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Abstract1

Cell type-specific gene expression patterns are outputs of transcriptional gene regulatory networks2

(GRNs) that connect transcription factors and signaling proteins to target genes. These networks recon-3

figure during dynamic processes such as cell fate specification to drive diverse cellular states. Single-cell4

transcriptomic technologies, such as single cell RNA-sequencing (scRNA-seq) and single cell Assay5

for Transposase-Accessible Chromatin using sequencing (scATAC-seq), can examine the transcriptional6

state of individual cells, allowing the study of cell-type specific gene regulation at unprecedented detail.7

However, current approaches to infer cell type-specific gene regulatory networks from these datasets are8

limited in their ability to integrate scRNA-seq and scATAC-seq measurements and to model network9

dynamics on a cell lineage. To address this challenge, we have developed single-cell Multi-Task Net-10

work Inference (scMTNI), a multi-task learning framework to infer the gene regulatory network for each11

cell type on a lineage from scRNA-seq and scATAC-seq data. Using simulated, published and newly12

collected single cell omic datasets, we show that scMTNI is able to accurately infer gene regulatory net-13

works and captures meaningful network dynamics that identify GRN components associated with cell14

type transitions. Application of our method to mouse cellular reprogramming identified key regulators15

associated with cell populations that reprogram versus those that are stalled. Taken together, scMTNI16

is a powerful framework to infer cell type-specific gene regulatory networks and their dynamics from17

scRNA-seq and scATAC-seq datasets.18
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Introduction19

Transcriptional gene regulatory networks (GRNs) specify connections between regulatory proteins and20

target genes and determine the spatial and temporal expression patterns of genes1,2. These networks21

reconfigure during dynamic processes such as development or disease progression, to specify cell type22

specific expression levels. Recent advances in single cell omic techniques such as single cell RNA-23

sequencing (scRNA-seq) and single cell Assay for Transposase-Accessible Chromatin using sequencing24

(scATAC-seq)3 enable collecting high resolution molecular phenotypes of a developing system and offer25

unprecedented opportunities for the discovery of cell type-specific regulatory networks and their dynam-26

ics. However, computational methods to systematically leverage these datasets to identify regulatory27

networks driving cell type-specific expression patterns, are limited.28

Existing methods of network inference from single cell omic data4–16 have primarily used transcrip-29

tomic measurements and have low recovery of experimentally verified interactions17,18. Recently a small30

number of methods have attempted to integrate scRNA-seq and scATAC-seq datasets19,20 to examine31

gene regulation, however, the primary focus of these methods is to define cell clusters and the network32

is defined entirely based on accessible sequence-specific motif matches. This restricts the class of reg-33

ulators that can be incorporated into the regulatory network to those with known motifs. Furthermore,34

existing methods infer a single GRN for the entire dataset or do not model the cell population structure35

which is important to discern dynamics and transitions in the inferred networks for cell type-specificity.36

To overcome the limitations of existing methods, we have developed single-cell Multi-Task Network37

Inference (scMTNI), a multi-task learning framework that integrates the cell lineage structure, scRNA-38

seq and scATAC-seq measurements to enable joint inference of cell type-specific GRNs. scMTNI takes39

as input a cell lineage tree, scRNA-seq data and scATAC-seq based prior networks for each cell type.40

scMTNI uses a novel probabilistic prior to incorporate the lineage structure during network inference and41

outputs GRNs for each cell type on a cell lineage. We performed a comprehensive benchmarking study42

of multi-task learning approaches including scMTNI on simulated data and show that incorporation of43

multi-task learning and tree structure is beneficial for GRN inference.44

We applied scMTNI to a novel scRNA-seq and scATAC-seq time course dataset for cellular repro-45

gramming in mouse and a published scRNA-seq and scATAC-seq cell-type specific dataset for human46

hematopoietic differentiation. We demonstrate the advantage of integration of scATAC-seq and scRNA-47

seq datasets for inferring cell type specific GRNs and their dynamics. We examined how the inferred48

networks change along the trajectory and identified regulators and network components specific to dif-49
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ferent parts of the lineage tree. Our predictions include known as well as novel regulators of cell popu-50

lations transitioning to different lineage paths, providing insight into regulatory mechanisms associated51

with hematopoietic specification and reprogramming efficiency.52
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Results53

Single-cell Multi-Task learning Network Inference (scMTNI) for defining regula-54

tory networks on cell lineages55

We developed scMTNI, a multi-task graph learning framework for inferring cell type-specific gene reg-56

ulatory networks from scRNA-seq and scATAC-seq datasets (Figure 1A), where a cell type is defined57

by a cluster of cells with a distinct transcriptional and accessibility profile. scMTNI models a GRN58

as a Dependency network21, a probabilistic graphical model with random variables representing genes59

and regulators, such as transcription factors (TFs) and signaling proteins. scMTNI takes as input cell60

clusters with gene expression and accessibility profiles and a lineage structure linking the cell clusters61

