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Synopsis Likelihood-based rotation, translation and refinement targets have been derived for docking

models into cryo-EM reconstructions.

Abstract Fast, reliable docking of models into cryo-EM maps requires understanding of the errors in
the maps and the models. Likelihood-based approaches to errors have proven to be powerful and
adaptable in experimental structural biology, finding applications in both crystallography and cryo-EM.
Indeed, previous crystallographic work on the errors in structural models is directly applicable to
likelihood targets in cryo-EM. Likelihood targets in Fourier space are derived here to characterise, based
on the comparison of half-maps, the direction- and resolution-dependent variation in the strength of
both signal and noise in the data. Because the signal depends on local features, the signal and noise are
analysed in local regions of the cryo-EM reconstruction. The likelihood analysis extends to prediction
of the signal that will be achieved in any docking calculation for a model of specified quality and
completeness. A related calculation generalises a previous measure of the information gained by making

the cryo-EM reconstruction.
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1. Introduction

The problem of docking models into cryo-EM maps is similar to the molecular replacement
(MR) problem in crystallography. The key difference is that cryo-EM data are enriched by
the phase information that is lost in crystallography, and the resulting increase in signal-to-
noise greatly simplifies the task of translating an oriented model with FFT-based correlation

functions. However, this phase information cannot be used directly in assessing different
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model orientations prior to the translation search, so many existing docking algorithms rely

on a systematic six-dimensional search over possible orientations and positions.

In crystallography, MR algorithms have been made significantly more sensitive by using
likelihood scores for rotation, translation and rigid-body refinement tasks (McCoy et al.,
2007). In addition, an understanding of the relationship connecting data and model quality
with the likelihood scores that can be expected in a particular calculation has opened up new
possibilities for tailoring the MR calculations to the problem at hand (McCoy et al., 2017,
Oeftner et al., 2018). These concepts can be applied to the related problems in cryo-EM.

Most existing docking methods for cryo-EM are scored by variants of cross-correlation
functions. Comprehensive reviews of these score functions have been compiled by others:
(Zundert et al., 2015; Cragnolini et al., 2021). Some examples include cross-correlation of
the experimental cryo-EM map and a map computed from coordinates (Stewart et al., 1993),
local cross-correlation (Roseman, 2000), Laplacian filtered cross-correlation (Wriggers,

2012) and core-weighted cross-correlation (Wu et al., 2003).

When comparing a variety of scores of fit to model, including cross-correlations, Joseph et al.
(2017) found that mutual information was a better discriminator for low to medium resolution
maps. Like the likelihood score proposed here, mutual information is a probabilistic measure,
but it works with real-space voxel values, not Fourier terms. In addition, mutual information

does not explicitly account for errors in the reconstruction itself.

As noted below, our docking target is based on similar ideas to the likelihood-based
refinement target for models against cryo-EM maps used in Refmac (Murshudov, 2016), but
differs importantly in using a more sophisticated error model for experimental data that takes

account of the directional dependence of both the signal and the noise in Fourier space.

2. Probabilities and likelihood targets

2.1. Error model for single-particle cryo-EM data

For a cryo-EM reconstruction, the aim is that each individual molecule or molecular
assembly in a particle is essentially a rigid object, either by nature or as a result of particle

selection.

Errors in cryo-EM reconstructions come from a combination of suboptimal relative
orientations of individual images, structural differences and imaging limitations and artefacts

among the collection of particles used in the reconstruction, reviewed for instance by
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Ramlaul et al. (2019). In the individual 2D particle images derived from a series collected
over the total exposure, the images are smeared by any uncorrected sample motion, degraded
by effects of any radiation damage and limited in resolution by the detector pixel size.
Additional random shot noise comes from counting statistics and the presence of

irreproducible features in the vitrified solvent around them.

