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Abstract 30 

Human environments comprise various sources of distraction, which often occur unexpectedly 31 

in time. The proneness to distraction (i.e., distractibility) is posited to be independent of 32 

attentional sampling of targets, but its temporal dynamics and neurobiological basis are largely 33 

unknown. Brain oscillations in the theta band (3–8 Hz) have been associated with fluctuating 34 

neural excitability, which is hypothesised here to explain rhythmic modulation of distractibility. 35 

In a pitch discrimination task (N = 30) with unexpected auditory distractors, we show that 36 

distractor-evoked neural responses in the electroencephalogram and perceptual susceptibility 37 

to distraction were co-modulated and cycled approximately 3–5 times per second. Pre-38 

distractor neural phase in left inferior frontal and insular cortex regions explained fluctuating 39 

distractibility. Thus, human distractibility is not constant but fluctuates on a subsecond 40 

timescale. Furthermore, slow neural oscillations subserve the behavioural consequences of a 41 

hitherto largely unexplained but ever-increasing phenomenon in modern environments – 42 

distraction by unexpected sound.  43 
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Introduction 44 

Selective attention enables humans to focus on relevant information at the expense of 45 

distraction. The brain prioritizes representations of relevant events while filtering out task-46 

irrelevant distractors (Desimone & Duncan, 1995; Picton et al., 1971). Recent research posited 47 

that distractor processing is not merely collateral to attentional sampling of targets but may 48 

follow its own dynamics (Schneider et al., 2018; Wöstmann et al., 2019, 2020). The 49 

behavioural detriments induced by different kinds of distractors (i.e., distraction) and the 50 

neuro-cognitive mechanisms that counteract distraction (i.e., suppression) have been studied 51 

in some detail (Bonnefond & Jensen, 2012; Geng & DiQuattro, 2010; van Moorselaar et al., 52 

2020; Weisz et al., 2020; Wöstmann et al., 2019). However, the temporal dynamics and the 53 

neurobiological basis of the proneness to distraction (i.e., distractibility) are largely unknown.  54 

Distractibility has long been neglected in the theoretical formulation of rhythmic 55 

attention. Originally assumed to be static (Posner et al., 1980), the attentional spotlight was 56 

proposed to be blinking at a subsecond time scale in a theta-like rhythm (i.e., 3–8 Hz) 57 

(Buschman & Kastner, 2015; Fiebelkorn & Kastner, 2019). Behaviourally, it is manifested via 58 

the waxing and waning of behavioural performance in target selection (Fiebelkorn et al., 2013; 59 

Ho et al., 2017; Kubetschek & Kayser, 2021; Landau & Fries, 2012) or working memory 60 

(Schmid et al., 2022; ter Wal et al., 2021) performance at similar frequencies. However, the 61 

temporal dynamics outside of the attentional spotlight are not well understood. While previous 62 

research studied how distractibility unfolds on relatively long temporal scales of minutes (i.e., 63 

during an experimental session (Forster & Lavie, 2014)) or years (i.e., across stages of 64 

development (Campbell et al., 2012; Kannass et al., 2006)), we found preliminary evidence for 65 

fluctuating distractibility on shorter timescales following rhythmic presentation of auditory 66 

targets (Wöstmann et al., 2020). To isolate distractibility dynamics from rhythmic entrainment 67 

or preparatory suppression, we here employ a design that uses non-rhythmic stimuli and 68 

distractors that occur unexpectedly.  69 

 A central prediction of rhythmic attention is that the phase of slow neural oscillations 70 

explains fluctuations in behaviour (VanRullen, 2016). The prediction is based on the notion 71 

that rhythmic attention arises from the periodic excitability of the attention-related brain 72 

network (Fiebelkorn & Kastner, 2019; VanRullen, 2016). In the human brain, theta neural 73 

phase (3–8 Hz) is assumed to reflect moment-to-moment changes in neural excitability 74 

(Lakatos et al., 2005). Theta phase in brain regions beyond sensory cortices, such as fronto-75 
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parietal regions and the hippocampus, has been associated with fluctuations in target detection 76 

(Helfrich et al., 2018) and working memory encoding (Rutishauser et al., 2010; Siegel et al., 77 

2009), respectively. While previous research has related distractibility to supra-modal regions 78 

in frontal (Chao & Knight, 1995; Wais et al., 2012) or parietal (Kanai et al., 2011) cortex, it is 79 

unclear whether and in which networks the momentary neural dynamics may subserve the 80 

waxing and waning of distractibility.  81 

Here, we ask if the brain spontaneously alternates between states of higher and lower 82 

distractibility and whether such fluctuations have the potency to explain behavioural 83 

consequences of distraction. If so, we would expect to observe a brain-behaviour relation 84 

between the pre-distractor brain state and the distractor-induced detriment in task performance. 85 

To this end, we employed a pitch discrimination task wherein an auditory distractor could occur 86 

at variable and unexpected times in-between two target tones. A total of 17,280 behavioural 87 

and neural responses in the electroencephalogram (EEG) in N=30 participants revealed that 88 

behavioural sensitivity and distractor-evoked neural responses fluctuated in sync across 89 

distractor onset times in ~3–5 cycles per second. Critically, pre-distractor theta phase in left 90 

inferior frontal and insular cortex regions explained behavioural performance fluctuations. 91 

These effects were absent in trials without distractors, reinforcing their specificity to distractor-92 

related neural processing.   93 
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Material and Methods 94 

Participants 95 

Thirty participants (20 females, 10 males; mean age = 23.67, SD = 3.56) took part in the EEG 96 

experiment. They provided written informed consent and were compensated by either €10/hour 97 

or course credit. Participants were right-handed according to the Edinburgh Handedness 98 

Inventory (Oldfield, 1971) (mean score = 92), with self-reported normal hearing, normal or 99 

corrected-to-normal vision, and no psychological or neurological disorders. All procedures of 100 

the current study were approved by the ethics committee of the University of Lübeck.   101 

Stimuli and Procedure 102 

Participants performed a pitch discrimination task wherein they decided whether the first (tone 103 