(Figure 1). Such inputs can be obtained from existing methods for integrative clustering22 and lineage62

construction23. scMTNI uses the scATAC-seq data for each cell cluster to define cell type-specific se-63

quence motif-based TF-target interactions (e.g., a motif for a particular TF, which is accessible only in64

specific cell types will result in a TF-target interaction only in those cell types) which are used as a prior65

to guide network inference (Methods). The output of scMTNI is a set of cell type-specific GRNs one66

for each cell cluster in the lineage tree. scMTNI’s multi-task learning framework incorporates a novel67

lineage tree prior, which uses the lineage tree structure to influence the similarity of gene regulatory68

networks on the lineage. This prior models the change of a GRN from a start state (e.g., progenitor cell69

state) to an end state (e.g. more differentiated state) as a series of individual edge-level probabilistic70

transitions. While scMTNI was developed to incorporate both scRNA-seq and scATAC-seq data, it can71

be applied to situations where scATAC-seq, and therefore a cell type-specific prior network, is not avail-72

able. We refer to the versions of our approach as scMTNI+prior and scMTNI depending upon whether it73

uses prior knowledge or not. The output networks of scMTNI are analyzed using two dynamic network74

analysis methods: edge-based k-means clustering and topic models (Figure 1B). These approaches iden-75

tify key regulators and subnetworks associated with a particular cell cluster or a set of cell clusters on a76

branch.77

Multi-task learning algorithms outperform single-task algorithms for single cell78

network inference79

To evaluate scMTNI and other existing algorithms with known ground truth networks on single-cell tran-80

scriptomic data, we set up a simulation framework, which entailed creation of a cell lineage, generating81
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synthetic networks and corresponding single-cell expression datasets for each cell type on the lineage82

(Figure 2A). We used a probabilistic process of network structure evolution to simulate the network83

structure for three cell types, each containing 15 regulators and 65 genes and between 202-239 edges84

(Methods). Next, we applied BoolODE17 to simulate the in silico single-cell expression data using each85

cell type’s simulated network. To mimic the sparsity in single-cell expression data, we set 80% of the86

values to 0. We created three datasets with different numbers of cells: 2000, 1000, 200, referred here as87

dataset 1, dataset 2, dataset 3.88

We asked whether multi-task learning is beneficial compared to single-task learning for network in-89

ference from scRNA-seq data. To this end we compared scMTNI and four other multi-task learning90

algorithms, MRTLE24, GNAT25, Ontogenet26, and AMuSR27 to three single-task algorithms, LASSO91

regression28, INDEP, and SCENIC29 (Methods). Of these methods only SCENIC uses a non-linear92

regression model while the others are based on linear models. INDEP is similar to scMTNI but does93

not incorporate the lineage prior. Each algorithm was applied within a stability selection framework and94

evaluated with Area under the Precision recall curve (AUPR) and F-score of top k edges, where k is95

the number of edges in the true network (Figure 2B, C). On dataset 1, based on AUPR, scMTNI, MR-96

TLE and AMuSR are able to recover the network structure (Figure 2B) better than the other multi-task97

learning and single-task learning algorithms. Ontogenet performs better than the single-task learning98

algorithms in at least two cell types. Finally, GNAT performs comparably to the single-task learning99

algorithms. When comparing algorithms based on F-score of top k edges, we have similar observations100

that scMTNI and MRTLE have a better performance than other algorithms (Figure 2C). Ontogenet per-101

forms better than LASSO and INDEP in at least two cell types, and comparable to SCENIC, except that102

Ontogenet in cell type 3 is worse than SCENIC. GNAT is comparable to the single-task learning algo-103

rithms for at least 2 of the cell types. The low F-score of AMuSR is because the inferred networks are104

too sparse, with fewer than 100 edges, while the other algorithms inferred similar number of edges with105

the true networks. These results remain consistent for datasets 2 and 3 which have fewer cells (1000 and106

200, respectively), scMTNI and MRTLE remain superior in performance than other algorithms mea-107

sured by both AUPR and F-score (Figure 2B, C). We expect scMTNI to be better since the network108

simulation procedure is similar, but the data generated is different and independent. Finally, we aggre-109

gated the results across all three cell types and datasets to obtain an overall comparison of the algorithms.110

Here we considered algorithms across all parameter settings tested as well as the best parameter setting111

determined by the best F-score or AUPR. Based on the AUPR of “all parameter setting” , we found112

that multi-task learning methods, especially scMTNI and MRTLE are generally better than single-task113
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learning methods with higher AUPRs (Supplementary Figure 1A,C). AMuSR also outperformed the114

single-task algorithms based on AUPRs, although this was not as significant as MRTLE and scMTNI.115

When considering the “best parameter setting” the methods were not significantly different when us-116

ing AUPR, though MRTLE and scMTNI had the highest AUPR (Supplementary Figure 1B,D). When117

using the F-score, scMTNI and MRTLE remained top performing algorithms for the “all parameter set-118

ting” (Supplementary Figure 2A,C) and the “best parameter setting” (Supplementary Figure 2B,D).119

Further, GNAT and Ontogenet had a higher F-score than the single-task learning method LASSO for120

the “all parameter” and “best parameter” settings. AMuSR suffered for the F-score metric due to the121

high sparsity in the inferred networks. Across different single-task algorithms, LASSO had the worst122

performance. Overall, the results on the simulated networks suggest that multi-task learning algorithms123

have a better performance than single-task algorithms for network inference on sparse datasets, similar124

to single-cell transcriptomic data. Furthermore, scMTNI and MRTLE are able to more accurately infer125

networks than other multi-task learning algorithms.126

Inference of gene regulatory networks of somatic cell reprogramming to induced127

pluripotent stem cells128

Cellular reprogramming is the process of converting cells in a differentiated state to a pluripotent state129

and is important in regenerative medicine as well as for generating patient-specific disease models. How-130

ever, this process is inefficient as a small fraction of cells get reprogrammed to the pluripotent state30.131

