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Abstract

Communities that occupy similar environments but vary in the richness of closely related species
can illuminate how functional variation and species richness interact to fill ecological spacein
the absence of abiatic filtering, though this has yet to be explored on an oceanic island where the
processes of community assembly may differ from continental settings. In discrete montane
communities on the island of Sulawesi, local murine rodent (rats and mice) richness ranges from
7 to 23 species. We measured 17 morphological, ecological, and isotopic traits, both individually
and grouped into 5 multivariate traits in 40 species, to test for the expansion or packing of
functional space among nine murine communities. We employed a novel probabilistic approach
for integrating intraspecific and community-level trait variance into functional richness. Trait-
specific and phylogenetic diversity patterns indicate dynamic community assembly due to
variable niche expansion and packing on multiple niche axes. Locomotion and covarying traits
such astail length emerged as a fundamental axis of ecological variation, expanding functional
space and enabling the niche packing of other traits such as diet and body size. Though trait
divergence often explains functional diversity in island communities, we found that phylogenetic
diversity facilitates functional space expansion in some conserved traits such as cranial shape,
while more labile traits are overdispersed both within and between island clades, suggesting a
role of niche complementarity. Our results evoke interspecific interactions, differencesin trait
lability, and the independent evolutionary trajectories of each of Sulawesi’s 6 murine clades as
central to generating the exceptional functional diversity and speciesrichnessin this exceptional,
insular radiation.

Keywords: Community Niche Space, Functional Morphology, Stable Isotopes, Murinae,

Bayesian, Sulawesi, Indonesia
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I ntroduction

Whether at alocal, continental, or global scale, speciesrichnessis not evenly distributed across
the landscape. This unevenness emerges from both environmental and resource heterogeneity
among communities, and from the interactions among the species within local communities.
Local speciesrichnessis often positively correlated with the complexity of habitat structure and
diversity of available resources (Tews et al. 2004). The observation that different localities with
similar habitat structure, resource availability, and historical access often contain ecologically
similar communities led to the prediction that species only co-occur if they partition niche space
along some axis (herein we consider the niche to be the size and shape of multivariate ecological
space that a species utilizes), otherwise one will be excluded through competition (Hutchinson
1957, MacArthur & Levins 1967, May & MacArthur 1972, Brown & Lieberman 1973, Brown
1975, Pianka 1974, M’ Closkey 1978). Competitive exclusion can be mitigated if two co-
occurring species use a harrower breadth of resources, producing a more densely packed
community niche space (“niche packing”), or if they exploit habitats or resources that are unused
or non-existent in low-resource or species-poor communities, leading to a larger community
niche space (“niche expansion”; MacArthur 1965, 1970, Pigot et al. 2016, Oliveira et a. 2020).
The foundational work on competition’s role in community assembly relied on empirical data
from continental communities with equal biogeographic accessibility but variation in primary
productivity or habitat complexity (Brown & Lieberman 1973, Brown 1975, M’ Closkey 1978,
Karr & James 1975, Pianka 1974, Weiher & Keddy 1995), or from archipelagos where island
Size or geographic complexity determines resource availability and habitat area, both of which

influence overall species richness (Wilson 1961, Diamond 1975, Lister 1976, Gillespie 2004,
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92 Lo0sos 2009, Losos & Ricklefs 2009). Less explored are insular areas of similar habitat structure
93 and resource availability, but with discrete communities that vary in species richness (“species
94 richness anomalies’, Swenson et al. 2016 pg. E83). Y et, these anomalies offer powerful systems
95 for interrogating the role of competition in the distribution of functional diversity within and
96 among communities because the effects of abiotic processes such as habitat filtering are
97 minimized (Swenson et al 2016, Li et a. 2017). Most studies of species richness anomalies have
98 examined plantsin continental settings (Latham & Ricklefs 1993, Swenson et al. 2016, Xu et al.
99 2019) where environmental and historical processes influence the regional species pool. Few, if
100 any, studies have tested the role of competition in the assembly of discrete communities nested
101 within aninsular setting where species pools are formed through long-distance colonization and
102 in-situ diversification.
103
104 Oceanic islands are often hotspots of diversification and endemism, and their unique
105 biogeographic and historical conditions can help illuminate the ecological and evolutionary
106 processes that structure local communities (Losos & Ricklefs 2009). Lineages that arrive and
107 diversify inisolated locations regularly undergo ecological shiftsthat result in behaviors or
108 phenotypes that are uncommon or non-existent in source communities (Carlquist 1966, Millen
109 2006, Pinto et al. 2008, Esselstyn et al. 2012, 2015, 2021, Stroud & Losos 2016). The presence
110 of high functional and ecological disparity within an endemic radiation may affect community
111 structure in multiple ways. First, there is some evidence that community assembly occurs
112  differently on continents and islands. Using an assortment of phenotypic and behavioral proxies
113  for resource use across a variety of spatial scales, niche packing is frequently invoked as the

114 primary process of assembly in species-rich anima communities on continents (Brown 1975,
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Karr & James 1975, M'Closkey 1978, MacArthur & MacArthur 1961, Pianka 1974, Pigot et al.
2016, Van de Perre et a. 2020). However, niche expansion has found some support among
isolated island communities of many closely related species (Lister 1976). Second, multiple
lineages evolving in sympatry within an insular setting often promotes niche divergence through
adaptive diversification, reducing phylogenetic niche conservatism (Losos et al. 2003). Asa
result, the niche breadth of a community within an insular setting, despite the lower phylogenetic
diversity, may equal that of a similar continental community. Importantly, quantifying trait
differences following adaptive diversification among closely related species can illuminate
which traits are most evolutionary labile and/or important for resource partitioning (Losos et al.

2003, Hiller et al. 2019, Dorey et al. 2020, Stroud 2021).