For reconstruction, the information contained in the 2D image is converted into its Fourier
transform, which comprises a 2D slice through the Fourier transform of the molecule; errors
in the Fourier terms can arise, for instance, from errors in the contrast transfer function
correction. If the correction terms have been optimized, their values and errors will differ in
different images, so we can expect the remaining errors in data from these individual images
to be largely uncorrelated with particle orientation or with the images themselves.
Nonetheless, if systematic errors remained it would be difficult to distinguish them from

signal.

Each particle imaged in a data set will be in a different orientation and (to a greater or lesser
extent) a different conformation. 3D classification will allow significantly different
conformations to be grouped together, but variation will remain within the groups,
corresponding in real space to blurring of the atoms over their range of possible relative
positions when constructing a 3D image. Further blurring will come from uncertainties in the
orientation and position of the particle in each image, when averaging the Fourier terms from

different images to obtain a 3D data set.

In our error model, we consider that the signal in an individual Fourier term in the
reconstruction comes from the Fourier transform of the image of atoms at rest, blurred by the
effects of global and local variations in orientation and position. These blurring effects are
similar to what is modeled locally in crystallography by anisotropic displacements or, on a

larger scale, by translation-libration-screw (TLS) models (Schomaker & Trueblood, 1968).

Random noise in contributions from individual particle images will be reduced when
corresponding Fourier terms from different images are averaged. However, the existence of
preferred orientations will mean that the magnitude of the random noise terms, after
averaging over different numbers of observations, will vary with direction in Fourier space.
In principle, this could be modeled by keeping track of redundancy during the reconstruction
process, but in the current implementation we are starting from conventional half-maps rather

than individual particle images. We approximate the directional and resolution dependence as
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a smoothly-varying function in Fourier space. Since variations in conformation need not be
correlated with orientation preference in the sample, the two sources of variation in signal

and noise are evaluated independently.

Because the estimation of noise requires the comparison of independent measurements, all of
our signal and error evaluation is carried out using the Fourier terms computed from the half-
maps. The signal power is deduced from correlations between the half-map terms and the

error power from their differences.

The signal in matching pairs of Fourier terms derived from the half maps can be expressed in
terms of the underlying Fourier transform of atoms at rest (represented as Tj,;; and drawn
from a complex normal distribution with variance £ representing the scattering power),
multiplied by a scale factor combined with a term that varies with resolution and direction in
Fourier space (represented as Ayy;). The noise term, €y, is drawn independently for each
half map from a complex normal distribution with variance Xz. Note that both ¥ and £ will

vary with resolution; as noted above, Xz will also vary with direction in Fourier space.

Fori = Anki Thia + €nra (1)
When describing the individual half-map terms, the subscripts hkl will be implicit for
simplicity of notation:

F, =AT + & (1a)
F, = AT + &, (1b)
Because T and € are both drawn from complex normal distributions, the joint distribution of

F, and F, can be defined in terms of a bivariate complex normal distribution. The covariance

matrix for this distribution is given by:

_ [(FiF) (FiF3)

Y= (FE) (RE) @

The terms in the covariance matrix can be simplified in terms of the variances of the

distributions for T and €, noting that €; and €, are independent so that their covariance is

zZero.
(FiF) = (AT + &) (AT + £1)") = Es + X (3a)
(F.F7) = ((AT + €)(AT + &,)") =I5 + X (3b)

(FiF;) = ((AT + £)) (AT + &,)*) = X5 = (F;F,), where (3¢)
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T = A%%, (3d)

The parameters characterising the bivariate complex normal distribution can be estimated by

maximising the likelihood of measuring the data derived from the two half-maps.