1) and the second (tone 2) target tones in a trial were the same or different in pitch. Prior to the 104 

experiment, they were instructed to answer as accurately and as fast as possible. The target 105 

tones were 75 ms long pure tones with 5 ms rise and fall periods. In each trial, the frequencies 106 

of tone 1 were randomly selected between musical note A#3 (233 Hz) and G#5 (830.6 Hz), 107 

while that of tone 2 was either the same (50%) or different (higher or lower, 25% each) in 108 

frequency compared to tone 1.  109 

The pitch difference between tone 1 and tone 2 was titrated for each participant with an 110 

adaptive task (see below). The offset-to-onset interval between tone 1 and tone 2 was 1550 ms. 111 

Each distractor stimulus comprised 10 consecutive pure tones with 40 ms duration (400 ms in 112 

total). The frequencies of the pure tones in each distractor stimulus were randomly selected 113 

among the 12 tones between A#3 and G#5 with whole tone steps (A#3, C4, D4, E4, F#4, G#4, 114 

A#4, C5, D5, E5, F#5, and G#5), with the constraint that there would be no repetition between 115 

consecutive tones. Each of the 12 tone frequencies appeared at each of the 10 positions with 116 

equal probability across trials. 117 

In-between the two target tones, a distractor was presented in 50% of trials (distractor-118 

present condition) and no distractor was presented in the remaining trials (distractor-absent 119 

condition). In the distractor-present condition, the distractor was presented at one of 24 120 

distractor onset times (0 ms to 1150 ms, 50-ms steps, relative to the offset of tone 1), which 121 

was selected at random on each trial. After the offset of target tone 2, participants had a 2000 122 

ms response time window. To avoid potential temporal predictability effects of the onset of the 123 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 7, 2022. ; https://doi.org/10.1101/2022.10.04.510769doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510769
http://creativecommons.org/licenses/by/4.0/


6 

 

next trial, the inter-trial intervals were randomly selected from a truncated exponential 124 

distribution (mean = 1460 ms), ranging between 730 and 3270 ms.   125 

The trial order was pseudo-randomized with no repetition in probe tone frequency and 126 

distractor onset for any two consecutive trials. In total, there were 12 trials for each unique 127 

condition (distractor-present/absent x distractor onset x same/different target pitch) and 1152 128 

trials for the whole experiment. All auditory materials were presented via Sennheiser 129 

headphones (HD 25-1 II). Responses were made using a response box (The Black Box Toolkit). 130 

The assignment of buttons to the response options (“same” or “different”) was counterbalanced 131 

across participants. Stimuli were presented via Matlab (MathWorks, Inc., Natick, USA) and 132 

Psychtoolbox(Brainard, 1997). The auditory stimuli were presented at approximately 70 dB 133 

SPL. 134 

Adaptive Staircase Procedure 135 

Prior to the main experiment, each participant’s threshold for the pitch discrimination task was 136 

titrated using an adaptive staircase procedure, implemented in the Palamedes toolbox (Prins & 137 

Kingdom, 2018) for Matlab. For the initial 11 participants, the threshold was titrated to an 138 

approximate accuracy of 70.7%. As the overall accuracy was relatively high even after the 139 

adaptive staircase procedure for these 11 participants (mean = 79.59%, SD = 10.43%), the final 140 

16 participants performed an adaptive procedure altered to yield approximately 65% accuracy 141 

instead. Due to technical issues, performance of the remaining three participants was tracked 142 

at 35% accuracy. As all relevant statistical analyses in the present study are within-subject, and 143 

as paired t-tests (2-tailed) comparing the behavioural performance between distractor-absent 144 

and distractor-present conditions were significant with (t29 = 8.11, p < .001) and without (t26 = 145 

9.41, p < .001) these participants, their data were included in the final analysis. 146 

 Each participant went through the adaptive staircase procedure two to three times, 147 

depending on the stability of the tracked threshold. There were in total 30 trials for each run of 148 

the adaptive staircase procedure with an initial pitch difference of 100 cents (i.e. 1 semitone) 149 

between tone 1 and 2. The minimum and maximum pitch difference possible in the task was 2 150 

cents and 2000 cents, respectively. For the procedure which tracked performance at ~70.7%, a 151 

two-down one-up procedure was used. Specifically, the pitch differences would decrease in 152 

steps of 10 cents if participant responded correctly (i.e., different), or increase in steps of 10 153 

cents if participant responded incorrectly (i.e., same) for 2 consecutive trials. For the procedure 154 
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which tracked performance at ~65% procedure, the pitch differences would decrease in steps 155 

of 7 cents if participant answered correctly or increase in steps of 13 cents if they answered 156 

incorrectly. The pitch difference used in the main experiment was calculated by averaging the 157 

final 10 trials in the tracking run which converged to the most stable threshold, determined by 158 

visual inspection, in the ~70.7% procedure. The same procedure was used to average the final 159 

6 trials in the ~65% procedure. Overall accuracy averaged across all participants in the actual 160 

experiment was 73.58% (SD = 12.12%). 161 

Behavioural Data Analysis 162 

To understand how distractors affect pitch discrimination performance in the framework of 163 

signal detection theory, we calculated sensitivity (d’) and criterion (c) separately for distractor-164 

present and -absent conditions, using the Palamedes toolbox (Prins & Kingdom, 2018) and the 165 

following formulas: 166 

(Formula 1)   Sensitivity = z (Hit rate) – z (False alarm rate) 167 

(Formula 2)  Criterion = –0.5 * (z (Hit rate) + z (False alarm rate)) 168 

Hit rate was defined as the “different” response when the two tones were different in 169 

pitch, and false alarm rate the “different” response when the two tones were the same in pitch. 170 

Extreme values (0 or 1) of Hit rate or False alarm rate were adjusted (Macmillan & Kaplan, 171 

1985): A rate of 0 was adjusted by dividing 1 by the number of trials multiplied by 2; while a 172 

value of 1 was adjusted by subtracting the same value from 1. Paired samples t-tests (2-tailed) 173 

were used to compare sensitivity and criterion in distractor-present versus -absent conditions. 174 