The murine rodent fauna (rats and mice in the subfamily Murinae) of Sulawesi,
Indonesia, a mountainous, wet tropical, oceanic island at the center of the Wallacean biodiversity
hotspot (Figure 1), is an intriguing system for testing patterns of community niche occupancy.
First, the murine diversity of Sulawesi is exceptional, with at least 48 endemic species ssemming
from seven colonist ancestors that arrived from circa6 Mato < 1 Ma (Figure S1, Rowe et al.
2019, Handika et al. 2021). While some colonists spawned small radiations of species, others are
evidenced by only asingle living species (Table 1, Figure S1). Each clade iswidespread on
Sulawesi and most contribute to species richness of al local murine communities on the island.
Second, Sulawes contains some of the most unusual rodent forms found anywhere (Figure 1b,
Esselstyn et al. 2012, 2015, Rowe et a. 2014) living in sympatry with more typical “rat-like”
morphologies and ecologies. Sulawes murines have an array of cranial shapes that reflect their

dietary preferences (Figure 1b; Esselstyn et al. 2012, 2015, Martinez et a. 2018), consume a
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broad range of foods such as fruit, seeds, fungi, leaves, roots, and earthworms (Musser 2014,
Rowe et al. 2016a), have body sizes ranging from 10 to 5009, and occupy a variety of locomotor
modes (arboreal; scansorial; terrestrial; amphibious, Nations et a. 2021). Third, due to the
topographic complexity of Sulawesi and the positive correlation between elevation and small
mammal diversity in thisregion (Heaney 2001, Esselstyn et al. 2021), the murine communities
on the islands are partitioned into discrete, montane assemblages (Figure 1). The local montane
murine communities, defined as the species living on a mountain from the upper-lowland forest
to the peak, range from 7 to 23 species, with the upper limit being, to our knowledge, the most
diverse local community of closely related terrestrial mammals on Earth. Lastly, the variation in
local community richness does not appear to be determined by environmental or habitat
differences among mountains but is likely the result of the colonization process outward from the
central core to the peninsulas during the island’ s formation (Hall 2013, Nugraha & Hall 2018,
Handika et al. 2021). Maximum elevation, which may correlate with the area occupied by
different habitats, appearsto play only a minor rolein species richness (Figure 1a), and net
primary productivity is nearly constant across the island’ s montane regions (Imhoff et al. 2004),
suggesting that environmental filtering, often a central process of community assembly (Webb et
al. 2002, Cavender-Bares et al. 2004, Li et al. 2017), does not greatly affect the functional
diversity of Sulawesi’s murine communities. Together, these properties generate a fascinating
hierarchical organization: a species pool of small mammals with disparate ecologies and
morphologies living in discrete montane communities that, due to their habitat similarity and
striking disparity in richness, represent species-richness anomalies, all of which liewithin a
remote, oceanic island. Such a system presents a compelling natural experiment for testing

alternative hypotheses of how communities assemble to occupy ecological niche space
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Figure 1: Small mammal surveys of nine mountains a) on the oceanic island of Sulawesi revealed varying murine
rodent species richness across the island. Each mountain on the map is labeled with the maximum elevation and the
number of murine rodent species present. All but Latimojong were surveyed within 600m of the summit. b) The
diversity of Sulawesi murinesis exceptional and includes unique forms that live alongside species with more
“typical” ecologies and morphologies, as demonstrated from surfaces of cranial uCT scans of i — Rattus hoffmanni, a
“typical” murine morphology and ecology, ii —the shrew rat Echiothrix leucura with its extremely elongate rostrum
and soft invertebrate diet, iii — the arboreal Haeromys minahassae, with a short rostrum and very small size. c)

Photographs: i — Rattus hoffmanni, ii —Echiothrix leucura, and iii — Haeromys minahassae.

Here, we test whether increased species richness in environmentally similar communities
of montane rodents leads to the expansion or packing of ecological niche space. Observational
data, including behavior, life history, and movement patterns, are scarce for the nocturnal,
secretive Sulawesi murines. Much of what we know about these species comes from museum
specimens and their associated metadata (e.g., locality and habitat details, forest strata
preferences, and morphological measurements). Therefore, to infer the ecological niche breadth
of each montane assemblage, we quantify diet, trophic dimension, and microhabitat using 12
individual functional and ecological traits and five multivariate trait complexes to estimate both

the volume and density of community functional space, which we define as the sum of the n-


https://doi.org/10.1101/2022.07.15.500274
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.15.500274; this version posted September 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

available under aCC-BY-NC-ND 4.0 International license.

dimensional functional spaces of the species therein. Importantly, individual traits or groups of
traits related to the same niche axis can reveal distinct, interacting processes (Spasojevic &
Suding 2012, Pigot et al. 2016, Kohli et al. 2021). Additionally, we examine the role of
phylogenetic niche conservatism and trait lability in the assembly of these nine montane
communities by testing for the influence of phylogenetic diversity and inter-clade variation on

functional space occupancy.

M aterialsand Methods

The distribution of species- We compiled occurrence records from nine small mammal
inventories of mountain regions on Sulawesi, Indonesia, including one well-documented
mountain surveyed from 1973 to 1976 by Guy Musser and colleagues (Mt. Nokilalaki; Musser,
2014) and eight mountains surveyed between 2011 and 2016 (Ambang, Bawakaraeng,

Buliohuto, Dako, Gandang Dewata, Katopasa, Latimojong, and Torompupu; Figure 1a).

All surveys began in lower primary forest near the line of anthropogenic forest clearing (1100m
to 1500m) and extended to upper-montane forests. All surveys extended to within 600m
elevation of the summit except for Latimojong (highest survey site at 2535m, summit at 3400m).
Trapping records show that there are no Sulawesi murines restricted to e evations above 2500m,
or to habitats within 600m of the summit (Musser 2014). Historical surveys by Musser lasted
several months and were conducted over four years, employing a mix of snap trapsand live

traps. Modern surveys (2011-16) lasted an average of 17 days (11-25) and employed similar
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collection methods, including a mix of snap traps, live traps, and 20-30L pitfall buckets. All the
murine rodent species known from the sasmpled localities (Musser 2014, Wilson et a. 2019) were
collected during these modern surveys, indicating a thorough sampling effort. Five new taxa that
were discovered during these expeditions have been described (Musser 2014, Esselstyn et al.
2012, Rowe et al. 2014, Esselstyn et a. 2015, Rowe et al. 2016b) and several new locality
records resulted (Achmadi, et al., 2014; Handika, et al., 2021). Specimens from all surveys were
deposited in the Museum Zoologicum Bogoriense (MZB), Bogor, Indonesia; the American
Museum of Natural History (AMNH), New Y ork, USA; Museums Victoria (MV), Melbourne,
Australia; the Museum of Vertebrate Zoology (MVZ), Berkeley, USA; the Field Museum of
Natural History (FMNH), Chicago, USA; and the Louisiana State University Museum of Natural

Science (LSUMZ), Baton Rouge, USA.