The determinant and the inverse of the covariance matrix are needed to compute the

likelihood target:
_ s+ X Zg _ 2
det = det([ %, 5o+ ZE]) = 2¥s2p + X% (4a)

z—l —

1 ZS + ZE _ZS (4b)
T 25gTp+3E

—Xg X +2g

Considering that, before we know the values of F; and F, their expected values are zero, the

joint probability distribution is given by

1 _
p(F, F,) = =] exp[—(Fy, FZ)HZ 1(F1, F,)] =

(—(Ff+F22)(Es+zE)+225F1cmos(<p1—<pz)) (5)
n2(2ZsZp+2%) 25gTp+3i

where superscript H indicates the Hermitian transpose and the Fourier terms are represented
in terms of their amplitudes and phases. The contribution of a single Fourier term to the log-

likelihood function is therefore given by

_ 2 2\ _ (FE+FF)(Es+3E) | 25sFiFcos(91—92)
In(L) = —In(n2(2%sZ; + £3)) o T amempert (6)

We have tested two approaches to determining values for X and X. One is to assume that
their values are close to constant in a small region of Fourier space such as a sphere around a
particular Fourier term (or at least that their variation over that sphere is such that their mean
value is representative of the Fourier term at the centre). This approach makes no assumption
about the functional form for their dependence on resolution or direction in Fourier space.
The second approach is to assume that the variation can be captured by some combination of
a resolution term (such as a constant for each spherical shell) and an anisotropic tensor.
Considering that the distribution of favoured orientations can have a number of modes that do
not necessarily obey any symmetry, only the first approach would be strongly justified for the
X error terms. This was borne out by preliminary work using the anisotropic tensor
approach, not reported here in further detail. On the other hand, the assumption that the local
molecular structure undergoes displacements that can be captured by an anisotropic tensor

seems easier to justify, based on bonding constraints. For this reason, our tests have
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concentrated on an error model in which local variation in Fourier space is used for the error

terms, and both approaches are used for the signal terms.

For the local variation approach, there is an analytical solution for the £ and X5 terms that
maximise the log-likelihood for a local region in Fourier space. This is obtained by taking the
derivatives of the sum of the log-likelihood, over a set of n Fourier terms, with respect to Xg
and X, then solving the simultaneous equations to find the values where the two derivatives
are equal to zero. The results for the maximum likelihood estimators of these parameters are

intuitively reasonable, from inspection of equations (3) defining X5 and X5 above:

- 1

Lg = ;Z FiFycos(@1 — ¢2) (7a)
— 1 —

S = (L FE+F) 5 (7b)

For the anisotropic tensor approach, there does not appear to be an analytical solution, so an
iterative refinement is required. The refinable parameters in the log-likelihood function are
the parameters determining the values of A and £, while £ can be estimated using the result

above.
A = Agexp(—=h"g,4h), (8)

where A, is an overall scale and 3, is an anisotropic tensor that captures the overall

anisotropic displacements of the object in the map.

X is a function of resolution because the spectral variation of the Fourier transform reflects
both the width of atomic features and favoured interatomic distances within the imaged
object. If the signal-to-noise were reasonably high for all resolution ranges, £ could be
estimated reliably in resolution bins, but this is not usually a safe assumption towards the
resolution limit. For a similar problem in normalising crystallographic data (Read & McCoy,
2016), we have found that a Bayesian framework using a prior probability distribution is
useful: we assume that the overall spectral variation of data should be similar to the average
seen in a large variety of structures, as captured by the BEST curve tabulated by Popov and
Bourenkov (2003). This curve will not be exact for any particular data set, so some variation
must be allowed; this is accomplished by refining bin-wise resolution parameters that are set
initially to one, and weakly restraining the logarithm of their values to zero. Weaker restraints
are used at low resolution than at high resolution, because the low-resolution Fourier terms
depend more on molecular shape than favoured interatomic distances, and thus vary more

from structure to structure. The restraints have very little effect on the refined parameters for
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strong data but dramatically improve the behaviour of refinement for weak data. Note that the
BEST curve was derived using a large set of X-ray diffraction data to high resolution. A
related curve is not yet available for cryo-EM or electron diffraction data, although a similar
use of power spectra has been suggested in the past (Scheres, 2012), but we note that the
spectral variation of the Fourier terms from cryo-EM reconstructions at high resolution show
similar behaviour to those from X-ray diffraction, because of the predominant effect of
favoured distances. Using the BEST curve, the refinable parameters for X are the resolution

bin parameters in the following equation:

2:T = 2:T,binz:T,best (9)

Note that the assumption that the spectral variation will follow the BEST curve will be
violated when the half-maps have been manipulated, for instance by applying band-pass
filters. For this reason (among others), our method requires the availability of unfiltered,

unmasked half-maps.