To gain insight into the gene regulatory networks that govern the dynamics of this process, we profiled132

single cell accessibility (scATAC-seq) during the reprogramming process from mouse embryonic fibrob-133

lasts (MEFs) to the induced pluripotent state and four intermediate timepoints, day3, day6, day9 and134

day12, to constitute a dataset of 6 timepoints. We used LIGER to integrate the scRNA-seq and scATAC-135

seq datasets (Figure 3A, B) and identified 8 clusters (Methods). Of these clusters, C4 is MEF-specific136

while C5 is ESC-specific (Figure 3C, D) and showed good integration of the scRNA-seq and scATAC-137

seq profiles. We removed C6 as it did not have scRNA-seq cells and applied a minimum spanning tree138

(MST23) approach to construct the cell lineage tree from the 7 cell clusters with both scRNA-seq and139

scATAC-seq (Methods, Figure 3E). The MEF-specific cluster (C4) is at one end of the tree, while the140

ESC-specific cluster (C5) is at the other end. This is consistent with the starting and end state of the141

reprogramming process and we considered C4 to represent the root of the tree.142

We applied scMTNI, scMTNI+prior (scMTNI with prior network), INDEP, INDEP+prior (INDEP143

with prior network) and SCENIC to this dataset (Figure 3F). We used the matched scATAC-seq clus-144
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ters to obtain transcription factor (TF)-target prior interactions for each scRNA-seq cluster needed for145

INDEP+prior and scMTNI+prior (Methods). We assessed the quality of the inferred networks by com-146

paring to three gold standard datasets in mouse embryonic stem cells (mESCs, Table 2), one derived147

from ChIP-seq experiments (referred to as “ChIP”) from ESCAPE or ENCODE databases31,32, one from148

regulator perturbation experiments (referred to as “Perturb”)31,33, and the third from the intersection of149

edges in ChIP and Perturb (referred to as “ChIP+Perturb”). We compared the performance of the meth-150

ods using F-score on the top 500, 1k and 2k edges across methods (Figure 3F, Supplementary Figure 3,151

4). On Perturb and Perturb+ChIP, scMTNI+Prior had a higher average performance, outperforming other152

methods significantly in Perturb. On ChIP, SCENIC was generally better than other methods. To exam-153

ine the poorer performance of scMTNI+Prior for the ChIP gold standard, we compared the regulators154

and targets in the inferred networks from each method. Between SCENIC and scMTNI, the number of155

regulators are similar, but SCENIC’s networks have more target genes, which recovered more targets156

from the gold standard datasets, resulting in a higher F-score. scMTNI+prior outperformed scMTNI in157

all but the ChIP dataset, and INDEP+prior outperformed INDEP, indicating that addition of priors based158

on scATAC-seq data was beneficial.159

To gain an initial assessment of the network dynamics on the cell lineage, we computed F-score160

between each pair of inferred networks defined by the top 4k edges (Figure 3G). Both scMTNI and161

scMTNI+prior networks diverged in a manner consistent with the lineage structure. scMTNI networks162

formed three groups of cell types, (C4, C8, C1, C7), (C2, C3) and (C5 (ESC)). scMNTI+prior found163

similar groupings but placed C5 (ESC) closer to (C1, C7, C8, C4) branch. Both methods showed that164

C5 is closest to C1, which could be an important transitioning state of cells during reprogramming.165

SCENIC showed similarity among C1, C4, C7, however had lower similarity scores for most pairwise166

comparisons which made it difficult to discern a clear lineage structure. The networks inferred by the167

other methods were very divergent which is not biologically realistic because the reprogramming sys-168

tem is heterogeneous with a number of transitioning populations. Overall, these results suggest that169

scMTNI+prior recovered regulatory networks are of high quality and the networks exhibit a gradual170

rewiring of structure from the MEF to the pluripotent state.171

scMTNI predicts key regulatory nodes and GRN components that are rewired172

during reprogramming173

To gain insight into which cell populations successfully reprogram versus those that do not and to fur-174

ther characterize these different cell clusters, we examined the specific rewired network components175
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in each cell type-specific network inferred by scMTNI+prior using two complementary approaches: k-176

means edge clustering and Latent Dirichlet Allocation (LDA, Methods). In the k-means edge clustering177

approach, we represented each edge in the top 4k confidence set of any cell cluster, by a vector of confi-178

dence scores in each cell cluster-specific network (if an edge is not inferred in the network it is assigned179

a weight of 0). Next, we clustered edges based on their edge confidence pattern into 20 clusters de-180

termined by the Silhouette Coefficient optimization (Figure 4A). The largest “edge clusters” exhibited181

interactions specific to one cell cluster (e.g., E4, E6, E7, E11, E13, E15 and E16), while smaller clusters182

exhibited conserved edges for more than one cell cluster (e.g., E2, E5, E12). To interpret these edge clus-183

ters, we identified the top regulators associated with each of the edge clusters (Figure 4B). E16, which184

was MEF-specific (C4) had Npm1, Nme2, Thy1, Ddx5 and Loxl2 as the top regulators which are known185

