

1 **The kinase occupancy of T-cell coreceptors reconsidered**

2 Alexander M. Mørch^{1,2}, Falk Schneider^{2,3}, Edward Jenkins², Ana Mafalda Santos², Scott E.
3 Fraser³, Simon J. Davis^{2*}, Michael L. Dustin^{1*}

4

5 ¹Kennedy Institute of Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3
6 7FY, United Kingdom

7 ²MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of
8 Oxford, Oxford, OX3 9DS, United Kingdom

9 ³Translational Imaging Center, University of Southern California, Los Angeles, California
10 90089, United States of America.

11

12 *Correspondence should be addressed to: simon.davis@imm.ox.ac.uk and
13 michael.dustin@kennedy.ox.ac.uk

14

15 Classification: Biological Sciences; Immunology and Inflammation

16

17 Keywords

18 Coreceptor, Lck, stoichiometry, T-cell signaling, FCS, diffusion

19

20

21 **Abstract**

22 The sensitivity of the $\alpha\beta$ T-cell receptor (TCR) is enhanced by the coreceptors CD4 and
23 CD8 $\alpha\beta$, which are expressed primarily by cells of the helper and cytotoxic T-cell lineages,
24 respectively. The coreceptors bind to major histocompatibility complex (MHC) molecules and
25 associate intracellularly with the Src-family kinase Lck, which catalyzes TCR phosphorylation
26 during receptor triggering. Although coreceptor-kinase occupancy was initially believed to be
27 high, a recent study suggested that most coreceptors exist in an Lck-free state, and that this
28 low occupancy helps to effect TCR antigen discrimination. Here, using the same method, we
29 found instead that the CD4-Lck interaction was stoichiometric (~100%) and that the CD8 $\alpha\beta$ -
30 Lck interaction was also substantial (~60%). We confirmed our findings in live cells using
31 fluorescence cross-correlation spectroscopy (FCCS) to measure coreceptor-Lck co-diffusion
32 *in situ*. After introducing structurally guided mutations into the intracellular domain of CD4,
33 we used FCCS to show that stoichiometric Lck coupling required an amphipathic α -helix
34 present in CD4 but not CD8 α . In double-positive cells expressing equal numbers of both
35 coreceptors, but limiting amounts of kinase, CD4 out-competed CD8 $\alpha\beta$ for Lck. In T cells,
36 TCR signaling induced CD4-Lck oligomerization but did not affect the high levels of CD4-Lck
37 occupancy. These findings help settle the question of kinase occupancy and suggest that
38 the binding advantages that CD4 has over CD8 could be important when Lck levels are
39 limiting.

40

41 **Significance statement**

42 CD4 and CD8 $\alpha\beta$ are archetypal coreceptor proteins that potently enhance T-cell antigen
43 sensitivity but how they function is still debated. A fundamental question that remains
44 incompletely resolved is: what fractions of the coreceptors bind the signal-initiating kinase,
45 Lck? Using *in vitro* assays and non-invasive fluorescence fluctuation spectroscopy in live
46 cells, we show that most coreceptors are occupied by Lck at the surface of live cells. The
47 structural basis for important differences in the kinase occupancy of CD4 and CD8 $\alpha\beta$ is also

48 identified. These results provide important context for refining current models of both TCR
49 antigen recognition and cell fate decisions made during thymopoiesis.

50

51 **Introduction**

52 Conventional $\alpha\beta$ T cells are divided into two major functional subsets depending on which of
53 two coreceptors, CD4 or CD8, they express, that recognize class II and class I major
54 histocompatibility complex (MHC) proteins, respectively. CD4 $^{+}$ T cells provide 'help' to
55 antibody-producing B cells by secreting cytokines whereas CD8 $^{+}$ T cells are directly
56 cytotoxic¹. The coreceptors increase the sensitivity of T cell receptor (TCR) signaling through
57 recruitment of the Src-family kinase Lck, which is especially important for the recognition of
58 low affinity antigens^{2,3}. One explanation for this effect is that TCR triggering is a two-step
59 process requiring initial incipient phosphorylation of the TCR by free Lck, which is very
60 quickly followed by the recruitment of a coreceptor-Lck complex. This second step is thought
61 to occur through bidentate interactions of the coreceptor-Lck complex with the TCR (via Lck)
62 and its pMHC ligand, which further enhances receptor phosphorylation^{4,5}. A second
63 possibility is that, rather than increasing the sensitivity of signaling, the coreceptors effect
64 antigen discrimination. According to this point of view, which was prompted by
65 measurements by Stepanek *et al.* suggesting that kinase occupancy is very low⁶, binding of
66 cognate pMHC to the TCR is followed by processive coreceptor 'scanning' until Lck is co-
67 recruited, favoring the phosphorylation of long-lived TCR complexes.

68 An important differentiator between these proposals is the extent to which
69 coreceptors are bound to Lck, but the level of kinase occupancy is not yet agreed⁷. Early co-
70 immunoprecipitation (co-IP) experiments showed that CD4-Lck occupancy is high (~90%) in
71 primary T cells⁸, in line with evidence from bioluminescence resonance energy transfer
72 (BRET) experiments which indicate that CD4 is invariably bound to Lck at the surface of
73 HEK293 cells⁹ (**Figure 1a**). The recent proposal by Stepanek and colleagues that CD4 is
74 only fractionally coupled to Lck (~6%) in thymocytes according to flow cytometric co-IP (FC-
75 IP) assays was, therefore, unexpected⁶ (**Figure 1b**).

76 Here we report that, in the course of reproducing the recent FC-IP experiments, CD4
77 and CD8 $\alpha\beta$ were observed to have a high rather than low kinase occupancy in both primary

78 thymocytes and transfected Jurkat T cells. To confirm these findings *in situ*, we used
79 scanning fluorescence correlation spectroscopy (sFCCS)^{10,11} to measure the co-diffusion of
80 coreceptors and surface-bound Lck in live cells. We found that CD4 and Lck associate at a
81 high occupancy (~100%) at the cell surface, and that this efficient coupling depends both on
82 the conserved Zn²⁺ clasp motif and the amphipathic helix in the intracellular domain (ICD) of
83 CD4¹². CD8αβ lacks an amphipathic helix and, accordingly, exhibits a lower Lck occupancy
84 (~60%). Consistent with this difference, when the coreceptors were co-expressed in
85 HEK293T cells with limiting amounts of kinase, CD4 outcompetes CD8αβ for Lck. Lastly, we
86 present evidence that CD4-Lck occupancy is unaffected by early TCR signaling, indicating
87 that coreceptor-Lck complexes are stable and persist beyond receptor triggering.

88

89 **Results**

90 **FC-IPs indicate high coreceptor-Lck occupancy in thymocytes and Jurkat T cells**

91 CD4-Lck occupancy measurements (**Figure 1a, 1b**) have traditionally been performed using
92 co-IP assays in buffers that contain chelating agents, such as ethylenediaminetetraacetic
93 acid (EDTA), to inhibit metalloprotease activity^{6,8,13}. However, EDTA has also been shown to
94 disrupt the Zn²⁺-dependent association of CD4 and Lck¹⁴ which might explain some of the
95 discrepancies between reports. To determine whether the presence of Zn²⁺ chelators could
96 affect the measured occupancy, we performed the FC-IP assay developed and used by
97 Stepanek *et al.* (**Figure 1c, Figure S1a**)⁶. Thymocyte lysates from wild-type C57Bl/6 mice
98 were incubated with beads conjugated to anti-mouse (m)CD4 antibodies before staining for
99 either mCD4, mouse (m)Lck or rat CD48 as a negative control (**Figure 1d**). Residual bead
100 fluorescence is measured with flow cytometry, and the background-subtracted fluorescence
101 ratio between Lck and CD4 offers a measure of coreceptor-Lck coupling ratio. Since the
102 majority of thymocytes are CD4⁺ CD8αβ⁺ double-positive (DP)¹⁵, we expected this assay to
103 produce a low CD4-Lck occupancy (6%-17%) as reported in experiments with sorted DP
104 thymocytes^{6,16}. Instead, however, we found that the interaction was effectively saturated

105 (i.e., all CD4 molecules were bound to Lck) (**Figure 1d, Figure S1b**). The addition of EDTA
106 to the lysates had no effect, implying that the detergent-solubilized complexes are resistant
107 to Zn²⁺ chelation under these conditions. Pre-treatment of cells with millimolar amounts of a
108 membrane-permeable Zn²⁺ chelator, *N,N,N',N'*-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine
109 (TPEN), which was also expected to disrupt the CD4-Lck interaction *in vitro*^{17,18} reduced the
110 occupancy by ~40% (**Figure 1d**). CD8 $\alpha\beta$ was substantially occupied by Lck (~55%) and this
111 was reduced in the presence of TPEN treatment of live cells, but not EDTA treatment of
112 lysates. This confirmed that sequestering Zn²⁺ *in situ* could disrupt the coreceptor-Lck
113 interaction, but the residual association of precipitated proteins suggested either incomplete
114 Zn²⁺ chelation by TPEN or the Zn²⁺-independent association of coreceptors and Lck
115 captured in detergent micelles during lysis.

116 To test if the partial dissociations were due to non-specific interactions, we used
117 lentiviral gene delivery to transduce mCD4 and mLck into Jurkat T cells in which expression
118 of endogenous CD4/Lck had been abolished using CRISPR-Cas9 (**Figure S1c**). We
119 observed a high CD4-Lck occupancy for the wild-type interaction irrespective of EDTA
120 treatment but TPEN substantially dissociated the complex (**Figure 1d**). When the Zn²⁺ clasp
121 of Lck was mutated (Lck^{C20S,C23S} = Lck^{CS}), no Lck precipitated, consistent with previous data
122 showing that the clasp is essential for binding¹⁹. These results lead us to conclude that
123 TPEN was only partially chelating Zn²⁺ in the FC-IP assay, but indicated that the high
124 occupancies observed in thymocytes were not an artefact of the *in vitro* solubilization
125 method. However, the recent reports of low kinase occupancy⁶ cannot be explained by the
126 presence of EDTA in the solubilization buffer. To confirm our observations, we sought non-
127 invasive approaches to measure the stoichiometry of coreceptor-Lck complexes at the
128 surface of live cells.