To study the modulation of distractor onset times on behavioural measures in the 175 

distractor-present condition, sensitivity for each distractor onset time was calculated, resulting 176 

in a behavioural time course as a function of distractor onset time for each individual participant 177 

(see Fig. S1 & S2). 178 

EEG Recording and Pre-processing 179 

The experiment was conducted in an electrically shielded sound-attenuated room. A modified 180 

10-20 international system with 64 Ag/Ag-Cl electrodes was used to record the EEG with a 181 

sampling rate of 1000 Hz (actiCHamp, Brain Products, München, Germany). The EEG 182 

recordings were band-pass filtered online from direct current (DC) to 280 Hz. TP9 was used 183 
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as the online reference and FPz as the ground electrode. Impedances were kept below 20 kOhm 184 

for all but one participant. 185 

 Matlab R2018a (MathWorks, Inc., Natick, USA) and the Fieldtrip toolbox (Oostenveld 186 

et al., 2011) were used to pre-process and analyse EEG data. The continuous EEG data were 187 

filtered (high-pass, 1 Hz; low-pass, 100 Hz) before they were segmented into epochs (-2 to 188 

2.5s) time-locked to tone 1 onset. Independent component analysis (ICA) was used to identify 189 

and reject components corresponding to artefacts such as eye blinks, eye movements, and 190 

muscle activity (average percentage of components removed = 26.46%, SD = 8.89%). 191 

Afterwards, EEG data were re-referenced to the average of all electrodes. Epochs with 192 

amplitude changes >160 microvolts were rejected (average percentage of epochs removed = 193 

1.35%, SD = 2%).  194 

 To obtain distractor-evoked neural responses, data were re-epoched to the onset of the 195 

distractor (-1 to 1 s) with a 200ms baseline period. Epochs belonging to the same conditions 196 

(distractor-present/absent) and distractor onset time (0 – 1150ms, 50-ms steps) were then 197 

averaged into ERP waveforms. The spectral amplitude of distractor-evoked responses at 25 Hz, 198 

which corresponds to the temporal structure of the distractor, was extracted using FFT on the 199 

ERP waveform in the time window from 0 to 520ms after distractor onset. Spectral amplitude 200 

was averaged across electrodes F1, Fz, F2, FC1, FCz, and FC2. For each participant, the 24 201 

spectral amplitudes, corresponding to the 24 distractor onset times, resulted in a neural time 202 

course of distractor processing as a function of distractor onset time (see Fig. S1 & S2).  203 

 Distractor-evoked inter-trial phase coherence (ITPC) was also calculated across 204 

frequencies (1 – 10 Hz, 1-Hz steps) and time windows (-0.2 – 0.7 s, 0.05-s steps) for each 205 

electrode. First, Fourier coefficients were calculated (using windows with a fixed length of 0.5 206 

s; hanning taper). Then, the complex Fourier coefficients were divided by their magnitude and 207 

averaged across trials. ITPC was calculated by taking the absolute value (i.e., magnitude) of 208 

the average complex coefficient. 209 

Modulation of neural and behavioural measures by distractor onset time 210 

To test whether and how distractor onset time modulates neural and behavioural measures, we 211 

used linear mixed-effect models with sine- and cosine-transformed distractor onset time, 212 

similar to Wöstmann et al. 2020 (Wöstmann et al., 2020). For time courses of sensitivity and 213 

spectral amplitude of the distractor-evoked ERP at 25 Hz separately, we first subtracted the 214 
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individually fitted quadratic trend (computed with the polyfit function in Matlab) from the 215 

original time course for each participant (see Fig. S1 & S2) as the quadratic trend was not of 216 

interest in the current study (Huang et al., 2015).  217 

Then, we designed sine- and cosine- transformed distractor onset time vectors using the 218 

following formulas,  219 

(Formula 3)  Sine predictor = sin (2 * π * f * distractor onset time) 220 

(Formula 4)  Cosine predictor = cos (2 * π * f * distractor onset time) 221 

Where f denotes the frequency of interest (0.5 – 8 Hz, 0.5-Hz steps). Next, we regressed the 222 

detrended sensitivity and spectral amplitude of ERP time courses on sine and cosine predictors 223 

using linear mixed models (using the fitlme function in Matlab) for each frequency of interest 224 

using the following formulas: 225 

(Formula 5)  z(sensitivity) ~ z(sine predictor) + z(cosine predictor) + (1|participant) 226 

(Formula 6)  z(25-Hz ERP) ~ z(sine predictor) + z(cosine predictor) + (1|participant) 227 

Spectral magnitude for each frequency was computed by taking the square root of the sum of 228 

squared beta coefficients of sine and cosine predictors: 229 

(Formula 7)  Spectral magnitude = sqrt (sine coef2 + cosine coef2) 230 

         Statistical significance of the spectral magnitude was determined by comparing the 231 

spectral magnitude of the empirical data with the 95th percentile of a permutation distribution, 232 

which was generated by shuffling the original behavioural/neural time course and performing 233 

the same analysis for 5,000 times. 234 

         To test whether sensitivity and spectral amplitude of the distractor-evoked ERP at 25 235 

Hz are co-modulated, for each participant, cross-correlation coefficients across time lags of the 236 

two signals were obtained (using the “xcorr” function on z-scored time courses in Matlab). 237 

Again, we ran a similar linear mixed model as explained above, but this time with sine- and 238 

cosine- transformed time lags as predictors and used the correlation coefficients from the cross-239 

correlation as the outcome measure. Spectral magnitude was obtained using formula 7 and 240 

statistical significance with the same permutation method mentioned above.   241 
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Phasic modulation of behavioural sensitivity 242 

To explore the role of pre-distractor neural dynamics on the pitch discrimination performance, 243 

we examined whether pre-distractor oscillatory phase relates to behavioural sensitivity. To this 244 

end, we examined the quadratic fit of sensitivity as a function of neural phase in source space.  245 