Species
Clade Crown Age Sampled
Echiothrix 5.11 (4.49-5.69) 10 (10)
Maxomys 3.72 (3.21-4.29) 5 (5)
Bunomys 3.45 (3.09-3.81) 15 (15)
Margaretamys 2.92 (2.29-3.51) 2(4
Rattus* 1.57 (1.22-1.95) 6 (6)
Haeromys' I ndeterminate 1(1)

Table 1: Ages of six clades descended from Sulawesi colonists. Median age in millions of years is reported with
95% credible intervals in parentheses. Species sampled reports the number of speciesin this study with overall clade
richness in parentheses and demonstrates near complete sampling. The two unsampled Margar etamys species were
not detected in the localitiesin this study. All ages taken from Rowe et al. 2019. * There were likely two
colonizations by the ancestors of native Rattus spp., the second of which occurred 1.16-0.6 Ma (Rowe et al. 2019),
however, all Rattusin this study form a clade relative to other Sulawesi murines. Two human commensal Rattus
spp. found on Sulawesi were excluded. "The age of arrival of the Haeromys clade is unknown as other species of
Haeromys from Borneo have yet to be included in phylogenetic analyses.

Functional trait data collection and processing- We compiled or generated functional trait
valuesfor 11 continuous traits and one discrete trait for all available Sulawesi murines from each
of the nine communities. Individual Sulawesi murine species exhibit little intraspecific

morphological variation among localities, far less than the morphological differences among
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species (Musser 2014), and we therefore combined measurements of individual species from
multiple localities and estimated trait distributions using probabilistic methods to overcome the
limited availability of sometraits. Detailed information on traits, sample sizes, data processing,
and multivariate trait composition are available in Table S1. All data, models, and output files

are available in Dryad Repository (to be added prior to publication).

Morphological data collection- We assembled external measurement data from 630 specimens,
including head-body length (mm), tail length (mm), hind-foot length (mm), ear length (mm), and
mass (g), from previously published sources (Wilson et al. 2019, Nations et al. 2021) and online
museum databases. M easured specimens were from the nine surveyed mountains and other
localities on Sulawesi. To obtain ecologically relevant features of external measurements and
mitigate the influence of size in some of our analyses, we calculated three commonly used ratios:
Relativetall length (tail length / (head-body length + tail length)), relative hind-foot length (hind-
foot length / head-body length), and relative ear length (ear length / head-body length) (Nations

et al. 2021, Table S1).

The shape of arodent’s skull and lower jaw provides a wealth of indirect ecological
information on foraging, feeding, and sensory processing, and is often used as a proxy for
fundamental dietary niche (Samuels 2009). We generated uCT scans of the cranium of 64
specimens from 38 species and the mandible of 61 specimens from 36 species (Table S1). Scans
were generated from specimens collected in the nine surveys, as well as from previously
collected museum materials. Stacks of 2D Tiff files were imported to MorphoDig, where 3D

landmarks were placed on cropped volume renderings (Lebrun, 2018). We placed 67 crania
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251 landmarks (Figure S2) on the left side of the skull, unless damage caused us to use the right side,
252 in which case we reversed the rendering on the Z-axis. In separate renderings, we placed 20

253 landmarks on the left dentary of the mandible (Figure S2). Landmarks were exported from

254 MorphoDig as.stv files and imported into the R package geomorph v.4.0.3 for processing

255 (Adamset al. 2021, Baken et al. 2021). Missing landmarks (11 of 4288 cranial and three of 1220
256 mandible landmarks) were imputed, a generalized Procrustes analysis (GPA) superimposition
257 was performed, and shape coordinates were subjected to aprincipal components analysis. We
258 retained the centroid size (an estimate of total size) and the scores from the first 36 principal

259 components of the cranium and 20 axes of the mandible, each representing >95% of the shape
260 variation of the element.

261

262 Stableisotope data collection- Approximately 1-2 grams of hairs were plucked from the rump of
263 286 dry museum specimens collected on six focal surveys (Ambang, Bawakaraeng, Buliohuto,
264 Dako, Gandang Dewata, and Latimojong). Isotopic values can vary regionally (Fry 2006);

265 therefore, we collected hair samples from multiple individuals of each species from each locality
266 (mean = 4.6 specimens/species/locality, range = 1-14). Nitrogen stable isotope values (5°N) act
267 asaproxy for consumer trophic position asthey generally increase by 3-5% per trophic level
268 (DeNiro & Epstein 1981). Carbon isotope values (8*3C) generally exhibit little to no change with
269 trophic position and are commonly used as proxies of consumer’s basal carbon resource use (e.g.
270 useof differing primary production energy pathways, DeNiro & Epstein 1978). Combined, these
271 two metrics are commonly used to quantify the “isotopic niche” of consumers, which can act asa
272 useful proxy of speciesrealized dietary niche (Newsome et al. 2007, Ben-David & Flaherty

273  2012). Stable isotope values are reported in delta notation in per mil units. Samples were
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processed at the Stable Isotope Ecology Laboratory, Department of Oceanography & Coastal
Sciences, Louisiana State University. Details on sample cleaning, processing, and analysisare in

the Supporting Methods.

Locomotor mode data collection- We used the locomotor classification scheme from Nations et
al. (2019, 2021) to group each Sulawes murine into one of four discrete locomotor modes:
Arboredl, (climbing isintegral to survival); General (navigates a variety of substrates and habitat

strata); Terrestrial (on the ground surface); and Amphibious, (dependent on aquatic habitats for

foraging).