129

130 **Analysis of CD4 and Lck occupancy in live cells.**

131 To measure CD4-Lck occupancy at the surface of individual cells we employed fluorescence
132 cross-correlation spectroscopy (FCCS), a two-color fluctuation spectroscopy method
133 developed to quantify molecular dynamics *in situ*^{20,21} (**Figure 2a**). Extraction and fitting of
134 autocorrelation functions (ACFs) provides information on diffusion and density, while cross-
135 correlation functions (CCFs) can be used to measure heterotypic interactions (*i.e.*, between
136 spectrally distinct species)¹¹. In order to perform FCCS of membrane proteins, which diffuse
137 slowly and are prone to photobleaching, we acquired fluorescence signals in scanning-mode
138 (sFCCS) which scans multiple contiguous pixels sequentially to improve signal-to-noise and
139 reduce photobleaching effects (**Figure S2a**)²². To this end, full-length human CD4 and Lck
140 constructs were linked to FCCS-appropriate tags (CD4-mCherry2 and Lck-mEGFP, ref. ²³)
141 and expressed in HEK293T cells grown on glass coverslips (**Figure 2b**). Intensity
142 fluctuations were acquired using a confocal microscope in photon-counting mode and
143 correlation analyses were performed using FoCuS_scan software²⁴ (**Figure 2c**). Using the
144 calibrated size of the observation volume, we also determined fluorophore density (see **SI**
145 **Materials and Methods**) and confirmed that all constructs were expressed at physiological
146 levels similar to the normal densities of CD4 and Lck (**Figure S2b**). To control for
147 underestimation of interactions that might result from non-fluorescent FPs, we generated a
148 positive control consisting of the transmembrane domain of CD4 linked covalently to both
149 mEGFP and mCherry2 ('Tandem', **Figure 2c**). Co-diffusion of mEGFP and mCherry2, *i.e.*,
150 the cross-correlation quotient (q , see **SI Materials and Methods**), was then determined as
151 the ratio between the CCF amplitude and the minimum ACF amplitude²¹.

152 Wild-type CD4 and Lck produced a very high q value ($96\% \pm 8\%$), irrespective of
153 which FP was conjugated to either protein (**Figure 2d**), indicating that essentially all CD4
154 was co-diffusing with Lck. To rule out any effects of non-specific association, we generated
155 three different negative controls: CD4-Lck^{CS}, CD4-Fyn and Lck^{CS}-Lck^{CS}. In Lck^{CS}, the clasp
156 cysteines essential for binding CD4 are mutated to serine to abolish the interaction¹⁹. Fyn is

157 a Src-family kinase that is structurally similar to Lck²⁵ but cannot interact with coreceptors²⁶.
158 In the last condition, we expected the co-expression of Lck^{CS}-mEGFP and Lck^{CS}-mCherry2
159 to control for any lipid-mediated targeting as this form of Lck cannot homodimerize²⁷ but the
160 lipid attachment sites remain intact. No cross-correlation was detected in any of the negative
161 controls, confirming that the high CD4-Lck occupancy was specific only to an intact Zn²⁺
162 clasp (**Figure 2d**).

163 While CD4 is a transmembrane protein, Lck is only anchored to the inner leaflet
164 through lipid-modified residues in the SH4 domain²⁸. Given the high CD4-Lck occupancy,
165 this suggested that the diffusion of coreceptor-bound Lck would be significantly slower than
166 free Lck according to the Saffman-Delbrück model of diffusion in biological membranes²⁹⁻³¹.
167 To test this, we used sFCCS to determine the diffusion coefficients of CD4-Lck, CD4-Lck^{CS}
168 and CD4/Lck expressed alone (see **SI Materials and Methods** for transit time calculations).
169 Wild-type CD4-Lck exhibited similar diffusion coefficients (Lck = 0.29 ± 0.05 μm²/s, CD4 =
170 0.21 ± 0.05 μm²/s), and mutation of the Lck clasp produced a significantly increased
171 diffusion speed (Lck^{CS} = 0.97 ± 0.29 μm²/s, CD4 = 0.33 ± 0.07 μm²/s), as expected,
172 indicating that disruption of the complex increased the lateral speed of both CD4 and Lck
173 (**Figure 2e, 2f**). In the case of CD4, this diffusion was comparable to when the protein was
174 expressed alone (0.39 ± 0.11 μm²/s). When Lck was expressed alone its diffusion speed
175 was substantially reduced compared to Lck^{CS} (0.64 ± 0.15 μm²/s) and we speculate that this
176 is due to the propensity of Lck to homodimerize through the clasp. Therefore, we concluded
177 from these experiments that the bulk of CD4 molecules co-diffuse with Lck in the steady
178 state, and confirmed that the Zn²⁺ clasp is necessary for this interaction to occur.

179

180 **The CD4 amphipathic helix is necessary for efficient Lck association.**

181 There is evidence from early biochemical mutagenesis studies that intracellular sequence
182 elements in CD4 other than the Zn²⁺ clasp might contribute to the interaction with Lck^{19,32}.
183 When overlaid with the CD4-Lck NMR structure¹², these elements appear to fall into three

184 regions: the membrane-proximal basic-rich region (BRR), the amphipathic α -helix, and the
185 unstructured C-terminal ‘tail’. To analyze the contributions of these features of CD4, we
186 generated a panel of full-length CD4 molecules each bearing mutations in either the BRR,
187 the helix or the tail (**Figure 3a**). To avoid making large truncations that might alter the
188 spacing between the plasma membrane and the Zn^{2+} clasp, we replaced each sequence of
189 interest with a flexible (Gly-Ser)_n linker of equivalent length. Each mCherry2-tagged CD4
190 construct was then co-expressed with wild-type Lck-mEGFP in HEK293T cells for sFCCS
191 measurements (**Figure 3b**). We found that, while the BRR did not contribute to Lck
192 association, mutation of the amphipathic helix reduced CD4-Lck occupancy by 27% (**Figure**
193 **3c**). When both were mutated simultaneously, occupancy was reduced by 28% indicating a
194 significant role for the amphipathic helix in efficient CD4-Lck complex formation. As controls,
195 we mutated the CD4 palmitoylation sites in CD4 (CD4 Δ palm) which had no effect on CD4-
196 Lck occupancy³³ or the clasp cysteines (CD4^{CS}) which abolished the interaction (**Figure 3c**).
197 This demonstrated that an intact Zn^{2+} clasp is necessary but insufficient for the formation of
198 high-occupancy CD4-Lck complexes. Additionally, mutation of the unstructured ‘tail’
199 produced a small (~14%) decrease in occupancy (**Figure 3c**). This disordered C-terminus is
200 absent from the CD4-Lck NMR structure¹² but may be involved in stabilizing the clasp by
201 interacting with proximal elements of Lck. To confirm that the effects on occupancy were not
202 due to inadvertent effects on mobility or expression, we then used FCCS to determine
203 diffusion coefficients (**Figure 3d**) and fluorophore density (**Figure 3e**). A diminished ability to
204 bind Lck correlated with significantly faster diffusion, as expected from our previous data,
205 and each construct expressed at wild-type levels demonstrating no changes in expression
206 efficiency. Overall, our mutation experiments show that the wild-type, stoichiometric
207 interaction of CD4 with Lck relies on both the Zn^{2+} clasp and the amphipathic helix of CD4.

208

209 **CD4 outcompetes CD8 $\alpha\beta$ for Lck binding in DP cells.**

210 CD8-Lck interactions are weaker than CD4-Lck interactions in co-IP assays (**Figure 1c**) and
211 there is a two-fold difference in affinities when assayed as isolated polypeptides in solution¹²,
212 perhaps reflecting the lack of known secondary structure in the cytoplasmic domain of
213 CD8 α . Consistent with this suggestion, we co-transfected CD8 α , CD8 β -mCherry2 and Lck-
214 mEGFP into HEK293T cells and found that the CD8 $\alpha\beta$ -Lck occupancy was 59% \pm 10%,
215 similar to that of helix-deficient CD4 (**Figure 4a**). The high occupancy of both coreceptors
216 also suggested that they might compete for Lck when co-expressed *i.e.*, in CD4 $^+$ CD8 $^+$ DP
217 cells. To test this possibility, we co-transfected CD4-mCherry2 with non-fluorescent
218 CD8 α /CD8 β or CD8 β -mCherry2 with non-fluorescent CD8 α /CD4, alongside equivalent
219 amounts of Lck-mEGFP, and measured the coreceptor-Lck q in each DP condition (**Figure**
220 **4b**). The average occupancies of both CD4-Lck (57% \pm 20%) and CD8 $\alpha\beta$ -Lck (37% \pm 20%)
221 in DP cells were substantially reduced compared to the single-positive (SP) conditions (*cf.*
222 96% for CD4-Lck, 59% for CD8 $\alpha\beta$ -Lck **Figure 2d**, **Figure 4a**), implying that all available
223 kinase was partitioned between the coreceptors when Lck was limiting (DP-Lck^{Low}). We
224 hypothesized, therefore, that increasing Lck levels in excess of coreceptors (DP-Lck^{High})
225 would reverse this trend, restoring the coreceptor-Lck equilibrium to that of SP cells. These
226 measurements were technically challenging because increased mEGFP expression led to
227 cell brightness beyond the detection range for single-molecule fluctuations. Nonetheless, in
228 the narrow range of cells yielding suitable fluctuation curves, increased Lck-mEGFP
229 expression levels (**Figure S3**) yielded average occupancy values comparable to SP HEKs
230 for both CD4 (88% \pm 23%) and CD8 $\alpha\beta$ (60% \pm 12%) (**Figure 4b**). This suggested that Lck
231 expression levels could regulate coreceptor occupancy, with CD4 outcompeting CD8 $\alpha\beta$
232 when Lck is limiting. To test this statistically, we pooled DP-Lck^{Low} and DP-Lck^{High} cells and
233 used regression analysis to determine the relationship between the amount of excess Lck
234 (Lck/coreceptor density ratio) and kinase occupancy (**Figure 4c**). Although there was no
235 statistical link between CD4-Lck q and the Lck/coreceptor ratio ($R^2 = 0.001$, $p = 0.83$), CD8-
236 Lck q increased significantly with excess Lck. ($R^2 = 0.38$, $p < 0.0001$). At low Lck

