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1 Abstract

2 Cell type-specific gene expression patterns are outputs of transcriptional gene regulatory networks
3 (GRNss) that connect transcription factors and signaling proteins to target genes. These networks recon-
4 figure during dynamic processes such as cell fate specification to drive diverse cellular states. Single-cell
5 transcriptomic technologies, such as single cell RNA-sequencing (scRNA-seq) and single cell Assay
6 for Transposase-Accessible Chromatin using sequencing (scATAC-seq), can examine the transcriptional
7 state of individual cells, allowing the study of cell-type specific gene regulation at unprecedented detail.
8 However, current approaches to infer cell type-specific gene regulatory networks from these datasets are
9 limited in their ability to integrate scRNA-seq and scATAC-seq measurements and to model network
10 dynamics on a cell lineage. To address this challenge, we have developed single-cell Multi-Task Net-

11 work Inference (scMTNI), a multi-task learning framework to infer the gene regulatory network for each

12 cell type on a lineage from scRNA-seq and scATAC-seq data. Using simulated, published and newly
13 collected single cell omic datasets, we show that sScMTNI is able to accurately infer gene regulatory net-
14 works and captures meaningful network dynamics that identify GRN components associated with cell
15 type transitions. Application of our method to mouse cellular reprogramming identified key regulators
16 associated with cell populations that reprogram versus those that are stalled. Taken together, scMTNI
17 is a powerful framework to infer cell type-specific gene regulatory networks and their dynamics from

18 scRNA-seq and scATAC-seq datasets.
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19 Introduction

20 Transcriptional gene regulatory networks (GRNs) specify connections between regulatory proteins and
21 target genes and determine the spatial and temporal expression patterns of genes'?. These networks
22 reconfigure during dynamic processes such as development or disease progression, to specify cell type
23 specific expression levels. Recent advances in single cell omic techniques such as single cell RNA-
24 sequencing (scRNA-seq) and single cell Assay for Transposase-Accessible Chromatin using sequencing
25 (scATAC-seq)” enable collecting high resolution molecular phenotypes of a developing system and offer
26 unprecedented opportunities for the discovery of cell type-specific regulatory networks and their dynam-
27 ics. However, computational methods to systematically leverage these datasets to identify regulatory
28 networks driving cell type-specific expression patterns, are limited.

29 Existing methods of network inference from single cell omic data*'!® have primarily used transcrip-
30 tomic measurements and have low recovery of experimentally verified interactions 718, Recently a small
31 number of methods have attempted to integrate scRNA-seq and scATAC-seq datasets'?2Y to examine
32 gene regulation, however, the primary focus of these methods is to define cell clusters and the network
33 is defined entirely based on accessible sequence-specific motif matches. This restricts the class of reg-
34 ulators that can be incorporated into the regulatory network to those with known motifs. Furthermore,
35 existing methods infer a single GRN for the entire dataset or do not model the cell population structure
36 which is important to discern dynamics and transitions in the inferred networks for cell type-specificity.
37 To overcome the limitations of existing methods, we have developed single-cell Multi-Task Network
38 Inference (scMTNI), a multi-task learning framework that integrates the cell lineage structure, SCRNA-
39 seq and scATAC-seq measurements to enable joint inference of cell type-specific GRNs. scMTNI takes
40 as input a cell lineage tree, sScCRNA-seq data and scATAC-seq based prior networks for each cell type.
41 scMTNI uses a novel probabilistic prior to incorporate the lineage structure during network inference and
42 outputs GRNSs for each cell type on a cell lineage. We performed a comprehensive benchmarking study
43 of multi-task learning approaches including scMTNI on simulated data and show that incorporation of
44 multi-task learning and tree structure is beneficial for GRN inference.

45 We applied scMTNI to a novel scRNA-seq and scATAC-seq time course dataset for cellular repro-
46 gramming in mouse and a published scRNA-seq and scATAC-seq cell-type specific dataset for human
47 hematopoietic differentiation. We demonstrate the advantage of integration of scATAC-seq and scRNA-
48 seq datasets for inferring cell type specific GRNs and their dynamics. We examined how the inferred

49 networks change along the trajectory and identified regulators and network components specific to dif-
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50 ferent parts of the lineage tree. Our predictions include known as well as novel regulators of cell popu-
51 lations transitioning to different lineage paths, providing insight into regulatory mechanisms associated

52 with hematopoietic specification and reprogramming efficiency.
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53 Results

54 Single-cell Multi-Task learning Network Inference (scMTNI) for defining regula-
55 tory networks on cell lineages

56 We developed scMTNI, a multi-task graph learning framework for inferring cell type-specific gene reg-
57 ulatory networks from scRNA-seq and scATAC-seq datasets (Figure [TA), where a cell type is defined
58 by a cluster of cells with a distinct transcriptional and accessibility profile. scMTNI models a GRN
59 as a Dependency network“Y, a probabilistic graphical model with random variables representing genes
60 and regulators, such as transcription factors (TFs) and signaling proteins. scMTNI takes as input cell
61 clusters with gene expression and accessibility profiles and a lineage structure linking the cell clusters
62 (Figure . Such inputs can be obtained from existing methods for integrative clustering?? and lineage
63 construction?”, scMTNI uses the scATAC-seq data for each cell cluster to define cell type-specific se-
64 quence motif-based TF-target interactions (e.g., a motif for a particular TF, which is accessible only in
65 specific cell types will result in a TF-target interaction only in those cell types) which are used as a prior
66 to guide network inference (Methods). The output of scMTNI is a set of cell type-specific GRNs one
67 for each cell cluster in the lineage tree. sScMTNI’s multi-task learning framework incorporates a novel
68 lineage tree prior, which uses the lineage tree structure to influence the similarity of gene regulatory
69 networks on the lineage. This prior models the change of a GRN from a start state (e.g., progenitor cell
70 state) to an end state (e.g. more differentiated state) as a series of individual edge-level probabilistic
71 transitions. While scMTNI was developed to incorporate both scRNA-seq and scATAC-seq data, it can
72 be applied to situations where scATAC-seq, and therefore a cell type-specific prior network, is not avail-
73 able. We refer to the versions of our approach as scMTNI+prior and scMTNI depending upon whether it
74 uses prior knowledge or not. The output networks of scMTNI are analyzed using two dynamic network
75 analysis methods: edge-based k-means clustering and topic models (Figure[IB). These approaches iden-
76 tify key regulators and subnetworks associated with a particular cell cluster or a set of cell clusters on a
77 branch.

78 Multi-task learning algorithms outperform single-task algorithms for single cell
79 network inference

80 To evaluate scMTNI and other existing algorithms with known ground truth networks on single-cell tran-

81 scriptomic data, we set up a simulation framework, which entailed creation of a cell lineage, generating
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82 synthetic networks and corresponding single-cell expression datasets for each cell type on the lineage
83 (Figure 2]A). We used a probabilistic process of network structure evolution to simulate the network
84 structure for three cell types, each containing 15 regulators and 65 genes and between 202-239 edges
85 (Methods). Next, we applied BoolODE" to simulate the in silico single-cell expression data using each
86 cell type’s simulated network. To mimic the sparsity in single-cell expression data, we set 80% of the
87 values to 0. We created three datasets with different numbers of cells: 2000, 1000, 200, referred here as
88 dataset 1, dataset 2, dataset 3.

89 We asked whether multi-task learning is beneficial compared to single-task learning for network in-
90 ference from scRNA-seq data. To this end we compared scMTNI and four other multi-task learning
91 algorithms, MRTLE“%, GNAT22, Ontogenet?®, and AMuSR“’ to three single-task algorithms, LASSO
92 regressionzg, INDEP, and SCENIC? (Methods). Of these methods only SCENIC uses a non-linear
93 regression model while the others are based on linear models. INDEP is similar to scMTNI but does
94 not incorporate the lineage prior. Each algorithm was applied within a stability selection framework and
95 evaluated with Area under the Precision recall curve (AUPR) and F-score of top k edges, where k is
% the number of edges in the true network (Figure E]B, C). On dataset 1, based on AUPR, scMTNI, MR-
97 TLE and AMuSR are able to recover the network structure (Figure 2B) better than the other multi-task
98 learning and single-task learning algorithms. Ontogenet performs better than the single-task learning
99 algorithms in at least two cell types. Finally, GNAT performs comparably to the single-task learning
100 algorithms. When comparing algorithms based on F-score of top k edges, we have similar observations
101 that scMTNI and MRTLE have a better performance than other algorithms (Figure[2C). Ontogenet per-
102 forms better than LASSO and INDEP in at least two cell types, and comparable to SCENIC, except that
103 Ontogenet in cell type 3 is worse than SCENIC. GNAT is comparable to the single-task learning algo-
104 rithms for at least 2 of the cell types. The low F-score of AMuSR is because the inferred networks are
105 too sparse, with fewer than 100 edges, while the other algorithms inferred similar number of edges with
106 the true networks. These results remain consistent for datasets 2 and 3 which have fewer cells (1000 and
107 200, respectively), scMTNI and MRTLE remain superior in performance than other algorithms mea-
108 sured by both AUPR and F-score (Figure 2B, C). We expect scMTNI to be better since the network
109 simulation procedure is similar, but the data generated is different and independent. Finally, we aggre-
110 gated the results across all three cell types and datasets to obtain an overall comparison of the algorithms.
111 Here we considered algorithms across all parameter settings tested as well as the best parameter setting
112 determined by the best F-score or AUPR. Based on the AUPR of “all parameter setting” , we found

113 that multi-task learning methods, especially scMTNI and MRTLE are generally better than single-task
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114 learning methods with higher AUPRs (Supplementary Figure [TA,C). AMuSR also outperformed the
115 single-task algorithms based on AUPRs, although this was not as significant as MRTLE and scMTNI.
116 When considering the “best parameter setting” the methods were not significantly different when us-
117 ing AUPR, though MRTLE and scMTNI had the highest AUPR (Supplementary Figure [IB,D). When
118 using the F-score, sScMTNI and MRTLE remained top performing algorithms for the “all parameter set-
119 ting” (Supplementary Figure 2JA,C) and the “best parameter setting” (Supplementary Figure 2B.,D).
120 Further, GNAT and Ontogenet had a higher F-score than the single-task learning method LASSO for
121 the “all parameter” and “best parameter” settings. AMuSR suffered for the F-score metric due to the
122 high sparsity in the inferred networks. Across different single-task algorithms, LASSO had the worst
123 performance. Overall, the results on the simulated networks suggest that multi-task learning algorithms
124 have a better performance than single-task algorithms for network inference on sparse datasets, similar
125 to single-cell transcriptomic data. Furthermore, scMTNI and MRTLE are able to more accurately infer
126 networks than other multi-task learning algorithms.