Combined traits— We combined our 11 continuous traits into five multivariate traits that
represent distinct niche dimensions: (1) head shape (cranium shape PC 1-36 and mandible shape
PC 1-20); (2) isotopic niche space (§*°N and §*3C stable isotope values); (3) body proportions
(head-body length, relative tail length, relative hind-foot length, and relative ear length); (4) body
size (log(mass) and head-body length); and (5) total morphological shape (all nine morphological

traits). We did this by combining the predicted trait values for each community (see below).

Estimating species' trait values- The sample size of morphological and isotopic data varied
between species and mountain communities, and in some cases was limited to one individual,
such as with the amphibious Waionmys mammasae, a species known from a single specimen
(Rowe et al. 2014). To mitigate uneven sampling, we estimated a probability distribution of
species trait values using partial-pooling in a multilevel Bayesian model. Unlike complete

pooling (one global mean estimated for all combined samples) or no-pooling (one mean
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297 estimated per species, independent of all others), partial-pooling estimates a mean for each

298 species aswell asthe variance among species, which serves as an adaptive prior that is common
299 toall the species means (McElreath 2020). The Bayesian partial-pooling modeling allowed us to
300 incorporate intraspecific variation in trait value predictions while avoiding point estimates such
301 asaverages, which discard valuable information. This approach prevents unbalanced estimates
302 by using the trait-variance probability estimates from well-sampled species to inform variance
303 estimates of specieswith fewer samples (Gelman & Hill 2006, McElreath 2020). All analyses
304 were conducted in the probabilistic programming language Stan (Carpenter et al. 2017) within
305 theRlibrary brmsv. 2.17.0 (Burkner 2018). Subsequent data processing and figuring relied on
306 theRlibrariestidyversev. 1.3.1 (Wickham et al. 2020), furrr v. 0.3.0 (Vaughan 2021), and

307 tidybayesv. 3.0.2 (Kay 2020). All data, scripts, and output files are available in Zenodo

308 Repository (to be added prior to publication) and on GitHub (to be added).

309

310 For each continuous trait (Table S1), we used the trait value as the response variable, and
311 used species as agroup-level predictor. All traits were scaled to unity prior to analyses. We used
312 the student-t distribution to describe the response variable to minimize the influence of rare,

313 extreme observations (ak.a. ‘robust regression’, Kruschke 2013, McElreath 2020). Each model
314 included four chains with 4000 iterations of warm-up and 1000 sampling iterations. Posterior
315 predictions from the four chains were combined, resulting in 4000 samples per trait per species.
316 To mitigate the potential geographic signal in stable isotope values (Fry 2006), and facilitate
317 randomization (see below), the posterior estimates of the §*°N and §**C stable isotope values
318 were estimated with models that included an additional ‘community’ group-level effect, but

319 otherwise wereidentical to the models described above (Supporting Methods). These stable
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320 isotope models generated posterior values of species’ isotopic measurements conditioned on the
321 locdlity, enabling comparisons among communities and randomized sampling for null models
322 (Table S1, Figure S3). Full details of the model, prior, and chain-estimation are described in the
323  Supporting Methods.

324

325 Estimating functional space volume —We defined functional space volume as the total volume of
326 n-dimensional trait pace occupied by speciesin acommunity, and for consistency and clarity
327 weusetheterm ‘functional space volume' for al individual and multivariate traits, regardless of
328 dimension. We used the sum of the variance of each trait value to estimate the volume of

329 community functional space for each community, which is less sensitive to outliers and

330 outperforms other metrics such as ellipse volumes, convex hull volumes, and hypervolumes,

331 especialy for functional spaces with many axes (Li et al. 2017, Guillerme et al. 2020). We

332 estimated a posterior distribution of the variance of each trait for each community by first

333 grouping the species’ trait value estimates by community. Then, for each of the 4000 posterior
334 draws (one draw ranging between 7 and 23 values, depending on the richness of the community),
335 we estimated the variance of the trait, resulting in a distribution of 4000 variance values for each
336 trait for each community. We estimated the combined multivariate trait space variance by

337 summing the variances of each trait, then dividing by the number of traits. We estimated the 89%
338 probability values for the variance of each individual and combined trait space. To estimate

339 locomotor mode variance, we dummy coded locomotor mode into four binary columns (one per
340 mode) and performed aredundancy analysis (Legendre & Legendre 2012) with the rda()

341 function in the vegan package (Oksanen et al. 2019). We then extracted the PC scores for each

342 gspecies and calculated the sum of variances of the three PC axes for each community.
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Estimating functional space density- We estimated the density of species within functional trait
space with the mean nearest neighbor (NN) metric (Guillerme et al. 2020). Our methods follow
the estimates of functional space volume above. First, we grouped species’ trait values by
community, then estimated the individual trait density for each posterior draw using the NN
metric in the disparity() function of the R library dispRity (Guillerme 2018), resultingin a
distribution of 4000 NN values for each trait and combined trait space. To estimate locomotor
mode density, performed a redundancy analysis on the dummy-coded |locomotor data as above.
We then extracted the PC scores for each species, grouped the species by community, and
estimated the NN value for each community as with the continuous traits above, in this case

generating only asingle NN value per community rather than a distribution.

Null models of functional space volume and density- We used null models to determine the
difference between the functional space of our nine communities and randomly assembled
communities. For each community we created 1000 randomized null communities of 1community
species for each of the nine localities using the independent swap algorithm (Gotelli 2001). We
then calculated both volume and density as above for each individual (n=12) and combined
(n=5) trait for each of the 1000 randomized community samples. Standardized effect size (SES)

was calculated as:

Traitopserveda— Mean(Traitrandom)

SD(Traitrandom)

SES =

’

where Trait,pserveq 1S the vector of 4000 samples of the density or volume of the given trait,
Mean(Traitgangom) aNd SD (Traitganaom) @€ the mean and standard deviation of the density

or volume values of the given trait from the 1000 random species assemblies. Positive SES
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valuesindicate greater than random functional space volume or lower than random functional
space density (overdispersion), meaning that species in that community are occupying functional
space outside the range of other communities and/or their niches are farther apart in functional
space (niche expansion). Negative SES values indicate lower than random functional space
volume and greater than random functional space density (underdispersion or clustering),
meaning that speciesin that community are occupying less ecological space than other
communities and/or their niches are closer together in functional space (niche packing; Oliveria

et al. 2020).