2.2. Likelihood target for evaluating models in cryo-EM reconstructions

To derive a likelihood target for evaluating the fit of models to data, we need to account for
errors in the model (in addition to estimates of measurement error discussed above). Both
structure refinement and docking can be carried out using a likelihood target that evaluates
the likelihood of the map given the model. We start by considering the errors between the
Fourier terms corresponding to the (unknown) true map (T) and the average map coefficients
obtained from the two half-maps. This can be evaluating by considering the definition of the

half-map Fourier coefficients in terms of the true coefficients:

Frean = o2 = WD AT — AT 4 gy, where (10a)

Emean = o2 (10b)

When g, and €, can be considered independent with equal variance (as we assume for half-
maps), the variance of their mean is reduced by a factor of two. This allows us to work out

the terms of the covariance matrix relating T and F,,,.4,.
(TT*) =2, (11a)
(FmeanFr*;lean> = AZZT + 2:E/Z (1 lb)

(T Fr?tean) = AXp = (T*Fmean> (I1c)
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The likelihood target has a simpler form if it is expressed in terms of normalised map

coefficients (E-values), in which the mean-square value of E is expected to be one.
E; =T/, (12a)
Emean = Fmean/\/ AZZT + 2:E/Z (121‘))

" _ AZT _ A2xp _ s _
(ETEmean> - \/m - \/A22T+ZE/2 = \/ES+ZE/2 = Dobs (120)

D,ps 1s the complex correlation relating E,,, .., and the true value, E;. It plays the same role,
for a single Fourier term, as FSC,.; (Fourier shell correlation to the true map) does for a
whole resolution shell in Fourier space. Note that, if X is zero, D, is one, but it becomes

smaller as the ratio between X5 and X increases, reaching zero when X is zero.

The other source of error in the likelihood target is model error. For docking, it is generally
safe to assume that the errors in the map and the errors in the model are independent, prior to
any refinement against the map, so there are no concerns about overfitting. The relationship
between the Fourier coefficients computed from a model and those that would be obtained
from the true map is the same as that between calculated and true structure factors in
crystallography: the Central Limit Theorem allows us to conclude that the errors in the
calculated Fourier coefficients that arise from the sum of many small errors from the
individual atoms in the model can be described in terms of a complex normal distribution,
like the errors between the true map and the experimental reconstruction. In crystallography,
this is described by the complex correlation, termed 0,4, between the normalised structure
factors (Srinivasan & Ramachandran, 1965; Read, 1990). The o4 term combines the effects
of completeness of the model (the fraction f of the scattering accounted for by the model) and
the accuracy of the model; if we make the simplifying assumption that the errors in the
coordinates of all the atoms are all drawn from the same 3D Gaussian distribution, g4 can be

calculated with the following formula:

04(s) = fexp (-2 s7a2) (13)

where s is the inverse resolution and A is the rms radial coordinate error (Read, 1990).
Violation of this assumption can change the resolution dependence of the o, curve, but a

compromise effective overall rms error is determined by refinement after placing the model.
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Because the errors between the true map and either the calculated map or the observed map
are independent, the complex correlation between the observed map and the model is simply
the product of the two individual complex correlations, D,;s and g,. Therefore, the joint
distribution of E,,, .4, and the normalised calculated Fourier coefficient, E., is a bivariate
complex normal distribution with expected values of zero (prior to any knowledge of either)
and the following covariance matrix:

1 DobsaA

¥y =
DobsaA 1

(14)