237 concentrations, CD4 outcompetes CD8 $\alpha\beta$ and it is only when the Lck levels begin exceeding
238 both coreceptors (Lck/coreceptor ratio ≥ 2) that CD8 $\alpha\beta$ -Lck reaches the occupancy values
239 observed in cells expressing CD8 $\alpha\beta$ alone. Together, our results suggest that the CD8 $\alpha\beta$ -
240 Lck balance in DP cells might be controlled by Lck expression levels.

241

242 **CD4-Lck occupancy is independent of TCR signaling**

243 Our experiments in HEK293T cells were designed to measure *in situ* coreceptor-Lck
244 interactions in the absence of any T cell-specific factors, but an early hypothesis for
245 coreceptor function was that the activities of CD4 and CD8 $\alpha\beta$ could be controlled by TCR
246 signaling³⁴ potentially through regulating kinase occupancy³⁵. To track coreceptor-Lck
247 interactions in the context of TCR triggering, we transfected CD4-mCherry2 and Lck-mEGFP
248 into Jurkat^{CD4-/Lck-} T cells (**Figure S1c**) and incubated them at 37°C on supported lipid
249 bilayers (SLBs) functionalized with the small adhesion protein CD58. CD58 was necessary
250 to induce Jurkat T cells to form suitably stable contact areas for sFCCS, as they would
251 otherwise migrate or drift³⁶ introducing movement artefacts in the fluctuation analysis. Then,
252 to activate the cells through TCR engagement, anti-CD3 ε (clone UCHT1) Fabs were
253 tethered to the SLBs alongside CD58 (**Figure 5a**, ‘activated’). To control for the basal level
254 of activation that occurs through the CD58 condition alone (‘primed’), owed to ligand-
255 independent TCR triggering^{37,38}, we generated TCR-deficient Jurkat^{CD4-/Lck-} cells (Jurkat^{TCR-})
256 using CRISPR-Cas9 (**Figure 5a**, ‘non-stimulated’). The diminished signaling capacity of
257 Jurkat^{TCR-} cells was verified by Ca²⁺ flux measurements when placed onto SLBs decorated
258 with UCHT-Fabs and CD58 (**Figure S4a**). We noticed, additionally, that Jurkat^{TCR-} cells did
259 not spread in the characteristic manner of activated T cells on SLBs (**Figure 5a, Figure**
260 **S4b**). This difference was confirmed by measuring the fluorescent area (*i.e.*, the area
261 containing either CD4 or Lck) at the plane of contact with the SLB, and the average area
262 was found to be significantly increased in activated condition compared to either the primed
263 or non-stimulated setting (**Figure 5b**). CD4-Lck interactions were analyzed by performing

264 sFCCS in the Jurkat cells that had formed stable contacts within 10 minutes of incubation
265 (**Figure 5a**, white arrows). The cross-correlation analysis for these measurements produced
266 high CD4-Lck q values, identical to the occupancies measured in HEK293T cells (**Figure**
267 **2d**), and signaling through the TCR had no effect (**Figure 5c**). This implies that CD4 is
268 invariably bound to Lck at the T-cell surface, and that high occupancy is not an artefact of
269 heterologous expression. These results are also consistent with our FC-IP data with Jurkat T
270 cells expressing murine proteins (**Figure 1c**), suggesting that CD4 and Lck are coupled
271 stoichiometrically in both humans and mice.

272 T cell activation through the TCR leads to clustering of signaling proteins³⁹ and
273 single-molecule imaging experiments have shown that both CD4 and Lck can form small,
274 nanoscale clusters within minutes of triggering^{40,41}, in part through confinement in CD2
275 nanodomains⁴². To compare the population-level clustering of CD4 and Lck (*i.e.*, integrated
276 over all positions in all cells) we compared the brightness values generated from sFCS as a
277 measure of molecular oligomerization²³ (**Figure 5d**). Brightness appeared to increase for
278 both CD4 and Lck upon ligation of the TCR, indicating signaling-specific oligomerization.
279 Although no major changes were seen in the bulk transit times of CD4 and Lck (**Figure 5e**),
280 we suspected that the diffusion mode of Lck might change. sFCS transit time histograms can
281 be analyzed statistically using maximum likelihood estimation (MLE) to determine if the
282 histogram is best represented by a model for free diffusion or hindered diffusion, indicating
283 nanoscale interactions (see **SI Materials and Methods** for details)^{43,44}. Using MLE analysis,
284 we found that Lck exhibited free (lognormal/logN) diffusion in the primed and non-stimulated
285 state and trapped (double-lognormal/dLogN) diffusion in the activated condition (**Figure 5f**).
286 Our results indicate that early TCR signaling has no effect on coreceptor occupancy, but
287 does lead to changes in nanoscale organization in the form of transient hindrances^{42,44}
288 producing trapped diffusion of Lck in the activated state only.

289

290 **Discussion**

291 The ability of CD4 and CD8 $\alpha\beta$ to recruit kinase activity to the TCR, and their importance for
292 potentiating T cell responsiveness, first became apparent more than 30 years ago^{35,45–47}. It is
293 surprising that the precise kinase occupancy of these proteins is still controversial despite
294 the numerical values being an important parameter of several TCR signaling models^{6,48–50}.
295 Our non-invasive sFCCS experiments showed that the coreceptors are coupled to Lck at
296 high occupancy *in situ*, that the CD4-Lck stoichiometry relies on both the Zn²⁺ clasp and the
297 amphipathic helix, and that kinase occupancy is unaffected by early TCR signaling. The
298 conclusion that the coreceptors are mostly occupied by Lck was supported by our FC-IP
299 data and is consistent with numerous early pulldown studies^{8,13,14,17,51,52}. At present, we are
300 unable to explain the recent report by Stepanek *et al.* of a much lower coreceptor-Lck
301 stoichiometry using FC-IP^{6,16}.

302 Although there is evidence that both CD4 and Lck can form homodimers when
303 expressed alone^{9,27,53}, our sFCCS measurements show that the CD4-Lck heterodimer
304 dominates when they are co-expressed, consistent with earlier BRET measurements⁹. In
305 HEK293T cells, Lck expression was reduced when it could not bind CD4, implying that the
306 trafficking of Lck is linked to CD4 association. Lck-deficient Jurkat T cells have been shown
307 to upregulate surface CD4 expression when transfected with an Lck transgene⁵⁴ and pulse-
308 chase labeling experiments indicate that CD4-Lck complexes form rapidly after translation⁵⁵.
309 This implies that CD4 and Lck form high-occupancy complexes prior to arriving at the cell
310 surface. By introducing mutations into different regions of the CD4 ICD with reference to the
311 NMR structure of the Zn²⁺ clasp, which was unavailable at the time of earlier mutagenesis
312 experiments¹², we could also examine the exact contributions made by the ICD to
313 association with Lck. This confirmed the important contribution of the CD4 intracellular helix
314 and helped to explain why CD8 $\alpha\beta$, which lacks the helix, binds Lck more weakly than CD4.
315 Alignment of mammal, bird, amphibian and fish CD4 homolog sequences indicates that
316 residues in the amphipathic helix are highly conserved⁷ – second only to the Zn²⁺ clasp

317 cysteines – suggesting considerable evolutionary pressure to preserve this functionally
318 important element of CD4.

319 How do our results relate to the roles of the coreceptors when CD4 and CD8 $\alpha\beta$ are
320 co-expressed in thymocytes prior to lineage commitment¹? It is unclear whether the
321 coreceptors need only to sequester all the available Lck during this stage^{49,56} (i.e., the ‘Lck
322 availability’ model), or if it is also necessary that coreceptors bind Lck at low capacity in
323 order to effect differential signal amplification^{6,16} (i.e., the ‘coreceptor scanning’ model). The
324 high kinase occupancy, observed in all of our experiments, argues against the stoichiometry
325 needing to be kept low to enhance antigen discrimination in T cells. In fact, a recent
326 comparison of TCR-pMHC binding affinities shows that the orders-of-magnitude increase in
327 TCR sensitivity afforded by coreceptors comes at the cost of a slight (two-fold) reduction in
328 discriminatory power⁵⁷. Our experiments with DP HEK293T cells demonstrate that CD4
329 outcompetes CD8 $\alpha\beta$ for Lck when the kinase is substoichiometric, but the impact of this on
330 CD4 vs. CD8 $\alpha\beta$ loading depends on the amounts of Lck available. A remarkable study by
331 the Singer group recently showed that DP thymocyte lineage fate is determined not by the
332 nature of the coreceptor proteins, but rather by *cis* elements in the coreceptor loci that
333 control their expression⁵⁸. We speculate that, during the early stages of signaling before
334 changes in CD4 and CD8 transcription occur, the higher CD4-Lck occupancy versus that for
335 CD8 $\alpha\beta$ compensates for the remarkably low affinity of CD4-MHC II interactions⁵⁹ helping it
336 match the signals generated by CD8 $\alpha\beta$ during thymopoiesis.