Effect of species richness on community functional space volume and density- If niche expansion
is the primary mode of resource partitioning in Sulawesi murine communities, then we expected
that functional space volume will increase with increasing species richness, and that functional
space dengity will remain stable as richnessincreases. Whereas if niche packing is occurring, we
expected that functional space density will increase with species richness, and that there will be
no effect of richness on functional space volume. To quantify the effect size of richness
(Brichness) ON functional space volume and density, we used Bayesian linear regression models
that include the measurement error of the predictor variable to estimate the effect size of species
richness on volume or density. We used species richness as the predictor variable, and the mean
and standard error of the trait estimates for each community as the response. M easurement error
models contain vastly more information per observation than a single point observation and
provide robust estimates despite the small number of sampled communities (Burkner 2018,

M cElreath 2020). We also calculated the Bayesian R? value for each regression (Gelman et al.

2019). The models, priors, and chain estimations are detailed in the Supporting Methods.
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Phylogenetic diversity as a path to trait disparity- The ecological space occupied by a
community may depend on which lineages or clades are present (Webb 2000). Trait disparity
appears to vary among clades of Sulawesi murines, and if so, then the volume and densities of
functional spaces may be more influenced by phylogenetic diversity than ecological factors. To
determine how phylogenetic diversity mediates functional space occupancy in the nine murine
communities, we estimated the phylogenetic diversity (PD) of each community using Faith’s
metric of branch length (Faith 1996). We removed all but the Sulawes species (n = 35) from a
time-calibrated phylogenetic hypothesis of Murinae (Nations et al. 2021). For the analyses
described above, we had trait data for four species that are not included in this phylogeny:
Maxomys wattsi, Rattus bontanus, Rattus mollicomulus, and Rattus marmosurus. We manually
added these four species into the tree using the R package phytools (Revell 2012). Details are
found in the Supplemental Methods. We used the R package picante (Kembell et al. 2010) to
estimated Faith’s metric of PD, and to sample 1000 random communities in order to calculate the
SES value of PD (SES PD). We used linear modeling in brms to estimate the effect size of
species richness on SES PD. Haeromys minahassae is the only representative of its genus on
Sulawesi, and, due to its large phylogenetic distance from other Sulawesi murines, may have an
oversized impact on estimates of community PD. Therefore, we repeated the estimates of SES
PD and effect size above without Haeromys minahassae. To quantify the trait disparity within
and among Sulawesi murine clades, we grouped the posterior distributions of the species
predicted trait values by clade, then estimated the variance of each of the 12 univariate traits. We
plotted the trait value variance for each community along with the species’ predicted trait values

(Figure $4)
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414 Figure 2: The effect of species richness on community functional space volume (a, b) and density (c, d). X-axes
415  show the Bicpness €stimates (the regression slope) for each trait space (y-axis) on the left and the Bayesian R? for
416  each B, ichness €timate on the right. Colored point intervals show 89% probability of fichness €timates (effect
417  size), with color varying by B,icnness Value. Black point intervals show 50% posterior estimates of Bayesian R* for
418 eachtrait space. Density was estimated using the mean nearest neighbor (NN), and a high NN distance indicates low
419 density. Four of the five multivariate traits (a) and seven of the 12 individual traits (b), show an increase in
420 functional space volume (trait variance) with greater richness (i.e., positive i cnness). Phylogenetic diversity also
421 increaseswith speciesrichness (b). All multivariate traits (c) and individual traits (d) show a stable or, surprisingly,
422  decreasing functional space density (increased NN distance) with greater species richness.
423
424 Results
425
426 Modesof trait values- All parameters in the Bayesian multilevel model estimates of trait-value
427 digtributions and measurement-error estimates of the species richness effect on trait values had
428 ESS> 1000 and a Gelman-Rubin diagnostic R < 1.01, indicating convergence. Raw volume and
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density values differed from the volume and density of SES. To avoid the confounding influence
of species richnessin volume and density estimates we report and discuss only the SES values

(Swenson 2014).

Effects of Species Richness on Functional Space Volume and Density- Functional space volume
was positively correlated with species richness in seven of the 12 traits (locomotor mode, tail
length, head-body length, cranium shape, mass, 5N, and hind foot length), as shown by the
positive B,;cnness SOpe values from the Bayesian linear models (Figures 3, Table S3) and the
greater variance with higher community richness (Figure 3). The remaining five traits (ear
length, cranium size, dentary size, dentary shape, and *°C) did not substantially increasein
volume with increased species richness. Among the multivariate traits, the SES values of total
morphological shape increased substantially with species richness while head shape and isotopic
niche space show a moderate probability of increasing with species richness (Figures 3, 4, Table

S2, S3).

Linear regression showed that species richness had little to no effect on functional space
density (NN SES values) for 11 of the 12 individual traits and three of five multivariate traits
(Figures 3, $4, Table S2), consistent with niche expansion. The exceptions were a positive
Brichness SOpe (i.€., decreased density with richness) for locomotor mode, total morphological
shape, and external proportions, suggesting an extreme overdispersion of morphology and

locomotor diversity in the richest communities.
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Figure 3: Estimated functional volume SES plotted against speciesrichness: a) Multivariate trait volumes, b) Skull
traits, c) External measurements, and d) Isotopic measures, locomotor mode, and phylogenetic diversity. Points
represent the mean SES values and error bars indicate the 89% credible intervals. X-axis tick marks show species
richnessfor each community. Values equal to zero are consistent with null expectations, positive values indicate
overdispersion, and negative values show underdispersion (trait clustering). Dotted lines depict the 89% interval of
the null distribution. The plot of trait densities is shown in the supporting information (Figure $4).
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460 Phylogenetic Diversity and Functional space- Phylogenetic diversity (PD) increased with species
461 richness (Figures 3b, 4d, Table S2). Including Haeromys minahassae in the estimates of PD