The likelihood function for judging the fit of a model in a map (whether derived by docking
or structure refinement) is the conditional probability distribution for the observed normalised
Fourier coefficient given the corresponding term computed from the model. This conditional
distribution is obtained by a simple manipulation of the joint distribution, yielding a complex

normal distribution with a variance of 1 — D%,;6? and an expected value of D,p,;04E:

1 |Emean_D0 S E |2
P(Emean; Ec) = Zmmr—ay exp <— e ) (15)

obs obsoi
It is more convenient to work with the log-likelihood gain or LLG, i.e. the gain in the log-
likelihood score compared to an uninformative model (for which o, is zero). The contribution

of a single Fourier term to the total LLG is:

2DopsOaEmeanEccos(Ap)—D2, 04 (EZean+EE
LLG(Emean; EC) = 24 < 1_D2b ‘731 . A( C) - ln(l - ngso—/%) (16)

where A¢ is the difference between the phases of E,.,, and E., and E,, .., and E are
amplitudes. Note that this can alternatively be expressed in terms of a correlation function

between the weighted averaged map and the model, a scale factor and an offset:

2 2(p2 2
2 DopsOa(EheantEE) 2 2

1-D2, g2 Dobso-AEmeanECCOS(A(p) - 1-D2, o2 - ln(l - DobsUA)
obsPA obs%4

LLG (Emean; EC) =
(17)

The total LLG score is the sum over all Fourier terms. However, it is important to note that
cryo-EM differs from crystallography in that the Fourier transform of the reconstruction is
typically highly over-sampled: proteins in crystals pack in a lattice where molecules are in
contact with each other, whereas the cryo-EM reconstruction is computed in a much larger
box than required to contain the particle. Oversampling leads to strong correlations among
neighbouring Fourier terms. This can be accounted for simply by applying a correction factor

equal to the ratio of the volume required to contain the particle and the volume of the box in
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which the reconstruction was carried out, as proposed by van Heel and Schatz (van Heel &
Schatz, 2020) for computing information content. The same correction factor must be applied

to all fast approximations, expected values and information gain discussed below.

The likelihood target described here has the same basic functional form as the likelihood
target used to refine cryo-EM models in Refmac (Murshudov, 2016), differing importantly in
taking account of the dependence of the signal and error terms on direction in reciprocal

space, instead of depending only on resolution.

2.3. Map coefficients

Two sets of map coefficients can be generated for evaluating the fit of a docked model. The

first type uses the Fourier coefficients
Fmap = DobsEmean (18)

Since this is the expected value of the true sharpened map coefficient (the centroid of the
probability distribution), this should give a map that minimises the error from the true

sharpened map.

The second type uses Fourier coefficients that include the other weighting terms from the

correlation function in the log-likelihood target (17),

2
Fmap = 1_D§b5031 DobsO_AEmean- (19)

The correlation of this map (19) with the sharpened map computed from a docked model
should be proportional to the likelihood target. To compute such a map, a choice has to be
made for the value of o, that is used, which primarily depends on the scattering in the volume
under consideration but also coordinate error and on the ability of atomic models to account

for the bulk solvent region.

2.4. Fast rotation target for scoring orientations of models

In crystallographic MR, the six-dimensional problem of finding the orientation and position
of a model to fit the diffraction data is typically divided into a sequence of two three-
dimensional problems: an orientation search (rotation function) followed by translation
searches with models in a number of plausible orientations determined from the orientation
search (translation function). The crystallographic rotation functions can be directly adapted
to the docking problem in cryo-EM, because the phase information in the complex Fourier

terms cannot be used without some knowledge of the position of the search model. The
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rotation search thus depends solely on the amplitudes of the Fourier terms, so the
crystallographic likelihood-based rotation function (Storoni ef al., 2004) can be used without
alteration: the cryo-EM D, plays the same role as the crystallographic D, ;¢ parameter in the
log-likelihood-gain on intensities (LLGI) target (Read & McCoy, 2016; Jamshidiha et al.,
2019). As in crystallography, an approximation of the likelihood-based rotation function can

be computed rapidly by FFT methods before being scored by the exact likelihood function.