MEF-specific genes. In contrast, E11, which was ESC-specific (C5) had Klf4, Lhx2, Elf4 which have186

known roles in stem cell maintenance (Klf4) and differentiation into neural (Lhx234) and hematopoieitic187

lineage (Elf435). Edge clusters that shared edges across multiple cell clusters, e.g. E5 (C4, C8 and C1),188

shared some of the top-ranking regulators such as Npm1 and Thyb1 with the MEF-specific cluster and189

also identified other fibroblast-specific genes such as Col5a2 and Ybx1. Finally, E2 which comprised190

shared edges between cell clusters C1 and C5, contained Esrrb, as its top regulator (Figure 4B). Esrrb191

plays an important role for establishing naive pluripotency. This further supports the lineage structure192

that C1 likely represents a population of cells that are committed to becoming pluripotent.193

While the k-means analysis identified regulatory hubs specific to individual cell clusters, it was chal-194

lenging to identify sub-network components that rewired at specific branch points likely because it treats195

each edge independently. We developed an approach by adopting Latent Dirichlet Allocation (LDA) that196

was recently used to study regulatory network rewiring from transcription factor ChIP-seq datasets36197

(Methods). In this approach, each TF is treated as a “document” and target genes are treated as “words”198

in the document. Each document (TF) is assumed to have words (genes) from a mixture of topics, each199

topic in turn interpreted as a pathway. TFs across cell clusters are treated as separate documents. We200

applied LDA with k = 10 topics (Figure 4C, D, Supplementary Figure 5,6, 7), and examined each201

of the topics based on their Gene Ontology process enrichment (Supplementary Figure 8), and the202

tendency and identity of specific regulators to rewire across the cell clusters (Methods). Topic 3 net-203

works were among the most divergent networks across the cell populations and identified several known204

regulators for the pluripotency fate (Figure 4C). In particular, Esrrb was a hub in C5 (ESC) and C1205

(closest to ESC) but absent in the other cell clusters. Topic 3 is enriched for cell cycle and developmen-206

tal terms (Supplementary Figure 8). Comparison of the regulators in the (C1,C5) branch and (C7, C3,207
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C2) branch showed that the latter branch had regulators such as Wt1. Wt1 was a major regulator in the208

starting MEF cluster as well suggesting the incomplete suppression of the MEF-specific program in the209

C7-C3-C2 branch. Wt1 is an important regulator of cellular developmental processes and can act both as210

a tumor suppressor and an oncogene37. Topic 9 was also interesting in that it identified the persistence of211

the regulators Ccng1 and Nme2 from the MEF-specific cell cluster (C4) in the C7-C3-C2 branch. Ccng1212

is a cyclin that is part of the p53 pathway, which has been previously identified to be associated with213

the inefficiency of cellular reprogramming38,39. Nme2 is known to regulate Myc, which is an oncogene214

and also one of the four reprogramming factors40. The cellular reprogramming process has been consid-215

ered to be similar to tumorigenesis which is supported by the identification of regulators associated with216

cancer signaling pathways for populations that do not reprogram. Inhibition of these regulators could217

potentially improve the reprogramming process. In total, using scMTNI and network rewiring analysis218

we identified known cell population-specific regulators and also predicted new regulators that can be219

perturbed to examine the impact on cellular reprogramming efficiency.220

Inferring gene regulatory networks in human hematopoietic differentiation221

To examine the utility of scMTNI in a different cell fate specification system, we applied scMTNI to a222

published scATAC-seq and scRNA-seq dataset for human hematopoietic differentiation41. This dataset223

profiled accessibility and transcriptomic state of immunophenotypic populations that were sorted based224

on cell surface markers in hematopoietic differentiation and enabled studies of how multipotent pro-225

genitors transit into lineage-restricted cell states. We considered the cell populations measured with226

both scATAC-seq and scRNA-seq datasets: hematopoietic stem cell (HSC), common myeloid progeni-227

tor (CMP), granulocyte-macrophage progenitors (GMP) and monocyte (Mono). These populations are228

known to be heterogeneous comprising multiple sub-populations41. To identify these sub-populations229

we again applied LIGER22 and identified 10 integrated clusters of RNA and accessibility (Figure 5A-230

D). Most clusters exhibited a mixed composition: C8 is mainly composed of HSCs but also included231

CMP0 cells; C6 and C9 are composed of GMP and CMP0 cells. C1 (73 cells) and C4 (37 cells) were232

mainly composed of Mono cells and were combined into C1. C5 had too few RNA cells (22 cells) and233

was excluded from further analysis. We next inferred a cell lineage tree from these 8 cell clusters using234

a minimal spanning tree approach23 as described in the reprogramming study (Figure 5E, Methods).235

As C8 is largely made up of HSC cells and HSC is the starting cell type, we treat C8 as the root of the236

lineage.237

We applied the same set of network inference algorithms to this dataset as the reprogramming dataset:238
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scMTNI, scMTNI+prior, INDEP, INDEP+prior and SCENIC. We assessed the quality of the inferred net-239

works from each method by comparing them to gold-standard edges from published ChIP-seq and regu-240

lator perturbation assays from several human hematopoietic cell types. This included ChIP-seq datasets241

from the UniBind database (Unibind42), ChIP-seq (Cus ChIP) and regulator perturbation (Cus KO) ex-242

periments in the GM12878 lymphoblastoid cell line from Cusanovich et al43 and the intersection of ChIP243

and perturbation studies (Cus KO+Cus ChIP, Cus KO+Unibind). In total we had five gold standard net-244

works. We used F-score of the top 500, 1k, 2k edges in the inferred network (Methods, Figure 5F,245