462 changed the PD SES values of the individual communities but had minimal impact on linear

463 regressions (Table $4). Results including H. minahassae had a slope (B,icaness) Of 0.143 (0.03,
464 0.252) while excluding H. minahassae generated a slope of 0.169 (89% C.I. of 0.041, 0.295), and
465 wetherefore present the resultsthat include H. minahassae. Katopasa, a community of 12

466 murines on Sulawes’s Eastern Peninsula, has the lowest PD SES value followed by

467 Bawakaraeng on the Southwestern Peninsula (seven species). Gandang Dewata, the richest

468 community (23 species), has the highest PD SES value (Figure 3a, Table S2). As suspected,

469 functional space volumes vary between clades, though not consistently (Figure S5). For example,
470 the Echiothrix clade has the highest variance in cranial shape, dentary shape, and dentary size but
471 low trait variance for hind-foot length and 8*°N. In contrast, the Maxomys clade has low variance
472 for al trait values except tail length and 5™°N (Figure S5). This resultsin different densities of
473 functional space occupation among traits, where sometrait volumes, such as cranial space, are
474  strongly influenced by phylogeny, while others, such asisotopic niche space, have high and low
475 values distributed among clades (Figure 4).

476

477
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Figure 4: The mode of functional spacefilling varies among traits. The bivariate plots on the left depict the 2D
functional spaces. Each black shape is the mean value of a particular species in each clade (shown in legend). The
convex hull colors match the color of the community functional volume SES distributions in the right-hand columns.
The thick convex hull lines are mean values, and 500 random samples from the posterior of each trait are shown in
thin hull lines. The number of speciesin each community and each clade used in this study is shown next to the SES
distributions in parentheses. All values were scaled to z-scores prior to analyses. a) Cranial morphospace values are
mostly clustered tightly near the mean of each axis, apart from Echiothrix species and the single Haeromys species.
Intraspecific variance is also relatively low on these axes. b) Intraspecific variance is high in isotopic niche space.
High and low §™°N values are distributed among clades, but that is not the case for §**C values. ¢) Large values of
hind foot length belong to members of two clades, while large and small tail length values are dispersed among all
six clades, reducing the influence of phylogenetic diversity on tail length disparity.

Discussion

Variation in species richness among communities of closely related species that inhabit

similar environments provides a unique window to explore how interspecific competition may

affect community functional richness in the absence of confounding factors like environmental
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variation (Roughgarden 1976, Swenson et a. 2016). Unfortunately, these species richness
anomalies are uncommon (Swenson et al. 2016, Van de Perre et al. 2020). Here we used a large
dataset of ecological and morphological traitsto estimate the changes in community niche
occupancy across a richness gradient on an oceanic island. Though the trait estimates of some
species necessarily stem from a small number of specimens, and therefore may be subject to
error, our novel probabilistic approach incorporates measurement error and species-level
variation into the posterior distribution and propagates this uncertainty through the estimation of
community niche space. The functional space of most traits increased with greater species
richness among the nine murine communities studied while there was no change in functional
space density, congstent with limiting similarity. Locomotor mode disparity has the strongest
positive relationship with species richness, but the functional volumes of skull and body shape
(indicators of diet, locomotion, and microhabitat use in murines and vertebrates in general;
Peters 1986, Losos 2009, Martinez et al. 2018, Nations et al. 2021), also strongly increase with
species richness (Figure 2). Measurements of overall body size, cranial size, dentary shape and
size, ear length, and 8*3C values all demonstrate either aweak signal of niche packing, or no
signal across the species richness gradient. While the volume of many functional spaces
increases with richness, functional space density shows little correlation with species richness for
most traits, and it surprisingly decreases with increased richness for external morphology and
locomotor mode. These results, along with ageneral underdispersion of trait valuesin low-
richness communities and overdispersion in high-richness communities (Table S2, Figures 4 &
S4), suggest that speciesin rich communities mitigate competitive interactions by occupying
underused niche space. We also found that increasing phylogenetic diversity is a means of

increasing functional space occupation. Combined, these results point to species interactions as a
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520 mechanism for both phenotypic and phylogenetic overdispersion (Webb et al. 2002, Cavender-
521 Bareseta. 2004, Li et al. 2017) and suggest that, given adequate resources, structural

522 complexity, and evolutionary time, lineages can evolve to occupy unique regions of ecospace,
523 often far from the average trait value, which minimizes niche overlap and cultivates exceptional
524 richness.

525

526 Whether in asingle desert valley (Brown 1975), or across continental (Maestri &

527 Patterson 2016, Kohli et al. 2022) and global latitudinal gradients (Karr & James 1975, Pellissier
528 et al. 2018), structurally complex habitats are thought to foster higher species diversity. High
529 plant diversity creates a more complex, vertically structured habitat matrix for other plant and
530 animal species to occupy and has long been tied to higher animal richness (Hutchinson 1959,
531 MacArthur & MacArthur 1961, Scheffers et al. 2013, Oliveira& Scheffers 2019). Our estimates
532 of locomotor-mode occupancy clearly demonstrate that vertical habitat partitioning is critical to
533 maintaining high species richness in Sulawesi murines (Figure 2, Table S2). Strikingly, the

534 density of locomotor trait space decreases along the richness gradient, indicating a very high

535 level of trait overdispersion (Figures 3c & $4). Arboreal, Terrestrial, and Amphibious locomotor
536 modes each provide access to different microhabitats that contain similar resources. Among the
537 23 speciesfound on Mt. Gandang Dewata, the amphibious Waiomys mamasae, the terrestrial
538 Paucidentomys vermidax, and the arboreal Sommeromys macrorhinos, all consume invertebrates
539 and have similar 5"°N values, yet they are unlikely to compete for resources due to their distinct
540 microhabitat use, a pattern observed in other insular communities of closely related vertebrates
541 (e.g., Jamaican Anolis; Shoener 1974). It’s worth noting that when the lone amphibious species

542 Waiomys mamasae, only known from Gandang Dewata, is removed from the data, the locomotor
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variance of Gandang Dewata remains the highest among the communities. Morphological
measurements are often used to infer locomotor mode in avariety of eco-evolutionary contexts
(Ricklefs & Travis 1980, Samuels and Van Valkenburgh 2009, Pianka et al. 2017, Verde-
Arregoitia et al. 2019), and our estimates of tail-length variance, atrait correlated with
locomotion in murines (Nations et al. 2021), increases with richness at nearly the same rate as
locomotor mode (Figure 2). Importantly, our results suggest that locomotor mode rankings may
be an effective way to estimate community locomotor variance where continuous trait data are

lacking.