 First, we implemented the source analysis using the Fieldtrip toolbox. First, a standard 246 

volume conduction model and standard electrode locations were used to calculate the leadfield 247 

matrix with 10-mm resolution. We applied the linearly constrained minimum variance (Van 248 

Veen et al., 1997) (LCMV) beamformer approach on the 10 Hz lowpass filtered data centred 249 

around distractor onset (-1 to 1s). We calculated a common filter including all trials by 250 

calculating the covariance matrix estimates. There were in total 2,015 source locations inside 251 

the brain.  252 

 Second, a quadratic fit analysis resolved by frequency and time probed the spectral and 253 

temporal specificity of the phasic modulation of perceptual sensitivity. To obtain trial-wise 254 

phase values for each source location, the following procedure was implemented for each trial 255 

in each source location: First, the single-trial EEG time course was projected into the source 256 

space using the common filter. Then, a sliding window (0.4s duration; moving in 50-ms steps 257 

from –0.3 to +0.3s relative to distractor onset) was employed to transform the data into the 258 

frequency domain (using FFT). Note that the time point of the sliding window refers to the 259 

mid-point of each time window. For instance, the time window centred at -0.3 included data 260 

from -0.5 to -0.1 s. The respective phase value of each frequency (2.5 – 8 Hz in 0.5-Hz steps) 261 

was then calculated using the angle function in MATLAB. The phase values of all trials were 262 

binned into 9 bins of equal size, ranging from -pi to pi, followed by a calculation of sensitivity 263 

for each bin. The quadratic fit of sensitivity across phase bins was estimated using the polyfit 264 

function (order = 2) in MATLAB. As a result, we obtained a quadratic fit index for each source 265 

location, frequency, and time of interest.  266 

We used a source-level cluster-based permutation test (Maris & Oostenveld, 2007) to 267 

find significant clusters in voxel-frequency-time space that would exhibit phasic modulation 268 

of sensitivity. Dependent-samples t-tests were used to contrast quadratic fit coefficients against 269 

zero, followed by clustering of adjacent bins with significant effects in voxel-frequency-time 270 

space. To derive cluster p-values, summed t-values in observed clusters were tested against 271 

5,000 permutations with shuffled condition labels (two-tailed). 272 
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To demonstrate that the significant cluster found in the above analysis does not 273 

primarily originate from auditory cortex, we localised, for comparison, the distractor-evoked 274 

inter-trial phase coherence (ITPC) at 3 – 7 Hz, strongly assumed to emerge at least to large 275 

degrees from the supratemporal plane and auditory cortex (Koerner & Zhang, 2015; Mayhew 276 

et al., 2010; Oya et al., 2018), with the following procedure for each voxel: For each trial, we 277 

projected the time series EEG data into source space using the same common filter as in the 278 

analysis on the phasic relationship with behaviour. Then, we transformed the source-projected 279 

data (0 – 300 ms after distractor onset) to the frequency domain using FFT. The same 280 

calculation as on the sensor level was used to calculate the ITPC for each frequency. ITPC 281 

across frequencies 3 – 7 Hz were then averaged to obtain one distractor-evoked ITPC value for 282 

each voxel. 283 

 284 

  285 
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Results 286 

In the current electroencephalography (EEG) and behavioural study, we aimed at (1) 287 

uncovering the temporal fluctuations in distraction, and (2) exploring the relationship between 288 

such fluctuations and momentary neural phase at similar frequencies. To this end, we varied 289 

the onset time of an auditory distractor that was presented in-between two to-be-compared 290 

tones in a variant of a pitch discrimination task. 291 

We probed this research question in the auditory modality as temporal information is 292 

especially important to auditory attentional selection (Shamma et al., 2011). During the task, 293 

participants (N = 30) had to identify whether the two target tones were the same or different in 294 

pitch (Fig 1A). The distractor was a fast-varying, 25-Hz modulated sequence of tones that 295 

differed in pitch, which allowed us to extract its induced 25-Hz neural response (Ding & Simon, 296 

2009). 297 

Distractors were present in half of the trials and absent in the remaining trials. In 298 

distractor-present trials, the distractor onset was uniformly distributed across 24 onset times (0 299 

– 1.15 s, in 0.05 s steps, after tone 1 offset). In distractor-absent trials, no distractor was 300 

presented between the two tones. The inclusion of distractor-absent trials serves two purposes. 301 

First, we could verify that the distractors had the potency to distract by comparing behavioural 302 

performance for distractor-present versus distractor-absent trials (Wöstmann et al., 2022). 303 

Second, participants could not anticipate whether or when a distractor would occur in a given 304 

trial, which eliminated potential effects of such anticipation on behavioural performance 305 

(Grabenhorst et al., 2021) or pre-stimulus neural activity (Dürschmid et al., n.d.; Herbst et al., 306 

2022; Stefanics et al., 2010). 307 

Distractors interfere with pitch discrimination performance 308 

To examine the potency of the distractors to distract, we compared participants’ sensitivity and 309 

criterion (response bias) of the pitch discrimination task between distractor-present and -absent 310 

trials. Participants were less sensitive to the pitch difference (t29 = -8.11, p = <.001, Cohen’s d 311 

= -1.48), and had a more conservative response criterion (i.e., more “same pitch” responses; t29 312 

= 2.83, p = .008, Cohen’s d = 0.52) on distractor-present trials (Fig 1B).  313 
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 314 

Fig 1. Experimental design and behavioural results. 315 

A) Schematic of a distractor-present trial. Participants were instructed to indicate whether the two target tones (grey) were 316 

the same (probability = 50%) or different (higher, probability = 25%; or lower, probability = 25%) in pitch. A 10-tone-pip 317 

distractor sequence (white) with a 25-Hz temporal structure (i.e., 40-ms tone-pip duration; total duration 400 ms) was presented 318 

at one of the 24 distractor onset times (dashed lines). In distractor-absent trials, no distractor was presented. B) Behavioural 319 

results comparing distractor-present and -absent conditions. Coloured circles indicate single-subject data. Insets show bar 320 

graphs of perceptual sensitivity (left panel) and criterion (right panel) for distractor-present (solid bar) and distractor-absent 321 