Supplementary Figure 9). The relative performance of the algorithms depended upon the gold stan-246

dard. Algorithms that did not use priors (INDEP, SCENIC and scMTNI) performed comparably (with no247

significant difference) on three of the five gold standards. On Unibind and Cus KO+Unibind, SCENIC248

is significantly better than INDEP and scMTNI (Supplementary Figure 10). Methods that used pri-249

ors, INDEP+prior, scMTNI+prior, were generally better than methods without priors. INDEP+prior and250

scMTNI+prior are comparable across the gold standard datasets with no significant difference in per-251

formance. For the Unibind dataset, we had ChIP-seq based gold standard edges for different blood cell252

types, with 1 to 48 transcription factors (Table 3). When comparing to these cell type-specific gold stan-253

dards, prior based methods have a better performance especially for datasets with more TFs among top254

500 and 1k edges (Supplementary Figure 11,Supplementary Figure 12). Furthermore, INDEP+prior255

had the best overall performance indicating that incorporation of accessibility priors is more important256

rather than the lineage information. However, these gold standards were much smaller and therefore can257

assess smaller portion of the inferred networks.258

We next examined the inferred networks for the extent of change on the lineage structure (Figure 5G).259

The single-task learning methods INDEP and INDEP+prior exhibited a low overlap across each pair of260

cell lines and did not as such obey the lineage structure. SCENIC recovers part of the lineage structure,261

but placed C7 (common myeloid) close to C6 (granulocyte-macrophage progenitors (GMP)) rather than262

C10, which has similar sample composition as C7. In contrast, scMTNI and scMTNI+prior were able to263

find two groups of cell types, one corresponding to HSC and CMP2 branch consisting of C8, C3 and C2,264

and the second corresponding to the CMP0, CMP1 and GMP branch (C6, C9, C10 and C7). The exces-265

sive divergence identified by the single-task learning methods makes it difficult to identify and prioritize266

specific network level changes driving cell fate decisions.267
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Inferring shared and lineage-specific regulators for hematopoietic differentiation268

Similar to our cellular reprogramming study, we examined the scMTNI+prior networks to identify cell269

type-specific regulators and network components (Figure 6). We applied k-means edge clustering to top270

5k edges in any of the cell clusters and identified 19 edge clusters (Methods). Compared to the repro-271

gramming study, a larger portion (94% vs 86%) of the edges are specific to one cell cluster (Figure 6A).272

We used these edge clusters to identify differences among cell clusters which had similar compositions273

of the initial cell types identified based on cell surface markers, e.g., C7 and C10 had similar compo-274

sition of CMP0, CMP1, CMP2 cells and C6 and C9 had similar composition of GMP and CMP cells.275

Edge cluster E2 had edges specific to cell cluster C7 and was associated with PLEX, YBX1, EEF1A1,276

TSC22D3. PLEK and YBX144 are known to be involved in directing fate of HSCs, while both EEF1A1277

and TSC22D3 have immune-related functions. In contrast, E8 which had edges specific to C10 had278

different regulators, namely KLF7, ETV5, MBD2, ZNF202, EPM2A, ULK4. Of these, KLF7, ETV5279

and MBD2 have known regulatory roles in hematopoiesis, with ETV5 regulating a population of Th9280

cells45 and KLF7 suppressing the formation of myeloid cells46. Edge cluster E11, which was specific281

to C6 ranked SP4, TYR03, ZNF417, MNDA highly. MNDA is associated with granulocyte-monocyte282

lineage47. In contrast, E6, which was specific to C9 had a different set of top regulators including283

L3MBTL4, GABPA, ELF4, and RGS14. Both GABPA and ELF4 have important roles in hematopoei-284

sis48,49. A few edge clusters represented shared network components, e.g. E19 had edges from C6, C9,285

C10, C7 that represented the GMP and CMP populations and E12 representing edges from C10 and C7.286

Both E19 and E12 had YBX1 and TSC22D3 as top regulators (Figure 6B). YBX1, is known to have high287

expression in myeloid progenitor cells44, and regulates CCL5 expression during monocyte/macrophage288

differentiation50. TSC22D3, which is a glucocorticoid leucine zipper51, is involved in differentiation of289

hematopoietic stem cells52. Taken together, the k-means edge clustering approach helped identify the290

key regulators with known or plausible roles in hematopoiesis that could explain the differences among291

the cell clusters.292

To identify cell type-specific network rewiring that are associated with lineage decisions, we again293

examined the regulatory networks of each cell cluster using LDA (Methods, Figure 6C, D). The top-294

ics were enriched for diverse biological processes such as cell cycle (Topic 1 and 8, Supplementary295