It should be noted that phase information can be used indirectly in the rotation search. If there
is a hypothesis for the location of a particular component in a full reconstruction, the rotation
search can use the Fourier terms computed from a portion extracted from the full
reconstruction. The use of such a procedure is essential to the sub-volume searches

mentioned below and discussed in detail in the accompanying paper.

2.5. Fast translation target for scoring positions of oriented models

In crystallography, where there is typically no prior phase information in an MR search, only
an approximation to the likelihood target can be computed by FFT methods. However, the
LLG score for the fit of a model to cryo-EM data (17) takes the form of a correlation
function, which can therefore be calculated exactly as a function of translation using a single
FFT, as long as scaling parameters and contributions that do not change with translation are

accounted for.

2.6. Rigid-body refinement

Refinement of a docked model involves optimizing parameters of (17) to maximise the LLG.
The orientation and translation parameters affect the calculated Fourier terms, while the
estimated RMSD of the model changes the g, term. As in the related MR case, a careful
choice of parameterization can improve the refinement behaviour. For instance, correlations
between rotation and translation parameters can be minimised by defining the rotation in
terms of a rotation about the center of mass of the component. In addition, defining the
rotation in terms of a perturbation applied to the current orientation by rotating sequentially
about orthogonal x, y and z axes (rather than, for instance, Euler angles) makes the rotation

parameters locally close to orthogonal.

Although improvements in hardware and cryo-EM protocols have generally reduced the

uncertainty about voxel size (or magnification factor) in modern cryo-EM reconstructions, we
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have implemented a cell scale factor parameter, which affects the calculated Fourier terms

and therefore can be refined to compensate for any error in voxel size.

3. Expected likelihood scores and information gain

In crystallographic MR, it has been possible to optimise the choice of search strategy by, first,
knowing what absolute LLG score is required for correct solutions to be recognised and,
second, being able to predict the LLG score that can be achieved in a particular search, given
the quality of the model, the quality of the data and the resolution limit applied to the data
(McCoy et al., 2017; Oeftner et al., 2018). The same considerations of expected LLG (or
eLLG) can be applied to docking in cryo-EM, as discussed in detail in the accompanying

manuscript.

3.1. Rotation eLLG

In a rotation search for a cryo-EM reconstruction lacking symmetry, the LLG score for an
orientation is the same as the crystallographic LLG score for a model of a crystal in space
group P1. Therefore, the rotation eLLG, eLLG,,;, can be computed with the same formula as

the crystallographic eLLG for P1 (McCoy et al., 2017):
4 4
eLLGyop = Ypuy -2 (20)

It is instructive to consider the effect of increasing the volume of a sphere extracted from the
total reconstruction. If a sphere containing the correct volume for the component under
investigation were doubled in volume, the number of Fourier terms would double. At the
same time, the fraction of the map accounted for by the model would decrease by the same
factor of two. Because g, is proportional to the square root of the model completeness, each
term in the sum would be reduced by a factor of 4, so that the total eLLG,,; would be reduced
by a factor of two. More generally, all else being equal, eLLG,.,; is inversely proportional to

the volume of the part of the map being used for the search.

3.2. Translation eLLG

The expected value of the LLG for an individual Fourier term is given by the probability-
weighted average of the LLG over all possible values of the calculated Fourier term, where
the weighting is the conditional probability of that calculated term given the observed Fourier

term. Because the joint probability distribution of the calculated and observed Fourier terms
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is symmetric, the required conditional probability has the same functional form as the

likelihood of the data given the model.

eLLGrq = [ P(Ec; Emean) LLG (Erpean; Ec)dE ¢, where (21a)
. — ; _ |EC_Dobso'AEmean|2
P(Be; Epean) = gz oxp (gl (21b)

The integral has a simple analytical solution:
eLLGtra = (Erznean - 1)1)31950142 - 11’1(1 - ngso-/%) (22)