Combining many traits into one multivariate measure of functional diversity isacommon
approach in evolutionary ecology. Ordination techniques were especially promoted to overcome
pitfalls from early community ecology studies that used few, largely subjective measures of
resource use (Ricklefs & Travis 1980). However, merging traits into multivariate axes masks
trait-specific processes related to functional space (Spasojevic & Suding 2012, Astor et al. 2014).
Indeed, our trait volume and density estimates reveal distinct patterns between individual and
combined traits. For example, isotopic niche space, acombined signal of §*°N and §"*C values
commonly used in terrestrial ecological studies, exhibits an equivocal signal (Figure 2b), but
individual isotopic values reveal that the packing signal originates from the static §**C value
aong the species richness gradient. The 8*°N value, asignal of trophic level, expands along the
richness gradient, a result that would be overlooked in multivariate analyses. In contrast to §*°N,
dentary shape exhibits an equivocal signal, despite its presumed relationship to dietary niche
(Maestri et al. 2016, Kohli et al. 2019). These opposing patterns are only illuminated by

analyzing individual traits (Spasojevic & Suding 2012). If we performed this study using only
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566 crania size and dentary shape, which are thought to capture the important axes of size and diet in
567 murine rodents (Rowsey et al. 2019, 2020) and mammals in general (Prevosti et al. 2012,

568 Grossnickle 2020), our results would suggest that functional volume does not increase with

569 gpeciesrichness.

570

571 The disparity of traits within a clade mediates the impact of phylogenetic diversity on
572 community functional space volume. If trait values are phylogenetically clustered, then

573 increasing phylogenetic diversity is necessary for community niche expansion to occur. But if
574 trait values are phylogenetically overdispersed, niche packing, expansion, or, as we found, both
575 could result from increased phylogenetic diversity. The distribution of traitsamong clades is of
576 particular interest in communities that are assembled through a mix of colonization and in situ
577 speciation, such as Sulawesi murines, Caribbean anoles, or Hawaiian spiders (Gillespie 2004,
578 Losos 2009, Rowe et al. 2019). Niche divergence has been hypothesized to overcome niche

579 conservatism in communities with an extended history of coevolution, such as those on oceanic
580 idlands, likely diminishing the signal of phylogenetic trait clustering (Losos et al. 2003). We find
581 that niche divergence and conservatism may occur S multaneously on different functional traits.
582 For example, the elongate, highly distinct skulls of some speciesin the Echiothrix clade, the

583 descendants of the first murine colonists on Sulawesi, set them apart from other cladesin skull
584 shape and, despite their relatively low abundance, these species overcontribute to community
585 crania and dentary shape volumes (Figures 3b, 4b, S5). Unlike cranial shape however, the

586 Echiothrix clade occupies avery constrained portion of §*°N trophic space. Additionally, trophic

587 level estimates from §"°N values are notably dispersed among clades (Figures 4c, S5), and high
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phylogenetic diversity isnot necessary for high isotopic niche space estimates. Are there innate

differences in these traits that could lead to opposing patterns of niche conservatism?

The evolutionary lability of ecologically important traits determines the rate of
convergence and divergence possible within a given time frame and can directly influence
dispersion of trait values among species (Cavender-Bares et al. 2004). The traits with the highest
within-clade variance — 8N, tail length, body size — are all thought to be evolutionarily labile.
Changesin tail length, body size, and intestinal tract morphology can occur on brief evolutionary
time scales (Powell & King 1997, Naya et a. 2008, Kingsley et al. 2017, 2021), whereas
morphological changesin cranial shape, such as substantial rostral elongation and the reduction
of molar grinding area, may take much longer. Indeed, insular species are known to have rapidly
expanded breadths of diet and labile morphological traits following colonization (Stuart et al.
2014) and subsequent speciation (Wilson 1959, 1961, Lister 1976, Millien 2006, Rowe et al.
2016a). But the extreme cranial morphologies of some Sulawesi murines, particularly those of
the oldest radiation on the island (Echiothrix clade), are likely the result of along process of in-
situ evolution (Rowe et al. 2019). In other words, on shorter time scales, similaritiesin some
slowly evolving traits may lead to higher divergences in more labile traits, as evidenced in the
Maxomys and Bunomys clades (Figure S5). The opposite pattern may also occur, but only
following sufficient evolutionary time. We propose that the evolutionary lability of traitsisa
determinant of trait value dispersion (Webb et al. 2002, Cavender-Bares et al. 2004), which
directly relates to our inferences of functional space occupancy in Sulawesi murine communities.
The theory of niche complementarity suggests that a pair of coexisting species that are similar in

onetrait should diverge in another trait (Schoener 1974). Y et, in an isolated setting, the lability
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of the traitsin question necessarily determines the degree of complementarity possible within a
given time frame. Linking trait lability with niche complementarity in an idand system has
important implications for the generation of functional and taxonomic diversity and may further

illuminate the process of nichefilling in insular, adaptive radiations.