337 To study the dynamics of CD4-Lck diffusion in the context of early TCR signaling we
338 used CD58-functionalized SLBs to create stable, non-synaptic contacts between Jurkat T
339 cells and the coverslip surface³⁷. Although CD4-Lck occupancy was independent of
340 triggering, protein oligomerization could be detected through increased molecular brightness,
341 in addition to the transition in Lck diffusion mode indicating nanoscale hindrances.
342 Stimulated emission depletion (STED)-FCS measurements have previously shown that
343 small, membrane-anchored enzymes exhibit trapped diffusion in ‘signaling nanoclusters’^{42,60}

344 whose formation could precede the nucleation of actin-dependent TCR microclusters in T
345 cells^{39,61}. This shows that nanoscale changes in molecular organization, which likely go
346 unseen in conventional microscopy, cause changes in molecular organization detectable
347 with sFCS using a confocal microscope.

348 Our observations help settle the question of how CD4 and CD8 $\alpha\beta$ associate with Lck
349 in T cells, and offer additional support for the notion that the principal functions of
350 coreceptors are to facilitate MHC restriction during thymopoiesis and to amplify receptor
351 signaling in the periphery^{4,34}. An important conclusion from our experiments with DP
352 HEK293T cells is that differences in CD4-Lck and CD8 $\alpha\beta$ -Lck coupling are sensitive to
353 relative Lck abundance. When Lck is limiting, CD4 has an advantage and the ratio of CD4-
354 Lck to CD8 $\alpha\beta$ -Lck increases. CD8 $\alpha\beta$ -Lck occupancy is slightly lower in the thymocyte FC-
355 IPs (~55%) compared to DP HEKs (~60%) while CD4-Lck is stoichiometric in both,
356 suggesting that Lck expression levels might be regulated during thymopoiesis to tune
357 coreceptor-dependent TCR signaling.

358

359 **Materials and Methods**

360 See SI for a full description of all materials, methods and calculations.

361

362 **Author contributions**

363 A.M.M., A.M.S, S.J.D., and M.L.D. designed research; A.M.M. and E.J. performed
364 experiments; A.M.M. and F.S. analyzed data; A.M.M., S.E.F., S.J.D., and M.L.D. wrote the
365 manuscript with input from all authors.

366

367 **Acknowledgements**

368 We thank all members of our laboratory for providing helpful discussion and technical
369 support, especially to Štefan Bálint, Elke Kurz, Lina Chen and Salvatore Valvo. This work
370 was supported by the Wolfson Imaging Centre Zeiss (780i LSM) and the Kennedy Institute
371 flow cytometry facility. FS thanks EMBO and HFSP for the long-term postdoctoral fellowship
372 support (EMBO ALTF 849-2020 and HFSP LT000404/2021-L). AMM and SJD are funded by
373 the Wellcome Trust (grant codes 108869/Z/15/Z and 207547/Z/17/Z, respectively). MLD is
374 funded by the Kennedy Trust for Rheumatology Research (Cell Dynamics Platform KENN 20
375 21 17).

376

377 **Data availability statement**

378 All .fcs and .lsm5 files have been deposited at
379 https://osf.io/fumvg/?view_only=72250deaa757430a9ecc65d54c4099a6. All other data are
380 available either in the manuscript or in the supplementary files. Analysis code is available for
381 both the calcium analysis (<https://github.com/janehumphrey/calcium>) and the statistical
382 analysis of sFCS data (https://github.com/Faldalf/sFCS_BTS).

383

384 **Figure legends**

385 **Figure 1. High coreceptor-Lck occupancy in both thymocytes and Jurkat T cells is**
386 **only partially disrupted by chelation.** **a.** and **b.** Depiction of high or low coreceptor
387 occupancy at the T cell surface. At high occupancy (**a**), CD4-Lck complexes can form
388 bidentate interactions with TCR-pMHC via Lck binding to phosphorylated ITAMs and CD4
389 binding to MHC-II (not depicted). At low occupancy (**b**), CD4 and Lck bind independently to
390 TCR-pMHC complexes. Protein models based on crystal structures of CD4, Src and $\alpha\beta$ TCR
391 (PDB IDs: 1WIQ, 3EL8 and 6JXR, respectively). **c.** Schematic of the FC-IP assay used in
392 this study, created with BioRender. **d.** FC-IP measurements of coreceptor-Lck occupancy in
393 bulk thymocytes and Jurkats expressing murine (m)CD4 and mLck (see **Figure S1c**)
394 indicate that CD4 and CD8 $\alpha\beta$ form high-occupancy complexes with Lck independently of
395 EDTA. TPEN partially dissolves the interaction but there is a residual TPEN-resistant
396 component in both thymocytes and Jurkat T cells. Each circle indicates a flow cytometry
397 measurement from either one mouse or a replicate measurement of the indicated Jurkat cell
398 line. 10^6 cells were lysed for each experiment. Clasp-deficient Lck contains the C20S and
399 C23S mutations (Lck^{CS}). Significance testing was performed with a one-way ANOVA
400 followed by Tukey's correction for multiple comparisons, and only significant comparisons
401 are shown. **** $P < 0.0001$.

402 **Figure 2. Scanning-FCCS measurements show a high CD4-Lck occupancy.** **a.**
403 Schematic of scanning-FCCS (sFCCS) volumes and correlation curves from monomeric
404 (top) and dimeric (bottom) species. The autocorrelation functions (ACFs, magenta and
405 green) are identical for monomers and dimers and can be fitted to extract the diffusion terms.
406 The cross-correlation curves (CCFs, blue) are different between monomers and dimers with
407 a low amplitude (top) indicating no co-diffusion and a high amplitude (bottom) indicating
408 complete co-diffusion. **b.** Representative confocal image of a HEK293T cell co-transfected
409 with CD4-mCherry2 and Lck-mEGFP acquired in photon-counting mode. sFCCS
410 measurements are acquired in a similar fashion with shorter pixel dwell times to sample

411 fluorescence fluctuations. The length and position of a typical sFCCS line-scan is depicted
412 by the white arrow. **c.** Representative line-averaged ACFs (magenta/green) and CCFs (blue)
413 from one cell for each condition shown. Cross-correlation amplitudes are high for the positive
414 control and wild-type CD4-Lck (top), indicating that all CD4 molecules are bound to Lck. Also
415 shown are negative control conditions with zero cross-correlation amplitudes (bottom). Fits
416 are shown in solid black lines. **d.** Cross-correlation quotients (q) for each condition
417 normalized to the tandem control (100% co-diffusion) and $\text{Lck}^{\text{CS}}\text{-Lck}^{\text{CS}}$ (0% co-diffusion) with
418 significant differences shown compared to the tandem (#), showing that the Lck clasp
419 cysteines are essential for the high CD4-Lck occupancy. 'CD4-Lck (swap)' indicates CD4-
420 mEGFP co-expressed with Lck-mCherry2. **e.** and **f.** Diffusion coefficients for Lck-mEGFP
421 (green) and CD4-mCherry2 (magenta) derived from the fitted ACFs showing a significant
422 increase in the diffusion speed of both CD4 and Lck when the Zn^{2+} clasp is disrupted. In **d**, **e**
423 and **f** each circle represents a spatially averaged line-scan measurement from one cell. Cells
424 were pooled from three independent replicates for 6-13 cells per condition. Significance
425 testing was performed with a one-way ANOVA followed by Dunnett's correction in **d** and
426 Tukey's correction in **e** and **f** for multiple comparisons. **** $P < 0.0001$, *** $P < 0.001$, ** $P <$
427 0.01.

428 **Figure 3. Contributions of CD4 sequence motifs to efficient Lck association.** **a.**
429 Schematic of the panel of CD4 mutants used to test the binding properties of the intracellular
430 sequence elements indicated at the top. **b.** Confocal images of HEK293T cells co-
431 expressing the indicated mCherry2-tagged CD4 constructs with wild-type Lck-mEGFP
432 acquired in photon-counting mode with the white arrows indicating the approximate position
433 of the line-scan. **c.** The CD4 amphipathic α -helix makes an important contribution to the
434 stoichiometric co-diffusion of CD4-Lck complexes. Cross-correlation quotients (q) were
435 normalized to the controls in Figure 2; statistical comparisons were made to the $\text{CD4}\Delta\text{palm}$
436 condition (#). **d.** CD4 diffusion coefficients are similar between constructs with an increase
437 seen only on the loss of Lck-binding; statistical comparisons as in **c**. **e.** All CD4 constructs

438 express at similar molecular densities. The dotted line indicates the average expression
439 density of wild-type CD4 from **Figure S2b**. In **c**, **d** and **e** each circle represents a spatially
440 averaged line-scan measurement from one cell, with measurements pooled from three
441 independent replicates for 7-13 cells per condition. Significance testing was performed with a
442 one-way ANOVA followed, in **c** and **d**, by Dunnett's correction for multiple comparisons.
443 **** $P < 0.0001$, *** $P < 0.001$, ** $P < 0.01$, * $P < 0.05$.