127 Inference of gene regulatory networks of somatic cell reprogramming to induced
128 pluripotent stem cells

129 Cellular reprogramming is the process of converting cells in a differentiated state to a pluripotent state
130 and is important in regenerative medicine as well as for generating patient-specific disease models. How-
131 ever, this process is inefficient as a small fraction of cells get reprogrammed to the pluripotent state=".
132 To gain insight into the gene regulatory networks that govern the dynamics of this process, we profiled
133 single cell accessibility (scATAC-seq) during the reprogramming process from mouse embryonic fibrob-
134 lasts (MEFs) to the induced pluripotent state and four intermediate timepoints, day3, day6, day9 and
135 day12, to constitute a dataset of 6 timepoints. We used LIGER to integrate the scRNA-seq and scATAC-
136 seq datasets (Figure [JA, B) and identified 8 clusters (Methods). Of these clusters, C4 is MEF-specific
137 while C5 is ESC-specific (Figure[3C, D) and showed good integration of the scRNA-seq and scATAC-
138 seq profiles. We removed C6 as it did not have scRNA-seq cells and applied a minimum spanning tree
139 (MST?%) approach to construct the cell lineage tree from the 7 cell clusters with both scRNA-seq and
140 scATAC-seq (Methods, Figure E]E). The MEF-specific cluster (C4) is at one end of the tree, while the
141 ESC-specific cluster (C5) is at the other end. This is consistent with the starting and end state of the
142 reprogramming process and we considered C4 to represent the root of the tree.

143 We applied scMTNI, scMTNI+prior (scMTNI with prior network), INDEP, INDEP+prior INDEP

144 with prior network) and SCENIC to this dataset (Figure BJF). We used the matched scATAC-seq clus-
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145 ters to obtain transcription factor (TF)-target prior interactions for each scRNA-seq cluster needed for
146 INDEP+prior and scMTNI+prior (Methods). We assessed the quality of the inferred networks by com-
147 paring to three gold standard datasets in mouse embryonic stem cells (mESCs, Table [), one derived
148 from ChIP-seq experiments (referred to as “ChIP”) from ESCAPE or ENCODE databases*!*2, one from
149 regulator perturbation experiments (referred to as “Perturb”)*133, and the third from the intersection of
150 edges in ChIP and Perturb (referred to as “ChIP+Perturb’”). We compared the performance of the meth-
151 ods using F-score on the top 500, 1k and 2k edges across methods (Figure[3F, Supplementary Figure 3]
152 [). On Perturb and Perturb+ChIP, scMTNI+Prior had a higher average performance, outperforming other
153 methods significantly in Perturb. On ChIP, SCENIC was generally better than other methods. To exam-
154 ine the poorer performance of scMTNI+Prior for the ChIP gold standard, we compared the regulators
155 and targets in the inferred networks from each method. Between SCENIC and scMTNI, the number of
156 regulators are similar, but SCENIC’s networks have more target genes, which recovered more targets
157 from the gold standard datasets, resulting in a higher F-score. scMTNI+prior outperformed scMTNI in
158 all but the ChIP dataset, and INDEP+prior outperformed INDEP, indicating that addition of priors based
159 on scATAC-seq data was beneficial.

160 To gain an initial assessment of the network dynamics on the cell lineage, we computed F-score
161 between each pair of inferred networks defined by the top 4k edges (Figure [3iG). Both scMTNI and
162 scMTNI+prior networks diverged in a manner consistent with the lineage structure. sScMTNI networks
163 formed three groups of cell types, (C4, C8, Cl1, C7), (C2, C3) and (C5 (ESC)). scMNTI+prior found
164 similar groupings but placed C5 (ESC) closer to (C1, C7, C8, C4) branch. Both methods showed that
165 CS5 is closest to C1, which could be an important transitioning state of cells during reprogramming.
166 SCENIC showed similarity among C1, C4, C7, however had lower similarity scores for most pairwise
167 comparisons which made it difficult to discern a clear lineage structure. The networks inferred by the
168 other methods were very divergent which is not biologically realistic because the reprogramming sys-
169 tem is heterogeneous with a number of transitioning populations. Overall, these results suggest that
170 scMTNI+prior recovered regulatory networks are of high quality and the networks exhibit a gradual
171 rewiring of structure from the MEF to the pluripotent state.

172 scMTNI predicts key regulatory nodes and GRN components that are rewired
173 during reprogramming

174 To gain insight into which cell populations successfully reprogram versus those that do not and to fur-

175 ther characterize these different cell clusters, we examined the specific rewired network components
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176 in each cell type-specific network inferred by scMTNI+prior using two complementary approaches: k-
177 means edge clustering and Latent Dirichlet Allocation (LDA, Methods). In the k-means edge clustering
178 approach, we represented each edge in the top 4k confidence set of any cell cluster, by a vector of confi-
179 dence scores in each cell cluster-specific network (if an edge is not inferred in the network it is assigned
180 a weight of 0). Next, we clustered edges based on their edge confidence pattern into 20 clusters de-
181 termined by the Silhouette Coefficient optimization (Figure dA). The largest “edge clusters” exhibited
182 interactions specific to one cell cluster (e.g., E4, E6, E7, E11, E13, E15 and E16), while smaller clusters
183 exhibited conserved edges for more than one cell cluster (e.g., E2, ES, E12). To interpret these edge clus-
184 ters, we identified the top regulators associated with each of the edge clusters (Figure dB). E16, which
185 was MEF-specific (C4) had Npm1, Nme2, Thy1, Ddx5 and LoxI2 as the top regulators which are known
186 MEF-specific genes. In contrast, E11, which was ESC-specific (C5) had Klf4, Lhx2, Elf4 which have
187 known roles in stem cell maintenance (K1f4) and differentiation into neural (Lhx2"%) and hematopoieitic
188 lineage (EIf4°>). Edge clusters that shared edges across multiple cell clusters, e.g. E5 (C4, C8 and C1),
189 shared some of the top-ranking regulators such as Npm1 and Thybl with the MEF-specific cluster and
190 also identified other fibroblast-specific genes such as Col5a2 and Ybx1. Finally, E2 which comprised
191 shared edges between cell clusters C1 and C5, contained Esrrb, as its top regulator (Figure @B). Esrrb
192 plays an important role for establishing naive pluripotency. This further supports the lineage structure
193 that C1 likely represents a population of cells that are committed to becoming pluripotent.

194 While the k-means analysis identified regulatory hubs specific to individual cell clusters, it was chal-
195 lenging to identify sub-network components that rewired at specific branch points likely because it treats
196 each edge independently. We developed an approach by adopting Latent Dirichlet Allocation (LDA) that
197 was recently used to study regulatory network rewiring from transcription factor ChIP-seq datasets=°
198 (Methods). In this approach, each TF is treated as a “document” and target genes are treated as “words”
199 in the document. Each document (TF) is assumed to have words (genes) from a mixture of topics, each
200 topic in turn interpreted as a pathway. TFs across cell clusters are treated as separate documents. We
201 applied LDA with k£ = 10 topics (Figure [4C, D, Supplementary Figure [?), and examined each
202 of the topics based on their Gene Ontology process enrichment (Supplementary Figure [8), and the
203 tendency and identity of specific regulators to rewire across the cell clusters (Methods). Topic 3 net-
204 works were among the most divergent networks across the cell populations and identified several known
205 regulators for the pluripotency fate (Figure @C). In particular, Esrrb was a hub in C5 (ESC) and CI
206 (closest to ESC) but absent in the other cell clusters. Topic 3 is enriched for cell cycle and developmen-

207 tal terms (Supplementary Figure[8). Comparison of the regulators in the (C1,C5) branch and (C7, C3,
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208 C2) branch showed that the latter branch had regulators such as Wtl. Wtl was a major regulator in the
209 starting MEF cluster as well suggesting the incomplete suppression of the MEF-specific program in the
210 C7-C3-C2 branch. Wtl is an important regulator of cellular developmental processes and can act both as
211 a tumor suppressor and an oncogene. Topic 9 was also interesting in that it identified the persistence of
212 the regulators Ccngl and Nme?2 from the MEF-specific cell cluster (C4) in the C7-C3-C2 branch. Ccngl
213 is a cyclin that is part of the p53 pathway, which has been previously identified to be associated with
214 the inefficiency of cellular reprogramming=®“®, Nme2 is known to regulate Myc, which is an oncogene
215 and also one of the four reprogramming factors*. The cellular reprogramming process has been consid-
216 ered to be similar to tumorigenesis which is supported by the identification of regulators associated with
217 cancer signaling pathways for populations that do not reprogram. Inhibition of these regulators could
218 potentially improve the reprogramming process. In total, using scMTNI and network rewiring analysis
219 we identified known cell population-specific regulators and also predicted new regulators that can be
220 perturbed to examine the impact on cellular reprogramming efficiency.