Considering that the expected value of EZ.,,, is one, if we assume that there is no correlation

between E2,,,, and D2, 02, the expected value of the first term is zero, so that
eLLGtra = _ln(l - ngsO_AZ) (23)

For all values of D404, eLLG,, 1s greater than eLLG,,;, especially for the poorest
combinations of map and model quality; when D, ;0,4 is 0.01, for instance, the ratio is about
20,000. This is an indication of the extent to which phase information enhances the likelihood
scores. The implication is that the trade-off between the size of the sub-volume and the
sensitivity to the correct solution is very different for the rotation and translation parts of the

search.

In contrast to eLLG,,;, eLLG,,, is relatively insensitive to the size of sub-volume, especially
when either the map or the model is poor (D,,s04 < 1), in which case the change in number

of Fourier terms counterbalances the change in the logarithmic term.

3.3. Information gained by cryo-EM reconstruction

Information theory and likelihood are closely connected, and the information gained by
measuring the data in a cryo-EM reconstruction, computed using the Kullback-Leibler
divergence (Kullback & Leibler, 1951) can be derived with methods related to those used for
the eLLG. Essentially, the Kullback-Leibler divergence (if measured with the natural
logarithm in units of natural units of information, nats, rather than the conventional bits
obtained with the logarithm base 2) is equivalent to the eLLG that would be expected for a

perfect model.

The Kullback-Leibler divergence for the information gained about the true map, given the
reconstruction, can be computed for one Fourier term with the following integral over all

possible values of the true Fourier term, E:
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(E;Emean)
Dy, = [ P(E; Emeqn)in (X5 mecs)) (24)

Applying Bayes’ theorem, we can substitute

P(E;Emean) P(Emean;E)
_ 25
p(E) P(Emean) ( )

so we see that the logarithm in the integral is the LLG that would be achieved with a perfect
model, and the expression for Dg; is equivalent to eLLG assuming a perfect model. Because

a perfect model would have g, = 1 for all Fourier terms,
DKL = (Er%lean - 1)D02bs - ln(l - ngs) (26)

Noting as before that the mean value of EZ,,,,, should be one, if EZ,,,,, and D2, are

uncorrelated we have
Dy, = —In(1 - ngs) (27)

Information in units of bits instead of nats can be obtained by using the logarithm base 2,

which differs by a factor of In(2).

The total information gain in an entire data set or in a resolution shell will be the sum from
the individual Fourier terms, but corrected for the correlations arising from oversampling in
Fourier space. As above, following similar reasoning to that invoked by van Heel and Schatz
(2020), the correction for oversampling can be made by comparing the volume of the map to

the volume occupied by the ordered part from which the signal is obtained.

Although it is not immediately obvious, the Dg; measure proposed here is closely related to
the information content measure proposed by van Heel and Schatz (2020), in which they
followed a different line of reasoning. They proposed a Fourier Shell Information (FS7)
measure for the information, in bits, gained by a shell of data in Fourier space, expressed in
terms of the F'SC between two half-maps for that resolution shell:

FSI(s) = K log, (HFSC(S)),

1-FSC(s)

(28)

where K is the effective number of independent Fourier terms in the shell under
consideration. As noted above, D, plays the same role for a single Fourier term as FSC,..¢
does for a resolution shell. If we assume that all Fourier terms in a resolution shell have the

same value of D, we can express the FSI equation in terms of D, using the relationship

between FSC and FSC,.; derived by Rosenthal and Henderson (2003).
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2FSC

Dobs = FSCref = 1+FSC (29)

Solving for FSC yields

FSC = Dobs 30
T 2-D2 (30)

Substituting this for FSC in (28) and simplifying yields the following:

FSI(s) = —K logy(1 — DZys) (31)

Interpreting K as the number of independent Fourier terms in the shell, this is equivalent to
the expression given above for the Kullback-Leibler divergence measured in bits. The
expression given here is more general, because it allows for differences in accuracy of
different Fourier terms around a shell, arising from anisotropy and the effects of favoured

orientations, which will lead to variation among the values of D, for different terms.