444 **Figure 4. CD4 outcompetes CD8 $\alpha\beta$ for Lck at limiting kinase levels.** **a.** sFCCS
445 measurements of CD8 $\alpha\beta$ -Lck were performed by transfecting CD8 α , CD8 β -mCherry2 and
446 Lck-mEGFP into HEK293T cells and normalizing q values to the controls in Figure 2,
447 yielding an occupancy of 59% \pm 10% **b.** DP HEK293Ts were generated by transfecting
448 either CD4-mCherry2 and unlabeled CD8 α and CD8 β , or CD8 β -mCherry2 and unlabeled
449 CD4 and CD8 α . Either 25 ng or 50 ng of Lck-mEGFP plasmid DNA was co-transfected to
450 generate the Lck^{Low} or Lck^{High} conditions, respectively. The q values were determined as in
451 **a.** In DP-Lck^{Low} cells, occupancy is lower than in SP cells with a larger variance, suggesting
452 that CD4 and CD8 compete for limiting Lck in individual cells. When Lck is in excess (DP-
453 Lck^{High}), occupancy is restored to that of SP cells indicating saturation of both coreceptors. **c.**
454 Linear regression was used to test for a link between the amount of excess Lck
455 (Lck/coreceptor ratio) and kinase occupancy for both CD4-Lck (magenta) and CD8 $\alpha\beta$ -Lck
456 (green). Only the latter showed a positive, significant relationship indicating that CD4
457 outcompetes CD8 $\alpha\beta$ for Lck when it is limiting. F-tests were used to determine whether the
458 slopes differed significantly from zero. Dotted lines indicate regression slopes and shaded
459 areas indicate 95% CI. In each panel, a circle represents a spatially averaged line-scan
460 measurement from one cell, with measurements pooled from three independent replicates
461 for 10-23 cells per condition. Significance testing was performed with a one-way ANOVA
462 followed by Tukey's correction for multiple comparisons. *** $P < 0.001$, * $P < 0.05$

463 **Figure 5. CD4-Lck occupancy is stable during early TCR signaling.** **a.** TCR expression
464 was ablated in Jurkat^{CD4-/Lck-} cells to produce Jurkat^{TCR-} cells, assayed with flow cytometry

465 (top panel) using anti-TCR antibodies conjugated to PE (blue). Fluorescence levels of
466 Jurkat^{TCR-} cells match the isotype control (gray), confirming knockout. Confocal images
467 (bottom panel) of Jurkats cells co-transfected with CD4-mCherry2 (magenta) and Lck-
468 mEGFP (green) and plated onto supported lipid bilayers (SLBs) functionalized with
469 recombinant His-tagged human proteins. CD58 (dark gray, 200 molecules· μm^{-2}) was used to
470 anchor the Jurkat cells to the surface and anti-CD3ε Fab (light grey, clone UCHT1, 30
471 molecules· μm^{-2}) was used for activation of the TCR. Three conditions were tested: Jurkat^{TCR+}
472 cells on UCHT1 + CD58 SLBs ('activated'), Jurkat^{TCR+} cells on CD58 SLBs ('primed') and
473 Jurkat^{TCR-} cells on CD58 SLBs ('non-stimulated'). The white lines indicate the outline of the
474 cell based on fluorescence thresholding. Protein models were based on the crystal
475 structures of a Fab fragment and hCD58 (PDB IDs: 6TCR and 1CCZ, respectively). **b.** The
476 average spreading areas of Jurkats cells in the activated, primed and non-stimulated
477 condition, as measured using the total fluorescent area for each cell, show an increase with
478 TCR stimulus. Each circle indicates one cell with measurements pooled from three
479 independent replicates for 17-20 cells per condition. **c.** CD4-Lck cross-correlation quotients
480 (q) normalized to the controls in **Figure 2**, indicating that CD4-Lck occupancy does not
481 change between conditions. Each circle indicates a spatially averaged line-scan
482 measurement from one cell, with measurements pooled from three independent replicate for
483 9-11 cells per condition. **d.** and **e.** Population-level brightness (**d**) and transit time (**e**) values
484 for the three signaling conditions, normalized to the non-stimulated setting, show an increase
485 in oligomerization (brightness) and no major changes in diffusion speed across conditions.
486 The median brightness/transit time was calculated for each replicate (*i.e.*, all line-scan
487 values for all cells on one day of measurements) and the mean value of three replicates is
488 indicated with the circle, with error bars indicating one standard deviation. Significance
489 testing in both **d** and **e** was performed with a one-way ANOVA followed Sidak's correction
490 for multiple comparisons of the same protein (*i.e.*, only Lck or only CD4) between activation
491 conditions. Non-significant comparisons are not shown. **f.** Statistical analysis of Lck-mEGFP
492 transit time histograms shows that Lck diffuses freely in the primed and non-stimulated

493 condition, but adopts a hindered diffusion mode in the activated condition only. Using a
494 maximum likelihood estimation approach, hindrances in diffusion can be revealed by
495 histogram fitting. The relative likelihood value for the model representing the data best is 1.
496 Fluorescently labeled molecules diffusing freely follow a lognormal distribution (LogN) and
497 molecules that undergo nanoscale trapping interactions result in a double-lognormal
498 distribution (dLogN). Significance testing in **b** and **c** was performed with a one-way ANOVA
499 followed by Tukey's correction for multiple comparisons. **** $P < 0.0001$, *** $P < 0.001$.

500 **References**

501

- 502 1. Singer, A., Adoro, S. & Park, J. H. Lineage fate and intense debate: Myths, models
503 and mechanisms of CD4- versus CD8-lineage choice. *Nature Reviews Immunology*
504 vol. 8 788–801 (2008).
- 505 2. Hampl, J., Chien, Y. H. & Davis, M. M. CD4 augments the response of a T cell to
506 agonist but not to antagonist ligands. *Immunity* **7**, 379–385 (1997).
- 507 3. Holler, P. D. & Kranz, D. M. Quantitative analysis of the contribution of TCR/pepMHC
508 affinity and CD8 to T cell activation. *Immunity* **18**, 255–264 (2003).
- 509 4. van der Merwe, P. A. & Cordoba, S. P. Late Arrival: Recruiting Coreceptors to the T
510 Cell Receptor Complex. *Immunity* vol. 34 1–3 (2011).
- 511 5. Jiang, N. *et al.* Two-Stage Cooperative T Cell Receptor-Peptide Major
512 Histocompatibility Complex-CD8 Trimolecular Interactions Amplify Antigen
513 Discrimination. *Immunity* **34**, 13–23 (2011).
- 514 6. Stepanek, O. *et al.* Coreceptor scanning by the T cell receptor provides a mechanism
515 for T cell tolerance. *Cell* **159**, 333–345 (2014).
- 516 7. Mørch, A. M., Bálint, Š., Santos, A. M., Davis, S. J. & Dustin, M. L. Coreceptors and
517 TCR Signaling – the Strong and the Weak of It. *Frontiers in Cell and Developmental
518 Biology* vol. 8 1147 (2020).
- 519 8. Carmo, A. M., Mason, D. W. & Beyers, A. D. Physical association of the cytoplasmic
520 domain of CD2 with the tyrosine kinases p56lck and p59fyn. *Eur. J. Immunol.* **23**,
521 2196–2201 (1993).
- 522 9. James, J. R. *et al.* The T cell receptor triggering apparatus is composed of
523 monovalent or monomeric proteins. *J. Biol. Chem.* **286**, 31993–32001 (2011).
- 524 10. Elson, E. L. Brief introduction to fluorescence correlation spectroscopy. in *Methods in
525 Enzymology* vol. 518 11–41 (Academic Press, 2013).
- 526 11. Krieger, J. W. *et al.* Imaging fluorescence (cross-) correlation spectroscopy in live
527 cells and organisms. *Nat. Protoc.* **10**, 1948–1974 (2015).
- 528 12. Kim, P. W., Sun, Z. Y. J., Blacklow, S. C., Wagner, G. & Eck, M. J. A zinc clasp
529 structure tethers Lck to T cell coreceptors CD4 and CD8. *Science* **301**, 1725–1728
530 (2003).
- 531 13. Veillette, A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell
532 surface antigens are associated with the internal membrane tyrosine-protein kinase
533 p56lck. *Cell* **55**, 301–308 (1988).
- 534 14. Huse, M., Eck, M. J. & Harrison, S. C. A Zn²⁺ ion links the cytoplasmic tail of CD4
535 and the N-terminal region of Lck. *J. Biol. Chem.* **273**, 18729–18733 (1998).
- 536 15. Olszowy, M. W., Leuchtmann, P. L., Veillette, A. & Shaw, A. S. Comparison of p56lck
537 and p59fyn protein expression in thymocyte subsets, peripheral T cells, NK cells, and
538 lymphoid cell lines. *J. Immunol.* **155**, 4236–40 (1995).
- 539 16. Horkova, V. *et al.* Dynamics of the Coreceptor-LCK Interactions during T Cell
540 Development Shape the Self-Reactivity of Peripheral CD4 and CD8 T Cells. *Cell Rep.*
541 **30**, 1504–1514.e7 (2020).
- 542 17. Lin, R. S., Rodriguez, C., Veillette, A. & Lodish, H. F. Zinc is essential for binding of

543 p56(lck) to CD4 and CD8 α . *J. Biol. Chem.* **273**, 32878–32882 (1998).

544 18. Schwarzenbacher, M. *et al.* Micropatterning for quantitative analysis of protein-protein
545 interactions in living cells. *Nat. Methods* **5**, 1053–1060 (2008).

546 19. Turner, J. M. *et al.* Interaction of the unique N-terminal region of tyrosine kinase
547 p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. *Cell*
548 **60**, 755–765 (1990).

549 20. Schwille, P., Meyer-Almes, F. J. & Rigler, R. Dual-color fluorescence cross-correlation
550 spectroscopy for multicomponent diffusional analysis in solution. *Biophys. J.* **72**,
551 1878–1886 (1997).

552 21. Bacia, K., Kim, S. A. & Schwille, P. Fluorescence cross-correlation spectroscopy in
553 living cells. *Nat. Methods* **3**, 83–89 (2006).

554 22. Ries, J., Chiantia, S. & Schwille, P. Accurate determination of membrane dynamics
555 with line-scan FCS. *Biophys. J.* **96**, 1999–2008 (2009).