221 Inferring gene regulatory networks in human hematopoietic differentiation

222 To examine the utility of scMTNI in a different cell fate specification system, we applied scMTNI to a
223 published scATAC-seq and scRNA-seq dataset for human hematopoietic differentiation*'. This dataset
224 profiled accessibility and transcriptomic state of immunophenotypic populations that were sorted based
225 on cell surface markers in hematopoietic differentiation and enabled studies of how multipotent pro-
226 genitors transit into lineage-restricted cell states. We considered the cell populations measured with
227 both scATAC-seq and scRNA-seq datasets: hematopoietic stem cell (HSC), common myeloid progeni-
228 tor (CMP), granulocyte-macrophage progenitors (GMP) and monocyte (Mono). These populations are
229 known to be heterogeneous comprising multiple sub-populations*!. To identify these sub-populations
230 we again applied LIGER?? and identified 10 integrated clusters of RNA and accessibility (Figure -
231 D). Most clusters exhibited a mixed composition: C8 is mainly composed of HSCs but also included
232 CMPO cells; C6 and C9 are composed of GMP and CMPO cells. C1 (73 cells) and C4 (37 cells) were
233 mainly composed of Mono cells and were combined into C1. C5 had too few RNA cells (22 cells) and
234 was excluded from further analysis. We next inferred a cell lineage tree from these 8 cell clusters using
235 a minimal spanning tree approach as described in the reprogramming study (Figure , Methods).
236 As C8 is largely made up of HSC cells and HSC is the starting cell type, we treat C8 as the root of the
237 lineage.

238 We applied the same set of network inference algorithms to this dataset as the reprogramming dataset:
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239 scMTNI, scMTNI+prior, INDEP, INDEP+prior and SCENIC. We assessed the quality of the inferred net-
240 works from each method by comparing them to gold-standard edges from published ChIP-seq and regu-
241 lator perturbation assays from several human hematopoietic cell types. This included ChIP-seq datasets
242 from the UniBind database (Unibind“2), ChIP-seq (Cus_ChIP) and regulator perturbation (Cus_KO) ex-
243 periments in the GM 12878 lymphoblastoid cell line from Cusanovich et al*? and the intersection of ChIP
244 and perturbation studies (Cus_KO+Cus_ChIP, Cus_KO+Unibind). In total we had five gold standard net-
245 works. We used F-score of the top 500, 1k, 2k edges in the inferred network (Methods, Figure [5F,
246 Supplementary Figure [9). The relative performance of the algorithms depended upon the gold stan-
247 dard. Algorithms that did not use priors INDEP, SCENIC and scMTNI) performed comparably (with no
248 significant difference) on three of the five gold standards. On Unibind and Cus_KO+Unibind, SCENIC
249 is significantly better than INDEP and scMTNI (Supplementary Figure [10). Methods that used pri-
250 ors, INDEP+prior, scMTNI+prior, were generally better than methods without priors. INDEP+prior and
251 scMTNI+prior are comparable across the gold standard datasets with no significant difference in per-
252 formance. For the Unibind dataset, we had ChIP-seq based gold standard edges for different blood cell
253 types, with 1 to 48 transcription factors (Table[3). When comparing to these cell type-specific gold stan-
254 dards, prior based methods have a better performance especially for datasets with more TFs among top
255 500 and 1k edges (Supplementary Figure [[1,Supplementary Figure[12). Furthermore, INDEP+prior
256 had the best overall performance indicating that incorporation of accessibility priors is more important
257 rather than the lineage information. However, these gold standards were much smaller and therefore can
258 assess smaller portion of the inferred networks.

259 We next examined the inferred networks for the extent of change on the lineage structure (Figure[5G).
260 The single-task learning methods INDEP and INDEP+prior exhibited a low overlap across each pair of
261 cell lines and did not as such obey the lineage structure. SCENIC recovers part of the lineage structure,
262 but placed C7 (common myeloid) close to C6 (granulocyte-macrophage progenitors (GMP)) rather than
263 C10, which has similar sample composition as C7. In contrast, sScMTNI and scMTNI+prior were able to
264 find two groups of cell types, one corresponding to HSC and CMP2 branch consisting of C8, C3 and C2,
265 and the second corresponding to the CMP0O, CMP1 and GMP branch (C6, C9, C10 and C7). The exces-
266 sive divergence identified by the single-task learning methods makes it difficult to identify and prioritize

267 specific network level changes driving cell fate decisions.


https://doi.org/10.1101/2022.07.25.501350
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.25.501350; this version posted July 26, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

268 Inferring shared and lineage-specific regulators for hematopoietic differentiation
269 Similar to our cellular reprogramming study, we examined the sScMTNI+prior networks to identify cell
270 type-specific regulators and network components (Figure[6). We applied k-means edge clustering to top
271 Sk edges in any of the cell clusters and identified 19 edge clusters (Methods). Compared to the repro-
272 gramming study, a larger portion (94% vs 86%) of the edges are specific to one cell cluster (Figure[6/A).
273 We used these edge clusters to identify differences among cell clusters which had similar compositions
274 of the initial cell types identified based on cell surface markers, e.g., C7 and C10 had similar compo-
275 sition of CMPO, CMP1, CMP2 cells and C6 and C9 had similar composition of GMP and CMP cells.
276 Edge cluster E2 had edges specific to cell cluster C7 and was associated with PLEX, YBX1, EEF1Al,
277 TSC22D3. PLEK and YBX1#* are known to be involved in directing fate of HSCs, while both EEF1A1
278 and TSC22D3 have immune-related functions. In contrast, E8 which had edges specific to C10 had
279 different regulators, namely KLF7, ETVS5, MBD2, ZNF202, EPM2A, ULK4. Of these, KLF7, ETV5S
280 and MBD2 have known regulatory roles in hematopoiesis, with ETV5 regulating a population of Th9
281 cells*> and KLF7 suppressing the formation of myeloid cells“®. Edge cluster E11, which was specific
282 to C6 ranked SP4, TYRO03, ZNF417, MNDA highly. MNDA is associated with granulocyte-monocyte
283 lineage*”. In contrast, E6, which was specific to C9 had a different set of top regulators including
284 L3MBTL4, GABPA, ELF4, and RGS14. Both GABPA and ELF4 have important roles in hematopoei-
285 sis®¥42 A few edge clusters represented shared network components, e.g. E19 had edges from C6, C9,
286 C10, C7 that represented the GMP and CMP populations and E12 representing edges from C10 and C7.
287 Both E19 and E12 had YBX1 and TSC22D3 as top regulators (Figure[6B). YBX1, is known to have high
288 expression in myeloid progenitor cells**, and regulates CCL5 expression during monocyte/macrophage
289 differentiation°?, TSC22D3, which is a glucocorticoid leucine zipper=L, is involved in differentiation of
290 hematopoietic stem cells®*. Taken together, the k-means edge clustering approach helped identify the
291 key regulators with known or plausible roles in hematopoiesis that could explain the differences among
292 the cell clusters.

293 To identify cell type-specific network rewiring that are associated with lineage decisions, we again
294 examined the regulatory networks of each cell cluster using LDA (Methods, Figure [6C, D). The top-
295 ics were enriched for diverse biological processes such as cell cycle (Topic 1 and 8, Supplementary
296 Figure[16), blood related processes (Topic 9) and represented subnetworks with different extents of con-
297 servation across the lineage. For example, topic 2 showed a gradual rewiring of an ID2-specific network
298 from the HSC populations (C8, C3, C2), to KLF1 and MYC centered networks for C7 and C10 which

299 represented the CMPO population. ID2 is known to negatively regulate differentiation, which is con-
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300 sistent with its presence in the C8, C3, C2 branches. KLF1 is an essential regulator for the erythroid
301 lineage™3>* | which is derived from the myeloid progenitor cells and therefore the association of KLF1
302 with these cells is consistent with the literature. Topics 1, 6 and 10 exhibited a conserved core around
303 HMGB?2, TSC22D3, and YBXI respectively, across all cells clusters (Supplementary Figure [13] [14}
304 . HMGB2 is an important regulator for HSCs®2. Both YBX1 and TSC22D3, which were also identi-
305 fied in our k-means analysis, have known role in hematopoeisis**. Topic 8 was associated with various
306 cell cycle and chromatin remodeling regulators such as TOP2A, CDC20 and CCNB1 (Supplementary
307 Figure[15] [16). Taken together, the LDA analysis identified differential subnetworks centered to candi-

308 date cell fate drivers in hematopoeisis that could be followed up with functional studies.
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309 Discussion

310 Single-cell technologies have transformed our ability to study cellular heterogeneity and cell-type spe-
311 cific gene regulation of known and novel cell populations. Defining gene regulatory networks from
312 scRNA-seq data of developmental systems has remained challenging as most existing methods have
313 assumed a static view of the GRN and do not leverage accessibility to inform the GRN structure. To ad-
314 dress this need, we develop single-cell Multi-Task Network Inference (scMTNI), a probabilistic graphi-
315 cal model-based approach that uses multi-task learning to infer cell type-specific GRNs on a cell lineage
316 tree by integrating sScCRNA-seq and scATAC-seq data and model the dynamics of these regulatory inter-
317 actions on a lineage.