Conclusion

Here we provide evidence that limiting similarity in functional traits reflecting
locomotion and microhabitat use plays an important role in the assembly of discrete, montane
small mammal communities on an oceanic island. Our results contrast with recent studies that
recovered niche packing as key to increased species richness in continental tropical vertebrate
communities (Pigot et al. 2016, Peixoto et al. 201, Pellissier et al. 2018, Van de Perre 2020,
Dehling et al. 2022, Hughes et al. 2022). Furthermore, our results counter the predictions that
niche packing is expected to occur if resources remain constant among communities
(Roughgarden 1976). Y et, Roughgarden (1976) posited that the predicted relationship between
species richness and resources may be different on remote islands, as the distance from source
populations may affect both community richness and the functional trait values of the species
present. The organization of distinct montane communities on an oceanic island may be just such
an example. The regional murine species pool of Sulawesi isitsdlf structured by idiosyncratic
immigration, diversification, and (presumably) extinction dynamics, and the resultant species
functional traits. The speciesin these communities that occupy the edges of some functional
spaces, such as cranial shape (Figure 4), represent morphologies and ecologies found only on

Sulawesi or other large, oceanic islands. And the “imperfect isolation” (sensu Samonds et al
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634 2013) of Sulawes allows for other regional murine taxa, often represented by more “average”
635 murine phenotypes, to periodically colonize the island, adding more speciesinto the center of
636 functional space (Figure 4). The presence of such disparate phenotypes and ecologies on

637 Sulawes (Esselstyn et al. 2012, 2015, Rowe et al. 2014) produces a larger functional space
638 reservethanisavailablein most, if any, continental rodent systems, nurturing both niche

639 expansion and high species richness. Therefore, the complex topography, i1solation, abundant
640 resources, and sequential colonization of Sulawesi might lead to species assembly processes that
641 aretypical of other large, oceanic islands, but are atypical of continental systems, “sky islands”,
642 geologically younger islands, or regions with less abundant resources (deserts, high latitude
643 habitats), but the presence of this general pattern remains untested.
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981 Figure 1. Small mammal surveys of nine mountains a) on the oceanic island of Sulawesi revealed varying murine
982  rodent species richness across the island. Each mountain on the map is labeled with the maximum elevation and the
983  number of murine rodent species present. All but Latimojong were surveyed within 600m of the summit. b) The
984  diversity of Sulawesi murinesis exceptional and includes unique formsthat live alongside species with more

985 “typica” ecologies and morphologies, as demonstrated from surfaces of cranial uCT scans of i — Rattus hoffmanni, a
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986 “typical” murine morphology and ecology, ii — the shrew rat Echiothrix leucura with its extremely elongate rostrum
987 and soft invertebrate diet, iii — the arboreal Haeromys minahassae, with a short rostrum and very small size. c)
988  Photographs: i — Rattus hoffmanni, ii —Echiothrix leucura, and iii — Haeromys minahassae.
989
990
991
Species
Clade Crown Age Sampled
Echiothrix 5.11 (4.49-5.69) 10 (10)
Maxomys 3.72 (3.21-4.29) 5 (5)
Bunomys 3.45 (3.09-3.81) 15 (15)
Margaretamys 2.92 (2.29-3.51) 2(4
Rattus* 1.57 (1.22-1.95) 6 (6)
Haeromys' I ndeterminate 1(1)
992 Tablel: Agesof six clades descended from Sulawesi colonists. Median age in millions of years is reported with
993  95% credible intervalsin parentheses. Species sampled reports the number of speciesin this study with overall clade
994  richnessin parentheses and demonstrates near complete sampling. The two unsampled Margar etamys species were
995 not detected in the localities in this study. All ages taken from Rowe et al. 2019. * There were likely two
996 colonizations by the ancestors of native Rattus spp., the second of which occurred 1.16-0.6 Ma (Rowe et a. 2019),
997 however, al Rattusin this study form aclade relative to other Sulawesi murines. Two human commensal Rattus
998  spp. found on Sulawesi were excluded. "The age of arrival of the Haeromys clade is unknown as other species of
999 Haeromys from Borneo have yet to be included in phylogenetic analyses.
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6aCh [ichness €imate on the right. Colored point intervals show 89% probability of 5,icnness €timates (effect

size), with color varying by B,icnness Value. Black point intervals show 50% posterior estimates of Bayesian R* for
each trait space. Density was estimated using the mean nearest neighbor (NN), and a high NN distance indicates low
density. Four of the five multivariate traits (a) and seven of the 12 individual traits (b), show an increase in
functional space volume (trait variance) with greater richness (i.e., positive i nness)- Phylogenetic diversity also
increases with species richness (b). All multivariate traits (¢) and individual traits (d) show a stable or, surprisingly,
decreasing functional space density (increased NN distance) with greater species richness.
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Figure 3: Estimated functional volume SES plotted against speciesrichness: a) Multivariate trait volumes, b) Skull
traits, c) External measurements, and d) Isotopic measures, locomotor mode, and phylogenetic diversity. Points
represent the mean SES values and error bars indicate the 89% credible intervals. X-axis tick marks show species
richnessfor each community. Values equal to zero are consistent with null expectations, positive values indicate
overdispersion, and negative values show underdispersion (trait clustering). Dotted lines depict the 89% interval of
the null distribution. The plot of trait densities is shown in the supporting information (Figure $4).
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Figure 4. The mode of functional spacefilling varies among traits. The bivariate plots on the left depict the 2D
functional spaces. Each black shape is the mean value of a particular speciesin each clade (shown in legend). The
convex hull colors match the color of the community functional volume SES distributions in the right-hand columns.
The thick convex hull lines are mean values, and 500 random samples from the posterior of each trait are shown in
thin hull lines. The number of speciesin each community and each clade used in this study is shown next to the SES
distributions in parentheses. All values were scaled to z-scores prior to analyses. @) Cranial morphospace values are
mostly clustered tightly near the mean of each axis, apart from Echiothrix species and the single Haeromys species.
Intraspecific variance is also relatively low on these axes. b) Intraspecific variance is high in isotopic niche space.
High and low §™°N values are distributed among clades, but that is not the case for §*3C values. c) Large values of
hind foot length belong to members of two clades, while large and small tail length values are dispersed among all
six clades, reducing the influence of phylogenetic diversity on tail length disparity.
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