In our docking calculations, the information gain calculation is used to save computing time
by omitting Fourier terms that will have almost no effect on the likelihood calculation. As
done in the related molecular replacement calculation (Jamshidiha et al., 2019), Fourier terms

with an information gain of less than 0.01 bit are ignored after the error analysis step.

4. Implementation of algorithms

The algorithms have been implemented as a combination of Python scripts and C++ code,
both making substantial use of the Computational Crystallography Toolbox, cctbx (Grosse-
Kunstleve et al., 2002).

Tools to analyze the maps, determine the parameters characterizing the signal and noise, and
compute modified Fourier coefficients for the docking calculation have been implemented in

the Python program prepare _map for docking.

The prepare_map_for docking tool is available as a Python script within the maptbx section
of the open-source Computational Crystallography Toolbox, cctbx (Grosse-Kunstleve et al.,
2002). This is available standalone and also as part of the Phenix (Liebschner et al., 2019)
and CCP4 (Winn et al., 2011) software suites.
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5. Results

5.1. Behaviour of signal and error analysis

As noted by Palmer and Aylett (2022), errors are similar throughout a cryo-EM
reconstruction, but signal-to-noise ratios can vary dramatically within the reconstruction
because of variations in the strength of the signal. This can be demonstrated by looking at the
local behaviour of the signal power (X5) and noise power (Xg) in reciprocal space, after the
analysis using the prepare_map_for docking tool. One informative example is the map for
conformation 2 of the E. coli respiratory complex I (EMDB entry 12654, PDB entry 7nyu),
for which the local reconstruction quality varies widely (Kolata & Efremov, 2021). An
analysis of one of the best and one of the worst regions of the map is given in Fig. 1,
illustrating that the noise power is similar in the two regions whereas the signal power, and its

variation in Fourier space, differs substantially.
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Figure 1 Variation of signal power (X5) and noise power (Xg) in Fourier space for well-ordered
(center of cytoplasmic domain) and poorly-ordered (chain L) regions of the E. coli respiratory
complex I. The local mean signal and noise variances are all contoured at a level where the two are
approximately equal for values computed from a sphere with a radius of 30 A from the poor region of
the map. a) The distribution of £z computed for the poorly-ordered region around chain L (black) is
seen to be similar to the distribution of £z computed for the well-ordered region (green). b) At the
chosen contour level the distribution of Zg for the poorly-ordered region (blue) is similar to that for
the distribution of X, with the contoured surface corresponding roughly to a resolution of 10 A. ¢)
The signal power for the well-ordered region (magenta) extends to much higher resolution than the

noise power for the same region of the map (green).

6. Discussion and conclusions

The problem of docking an atomic model into a cryo-EM reconstruction is reminiscent of the
molecular replacement problem in crystallography. The similarity is more than superficial, as
both problems can be addressed using likelihood functions that start from joint distributions
of complex Fourier terms. In both cases, the model is represented by its Fourier transform
(either of its electrostatic potential or its electron density), but cryo-EM differs in the
important fact that the data retain the phase information lost in the crystallographic

diffraction experiment.

Applying likelihood requires characterising all sources of error, which differ between the

methods. In cryo-EM, the typical presence of favoured particle orientations leads to large
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differences in the reliability of the Fourier terms. The variation of noise contributions to the
Fourier terms is expected to vary smoothly over Fourier space, and a method to assess this

variation has been developed.

The likelihood framework allows the implementation of tools that have been found useful in
molecular replacement. In particular the expected log-likelihood-gain (eLLG) score can be
calculated in advance of any molecular replacement search, as well as the information gained

by making the cryo-EM reconstruction.

The accompanying paper describes the implementation of these ideas in software tools for
docking, and the success of those tools demonstrates the validity of the approach described

here, including the use of eLLG to choose optimal strategies.
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