(gradient bar) conditions, respectively. Error bars show ±1 SEM. ** p < .01. *** p < .001. 322 

  323 
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Behavioural and neural measures of distraction co-fluctuate across time 324 

Does the impact of distraction on neural activity and goal-directed behaviour exhibit 325 

fluctuations across time? To test this, we varied distractor onset time and examined whether 326 

behavioural and neural measures of distraction would show modulations at frequencies up to 8 327 

Hz. Behaviourally, perceptual sensitivity was calculated as an indirect measure of distraction: 328 

The more distracted, the lower the sensitivity in pitch discrimination should be (Fig 2A, yellow, 329 

see S1 Fig for individual participants’ time courses). Neurally, we calculated the distractor-330 

evoked event-related potential (ERP; Fig 2B) for each distractor onset time and used a fast 331 

Fourier transform (FFT) to extract its amplitude at 25 Hz, which corresponded to the 332 

modulation rate of the frequency-modulated distractor tone sequence (Fig 2A, blue, see S1 Fig 333 

for individual participants’ time courses). 334 

To examine temporal fluctuations of distraction, we used linear mixed-effects models 335 

with sine- and cosine- transformed distractor onset time as predictors to model behavioural (i.e., 336 

perceptual sensitivity) and neural (i.e., distractor-evoked ERP) time courses as the outcome 337 

measures. This method outperforms other methods for studying the phasic modulation of 338 

behavioural and neural responses (Zoefel et al., 2019) and has also been used previously 339 

(Wöstmann et al., 2020) to extract temporal fluctuations in the vulnerability of working 340 

memory to distraction. A quadratic trend was observed in the behavioural time course in Fig 341 

2A as the earliest and latest distractors were most distracting due to their temporal proximity 342 

to the target tones. Before running linear mixed models, we removed the quadratic trends in 343 

the two measures as they were not of interest in the current study (Huang et al., 2015). 344 

 Fig 2E and F show the spectral magnitude (0.5–8 Hz, 0.5-Hz steps) resulting from linear 345 

mixed models on detrended perceptual sensitivity (Fig 2C, yellow) and detrended ERP 346 

amplitude (Fig 2C, blue), respectively. Statistical significance was derived by testing empirical 347 

spectral magnitude against the 95th percentile of a permutation distribution, which was derived 348 

from shuffling the behavioural and neural time courses, respectively, 5,000 times (see Methods 349 

for details). 350 

At the behavioural level, distractor onset time modulated sensitivity below 5 Hz. At the 351 

neural level, distractor onset time modulated the distractor-evoked ERP at 4 and 5 Hz. Similar 352 

results were obtained in a control analysis, where temporal fluctuations in sensitivity in 353 

distractor-present trials were compared against distractor-absent trials (instead of permuted 354 

distractor-present trials; S3 Fig).  355 
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If these periodic neural dynamics serve as the basis for the apparent behavioural 356 

fluctuations, we should observe the synchronization of the behavioural and neural time courses 357 

by a common rhythm. To test this, we also examined the co-modulation of sensitivity and 358 

distractor-evoked ERP by distractor onset time. We first calculated the cross-correlation 359 

coefficients of the behavioural and neural time courses for individual participants (Fig 2D). We 360 

then ran a linear mixed model with the cross-correlation coefficient as the outcome measure 361 

and sine- and cosine-transformed time lag as predictors. 362 

Fig 2G shows that sensitivity and distractor-evoked ERP are co-modulated at 3.5 and 5 363 

Hz. At lag 0, there was a negative correlation between sensitivity and the distractor-evoked 364 

ERP, consistent with the notion that stronger distractor encoding (i.e., larger distractor-evoked 365 

ERP) corresponds to worse task performance (i.e., lower sensitivity). T-tests against zero on 366 

the (Fisher-z transformed) correlation coefficients across participants show that this correlation 367 

at time lag 0 was close to statistical significance (Pearson’s r: t29 = -1.85, p = 0.08, mean 368 

Pearson’s r = -0.08; Spearman’s r: t29 = -2.13, p = 0.04, mean Spearman’s r = -0.10). 369 

As a control analysis, the same analysis pipeline was run on the data in the distractor-370 

absent condition by randomly assigning a “distractor onset” for each distractor-absent trial, 371 

which did not reveal any significant co-modulation (S4 Fig): Neither time courses of sensitivity 372 

nor distractor-evoked ERP were modulated by distractor onset time; time lags did not modulate 373 

the cross-correlation of these two at any frequency. The temporal co-fluctuations of 374 

behavioural and neural measures of distraction at 3 – 5 Hz in distractor-present trials may be a 375 

manifestation of an underlying distractibility rhythm, which we probed into next. 376 
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 377 

Fig 2. The analyses of behavioural and neural time courses by distractor onset time. 378 

A) Average sensitivity (yellow solid line) and 25-Hz amplitude of the distractor-evoked event-related potential (ERP; blue 379 

solid line) across distractor onset times. Shaded areas show ±1 SEM across participants. Dashed lines show respective 380 

quadratic trends. B) Top panel: Distractor-evoked ERP waveform averaged across all distractor onset times at electrode Fz 381 

(20 – 30 Hz bandpass filtered for visualization purpose). Shaded grey area marks the time window used to extract the 25-Hz 382 

amplitude of the distractor-evoked ERP. Inset shows the scalp map of the 25-Hz amplitude of the distractor-evoked ERP 383 

(derived via an FFT on the distractor-evoked ERP waveform). Bottom panel: Distractor-evoked inter-trial phase coherence 384 

(ITPC) from 1 – 10 Hz and from -0.2 s – 0.6 s at Fz. Brain surface shows the ITPC values (frequencies: 3 – 7 Hz; time window: 385 

