

Software availability

Ultraliser is developed entirely in C++. The data-parallel sections of the code are parallelized using OpenMP102.
The code is released to public as an open-source software (OSS) in accordance with the regulations of the Blue
Brain Project, École polytechnique fédérale de Lausanne (EPFL) for open sourcing under the GNU GPL3 li-
cense. The code is freely available online at https://github.com/BlueBrain/Ultraliser. The version of the code
used to create all the results demonstrated in this study is available in the Supplementary Software.
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Figure 1 | Ultraliser workflow.

Ultraliser implements a voxelization-based remeshing engine to create annotated volume models and watertight surface manifolds
from input morphology skeletons, non-watertight triangular soups, gray scale volumes and segmented binary masks. The workflow
has five essential stages: surface and solid voxelization, triangular mesh reconstruction from uniformly sampled volume grids, surface
optimization, and watertight verification. Detailed workflow is illustrated in Supplementary Figure S2.
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Figure 2 | Ultraliser creates high-fidelity watertight surface manifolds of neuropil structures from non-watertight inputs.

(a) The EM volume block is segmented semi-automatically to extract 3D mesh models of individual cell morphologies and other struc-
tures (Supplementary Fig. S3). (b) An exemplar mesh (Astrocyte 4) is selected for evaluating the optimum values of the remeshing
parameters. (c) The effect of varying voxelization resolution (in voxels per micron) and the number of optimization iterations on—
from left to right—the Hausdorff distance (in µm), number of vertices, total surface area (in µm2) and volume (µm3) of the mesh.
Astrocyte 4 has been re-meshed at multiple voxelization resolutions (0.1 - 1.0 µm) and optimized with different optimization iterations
(1 - 10) to determine the most optimum values for these parameters as a reference to be used to remesh all the other segmented struc-
tures from the neuropil volume. (d) The input mesh of Astrocyte 4 is not watertight and is also over tessellated with ∼1.7 million
triangles. This mesh has been re-meshed with a voxelization resolution of 5 voxels per micron (200 nm), and optimized with one, five
and ten optimization iterations. (e) ultraMesh2Mesh creates an adaptively optimized watertight mesh with only ∼425 thousand
triangles. The distributions show a comparison between the qualitative analysis metrics of the input mesh and resulting one.
Scale bars, 5µm (b), 2.5µm (d).
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Figure 3 | Remeshing fragmented mesh model with multiple mesh partitions, self intersecting faces and slicing artifacts.

(a) Segmented mesh model of a neuron extracted from layer II/III of the visual cortex of the rat. The closeup in (b) shows the messy
fragmented structure of the mesh. This triangle soup has been processed with Ultraliser to generate an optimized, connected and
two-manifold mesh model with high quality topology at three different resolutions: (c) one, (d) five and (e) 10 voxels per micron. The
closeups in (f ) - (i) focus on a small spiny branch to highlight the effect of varying the reconstruction resolution on the ultrastructure
of the mesh. Supplementary Figure S55 shows comparative analysis between the input mesh and the ultralised one. (j) The mesh
contains a few gaps due to the misalignment and slicing artifacts. The 3-way solid voxelization is used to reconstruct a continuous
manifold with optimized topology at different resolutions (k, l, m). Scale bars, 10 µm (a), 5 µm (b, c, d, e), 1 µm (f, g, h, i).
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Figure 4 | Creating biologically realistic spiny neuronal surface mesh from its morphology.

(a) Progressive reconstruction of the soma from an initial icosphere into a 3D plausible profile based on the FEM approach73. (b) The
morphology is rendered as a set of samples. (c) For each neurite, we reconstruct a list of proxy-geometries linking a set of principal
sections from the root node and until the leaf: level 1 is in red, level 2 is in green, and level 3 is in blue. Note that the proxy geometries
start from the origin of the soma to avoid any gaps when the soma mesh is added afterwards (d). (e) Spine proxy geometries are added
along the surface of the proxy-mesh. All the section geometries, spines and somatic mesh are rasterized to create a continuous and
watertight manifold. Renderings of multiple closeups of this mesh are shown in Supplementary Figure S80.
Scale bars, 5 µm (a) and 20 µm (b, c, d, e).
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Figure 5 | Creating a realistic and watertight astroglial mesh from synthetic astrocytic morphology with two endfeet.

(a) Synthetic astrocytes are excessively oversampled. (b) The processes are adaptively resampled to avoid any reconstruction artifacts
during the mesh generation process. (b) The processes are adaptively resampled for convenience. (d) Reconstruction of the astrocytic
surface mesh with endfeet included. A high resolution reconstruction of this mesh is illustrated in Supplementary Figure S82.
Scale bars, 10 µm (a, b, c, d).
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Figure 6 | Reconstruction of a watertight mesh of a cerebral vascular network from its corresponding vectorized graph.

(a) The data set is sliced from a larger cortical network with hundreds of millions of vertices to demonstrate how Ultraliser is effective
in building mesh models with clean geometric topology and accurate branching structures from raw vectorized morphologies. (b)
The data set is qualitatively and quantitatively analyzed to evaluate its local geometry and topology (Supplementary Table S9). (c) A
closeup revealing the overlap between the different sections at a common branching point, where each section is assigned a different
color based on its average radius. (d) Each section of morphology is converted into a tubular proxy mesh with a circular cross-section
interpolated at every vertex along the section. (e) We add packing spheres (in yellow) at the terminal samples of each section to ensure
the smoothness and continuity of the proxy mesh. (f) The proxy mesh is rasterized into a volumetric grid with a resolution of five
microns per voxel, where the overlap between the different sections is obvious. (g) Applying the 3-way solid voxelization algorithm
fills the intravascular space and removes any intersections, in which we can extract a continuous manifold of every partition in the
volume. (h) A watertight mesh is reconstructed with clean geometric topology and accurate branching. This mesh can be then used
in several simulation experiments. Scale bars, 100 µm (a), 50 µm (c1, d1, e1, f1, g1, h1), 25 µm (c2, d2, e2, f2, g2, h2).
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Figure 7 | Creating annotated volumetric tissue models for in silico imaging.

(a) The mesh is created using NeuroMorphoVis19 from a neuronal morphology reconstructed from the somatosensory cortex of a
P14 rat74. (b) The neuron is placed into a digital circuit2 to determine its connectivity in which we can identify the synaptic locations
and integrate the spines along its dendritic arborizations. (b) The neuron mesh is used to reconstruct a high resolution annotated
volume in which its intracellular space is tagged with optical properties of multiple fluorescent dyes. The volume is then used for
simulating the imaging of a single cell with fluorescence microscope. The following dyes are used Alexa Fluor 488, 405, 532, 658 and
610 in (c), (d1), (d2), (d3) and (d4) respectively. The simulated tissue block is illuminated with collimated laser beams at a wavelength
that corresponds to the maximum excitation of each respective dye. (e) In silico brainbow optical section of a digitally reconstructed
neocortical slice (920 × 640 × 1740 cubic microns) simulating the imaging of lightsheet fluorescence microscope. The slice is tagged
with six fluorescent labels (GFP, CFP, eCFP, mBannan, mCheery and mPlum) and illuminated at the maximum excitation wavelength
of each respective dye. Scale bars 25 µm (a-d), 50 µm (e).
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