556 23. Dunsing, V. *et al.* Optimal fluorescent protein tags for quantifying protein
557 oligomerization in living cells. *Sci. Rep.* **8**, 1–12 (2018).

558 24. Waithe, D. *et al.* Optimized processing and analysis of conventional confocal
559 microscopy generated scanning FCS data. *Methods* **140–141**, 62–73 (2018).

560 25. van Oers, N. S. ., Lowin-Kropf, B., Finlay, D., Connolly, K. & Weiss, A. $\alpha\beta$ T cell
561 development is abolished in mice lacking both Lck and Fyn protein tyrosine kinases.
562 *Immunity* **5**, 429–36 (1996).

563 26. Palacios, E. H. & Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell
564 development and activation. *Oncogene* vol. 23 7990–8000 (2004).

565 27. Davis, A. M. & Berg, J. M. Homodimerization and heterodimerization of minimal
566 Zinc(II)-binding-domain peptides of T-cell proteins CD4, CD8 α , and Lck. *J. Am. Chem.
567 Soc.* **131**, 11492–11497 (2009).

568 28. Kabouridis, P. S., Magee, A. I. & Ley, S. C. S-acylation of LCK protein tyrosine kinase
569 is essential for its signalling function in T lymphocytes. *EMBO J.* **16**, 4983–4998
570 (1997).

571 29. Saffman, P. G. & Delbrueck, M. Brownian motion in biological membranes. *Proc. Natl.
572 Acad. Sci. U. S. A.* **72**, 3111–3113 (1975).

573 30. Wei β , K. *et al.* Quantifying the diffusion of membrane proteins and peptides in black
574 lipid membranes with 2-focus fluorescence correlation spectroscopy. *Biophys. J.* **105**,
575 455–462 (2013).

576 31. Lorent, J. H. *et al.* Plasma membranes are asymmetric in lipid unsaturation, packing
577 and protein shape. *Nat. Chem. Biol.* **16**, 644–652 (2020).

578 32. Salghetti, S., Mariani, R. & Skowronski, J. Human immunodeficiency virus type 1 Nef
579 and p56lck protein-tyrosine kinase interact with a common element in CD4
580 cytoplasmic tail. *Proc. Natl. Acad. Sci. U. S. A.* **92**, 349–353 (1995).

581 33. Fragoso, R. *et al.* Lipid raft distribution of CD4 depends on its palmitoylation and
582 association with Lck, and evidence for CD4-induced lipid raft aggregation as an
583 additional mechanism to enhance CD3 signaling. *J. Immunol.* **170**, 913–21 (2003).

584 34. Xu, H. & Littman, D. R. A kinase-independent function of Lck in potentiating antigen-
585 specific T cell activation. *Cell* **74**, 633–643 (1993).

586 35. Rudd, C. E. CD4, CD8 and the TCR-CD3 complex: a novel class of protein-tyrosine
587 kinase receptor. *Immunology Today* vol. 11 400–406 (1990).

588 36. Urbančič, I. et al. Aggregation and mobility of membrane proteins interplay with local
589 lipid order in the plasma membrane of T cells. *FEBS Lett.* **595**, 2127–2146 (2021).

590 37. Kaizuka, Y., Douglass, A. D., Vardhana, S., Dustin, M. L. & Vale, R. D. The
591 coreceptor CD2 uses plasma membrane microdomains to transduce signals in T
592 cells. *J. Cell Biol.* **185**, 521–534 (2009).

593 38. Chang, V. T. et al. Initiation of T cell signaling by CD45 segregation at ‘close
594 contacts’. *Nat. Immunol.* **17**, 574–582 (2016).

595 39. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain
596 T cell activation by recruitment of Zap70 and SLP-76. *Nat. Immunol.* **6**, 1253–1262
597 (2005).

598 40. Rossy, J., Owen, D. M., Williamson, D. J., Yang, Z. & Gaus, K. Conformational states
599 of the kinase Lck regulate clustering in early T cell signaling. *Nat. Immunol.* **14**, 82–89
600 (2013).

601 41. Yuan, Y. et al. Single-molecule super-resolution imaging of T-cell plasma membrane
602 CD4 redistribution upon HIV-1 binding. *Viruses* **13**, 142 (2021).

603 42. Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane
604 microdomains created by protein-protein networks that exclude or trap signaling
605 molecules in T cells. *Cell* **121**, 937–950 (2005).

606 43. Schneider, F. et al. Statistical Analysis of Scanning Fluorescence Correlation
607 Spectroscopy Data Differentiates Free from Hindered Diffusion. *ACS Nano* **12**, 8540–
608 8546 (2018).

609 44. Pinkwart, K. et al. Nanoscale dynamics of cholesterol in the cell membrane. *J. Biol.*
610 *Chem.* **294**, 12599–12609 (2019).

611 45. Janeway, C. A. The T Cell Receptor as a Multicomponent Signalling Machine:
612 CD4/CD8 Coreceptors and CD45 in T Cell Activation. *Annu. Rev. Immunol.* **10**, 645–
613 674 (1992).

614 46. Janeway, C. A. Accessories or coreceptors? *Nature* **335**, 208–210 (1988).

615 47. Parnes, J. R., Von Hoegen, P., Miceli, M. C. & Zamoyska, R. Role of CD4 and CD8 in
616 enhancing T-cell responses to antigen. in *Cold Spring Harbor Symposia on*
617 *Quantitative Biology* vol. 54 649–655 (Cold Spring Harbor Laboratory Press, 1989).

618 48. Li, Q. J. et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck
619 accumulation at the immunological synapse. *Nat. Immunol.* **5**, 791–799 (2004).

620 49. Van Laethem, F. et al. Lck availability during thymic selection determines the
621 recognition specificity of the T cell repertoire. *Cell* **154**, 1326 (2013).

622 50. Artyomov, M. N., Lis, M., Devadas, S., Davis, M. M. & Chakraborty, A. K. CD4 and
623 CD8 binding to MHC molecules primarily acts to enhance Lck delivery. *Proc. Natl.*
624 *Acad. Sci.* **107**, 16916–16921 (2010).

625 51. Bonnard, M., Maroun, C. R. & Julius, M. Physical association of CD4 and CD45 in
626 primary, resting CD4+ T cells. *Cell. Immunol.* **175**, 1–11 (1997).

627 52. Filipp, D., Leung, B. L., Zhang, J., Veillette, A. & Julius, M. Enrichment of Lck in Lipid
628 Rafts Regulates Colocalized Fyn Activation and the Initiation of Proximal Signals
629 through TCR ζ . *J. Immunol.* **172**, 4266–4274 (2004).

630 53. Kocyła, A. & Krózel, A. Zinc clasp-based reversible toolset for selective metal-
631 mediated protein heterodimerization. *Chem. Commun.* **54**, 13539–13542 (2018).

632 54. Yousefi, S. *et al.* HIV-1 infection is facilitated in T cells by decreasing p56lck protein
633 tyrosine kinase activity. *Clin. Exp. Immunol.* **133**, 78–90 (2003).

634 55. Shaw, A. S. *et al.* The lck tyrosine protein kinase interacts with the cytoplasmic tail of
635 the CD4 glycoprotein through its unique amino-terminal domain. *Cell* **59**, 627–636
636 (1989).

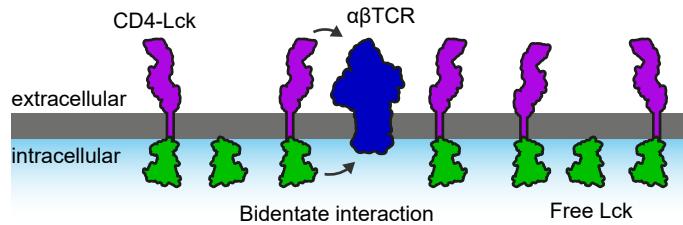
637 56. Kappes, D. J. CD4 and CD8: Hogging All the Lck. *Immunity* vol. 27 691–693 (2007).

638 57. Pettmann, J. *et al.* The discriminatory power of the T cell receptor. *Elife* **10**, (2021).

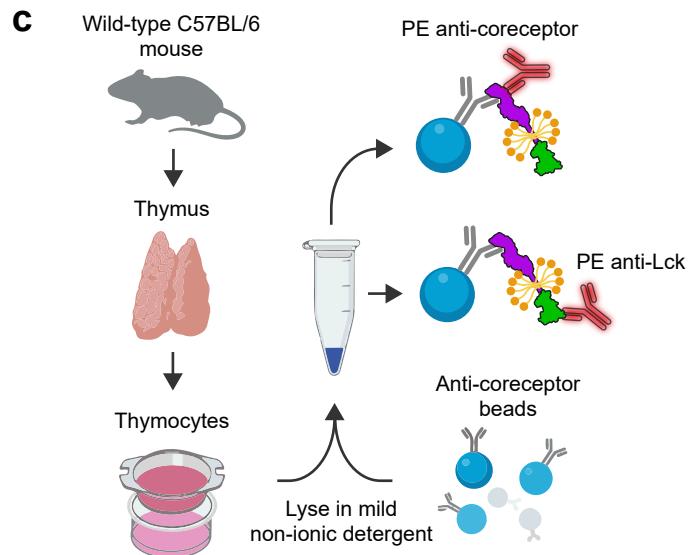
639 58. Shinzawa, M. *et al.* Reversal of the T cell immune system reveals the molecular basis
640 for T cell lineage fate determination in the thymus. *Nat. Immunol.* **23**, 731–742 (2022).

641 59. Jönsson, P. *et al.* Remarkably low affinity of CD4/peptide-major histocompatibility
642 complex class II protein interactions. *Proc. Natl. Acad. Sci.* **113**, 5682–5687 (2016).