0 – 0.3 s) in source space, which reflects the auditory response to the distractor. White outline indicates top 1% voxels with 386 

largest ITPC values. C) Detrended time courses of behavioural and neural outcome measures. Shaded areas show ±1 SEM 387 

across participants. D) Solid line shows average correlation coefficients, derived by averaging single-subject cross-correlations 388 
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of sensitivity and distractor-evoked ERP time courses, as a function of temporal lags. Shaded area shows ±1 SEM across 389 

participants. E-G) Spectral magnitude across frequencies (0.5 – 8 Hz, 0.5-Hz step) for (E) detrended sensitivity, (F) distractor-390 

evoked ERP, and (G) the cross-correlation between the two. Shaded areas show the 95th percentile of the permutation 391 

distribution generated from 5,000 permutations. * p < .05. ** p < .01. (uncorrected) 392 

 393 

Pre-distractor neural phase in inferior frontal/insular cortex explains distraction  394 

If the human brain hosts an endogenous rhythm that underlies distractibility dynamics, the 395 

neural state prior to distractor onset should explain the participant’s momentary vulnerability 396 

to interference by a distractor. To test this, we studied how pre-distractor neural phase relates 397 

to our previously established proxy of distraction, that is, behavioural sensitivity. We asked 398 

when in time and in which brain network(s) such an endogenous rhythm underlying 399 

distractibility would show up. 400 

We employed source-projected EEG time courses to extract the quadratic relationship 401 

between the binned pre-distractor neural phase and perceptual sensitivity. For each trial (Fig 402 

3A), we first transformed a source-projected EEG data segment (0.4 s; sliding window) into 403 

the frequency domain using FFT. We then extracted neural phase for a given frequency (Fig 404 

3B). To calculate sensitivity sorted by phase bin, we first sorted the trials according to their 405 

phase values into 9 phase bins of equal size, followed by calculation of perceptual sensitivity 406 

for each bin (see S5 Fig for individual participants’ sensitivity by phase bin). The same 407 

procedure was repeated for a range of frequencies (2.5 – 8 Hz, 0.5-Hz steps) and time windows 408 

(-0.3 – 0.3 s around distractor onset, 0.05-s steps). A cluster-based permutation test with the 409 

dimensions time, frequency, and voxels, wherein the quadratic fit was tested against zero, 410 

revealed a positive significant cluster (Fig 3C; the same analyses with 7, 8, and 10 phase bins 411 

yielded comparable clusters across all dimensions and comparable statistical significance). The 412 

quadratic modulation of sensitivity by neural phase at 2.5 – 7.5 Hz was most prominent in the 413 

left insular and the inferior frontal cortices in the time window spanning ~300 ms before 414 

distractor onset (cluster p-value = .026, two-tailed; see S6 Fig for brain surface plots from other 415 

viewing angles).  416 

To test whether the significant cluster overlaps with sources of auditory-evoked activity 417 

in auditory cortex regions, we compared its source with the source of distractor-evoked inter-418 

trial phase coherence (ITPC) at 3 – 7 Hz (shown also in Fig 2B, bottom panel). Importantly, 419 
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although the two effects were localized in proximal cortical regions (Fig 3C, bottom panel), 420 

their core regions were mostly non-overlapping. 421 

For control, we conducted the same analysis on the distractor-absent trials, which 422 

revealed no significant cluster (S7 Fig). We also tested the relationship between the pre-423 

distractor neural phase and the post-distractor neural measure of distraction (i.e., 25-Hz 424 

amplitude of the distractor-evoked ERP), which did not reveal a significant effect (S8 Fig).  425 

 426 

Fig 3. Cluster-based permutation test results on the relationship between neural phase and behavioural fluctuations. 427 

A-B) Illustration of the source-level analysis. A) Example of a single-trial source-projected EEG time course. The moving 428 

window (grey) was used to transform segments of the data into the frequency domain using FFT. The first grey window 429 

corresponds to the first time window used in the time-resolved analysis (i.e., -0.5 to -0.1 s). B) Spectral representation of the 430 

data segment in (A). Phase values across frequencies were extracted and trials were binned according to their phase values 431 

into 9 phase bins for each frequency, time window, and source location. Bar graph shows exemplary sensitivity values 432 

calculated from the trials sorted by phase bin. A quadratic trend was fitted to the sensitivity values across phase bins (purple 433 

solid line). C) Results of a cluster-based permutation test, which tested quadratic fits in time-frequency-source space against 434 

zero. Top panel shows the t-values (df = 29) across frequencies and time windows, averaged across all the voxels belonging 435 

to the significant positive cluster. The black contour indicates the positive significant cluster. Right column shows individual 436 

participants’ quadratic coefficients for each frequency, collapsed across the time windows included in the significant cluster. 437 

Bottom row shows individual participants’ quadratic coefficients across time windows, collapsed across frequencies and 438 

voxels included in the significant cluster. Bottom left panel shows the cluster peak effect (3 Hz; -0.2 s), which resides mainly 439 

in left inferior frontal cortex and insular cortex. Only the t-values of the positive significant cluster are shown. The black 440 

contour indicates the regions with the top 1% t-values across the whole brain. The t-values were interpolated and projected 441 
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onto MNI coordinates for visualization purposes. The white contour indicates distractor-evoked neural activity, quantified as 442 

the top 1% inter-trial phase coherence (ITPC) in the post-distractor time window (i.e., 0 – 0.3 s) at 3 – 7 Hz (shown also in 443 

Figure 2B). Bottom right panel shows centred perceptual sensitivity sorted by phase bins in the positive cluster at 3 Hz averaged 444 

across participants. Grey thin lines show individual centred perceptual sensitivity.  445 
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Discussion 446 