Figure 16), blood related processes (Topic 9) and represented subnetworks with different extents of con-296

servation across the lineage. For example, topic 2 showed a gradual rewiring of an ID2-specific network297

from the HSC populations (C8, C3, C2), to KLF1 and MYC centered networks for C7 and C10 which298

represented the CMP0 population. ID2 is known to negatively regulate differentiation, which is con-299
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sistent with its presence in the C8, C3, C2 branches. KLF1 is an essential regulator for the erythroid300

lineage53,54 , which is derived from the myeloid progenitor cells and therefore the association of KLF1301

with these cells is consistent with the literature. Topics 1, 6 and 10 exhibited a conserved core around302

HMGB2, TSC22D3, and YBX1 respectively, across all cells clusters (Supplementary Figure 13, 14,303

15). HMGB2 is an important regulator for HSCs55. Both YBX1 and TSC22D3, which were also identi-304

fied in our k-means analysis, have known role in hematopoeisis44. Topic 8 was associated with various305

cell cycle and chromatin remodeling regulators such as TOP2A, CDC20 and CCNB1 (Supplementary306

Figure 15, 16). Taken together, the LDA analysis identified differential subnetworks centered to candi-307

date cell fate drivers in hematopoeisis that could be followed up with functional studies.308
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Discussion309

Single-cell technologies have transformed our ability to study cellular heterogeneity and cell-type spe-310

cific gene regulation of known and novel cell populations. Defining gene regulatory networks from311

scRNA-seq data of developmental systems has remained challenging as most existing methods have312

assumed a static view of the GRN and do not leverage accessibility to inform the GRN structure. To ad-313

dress this need, we develop single-cell Multi-Task Network Inference (scMTNI), a probabilistic graphi-314

cal model-based approach that uses multi-task learning to infer cell type-specific GRNs on a cell lineage315

tree by integrating scRNA-seq and scATAC-seq data and model the dynamics of these regulatory inter-316

actions on a lineage.317

Multi-task learning is well-suited for the inference of cell type-specific GRNs. However, a key ques-318

tion is how to implement multi-task learning for GRN inference. A number of multi-task learning al-319

gorithms were developed for inferring GRNs and functional networks from bulk transcriptomic data but320

have not been systematically compared for their effectiveness on single-cell transcriptomic data. Some321

approaches, such as AMuSR27 have used a flat hierarchy where all the tasks are considered equally re-322

lated. For heterogeneously related datasets, a hierarchy or a tree is well-suited to model the dependence323

across datasets. Such hierarchies can be implemented as a phylogenetic tree with observed data at the324

tips of the tree as in GNAT25 and MRTLE24, or as a cell-lineage tree with observations at all nodes in the325

tree. scMTNI and MRTLE both use a tree-based structure prior, whereas AMuSR, GNAT and Ontogenet326

used a regularized regression parameter to implement multi-task learning. scMTNI and MRTLE have327

better performance in predicting the gene regulatory relationships than single-task learning algorithms.328

The performance of Ontogenet is better than the single-task learning algorithms LASSO and INDEP in329

at least two cell types, and comparable to SCENIC. A prominent factor contributing to the difference in330

the performance of the algorithms was whether the models inferred a directed graph versus an undirected331

graph, with GNAT generally suffering likely due to this reason. Performance of GNAT is worst among332

multi-task learning algorithms and comparable to the single-task learning algorithms. We speculate that333

the undirected relationship in the graphical model of GNAT might be a reason that the performance is not334

as good as other multi-task learning algorithms. We also examined the performance of algorithms across335

different parameter settings that control for sparsity as well as for sharing information. We found that336

the algorithms were generally robust to the setting of sharing and more sensitive to the extent of sparsity.337

However, multi-task learning algorithms generally outperformed single-task learning algorithms indi-338

cating that this is a useful direction for methodological development for GRN inference from single cell339
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omic datasets. Importantly, single-task learning infers very different networks that makes it challenging340

to study transitions across the networks.341

Once GRNs are inferred across multiple cell types, the next challenge is to examine which compo-342

nents of the GRNs change along the lineage. We developed two complimentary techniques to study dy-343

namics. Our k-means edge clustering method was able to find regulatory connections that were unique344

to each cell cluster, while our topic model-based dynamic network analysis highlighted subnetworks345

that were activated or deactivated along the lineage. We applied our tools to study GRN dynamics in346

hematopoietic cell differentiation and reprogramming from mouse embryonic fibroblasts to embryonic347

stem cells. We found that both these systems exhibited different dynamics, with the reprogramming348

system exhibiting more edges shared across populations compared to the hematopoietic system which349

identified most edges as cell cluster-specific. In both systems, our analysis identified known and novel350

regulators. For example, in the reprogramming system, we found that cells that were closer to the end351

point pluripotent state already had an Esrrb-centered GRN component active. In contrast, for cells that352

were on an alternate trajectory had several oncogenes such as Wt1 as key regulators. In the hematopoi-353

etic system, our analysis examined immuno-phenotypically similar populations by identifying different354

set of hematopoietic regulators associated with such populations.355

scMTNI currently assumes that the input lineage structure is accurate. However, lineage construc-356

tion, especially from integrated scRNA-seq and scATAC-seq datasets is a challenging problem. One357

direction of future work is to assume the initial lineage structure is inaccurate and incorporate the re-358

finement of the lineage structure as part of the GRN inference procedure. A second direction of work359

is to model more fine-grained transitions within each cell population, for example using RNA veloc-360

ity or pseudotime, which will complement the coarse-grained dynamics that scMTNI currently handles.361