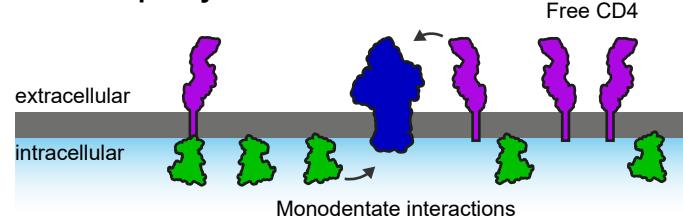
643 60. Guzmán, C. *et al.* The efficacy of raf kinase recruitment to the GTPase H-ras depends
644 on H-ras membrane conformer-specific nanoclustering. *J. Biol. Chem.* **289**, 9519–
645 9533 (2014).

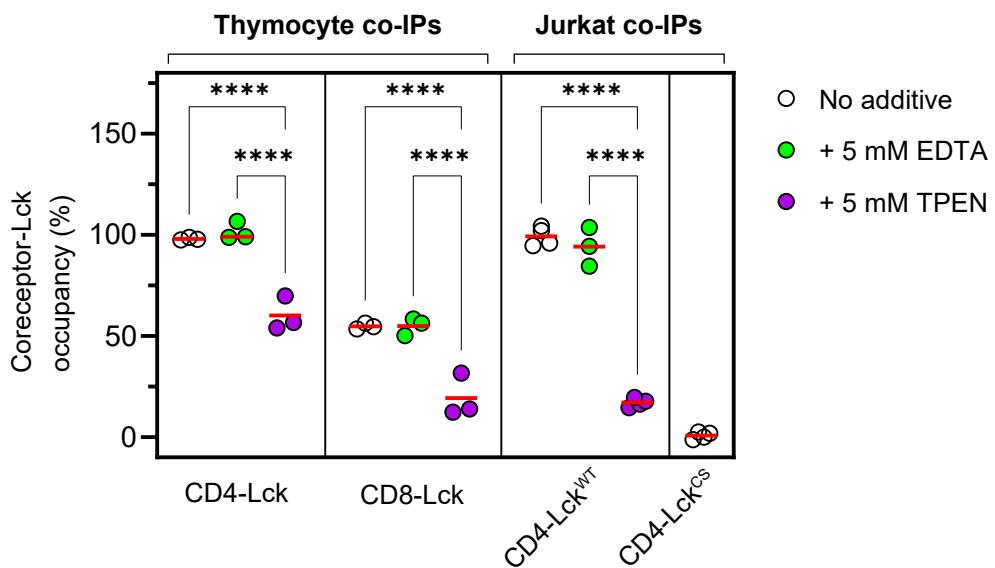

646 61. Campi, G., Varma, R. & Dustin, M. L. Actin and agonist MHC-peptide complex-
647 dependent T cell receptor microclusters as scaffolds for signaling. *J. Exp. Med.* **202**,
648 1031–1036 (2005).

649

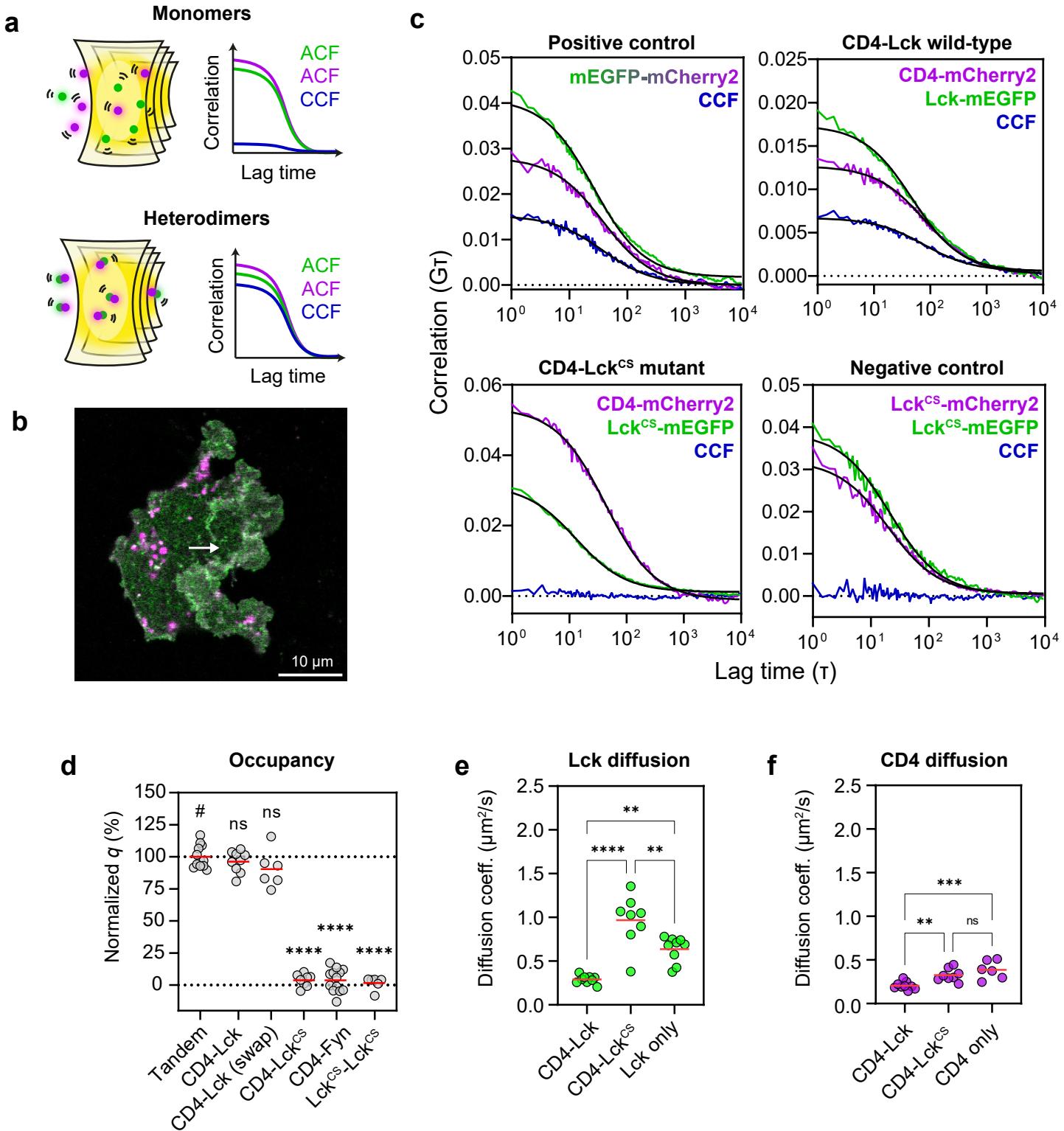

Figure 1

bioRxiv preprint doi: <https://doi.org/10.1101/2022.08.01.502332>; this version posted August 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

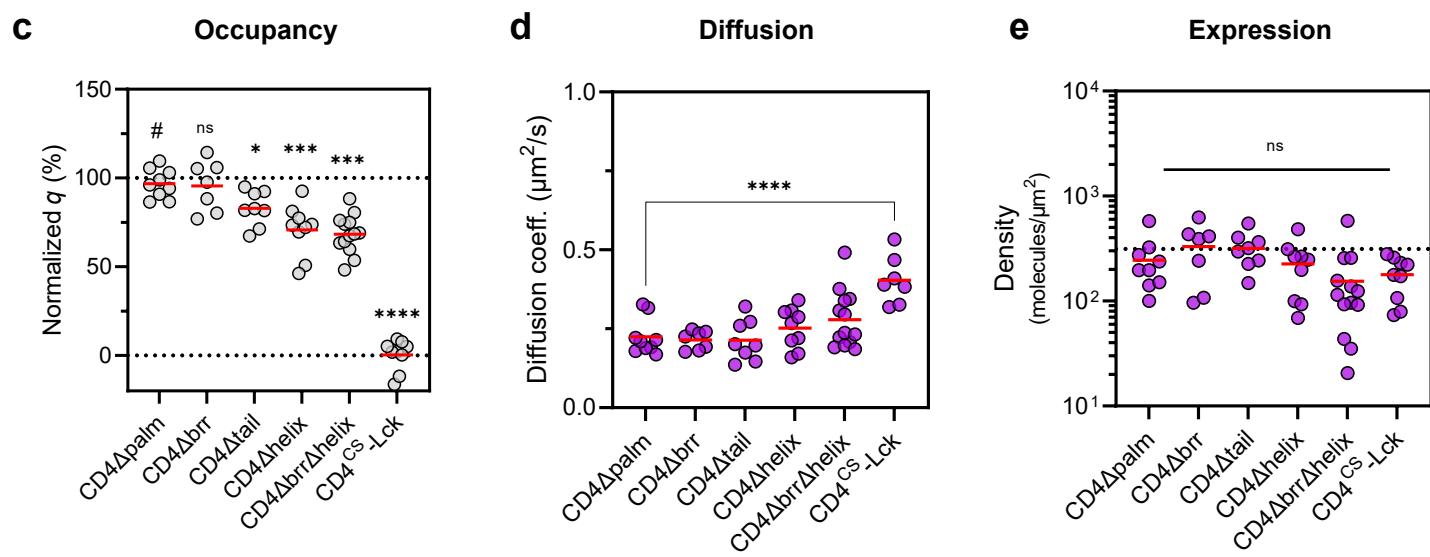
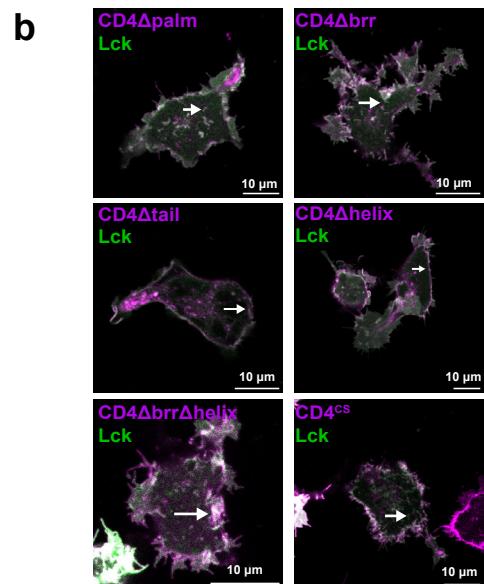
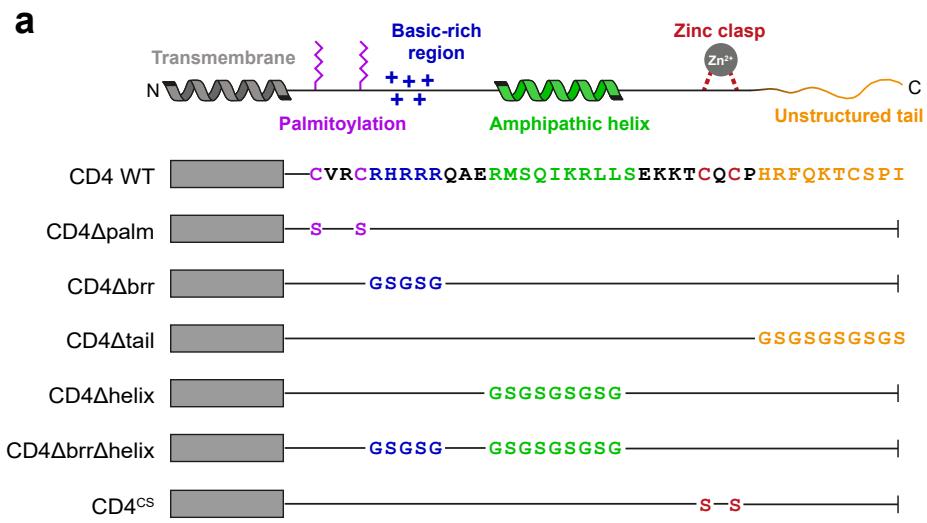