The current study aimed to unravel the temporal dynamics of distractibility, using a pitch 447 

discrimination task with auditory distractors. The eventual degree of distraction and the neural 448 

processing of distractors were respectively quantified by distractor-evoked performance 449 

detriments and neural responses in the human electroencephalogram (EEG). We made a series 450 

of interesting observations.  451 

First, the ~3 – 5 Hz fluctuations of behavioural sensitivity across distractor onset time 452 

urged for the question whether the same fluctuations are observed in the human brain’s 453 

response to distractors. Consistently, we found that the distractor-evoked neural response 454 

covaries with behavioural sensitivity at similar frequencies. Second, while behavioural 455 

sensitivity and the distractor-evoked neural response might partly reflect post-perceptual 456 

processes (such as distractor suppression), we asked whether the brain hosts an endogenous 457 

oscillation that shapes the momentary state of distractibility. Confirming this, we found that 458 

pre-distractor neural phase in left inferior frontal/insular cortex explained rhythmic fluctuations 459 

in the momentary degree of distraction.  460 

These major findings support the notion that temporal fluctuations in distractibility on 461 

a subsecond time scale can be explained by slow neural oscillatory dynamics in a cortical 462 

network beyond the auditory cortex. 463 

The proneness to distraction is inherently dynamic 464 

The current study sheds light on the dynamics of distractibility, which is an important factor 465 

often neglected in previous attention research on distraction and suppression. The ultimate 466 

degree of detriment that a distractor will cause depends on two endogenous factors: the 467 

momentary proneness to distraction (i.e., distractibility) and the ability to suppress a distractor 468 

(i.e., distractor suppression). On the one hand, research on distractor suppression often did not 469 

disentangle the active suppression of distractors (Schneider et al., 2021) from variations in 470 

distractibility. On the other hand, research on distractibility rather treated it as an individual 471 

characteristic that, if at all, only changes on a slow temporal scale such as within an 472 

experimental session (Forster & Lavie, 2014) or across developmental stages (Kannass et al., 473 

2006). The temporal trajectory of distractibility on a faster, subsecond, time scale had hitherto 474 

been left unknown. 475 
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With distractor-evoked behavioural and neural measures, we were able to encapsulate 476 

the temporal trajectory of distraction, which fluctuates on a subsecond temporal scale 477 

consistent with the rate of rhythmic sampling in attention (Fiebelkorn et al., 2013; Ho et al., 478 

2017; Kubetschek & Kayser, 2021; Landau & Fries, 2012) and working memory (Cruzat et al., 479 

2021; Schmid et al., 2022; ter Wal et al., 2021). With analysis of pre-distractor neural 480 

oscillatory phase, we were able to trace this distractibility back to a slow neural oscillatory 481 

fluctuation in inferior frontal and insular cortex (see below for an in-depth discussion). 482 

Participants could not anticipate whether or when the distractor would occur, thereby not being 483 

able to engage in preparatory suppression of the upcoming distractor (Geng, 2014). The 484 

combined analysis of pre-distractor neural phase and of post-distractor neural and behavioural 485 

measures complementarily elucidates how the brain alternates between states of higher and 486 

lower distractibility. These insights are essential for the inclusion of an explicit account of 487 

distraction in models of attention in psychology and neuroscience. 488 

Fluctuations of distractibility at 3 – 5 Hz in the current study unveil the dynamic nature 489 

of attention, which was underappreciated in the static spotlight metaphor of attention (Posner 490 

et al., 1980). The attentional sampling of to-be-attended external stimuli (Fiebelkorn et al., 491 

2013; Ho et al., 2017; Kubetschek & Kayser, 2021) or internal memory representation (Cruzat 492 

et al., 2021; Schmid et al., 2022; ter Wal et al., 2021) has been shown to exhibit temporal 493 

fluctuations at similar frequencies. The waxing and waning of attentional sampling may index 494 

inter-areal coordination between the attentional network and the sensory areas of the brain 495 

(Dugué & VanRullen, 2017), which is associated with the alternation between stronger and 496 

weaker attentional sampling over time (Fiebelkorn & Kastner, 2019). With much evidence on 497 

the temporally dynamic nature of the attentional spotlight, however, there is a lack of 498 

theoretical foundation for the inherent dynamics of cognition outside of this spotlight (Lui & 499 

Wöstmann, 2022). With the observed fluctuations of distractibility in the theta frequency range, 500 

an extension of the existing theory of dynamic attentional sampling to temporally dynamic 501 

distraction is warranted. 502 

While our results demonstrate that distractibility exhibits temporal fluctuations, they do 503 

not reveal whether such fluctuations are independent of the fluctuations found in the attentional 504 

sampling of memory content. Participants in the current study had to maintain the memory 505 

representation of the pitch of tone 1 during a trial. The theta fluctuations found in the current 506 

study thus may represent the sampling of the internal representation of tone 1, with higher 507 

distractibility hypothetically occurring during the phase of reduced sampling of the memory 508 
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representation. Alternatively, observed theta fluctuations may represent independent 509 

fluctuations in the proneness to distraction. Previous neuroimaging studies found that the 510 

suppression of distracting inputs may be independent of the sampling of attended inputs 511 

(Noonan et al., 2016; Schneider et al., 2018; Wöstmann et al., 2019). Future investigations may 512 

manipulate both the target and distractor onset time to examine the relationship between the 513 

temporal fluctuations underlying attentional sampling and distractibility.  514 

Of note, as the main analysis approach used here (comparing empirical time courses to 515 

time courses that were shuffled in time) does not distinguish between periodic and aperiodic 516 

temporal structure (Brookshire, 2022), we are careful to conclude from the respective results 517 

alone that distractibility is rhythmic. However, it does not negate the possibility that there is a 518 

periodic temporal structure in distractibility. The premise of rhythmic cognition is that the 519 

apparent fluctuations of performance reflect the periodic orchestration between brain regions 520 

(Fiebelkorn & Kastner, 2019). In addition to fluctuations in behavioural performance, neural 521 

evidence is therefore essential to elucidate the rhythmicity of cognition (Fiebelkorn, 2022; 522 

Wöstmann, 2022). The current study shows a correspondence between slow neural oscillatory 523 

phase and behaviour (using an analysis approach that does not employ shuffling-in-time), 524 

consistent with the notion that distractibility is rhythmic. Future advancements in the analysis 525 

approach to directly test the periodicity in cognition will further strengthen our understanding 526 

of the distractibility dynamics.  527 

Neural dynamics of distractibility originate in inferior frontal/insular cortices 528 

The localisation of neural phase effects underlying distractibility dynamics beyond auditory 529 

cortex regions might suggest that the proneness to distraction is supra-modal. In research on 530 

visual distraction, brain regions in frontal and parietal cortices have been associated with 531 

distractor interference in lesions (Chao & Knight, 1995) or transcranial magnetic stimulation 532 