Studies from bulk RNA-seq data have shown that estimating hidden transcription factor activity (TFA)56362

can further improve the performance of network inference. Thus, another direction of future work is to363

estimate hidden TFA and incorporate these to improve the accuracy of the inferred networks. Finally,364

SCENIC performs very well among the single-task learning algorithms, which is likely because of its365

regression-tree based model that captures non-linear dependencies and is less prone to the sparsity of366

the dataset. While scMTNI’s stability selection framework can capture some non-linearities, another367

direction of future work is to extend scMTNI to model more non-lineage dependencies.368

In summary, scMTNI is a tool to infer cell type-specific regulatory networks and their dynamics369

on a cell lineage which combines scRNA-seq and scATAC-seq data. As single cell multi-omic datasets370

become increasingly available, we expect scMTNI to be broadly applicable to predict GRNs and identify371
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important regulators associated with regulatory network dynamics across cell types in diverse cell-fate372

specification processes.373
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Methods374

Single-cell Multi-Task Network Inference (scMTNI)375

Single-cell Multi-Task Network Inference (scMTNI) is a probabilistic graphical model-based approach376

that uses multi-task learning to infer gene regulatory networks for cell types related on a cell lineage377

tree (Figure 1). We define a cell type to be a group of cells with similar transcriptome and accessibility378

levels as defined by existing cell clustering methods. Each task learns the gene regulatory network379

(GRN), G(d) for each cell type or cell cluster d. Given cell type-specific datasets for M cell types,380

D = {D(1), · · · , D(M)}, our task is to find the set of graphs G = {G(1), · · · ,G(M)} and parameters381

Θ = {θ(1), · · · , θ(M)} for each of the cell types. G(d) is modeled as a dependency network21, a382

class of probabilistic graphical models for inferring directed, predictive relationships among random383

variables (regulators and genes). Each gene is modeled as a random variable X(d)
i which encodes the384

expression level of gene i in each cell. A conditional probability distribution P (X(d)
i |R

(d)
i ) models the385

relationship between gene i and its set of regulators, R
(d)
i in cell type d. In a dependency network,386

GRN inference entails estimating the regulators R
(d)
i for each gene i in each cell type d. To enable387

joint learning of these cell type-specific networks our goal is to find the set G = {G(1), · · · ,G(M)} and388

parameters Θ = {θ(1), · · · , θ(M)} by estimating the posterior distribution of these two sets and finding389

their maximum a posteriori values:390

P (G,Θ|D)∝P (D|G,Θ)P (Θ|G)P (G) (1)

P (D|G,Θ) is the data likelihood, expanded as
∏
d P (D

(d)|G(d), θ(d)). In a dependency network,391

pseudo likelihood21 is used to approximate the data likelihood for each cell type, defined as the products392

of the conditional distribution of each random variable X(d)
i given its neighbor set R(d)

i in cell type d,393

P (X
(d)
i |R

(d)
i , θ

(d)
i ). Thus, the likelihood can be written as:394

P (D|G,Θ) ∝
∏

d∈{1,...,M}

∏
i∈{1,...,N}

P (X
(d)
i |R

(d)
i , θ

(d)
i ) (2)

Given the neighbor set R(d)
i , the above quantity can be computed efficiently. We assume that each395

variable X(d)
i and its neighbor set R(d)

i in cell type d are from a multi-variate Gaussian distribution.396

Thus, P (X(d)
i |R

(d)
i , θ

(d)
i ) can be modeled using a conditional Gaussian distribution with mean µXd

i |Rd
i

397

and variance σ2
Xd

i |Rd
i

which can be estimated in closed form. R
(d)
i is selected from the input list of398
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regulators using a greedy search algorithm, executed in parallel across all cell types (See Supplemen-399

tary Methods). The second term P (Θ|G) in Equation (1) is estimated using the maximum likelihood400

settings of the parameters. The third term P (G) = P (G(1), · · · ,G(M)) in the objective function is the401

structure prior and is defined in a way to capture the state of an edge across all cell types modeled, where402

G = {G(1), · · · ,G(M)}. We assume that P (G) is composed of two priors, one is the cell-type specific403

prior P (T ), where T = {T (1), ..., T (M)}, and the other one is a cell lineage structure prior P (S) which404

captures the similarity between related cell types along the cell lineage tree, where S = {S(1), ..., S(M)}.405

P (T ) is the cell-type specific prior, which decomposes over a product of cell-type specific graphs:

P (T (1), ..., T (M)) =
∏M
d=1 P (T

(d)). The P (T (d)) decomposes over a product of individual edge con-

figurations, P (I(d)u,v), where I(d)u,v is an indicator function that represents whether there exists an edge

between regulator u to target gene v in cell type d, Xu → Xv as follows:

I(d)u,v =


1, if there is an edge from u to v in cell type d,

0, otherwise.