318 Multi-task learning is well-suited for the inference of cell type-specific GRNs. However, a key ques-
319 tion is how to implement multi-task learning for GRN inference. A number of multi-task learning al-
320 gorithms were developed for inferring GRNs and functional networks from bulk transcriptomic data but
321 have not been systematically compared for their effectiveness on single-cell transcriptomic data. Some
322 approaches, such as AMuSR?Z have used a flat hierarchy where all the tasks are considered equally re-
323 lated. For heterogeneously related datasets, a hierarchy or a tree is well-suited to model the dependence
324 across datasets. Such hierarchies can be implemented as a phylogenetic tree with observed data at the
325 tips of the tree as in GNAT 2l and MRTLEZ?, or as a cell-lineage tree with observations at all nodes in the
326 tree. ScMTNI and MRTLE both use a tree-based structure prior, whereas AMuSR, GNAT and Ontogenet
327 used a regularized regression parameter to implement multi-task learning. scMTNI and MRTLE have
328 better performance in predicting the gene regulatory relationships than single-task learning algorithms.
329 The performance of Ontogenet is better than the single-task learning algorithms LASSO and INDEP in
330 at least two cell types, and comparable to SCENIC. A prominent factor contributing to the difference in
331 the performance of the algorithms was whether the models inferred a directed graph versus an undirected
332 graph, with GNAT generally suffering likely due to this reason. Performance of GNAT is worst among
333 multi-task learning algorithms and comparable to the single-task learning algorithms. We speculate that
334 the undirected relationship in the graphical model of GNAT might be a reason that the performance is not
335 as good as other multi-task learning algorithms. We also examined the performance of algorithms across
336 different parameter settings that control for sparsity as well as for sharing information. We found that
337 the algorithms were generally robust to the setting of sharing and more sensitive to the extent of sparsity.
338 However, multi-task learning algorithms generally outperformed single-task learning algorithms indi-

339 cating that this is a useful direction for methodological development for GRN inference from single cell
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340 omic datasets. Importantly, single-task learning infers very different networks that makes it challenging
341 to study transitions across the networks.

342 Once GRNs are inferred across multiple cell types, the next challenge is to examine which compo-
343 nents of the GRNs change along the lineage. We developed two complimentary techniques to study dy-
344 namics. Our k-means edge clustering method was able to find regulatory connections that were unique
345 to each cell cluster, while our topic model-based dynamic network analysis highlighted subnetworks
346 that were activated or deactivated along the lineage. We applied our tools to study GRN dynamics in
347 hematopoietic cell differentiation and reprogramming from mouse embryonic fibroblasts to embryonic
348 stem cells. We found that both these systems exhibited different dynamics, with the reprogramming
349 system exhibiting more edges shared across populations compared to the hematopoietic system which
350 identified most edges as cell cluster-specific. In both systems, our analysis identified known and novel
351 regulators. For example, in the reprogramming system, we found that cells that were closer to the end
352 point pluripotent state already had an Esrrb-centered GRN component active. In contrast, for cells that
353 were on an alternate trajectory had several oncogenes such as Wtl as key regulators. In the hematopoi-
354 etic system, our analysis examined immuno-phenotypically similar populations by identifying different
355 set of hematopoietic regulators associated with such populations.

356 scMTNI currently assumes that the input lineage structure is accurate. However, lineage construc-
357 tion, especially from integrated scRNA-seq and scATAC-seq datasets is a challenging problem. One
358 direction of future work is to assume the initial lineage structure is inaccurate and incorporate the re-
359 finement of the lineage structure as part of the GRN inference procedure. A second direction of work
360 is to model more fine-grained transitions within each cell population, for example using RNA veloc-
361 ity or pseudotime, which will complement the coarse-grained dynamics that sScMTNI currently handles.
362 Studies from bulk RNA-seq data have shown that estimating hidden transcription factor activity (TFA)=°
363 can further improve the performance of network inference. Thus, another direction of future work is to
364 estimate hidden TFA and incorporate these to improve the accuracy of the inferred networks. Finally,
365 SCENIC performs very well among the single-task learning algorithms, which is likely because of its
366 regression-tree based model that captures non-linear dependencies and is less prone to the sparsity of
367 the dataset. While scMTNI’s stability selection framework can capture some non-linearities, another
368 direction of future work is to extend scMTNI to model more non-lineage dependencies.

369 In summary, scMTNI is a tool to infer cell type-specific regulatory networks and their dynamics
370 on a cell lineage which combines scRNA-seq and scATAC-seq data. As single cell multi-omic datasets

371 become increasingly available, we expect sScMTNI to be broadly applicable to predict GRNs and identify
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a7z important regulators associated with regulatory network dynamics across cell types in diverse cell-fate

373 specification processes.
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374 Methods

375 Single-cell Multi-Task Network Inference (scMTNI)
a6 Single-cell Multi-Task Network Inference (scMTNI) is a probabilistic graphical model-based approach
377 that uses multi-task learning to infer gene regulatory networks for cell types related on a cell lineage
378 tree (Figure[I). We define a cell type to be a group of cells with similar transcriptome and accessibility
379 levels as defined by existing cell clustering methods. Each task learns the gene regulatory network
380 (GRN), G@ for each cell type or cell cluster d. Given cell type-specific datasets for M cell types,
381 D = {DW ... DM} our task is to find the set of graphs G = {G) ... G} and parameters
382 O = {#W, ... 9} for each of the cell types. G(? is modeled as a dependency network2l, a
383 class of probabilistic graphical models for inferring directed, predictive relationships among random
384 variables (regulators and genes). Each gene is modeled as a random variable X Z.(d) which encodes the
385 expression level of gene ¢ in each cell. A conditional probability distribution P(Xi(d) |R§d)) models the
386 relationship between gene 7 and its set of regulators, RZ(-d) in cell type d. In a dependency network,
387 GRN inference entails estimating the regulators Rl(.d) for each gene ¢ in each cell type d. To enable
388 joint learning of these cell type-specific networks our goal is to find the set G = {G™) ...  G(M)} and
389 parameters ® = {§(1) ... , oM )} by estimating the posterior distribution of these two sets and finding
390 their maximum a posteriori values:
P(G,0|D)xP(D|G,0)P(B|G)P(G) €))

391 P(D|G, ©) is the data likelihood, expanded as [[, P(D®|G® §(9)). In a dependency network,
392 pseudo likelihood?! is used to approximate the data likelihood for each cell type, defined as the products
393 of the conditional distribution of each random variable X i(d) given its neighbor set Rgd) in cell type d,
304 P(X i(d) |R§d)7 91@). Thus, the likelihood can be written as:

Pog.e)« [[ [ PIR?.6") @)

de{l,...,M} ie{1,...,N}

395 Given the neighbor set Rgd), the above quantity can be computed efficiently. We assume that each
396 variable Xi(d) and its neighbor set Rl(d) in cell type d are from a multi-variate Gaussian distribution.
397 Thus, P(X i(d) |RZ(.d)7 61@) can be modeled using a conditional Gaussian distribution with mean 1 x 4| ga

398 and variance U?M e Which can be estimated in closed form. Rgd) is selected from the input list of
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399 regulators using a greedy search algorithm, executed in parallel across all cell types (See Supplemen-
400 tary Methods). The second term P(©|G) in Equation (I)) is estimated using the maximum likelihood
401 settings of the parameters. The third term P(G) = P(G(), ...  G(M)) in the objective function is the
402 structure prior and is defined in a way to capture the state of an edge across all cell types modeled, where
403 g = {G(l), SRR G(M)}. We assume that P(G) is composed of two priors, one is the cell-type specific
404 prior P(T'), where T' = {T'"), ..., T(*)} 'and the other one is a cell lineage structure prior P(S) which
405 captures the similarity between related cell types along the cell lineage tree, where S = {5 W, ..., sM) }.