(Kanai et al., 2011; Wais et al., 2012) studies. The functional connectivity between the left 533 

inferior frontal cortex and hippocampus is associated with the disruptive influence of task-534 

irrelevant visual distraction on working memory (Wais et al., 2010). While the current study 535 

examined distractibility in the auditory modality, the neural origins found here overlap with 536 

previous research on distraction in the visual modality. 537 

 The observed relationship between perceptual sensitivity and the inferior frontal/insular 538 

theta phase suggests that fluctuations in distractibility may be related to the cognitive control 539 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 7, 2022. ; https://doi.org/10.1101/2022.10.04.510769doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510769
http://creativecommons.org/licenses/by/4.0/


23 

 

of working memory. The left inferior frontal cortex is assumed to be critical to the resolution 540 

of competition between the maintenance of goal-relevant information and the interference from 541 

external distraction (Irlbacher et al., 2014; Tops & Boksem, 2011; Wais et al., 2012). The 542 

anterior insula is theorised as a gatekeeper to the brain regions responsible for goal-related 543 

cognitive control (Molnar-Szakacs & Uddin, 2022), and is part of the ventral attention system 544 

(Eckert et al., 2009). Specifically, the insular cortex may support the switching between 545 

networks important to internally directed and externally directed cognition, respectively 546 

(Uddin, 2015). The frontal theta rhythm is associated with cognitive control (Berger et al., 2019; 547 

Cavanagh & Frank, 2014; Kamarajan et al., 2004) and the prioritization of relevant memory 548 

representation (Riddle et al., 2020). Taken together, theta oscillations in the inferior frontal and 549 

insular cortices may reflect the orchestration of the cognitive control system to maintain the 550 

internal memory representation and suppress potentially distracting external inputs. 551 

 Against what might have been expected, the pre-distractor neural phase did not predict 552 

fluctuations in the distractor-evoked neural response (S8 Fig). However, this null result might 553 

rest on the distractor-evoked ERP being a rather unspecific proxy of distraction. Components 554 

of the distractor-evoked ERP have been shown to reflect cognitive operations other than 555 

distraction, such as reactive suppression (Feldmann-Wüstefeld & Vogel, 2019; Hickey et al., 556 

2009; Wang et al., 2019) or stimulus prediction (Volosin & Horváth, 2014). Distractibility 557 

dynamics may only account for a small amount of variance in the distractor-evoked ERP.  558 

  559 
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Conclusions 560 

The present study demonstrates that human proneness to distraction is not uniformly distributed 561 

across time but fluctuates on a subsecond timescale in cycles of ~3 – 5 Hz. In the brain, time 562 

windows of higher distractibility are coined by stronger neural responses to distractors. 563 

Furthermore, slow neural phase in left inferior frontal/insular cortex regions explains 564 

fluctuations in distractibility. These results unravel the temporal dynamics of distractibility and 565 

thereby help explain human processing of an abundant kind of stimulus in increasingly 566 

complex environments, that is, irrelevant and distracting input.  567 

  568 
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 768 

Fig. S1. Individual time courses of raw sensitivity (yellow) and distractor-evoked ERP (25-Hz amplitude of distractor-769 

evoked ERP; blue).  770 
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 771 

Fig. S2. Detrended (quadratic trend removed) sensitivity (yellow) and distractor-evoked ERP (blue) individual time 772 

courses.   773 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 7, 2022. ; https://doi.org/10.1101/2022.10.04.510769doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510769
http://creativecommons.org/licenses/by/4.0/


36 

 

 774 

Fig. S3. Comparison of the spectral magnitude between distractor-present and distractor-absent conditions. Left panel 775 

shows the sensitivity time courses for distractor-present (solid) and distractor-absent (dashed) conditions. Right panel shows 776 

the averaged frequency spectra, derived from FFT on single-subject time courses. Shaded areas show ±1 SEM across individual 777 

participants. Asterisks show statistical significance when comparing the spectral magnitude of distractor-present versus -absent 778 

conditions (using uncorrected dependent-samples t-tests). * p < .05 ** p < .01  779 
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 780 

Fig. S4. The same analysis pipeline as shown in Fig 2 applied to the distractor-absent condition.   781 
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 782 

Fig. S5. Individual sensitivity (grey line) and quadratic fit (purple line) across phase bins of the significant positive 783 

cluster at 3 Hz.  784 
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 785 

Fig. S6. Brain surface plots of the cluster peak effect. Brain surface plots of the cluster peak effect (3 Hz; -0.2 s) from left 786 

lateral (top left), right lateral (top right), left medial (bottom left), and right medial (bottom right) views show t-values for the 787 

comparison of the quadratic fit of the sensitivity sorted by phase bins against zero. The t-values were interpolated and projected 788 

onto MNI coordinates for visualization purposes.  789 
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 790 

Fig. S7. Cluster-based permutation test in the distractor-absent condition. Results of the cluster-based permutation test, 791 

across time windows and frequencies, on the quadratic relationship between neural phase and sensitivity for the distractor-792 

absent condition. Figure shows t-values (df = 29) averaged across all the voxels belonging to the significant positive cluster in 793 

the distractor-present condition shown in Figure 3. No significant cluster was found in the distractor-absent condition. 794 

 795 
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 796 

Fig. S8. Cluster-based permutation test on distractor-evoked ERP amplitude. Results of the cluster-based permutation 797 

test, across time windows and frequencies, on the quadratic relationship between neural phase and distractor-evoked ERP 798 

amplitude at 25 Hz. Figure shows t-values (df = 29) averaged across all the voxels belonging to the significant positive cluster 799 

testing the quadratic relationship between neural phase and behavioural sensitivity shown in Figure 3. As expected, and not of 800 

main interest in the current study, a significant cluster in the post-stimulus time window (i.e., >0s) was found. More importantly, 801 

no significant cluster was found in the pre-distractor time window (i.e., <0 s). 802 
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