a High occupancy


c

b Low occupancy



d




Figure 2

bioRxiv preprint doi: <https://doi.org/10.1101/2022.08.01.502332>; this version posted August 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 3

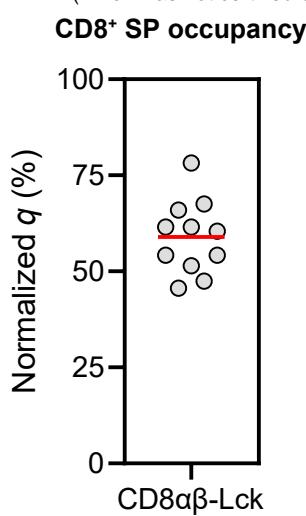
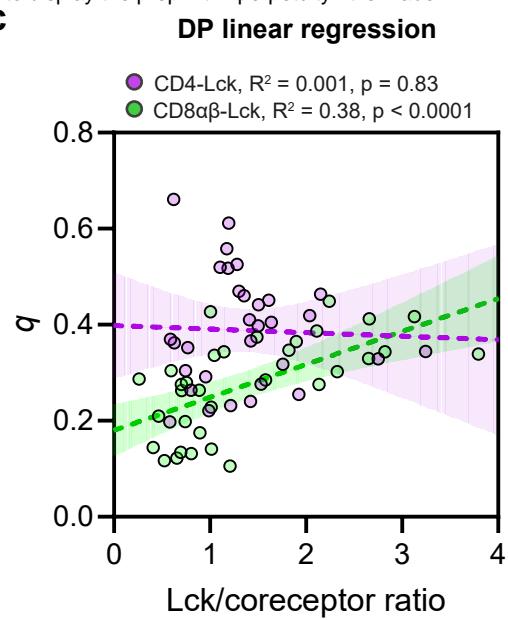
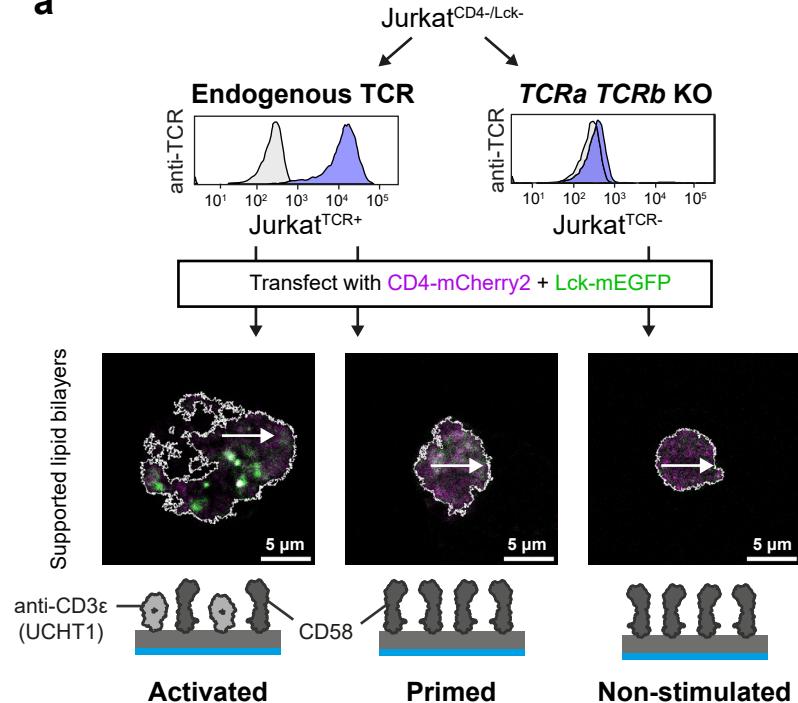

bioRxiv preprint doi: <https://doi.org/10.1101/2022.08.01.502332>; this version posted August 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

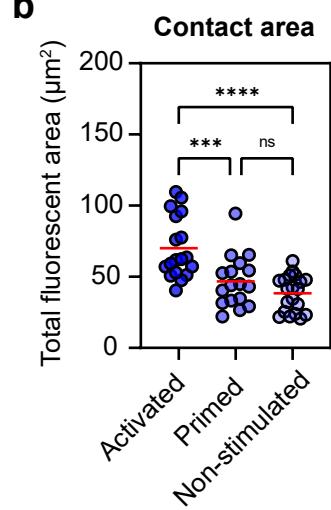

Figure 4

bioRxiv preprint doi: <https://doi.org/10.1101/2022.08.01.502332>; this version posted August 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

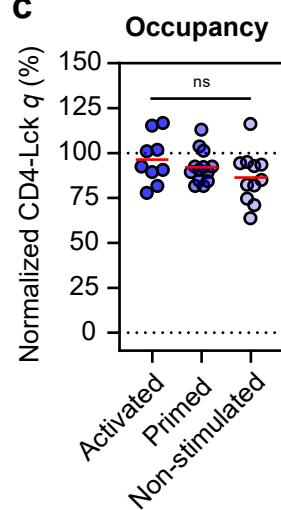

a

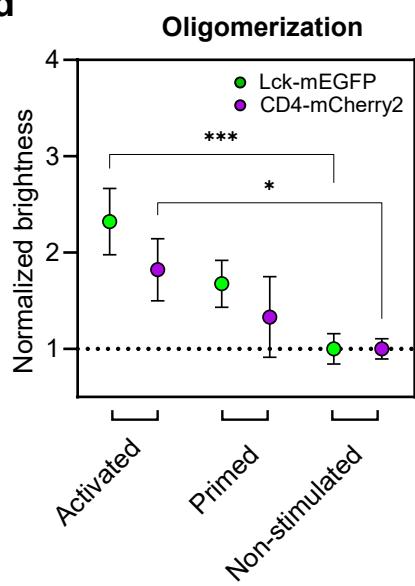
b

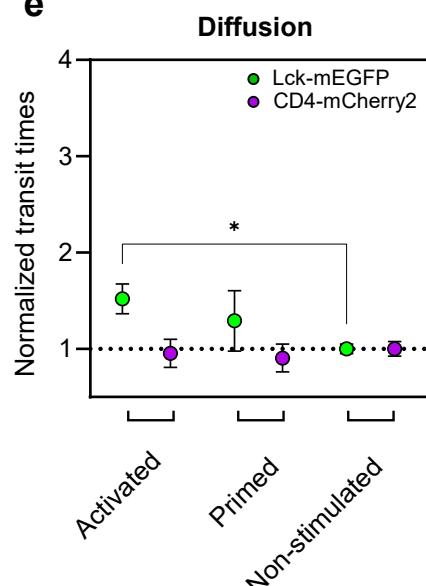

c

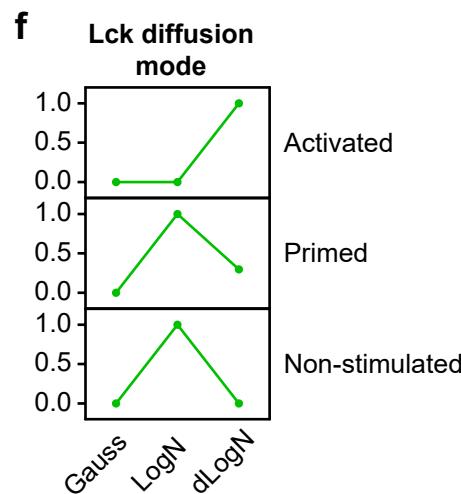

Figure 5

bioRxiv preprint doi: <https://doi.org/10.1101/2022.08.01.502332>; this version posted August 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


a


b


c


d

e

f