P(T) is the cell-type specific prior, which decomposes over a product of cell-type specific graphs:
PO, .., 7Oy =TT, P(T@). The P(T(®) decomposes over a product of individual edge con-
figurations, P(I&f@), where L(f,ig is an indicator function that represents whether there exists an edge

between regulator w to target gene v in cell type d, X,, — X, as follows:

1, if there is an edge from u to v in cell type d,

[z(ﬂ); =
0, otherwise.
406 As in Roy et al*Z, we model the prior probability using a logistic function:
P(I{f) =1) = L 3)
’ 1+ e—(50+31*m$w))
407 The [y parameter is a sparsity prior that controls the penalty of adding of a new edge to the network,
408 which takes a negative value (5 < 0). A smaller value of Sy will result in a higher penalty on adding
409 new edges and will therefore infer sparser networks. The 31 parameter controls how strongly motifs are
410 incorporated as prior (31 > 0). A higher value of $; will result in motif presence being valued more
411 strongly to select an edge. (; is set to 0 when there is no cell type-specific motif information available.
412 mgﬁl,) is the weight of the edge from regulator w to target v in the prior network and is computed based
413 on the motif instance score if gene v has a motif of regulator w in its promoter region that overlaps an
414 ATAC-seq peak. Thus, we have
M M
P =[P =1] I PUD) @)
d=1 d=1 u,v;utv
415 The cell lineage structure prior P(.S) is constructed to make use of multi-task learning. We define
416 that P(S™M, ..., S()) can be rewritten as a product over a set of edges between regulators and target

417 genes: [[, ..z, P(L(ﬁg, s I,(L%)). Under the assumption that the prior probability of the edge state in
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418 one cell type is only dependent upon its state in the predecessor cell type, we have:

pS)= [ pu. .1 = T II PUELIESOIPUD), )

U,V UEV w,viuFv def{l,...,M}

419 where pa(d) denotes the predecessor cell of cell type d on the cell lineage tree and r denotes the starting
420 root cell. P([S(fq),\[ﬁ)(d)) is a measure of overall regulatory gain and loss of regulatory connections
421 between related cell types, and is assumed to be the same across the set of edges. Thus, it can specified
422 by three parameters: the probability of gaining a regulatory edge in the starting cell, p, = P (I ffq),), the
423 probability of gaining a regulatory edge in cell type d given that the edge does not exist in its predecessor
424 cell péd) = P(I ,([Q =1I 571,(‘1) = 0), and the probability of maintaining a regulatory edge in cell type d,
425 given its presence in its predecessor cell pgff) = P(Iu‘fl), = 1|15flv(d) = 1). These parameters of the priors
426 can be set by the user or estimated empirically by analyzing different configurations and selecting those
427 values with the best agreement with existing biological knowledge of the system. scMTNI uses a greedy
428 score-based structure learning algorithm. Please refer to Supplementary Methods for details.
429 Input Datasets
430 Simulated Datasets
431 To benchmark the performance of different multi-task and single-task learning algorithms, we simulated
432 single cell expression data from a lineage resembling a linear differentiation process for three cell types
433 (Figure [2A). We simulated network dynamics on a lineage tree and controlled the extent of similarity
434 with the three prior parameters: p,, the probability of having an edge in the starting/root cell type;
435 p_g,d), the probability of gaining an edge in cell type d that is not in the predecessor cell type; p% ), the
436 probability of maintaining an edge in cell type d from the predecessor cell type. We set p,, = 0.5, péd) =
437 0.4 and pg,‘f) = 0.7 or 0.8 and simulated three networks from a linear lineage tree for each of the three
438 cell types, each with 15 regulators and 65 genes. Next, we applied BoolODE on the simulated gene
439 regulatory networks and generated single cell expression data for 2000 cells for each cell type. To mimic
440 the dropouts in the scRNA-seq data, we added 80% sparsity uniformly to all genes on the simulation
441 data. We refer to this simulated dataset as data 1, consisting of 65 genes and 2,000 cells for three cell
442 types. We generated smaller sample sizes of these datasets, data 2 and data 3 by downsampling data 1
443 to 1,000 cells (data 2) and 200 cells (data 3). We applied each of the algorithms on these three datasets

444 within a stability selection framework and evaluated their performance based on AUPR and F-score as
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445 described in the Evaluation section.

446 Human hematopoietic differentiation data

447 Buenrostro et al.4!' measured single-cell accessibility (scATAC-seq) and single-cell RNA sequencing
448 (scRNA-seq) data to study the regulatory dynamics during human hematopoietic differentiation for mul-
449 tiple immuno-phenotypic cell types: hematopoietic stem cells (HSCs), common myeloid progenitors
450 (CMPs) and granulocyte-macrophage progenitors (GMPs) and Monocytes (Monos). We downloaded
451 fragment files for the scATAC-seq data and processed scRNA-seq data for each cell type. For the
452 scATAC-seq data we mapped the fragments into 23,347,540 bins with length of 1000bp. Next, we
453 mapped 1kb bins to the nearest gene and extracted cells with cell barcodes labeled as HSC, CMP, GMP
454 and Mono cells. Next, we filtered out genes with sum of counts in all samples less than 100 producing
455 a processed scATAC-seq dataset with 54,344 genes and 1,315 cells across the four cell types. We ex-
456 tracted the count matrix of scRNA-seq from these four cell types. After filtering out genes with non-zero
457 expression in less than 5 cells, the sScRNA-seq data had 12,558 genes and 4,165 cells. We normalized
458 the count matrix for depth and variance stabilization based on the pagoda pipeline®®. We kept 12,393
459 common genes between scATAC-seq and scRNA-seq data and applied LIGER?Z to define integrated cell
460 populations. We applied LIGER with k£ € 8,10, 12,15, 20 and found 10 cell subpopulations to be most
461 appropriate. C8 was mainly composed of HSCs, C6 was mainly composed of GMP cells, C7 was mainly
462 CMPO cells, C1 was composed of Mono cells, and the rest clusters were a combination of several cell
463 types. C5 had too few RNA cells (22 cells) so we excluded it from further analysis. Since the composi-
464 tion of C1 (73 cells) and C4 (37 cells) are very similar, mainly GMP and Mono cells, we combined these
465 two clusters as C1. We inferred a cell lineage tree from the 8 cell clusters using a minimal spanning tree
466 approach (python package scipy.sparse.csgraph).

467 To derive the prior network for each cell cluster we created cluster-specific bam files from the
468 scATAC-seq data using the LIGER clusters. We pooled these bam files to generate pseudo bulk accessi-
469 bility coverage and applied MACS?2 to identify scATAC-seq peaks for each cell cluster>”. We obtained
470 sequence-specific motifs from the Cis-BP database® and used the script pwmmat ch.exact . r avail-
471 able from the PIQ toolkit®! to identify significant motif instances genome-wide using the human genome
472 assembly of hg19. We mapped motifs to each scATAC-seq peak and mapped the peak to a gene if it was
473 within £5000bp of the transcription start site (TSS) of a gene. In this case, we connect motifs to TSS that
474 are mapped to the same scATAC-seq peak. We used the max motif score from pwmmatch.exact.r

475 for each motif-TSS pair and took the maximum value among all TSSs of a gene as the value for each
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476 motif-gene pair. The motif instance score is the log ratio of the PWM to a uniform background. Finally,
477 to generate the edge weight for each TF-gene pair, we used the max score among all motifs mapped
478 to the same TF. To normalize the edge weights across TFs, we converted these weights into percentile
479 scores and selected the top 20% of edges as prior edges.

480 Mouse reprogramming data

481 We generated a novel scATAC-seq time course dataset for cellular reprogramming from mouse embry-
482 onic fibroblast (MEF) reprogramming to induced pluripotent cells (iPSC). The dataset contains had a
483 total of 6 time points corresponding to the starting MEF, the end pluripotent state (mESC), and four
484 intermediate timepoints of day3, day6, day9 and dayl2. We downloaded scRNA-seq datasets (GEO:
485 GSE108222) for the same time points from Tran et al®?. The scATAC-seq data was first processed
486 through CellRanger ATAC pipeline to provide the frags.txt file. We binned the genome at non-
487 overlapping 1kb bin and computed the number of fragments mapped to each 1kb bin. Next, we mapped
488 1kb bins to the nearest gene for all of the samples. For scRNA-seq data, we concatenated the expres-
489 sion data from two replicates at each time point and normalized the concatenated matrix for depth and
490 variance stabilization based on the pagoda pipeline®®. Next, for each time point, we removed genes with
491 expression in less than 5 cells. We took the union of genes among all time points and concatenated the
492 expression data across all time points as our final sScRNA-seq data matrix. The processed scATAC-seq
493 data contains 25,824 genes and 30,344 cells. The processed scRNA-seq dataset contains 14,953 genes
494 and 3,460 cells. We had a total of 11,926 genes in common between the two datasets, which were used
495 for downstream analysis. We applied LIGER with k£ € 8,10,12,15,20 and found £ = 8 to provide
496 the optimal clustering of the scRNA-seq and scATAC-seq data determined based on the clustering of the
497 accessibility and transcriptome of the MEF and ESC time points. We used the mean expression profiles
498 across samples of these cell clusters and computed the Euclidean distance between every cell clusters.
499 Then, we inferred a minimal spanning tree using the distance matrix and used it as the cell lineage tree
500 using scipy.sparse.csgraph in python. The prior motif was generated in the same way as for
501 the hematopoeisis differentiation dataset using motifs for mouse from the CisBP database®?. We used

502 mouse genome mm10 for this analysis.
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503 Application of network inference algorithms on simulated datasets

504 We used the simulated datasets to perform extensive benchmarking of the different network inference
505 algorithms. We also used this dataset to study the sensitivity of the algorithms to the different parameter
506 settings. Below we describe each of the algorithms as well as the parameters used for each of the
507 algorithms for the simulated datasets. For all three simulation datasets, we applied all algorithms other
508 than SCENIC within a stability selection framework to estimate the confidence score for each edge in
509 the predicted networks. For stability selection we subsampled each dataset 20 times randomly using
510 half of the cells and all genes. SCENIC has its own internal sub-sampling and directly outputs the edge
511 confidence.

512 SCMTNI. scMTNI has five hyper-parameters: p,., probability of having an edge in the starting cell
513 type; pgd), probability of gaining an edge in a child cell type d; pE,”P the probability of maintaining
514 an edge in d from its immediate predecessor cell type; a sparsity penalty 3y, that controls penalty for
515 adding edges; (31, that controls the strength of incorporating prior network. We tried different configu-
516 rations of the hyper-parameters: p, € {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}, and pgd) € {0.05,
517 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}, and pgff) € {0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9}, 5y €
518 {-0.005, -0.01,-0.05, -0.1, -0.5}. ; was set to O as there is no prior network in the simulations. If
519 the size of the predicted network for a parameter setting was smaller than the size of the simulated net-
520 work, we disregarded this parameter setting for comparison. We used the area under the precision-recall
521 curve (AUPR) to compare the scMTNI inferred networks to simulated networks. We also computed
522 F-score on top K edges ranked by the confidence score (where K is the number of edges in the simulated
523 network, see Table [I). Overall performance of scMTNI was stable across different parameter configu-
524 rations (Supplementary Figure 17| Supplementary Methods). To compare against methods, we used
525 values from the best parameter settings for each dataset and cell type as well as all parameter settings
526 (Supplementary Figure [1)2).

527 MRTLE. Multi-species regulatory network learning (MRTLE)?* is a probabilistic graphical model-
528 based algorithm that uses phylogenetic structure, transcriptomic data for multiple species, and sequence-
529 specific motifs to infer the genome-scale regulatory networks across these species simultaneously. It was
530 developed for bulk transcriptomic data. It uses a dependency network model to specify the directed rela-
531 tionship among regulators to target genes. Sequence-specific motif instances can be incorporated as prior

532 knowledge to favor edge supported with presence of motifs. The multi-task learning framework is em-
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533 bedded in the phylogenetic prior, which captures the evolutionary dynamics of regulatory edge gain and
534 loss guided by the phylogenetic structure. The MRTLE algorithm has four parameters: p,, the probabil-
535 ity of gaining an edge in a child species s that is not in the ancestor species; p,,, the probability of main-
536 taining an edge in a species s given that is also in s’s immediate ancestor of s; (g, a sparsity penalty that
537 controls penalty for adding edges, and a penalty /3; that controls the strength of motif prior. In the sim-
538 ulation case, we examined different parameter configurations: p, € {0.05,0.1,0.15,0.2,0.3,0.4}, p,, €
539 {0.5,0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85}, By € {-0.005,-0.01, -0.05,- 0.1, -0.5, -1}. B; was set to 0. The
540 overall performance of MRTLE was stable across different parameter configurations (Supplementary
541 Figure[18). Similar to scMTNI, we used the AUPR and F-score of top K edges to select the best param-
542 eter setting. The best parameter setting and all parameter settings were used to compare against other
543 algorithms.

544 GNAT. The GNAT2 algorithm uses a hierarchy of tissues to share information between related tissue
545 and infers tissue-specific gene co-expression networks. It was developed for bulk transcriptomic data.
546 GNAT models each network using a Gaussian Markov Random Field (GMREF). It has two parameters:
547 the L; penalty A, that controls the sparsity of the network, and the L, penalty ), that encourage the
548 precision matrix of children to be similar to its parent precision matrix. It initially learns a co-expression
549 network for each leaf tissue. Then it infers the networks in internal nodes using the networks in the leaf
550 nodes and updates the networks in leaf nodes for several iterations until convergence. Since GNAT learns
551 undirected networks, we transformed them to directed networks by adding edges from a regulator to a
552 target. If the nodes of an edge are both candidate regulators, we output the edge in both directions. We
553 tried different parameter configurations of A, and A,,. For data 1 (n=2000), A\, were set to {30, 31, 32,...,
554 37}, and A, were set to {30, 31, 32...., 40}. For data 2 (n=1000), A, were set to {18, 19,...,22}, and A,
555 were set to {18, 19,..., 25}. For data 3 (n=200), A were set to {5, 6, 7, 8}, and A, were set to {5, 6, 7,
556 8}. We found that A dominates the performance and under the same A, changing A, does not change
557 the performance a lot (Supplementary Figure [19). If the size of the predicted network for a parameter
558 setting is smaller than the size of the simulated network, we removed this parameter setting. In this case,
559 the ranges of \s and )\, are slightly different and varying across different datasets. We used AUPR and
560 F-score of top K edges to select the best parameter settings. We compared the algorithms using these

561 and all parameter settings.
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562 Ontogenet. The Ontogenet® algorithm was developed to reconstruct lineage-specific regulatory net-
563 works using cell type-specific gene expression data across cell lineages. It was developed for bulk
564 transcriptomic data. To infer the regulatory networks for each cell type, it uses a fused LASSO frame-
565 work combined with an additional Lo penalty. The L; penalty is introduced to control the sparsity of
566 regulators, while the Ly penalty is used to select correlated predictors. The multi-task learning comes
567 in the fused LASSO framework with additional L; penalty on the difference of the regression weight of
568 related cell types, which encourage the consistency of regulatory programs between related cell types.
569 Ontogenet was applied on the same subsample of the three simulation datasets within a stability selec-
570 tion framework to estimate the confidence score for each edge in the networks. The Ontogenet algorithm
571 has three parameters: the L, penalty A that controls the sparsity of the network, the Lo penalty & that
572 handles correlated predictors, and y that encourage the similarity of regulatory programs between related
573 cell types. We tried different parameter configurations of A, v and . For data 1 (n=2000), A were set to
574 {1000,1250,1500,1750,2000,2250,2500}, and ~ were set to {1000,1250,1500,1750,2000,2250,2500}.
575 For data 2 (n=1000), A were set to {500,1000,2000,3000}, and ~ were set to {500,1000,2000,3000}.
576 For data 3 (n=200), A were set to {475,500,525}, and  were set to {475,500,525}. x was set to {1, 5,
577 10} for each of the datasets. We found that A and v dominate the performance and while changing «
578 does not change the performance significantly (Supplementary Figure [20). If the size of the predicted
579 network for a parameter setting is smaller than the size of the simulated network, we removed this pa-
580 rameter setting. The ranges of A and ~y are slightly different and varying across different datasets in order
581 to infer similarly sized networks for different datasets. We used AUPR and F-score of top K edges to
582 select the best parameter settings. We compared the algorithms using these and all parameter settings.

583 AMuSR. The Inferelator-AMuSR2Z algorithm uses sparse block-sparse regression to estimates the
584 activities of transcription factors and infer gene regulatory networks from expression datasets. The multi-
585 task learning approach decomposes the model coefficients matrix into a dataset-specific component us-
586 ing a sparse penalty and a conserved component using a block-sparse penalty to capture both conserved
587 interactions and dataset-unique interactions. It is able to incorporate prior knowledge from multiple
588 resources and robust to false interactions in the prior network. For our simulation setting, we applied
589 AMuSR without TFA estimation by setting worker.set_tfa(tfa_driver=False) in the SingleCellWorkflow
590 from Inferelator 3.0 package. To be comparable across different algorithms, AMuSR was applied on
591 the same subsample of the three simulation datasets within a stability selection framework to estimate

592 the confidence score for each edge in the AMuSR networks. The AMuSR algorithm has two sparsity
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593 parameters: A that controls the sparsity of the network for each dataset, the block-sparse penalty \; that
594 controls the sparsity of the conserved network across all datasets. AMuSR has its own parameter se-
595 lection framework (see” for details) and uses extended Bayesian information criterion (EBIC) to select
596 the optimal (A4, Ap). We additionally externally tuned the parameters by setting ¢ to {0.01, 0.02154435,
597 0.04641589, 0.1,0.21544347,0.46415888,1., 2.15443469, 4.64158883,10 } and set A, = ¢ * %{J(”)
598 as suggested in the paper, where d is the number of cell types and n is the number of samples and p
599 is the number of genes. However, by setting A\, to 0 and A4 to 0, we found that the inferred networks
600 are too sparse with 7-100 edges for data 1, and 71-129 edges for data 2. We kept two settings for
601 AMuSR, one using our criteria to select the best setting based on AUPR and F-scores among differ-
602 ent c settings (AMuSR _tuned) and another version using AMuSR’s default optimal parameter selection
603 (AMuSR _default). We computed AUPR and F-score of top K edges (where K is the number of edges in
604 the simulated network) for AMuSR inferred networks with optimal parameter settings for comparison
605 with other algorithms. We compared the algorithms using the optimal and all parameter settings.

606 INDEP. The INDEP algorithm is the single-task framework of scMTNI which does not have the prior
607 for sharing information across cell types and infers a regulatory network for each cell type independently.
608 It also models each network using a dependency network as scMTNI. INDEP learns the graphs for each
609 cell type using a greedy graph learning algorithm with a score-based search, where the score contains
610 only the data likelihood. At each iteration, the algorithm computes the change in data likelihood score!
611 for all candidate regulators for each target gene, selects the best regulator for the target gene and adds this
612 (regulator, target) edge to the current graph. INDEP has two parameters in the model: a sparsity penalty
613 Bo that controls penalty for adding edges, and a penalty 3 that controls the strength of motif prior. In
614 the simulation case, 3y were set to {-0.005,-0.01, -0.05, -0.1, -0.5, -1}, and 3; were set to 0. AUPR and
615 F-score of top K edges were used to select the best parameter settings (Supplementary Figure 21). If
616 the size of the predicted network for a parameter setting is smaller than the size of the simulated network,
617 we removed this parameter setting. As above, we compared INDEP to other algorithms using best and
618 all parameter settings for a dataset.

619 LASSO. The LASSO regression is linear regression with L regularization. For each gene, we use
620 the expression profiles of candidate regulators to predict the expression profiles of this gene. The reg-
621 ulators with non-zero coefficients are inferred as the regulators for this gene and these edges are added

622 to the gene regulatory network. We used matlab implementation of the LASSO regression. Similarly to
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623 scMTNI and MRTLE, LASSO was run on the same subsample of the three simulation datasets within
624 a stability selection framework to estimate the confidence score for each edge in the networks. LASSO
625 has only the L; penalty A that controls the sparsity of the network. In the simulation case, A were set
626 to {0.01, 0.02, 0.03, 0.04, 0.05, 0.06}. AUPR and F-score of top K edges were used to select the best
627 parameter settings (Supplementary Figure 22). If the size of the predicted network for a parameter set-
628 ting is smaller than the size of the simulated network, we removed this parameter setting. We compared
629 LASSO to other algorithms using the best and all parameter settings.

630 SCENIC. The SCENIC# algorithm uses GENIE3 or GRNBoost2 to infer TF-target relationships
631 available as part of the Arboreto framework®”, We used the GRNBoost2 algorithm with default parame-
632 ters for network inference. SCENIC is based on ensemble models with its own bootstrapping and hence
633 was directly applied to each cell type-specific dataset in the simulation. SCENIC uses the feature impor-
634 tance score of each edge to rank the edges in the inferred network. We computed AUPR and F-score of
635 top K edges (where K is the number of edges in the simulated network) for SCENIC inferred networks
636 for comparison with other algorithms.

637 Application of network inference algorithms to cellular reprogramming data

638 We applied scMTNI, scMTNI+prior, INDEP, INDEP+prior and SCENIC to this dataset. scMTNI and
639 INDEP algorithms were applied within a stability selection framework to estimate edge confidence.
640 SCENIC has its own subsampling framework which can estimate an edge importance. In the stability
641 selection framework, we subsampled the data 50 times, each with 12,216 genes and % of the cells, ap-
642 plied the algorithms to each subsample and used the inferred networks to estimate the confidence score
643 for each TF-target edge in the predicted networks. In both scMTNI and scMTNI+prior, we used the fol-
644 lowing hyper-parameter settings for the lineage structure prior p, = 0.2, pgd) = 0.2 and pﬁ,‘f) = 0.8. For
645 the sparsity prior we set Sy = —0.9 for scMTNI, and 5y € {—0.9, —2, —3, —4} for scMTNI+prior. To
646 generate prior network, we used the matched scATAC-seq clusters to obtain TF-target prior interactions
647 for each scRNA-seq cluster. For scMTNI+prior which uses the scATAC-seq prior, we set 51 € {2,4}.
648 INDEP and INDEP+prior were applied on the same subsampled data followed by edge confidence esti-
649 mation. We used the same settings for 5y and (3; for INDEP as scMTNI. Final results of scMTNI+prior
650 are using Sy = —4 and 57 = 4, which was determined by the distribution of edges at different confi-
651 dences. Final results for INDEP+prior are using 3y = —4 and 81 = —4. SCENIC was applied to the

652 entire dataset with default parameter settings.
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653 Application of network inference algorithms to human hematopoietic differentia-
654 tion data

655 We used a similar workflow for the human hematopoietic differentiation dataset as the reprogramming
656 system. We subsampled the scRNA-seq data for each cell cluster 50 times, each with 11,994 genes and %
657 of the cells, and applied scMTNI, scMTNI+prior, INDEP, INDEP+prior on each subsample to estimate
658 the edge confidence of the GRNs. For scMTNI and scMTNI+prior, the lineage structure prior parameters
659 were set as follows: p, = 0.2, pgd) =0.2, p,(ﬁ) = 0.8. The sparsity prior 3y was set to —0.9 for sScMTNI.
660 For scMTNI+prior, the sparsity prior was set 5y € {—0.9, —2, -3, —4} and 51 € {2,4}. For INDEP and
661 INDEP+prior, we used the same settings for 5y and 5, for as sScMTNI and scMTNI+prior respectively.
662 Final results of scMTNI+prior are with 3y = —4 and 3; = 4 and final results for INDEP+prior are using
663 Bo = —4 and 31 = —4. SCENIC was applied to the entire dataset with default parameter settings.

664 Evaluation

665 Gold standard datasets

666 To evaluate the predicted networks of different inference algorithms on real data, we downloaded and
667 processed several gold standard datasets (Tables[2},[3). For human hematopoietic cell types, we have five
668 gold standard datasets. Two gold standard datasets were a ChIP-based (Cus_ChIP) and a regulator knock
669 down-based (Cus_KO) gold standard dataset in GM 12878 lymphoblastoid cell line downloaded from
670 Cusanovich et al*?. For the knockout dataset, we had TF-target relationships at two p-value thresholds,
671 0.01 and 0.05. We used the one at 0.01 to have a more stringent gold standard. The third gold standard
672 was from human hematopoietic cell types from the UniBind database (https://unibind.uio.
673 no/)*2, which has high confidence TF binding site predictions from ChIP-seq experiments. To obtain
674 the TF-gene network, we mapped TF binding sites to the nearest gene if there is overlap between the
675 TF binding sites and the promoter of the gene define by +5000bp. If multiple ChIP-seq datasets were
676 available for the same TF in a given cell type, we took the union of TF-gene edges for the same cell
677 type. We took the union of these individual cell type-specific gold standards to create our Unibind
678 gold standard (UniBind). Finally, we took the intersection of the ChIP-based gold standards with the
679 knockdown based gold standards, Unibind+Cus_KO and CusChIP+Cus_KO to produce the fourth and
680 fifth gold standards. The statistics of the gold standard datasets are provided in Table[3]

681 For mouse reprogramming study we curated multiple experimentally derived networks of regulatory

682 interactions from the literature and existing databases. The statistics of the gold standard datasets are


https://unibind.uio.no/
https://unibind.uio.no/
https://unibind.uio.no/
https://doi.org/10.1101/2022.07.25.501350
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.25.501350; this version posted July 26, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

683 provided in Table[2] One of these experiments is ChIP based gold standard (referred to as “ChIP”) from
684 ESCAPE or ENCODE databases”!“2 which contains ChIP-chip or ChIP-seq experiments in mouse
685 ESCs. Another is knock-down based gold standard (referred to as “Perturb”), which is derived from
686 regulator perturbation followed by global transcriptome profiling®!*¥, We took a union of the networks
687 from LOGOF (loss or gain of function) based gold standard networks from ESCAPE database®! and
688 the networks from Nishiyama et al*? as the perturbation interactions. Finally, we took the intersection
689 of the interactions between ChIP and knock-down based gold standard to create the third gold standard
690 network referred to as “ChIP+Perturb”.

691 Area Under the Precision Recall Curve

692 To evaluate the performance of scMTNI and other algorithms, we compared the inferred networks to the
693 simulated networks or interactions from the gold standard datasets based on Area under the precision
694 recall curve (AUPR). Edge weights for all but the SCENIC algorithm were obtained using stability
695 selection. In our stability selection framework, we generated N random subsamples of the data, inferred
696 a network for each subsample, and calculated a confidence score for each edge as the fraction of how
697 many times this edge was present in the inferred networks across all subsamples. Next, we ranked
698 the edges by the confidence score and estimated precision and recall at different confidence thresholds
699 ranging from O to 1. Precision P is defined as the fraction of the number of edges that are true positives
700 among the total number of predicted edges. Recall R is defined as the fraction of the number of edges
701 that are true positives among the total number of true edges. Then, we plotted the precision recall curve
702 and estimated the area under this curve using the AUCCalculator package developed by Davis et al. %,
703 The area under the precision recall curve is computed as an overall assessment of the inferred networks
704 compared to “true networks. The higher AUPR, the better the performance is. For the real scRNA-seq
705 datasets, we filtered the inferred networks to include TFs and targets that were in the gold standard.

706 F-score

While AUPR uses a ranking of the edges, F-score is a metric to compare a set of predicted edges to a set
of “true* edges. F-score is defined as the harmonic mean of the precision (P) and recall (R),

2*P*R

F-score =
+R
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707 F-score enables us to control for the number of edges across network inference algorithms as these
708 can vary significantly across algorithms. To control for number of edges in the predicted networks, we
709 ranked the predicted network by the confidence score or edge weight, selected top K edges and com-
710 puted F-score compared to simulated networks or gold standard networks. K in the simulated datasets
71 corresponded to the size of the simulated networks. For the real datasets, we considered top 500, 1000,
712 2000 edges. We obtained the top K edges after filtering the inferred networks based on the TFs and
713 targets in the gold standard networks.

714 Examining network dynamics on cell lineages

715 We used several global and subnetwork-level methods to examine how regulatory networks change on a
716 cell lineage. These include F-score based comparison of all pairs of networks on the lineage, k-means
717 based edge clustering and Latent Dirichlet Allocation (LDA).

718 F-score based analysis of inferred network change along cell lineage tree

719 To examine the overall conservation and divergence between the inferred cell type-specific networks
720 along the cell lineage tree, we computed F-score on the predicted networks between each pair of cell
721 types and applied hierarchical clustering on the inferred networks based on the F-score. To compute
722 F-score, we selected top X edges ranked by confidence score to obtain a reliable network for each cell
723 type, where X was close to the median of the number of 80% confident edges across all cell types. This
724 was 4k in the mouse reprogramming dataset and 5k in the hematopoietic differentiation dataset. We
725 visualized the dendrogram obtained from the hierarchical clustering and compared this to the original
726 cell lineage tree.

727 k-means based edge clustering

728 For each cell cluster, we selected top K edges, where K was close to the median number of edges with at
729 least 80% confidence across all cell types. This corresponded to 4k edges for the mosue reprogramming
730 dataset and S5k edges for the hematopoietic differentiation dataset. We merged the confidence score of
731 each edge across all cell types as an edge by cell type matrix, each entry corresponding to the edge
732 confidence and with as many edges as in the union of top K edges from any cell type. We applied
733 k-means clustering on this matrix to find subnetworks with different patterns of conservation. We tried a

734 range of number of clusters and selected the one that has the highest silhouette coefficient.
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735 Latent Dirichlet Allocation (LDA) model for regulatory network rewiring

736 We adopted Latent Dirichlet Allocation (LDA) to examine subnetwork level rewiring as shown in Top-
737 icNet®®. LDA was originally developed to cluster documents based on their word distributions. Each
738 document, 7 is assumed to have a certain composition of topics, as captured by a §; parameter and each
739 topic, k, is assumed to have a specific distribution of words as captured by a ¢, parameter. In the appli-
740 cation of LDA to a regulatory network, we first concatenated the TF by target network across cell types
741 to have as many rows as there are TFs times the number of cell types. Each TF in a cell type is treated as
742 a document and its targets are treated as words in the document. The topic distribution for all documents
743 constitutes a M x K matrix for document-topic distribution, where M is the total number of TFs in any
744 of the networks and K is the total number of topics. The distribution of words (genes) in each topic is
745 captured by K x V matrix for V' genes. Each gene can be assigned to a topic based on its maximum
746 probability across topics. We applied LDA model to the 80% confidence networks of all cell clusters
747 inferred from scMTNI with 10 or 15 topics and found 10 topics to be suitable for both datasets. We ex-
748 tracted the subnetworks in each cell type associated with each topic by obtaining the induced graph for
749 the genes and regulators associated with each topic and visualized the giant components of each network
750 to identify change across cell clusters within the same topic.

751 For the mouse reprogramming dataset, we used the results of LDA application with 10 topics on
752 the 80% confidence networks of all cell clusters (Supplementary Figure [5, [6} [7). To interpret the
753 topics in each cell type, we tested the genes in the cell type-specific subnetwork for each topic for en-
754 richment of gene ontology (GO)® processes using a hypergeometric test with FDR correction. We used
755 an FDR <0.01 to determine significant enrichment (Supplementary Figure[8). For the hematopoiesis
756 dataset, we also used LDA results with 10 topics on the 80% confidence networks of all cell clusters
757 (Supplementary Figure 13} [I4} [I5) and used FDR <0.01 to determine significantly enriched terms

758 (Supplementary Figure [16).
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750 Data and code availability

760 Pre-processed datasets are available at sScMTNI Supplementary website at https://github.com/
761 Roy—lab/scMTNI. The reprogramming scATAC-seq dataset has been deposited to Gene Expression
762 Omnibus (GEO). The scMTNI code and associated MATLAB, python and R scripts to compute various

763 validation metrics are available at https://github.com/Roy-lab/scMTNIL
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Cell type Number of edges

Cl 202
C2 217
C3 239

Table 1. Statistics of the edges in each cell type for simulated networks.
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Gold standards Number of TFs Number of targets

ChIP 54 31367
Perturb 179 21019
Perturb+ChIP 47 6109

Table 2. Statistics of the gold standard datasets in mouse ESC from ESCAPE=!' and ENCODE-? databases
and Nishiyama et al*>.
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Gold standard Number of tfs  Number of targets
Hematopoietic stem cells (HSC) 6 9173
CD14 _monocytes 1 6523
megakaryocytes 4 8733
erythroid_progenitors 1 7955
R3R4 _erythroid_cells 1 8494
megakaryocytes 4 8733
CD34_hematopoietic_stem_cells-derived_proerythroblasts 3 5847
T-cells 3 6189
B-cells 1 7036
GM_B-cells 48 10597
UniBind 56 10621
Cus_ChIP 149 6179
Cus_KO 50 6108
Cus_KO+Cus_ChIP 26 2124
Cus_KO+UniBind 12 2020

Table 3. The statistics of the gold standard datasets in human hematopoietic cell types from UniBind
database** and Cusanovich et al*?.,
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Figure 1. An overview of the scMTNI framework. A. scMTNI takes as input a cell lineage tree and cell
type-specific sScCRNA-seq data and cell type-specific prior networks derived from single cell ATAC-seq
datasets. If sScATAC-seq data is not available, the same prior network can be used for all cell types. The
output of scMTNI is a set of cell type-specific gene regulatory networks for each cell type on the cell
lineage tree. B. The output networks of sScMTNI are analyzed using two dynamic network analysis
methods: edge-based k-means clustering and Latent Dirichlet Allocation (LDA) based topic models to
identify key regulators and subnetworks associated with a particular cell cluster or a set of clusters on a
branch. C. Datasets used with scMTNI. The simulation data comprised a linear trajectory of three cell
types, while the two real datasets came from a reprogramming time-series process and immunophenotypic
cell types identified during human hematopoietic differentiation.
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Figure 2. Benchmarking algorithms on simulated data. A. Simulation framework for scMTNI. We first
simulate GRNs for cell types across a cell lineage tree. Next, we generate in silico single-cell gene
expression data for each cell type using BoolODE using the simulated GRNs and add 80% zeros in the
simulation data. Then, we apply five multi-task learning algorithms for GRN inference to the simulated
datasets and predict networks in stability selection framework. We compare the performance of these
algorithms based on area under precision and recall curve (AUPR) and F-score of top edges. B. AUPR
comparing inferred networks to ground truth networks of simulated datasets 1, 2, 3. C. F-score comparing
top K edges in the inferred networks to those in the ground truth networks of simulated datasets 1, 2, 3.
The brighter and larger the circle the better the performance of the algorithm.
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Figure 3. Inference of cell-type specific networks of mouse reprogramming data. A. UMAP of LIGER cell
clusters on the scATAC-seq data and scRNA-seq data. B. UMAP depicting the sample labels of the
scATAC-seq and scRNA-seq data. C. The distribution of LIGER clusters in each sample. D. The
distribution of samples for each LIGER cluster. E. Inferred lineage structure for scMTNI linking the 7 cell
clusters with scRNA-seq measurements. F. F-score of top 1k edges in predicted networks of scMTNI,
scMTNI+prior, INDEP, INDEP+prior, and SCENIC compared to three gold standard datasets: ChIP,
Perturb and Perturb+ChIP. The top boxplots show the F-scores, while the bottom heatmaps show FDR
corrected T-test comparing the F-scores of the row algorithm to that of the column algorithm. A FDR <0.05
was considered significantly better. The sign < or > specifies whether the row algorithm’s F-scores were
worse or better than the column algorithm’s F-scores. The color scale is specified for —log(F DR), with
the red color proportional to significance. G. Pairwise similarity of networks from each cell cluster using
F-score on the top 4k edges. Rows and columns are ordered based on the dendrogram created using the
F-score similarity.
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Figure 4. Network dynamics analysis of GRNs from cellular reprogramming. A. Kmeans clustering
analysis of inferred networks. Shown are the mean profiles of edge confidence of 20 edge clusters. Each
row corresponds to an edge cluster and each column corresponds to a cell cluster. The red intensity
corresponds to the average confidence of edges in that cluster. Shown also are the number of edges in the
edge cluster. B. Top regulators for each edge cluster. Shown are only regulators that have at least 10 targets
in any edge cluster. The size and brightness of the circle is proportional to the number of targets. C. LDA
topic 3 networks along the cell lineage. The layout of each network is the same, edges present in a
particular cell cluster are shown in red. Labeled nodes correspond to regulators with the largest number of
connections D. Cell cluster-specific regulators for each topic. The brighter and larger the circle, the greater
are the number of targets for the regulator.
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Figure 5. scMTNI networks on human hematopoietic differentiation data. A. UMAP of LIGER cell
clusters of the scATAC-seq and scRNA-seq data. B. UMAP depicting the original cell types (samples) with
scATAC-seq and scRNA-seq data. C. The distribution of samples for each LIGER cluster. D. The
distribution of cell clusters for each sample. E. Inferred lineage structure linking the eight cell clusters with
scRNA-seq and scATAC-seq data. F. Boxplots showing F-score of top 1k edges in predicted networks from
scMTNI, scMTNI+prior, INDEP, INDEP+prior, and SCENIC compared to gold standard datasets (top).
FDR-corrected T-test to compare the F-score of the row algorithm to the F-score of the column algorithm
(bottom). A FDR<0.05 was considered significantly better. The sign < or > specifies whether the row
algorithm’s F-scores were worse or better than the column algorithm’s F-scores. The color scale is
specified for —log(F DR), with the red color proportional to significance. G. Pairwise similarity of
networks from each cell cluster using F-score on the top S5k edges which corresponds to a confidence of
~0.8. Rows and columns ordered by hierarchical clustering using F-score as the similarity measure.
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Figure 6. Network rewiring during hematopoietic differentiation. A. Kmeans-based edge clusters of the
top Sk edges (rows) across 8 cell clusters (columns). The edge confidence matrix was clustered into 19
clusters to identify common and divergent networks. The red intensity corresponds to the average
confidence of edges in that cluster. Shown also are the number of edges in the edge cluster. B. Top
regulators of each edge cluster. Shown are only regulators with at least 10 targets in a given edge cluster.
The size and brightness of the circle is proportional to the number of targets. C. Topic-specific networks
across each cell cluster for topic 4. The layout of each network is the same, edges present in a particular
cell cluster are shown in red. Labeled nodes correspond to regulators with the largest number of
connections. D. Regulators associated with each cell cluster’s network in each topic.The brighter and larger
the circle, the greater are the number of targets for the regulator.
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