As in Roy et al57, we model the prior probability using a logistic function:406

P
(
I(d)u,v = 1

)
=

1

1 + e−(β0+β1∗m(d)
uv )

(3)

The β0 parameter is a sparsity prior that controls the penalty of adding of a new edge to the network,407

which takes a negative value (β0 < 0). A smaller value of β0 will result in a higher penalty on adding408

new edges and will therefore infer sparser networks. The β1 parameter controls how strongly motifs are409

incorporated as prior (β1 ≥ 0). A higher value of β1 will result in motif presence being valued more410

strongly to select an edge. β1 is set to 0 when there is no cell type-specific motif information available.411

m
(d)
uv is the weight of the edge from regulator u to target v in the prior network and is computed based412

on the motif instance score if gene v has a motif of regulator u in its promoter region that overlaps an413

ATAC-seq peak. Thus, we have414

P (T ) =
M∏
d=1

P (T (d)) =
M∏
d=1

∏
u,v;u6=v

P (I(d)u,v) (4)

The cell lineage structure prior P (S) is constructed to make use of multi-task learning. We define415

that P (S(1), ..., S(M)) can be rewritten as a product over a set of edges between regulators and target416

genes:
∏
u,v;u6=v P (I

(1)
u,v, ..., I

(M)
u,v ). Under the assumption that the prior probability of the edge state in417

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2022. ; https://doi.org/10.1101/2022.07.25.501350doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501350
http://creativecommons.org/licenses/by-nc-nd/4.0/


one cell type is only dependent upon its state in the predecessor cell type, we have:418

P (S) =
∏

u,v;u 6=v

P (I(1)u,v, ..., I
(M)
u,v ) =

∏
u,v;u6=v

∏
d∈{1,...,M}

P (I(d)u,v|Ipa(d)u,v )P (I(r)u,v), (5)

where pa(d) denotes the predecessor cell of cell type d on the cell lineage tree and r denotes the starting419

root cell. P (I
(d)
u,v|Ipa(d)u,v ) is a measure of overall regulatory gain and loss of regulatory connections420

between related cell types, and is assumed to be the same across the set of edges. Thus, it can specified421

by three parameters: the probability of gaining a regulatory edge in the starting cell, pr = P (I
(r)
u,v), the422

probability of gaining a regulatory edge in cell type d given that the edge does not exist in its predecessor423

cell p(d)g = P (I
(d)
u,v = 1|Ipa(d)u,v = 0), and the probability of maintaining a regulatory edge in cell type d,424

given its presence in its predecessor cell p(d)m = P (I
(d)
u,v = 1|Ipa(d)u,v = 1). These parameters of the priors425

can be set by the user or estimated empirically by analyzing different configurations and selecting those426

values with the best agreement with existing biological knowledge of the system. scMTNI uses a greedy427

score-based structure learning algorithm. Please refer to Supplementary Methods for details.428

Input Datasets429

Simulated Datasets430

To benchmark the performance of different multi-task and single-task learning algorithms, we simulated431

single cell expression data from a lineage resembling a linear differentiation process for three cell types432

(Figure 2A). We simulated network dynamics on a lineage tree and controlled the extent of similarity433

with the three prior parameters: pr, the probability of having an edge in the starting/root cell type;434

p
(d)
g , the probability of gaining an edge in cell type d that is not in the predecessor cell type; p(d)m , the435

probability of maintaining an edge in cell type d from the predecessor cell type. We set pr = 0.5, p
(d)
g =436

0.4 and p(d)m = 0.7 or 0.8 and simulated three networks from a linear lineage tree for each of the three437

cell types, each with 15 regulators and 65 genes. Next, we applied BoolODE on the simulated gene438

regulatory networks and generated single cell expression data for 2000 cells for each cell type. To mimic439

the dropouts in the scRNA-seq data, we added 80% sparsity uniformly to all genes on the simulation440

data. We refer to this simulated dataset as data 1, consisting of 65 genes and 2,000 cells for three cell441

types. We generated smaller sample sizes of these datasets, data 2 and data 3 by downsampling data 1442

to 1,000 cells (data 2) and 200 cells (data 3). We applied each of the algorithms on these three datasets443

within a stability selection framework and evaluated their performance based on AUPR and F-score as444
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described in the Evaluation section.445

Human hematopoietic differentiation data446

Buenrostro et al.41 measured single-cell accessibility (scATAC-seq) and single-cell RNA sequencing447

(scRNA-seq) data to study the regulatory dynamics during human hematopoietic differentiation for mul-448

tiple immuno-phenotypic cell types: hematopoietic stem cells (HSCs), common myeloid progenitors449

(CMPs) and granulocyte-macrophage progenitors (GMPs) and Monocytes (Monos). We downloaded450

fragment files for the scATAC-seq data and processed scRNA-seq data for each cell type. For the451

scATAC-seq data we mapped the fragments into 23,347,540 bins with length of 1000bp. Next, we452

mapped 1kb bins to the nearest gene and extracted cells with cell barcodes labeled as HSC, CMP, GMP453

and Mono cells. Next, we filtered out genes with sum of counts in all samples less than 100 producing454

a processed scATAC-seq dataset with 54,344 genes and 1,315 cells across the four cell types. We ex-455

tracted the count matrix of scRNA-seq from these four cell types. After filtering out genes with non-zero456

expression in less than 5 cells, the scRNA-seq data had 12,558 genes and 4,165 cells. We normalized457

the count matrix for depth and variance stabilization based on the pagoda pipeline58. We kept 12,393458

common genes between scATAC-seq and scRNA-seq data and applied LIGER22 to define integrated cell459

populations. We applied LIGER with k ∈ 8, 10, 12, 15, 20 and found 10 cell subpopulations to be most460

appropriate. C8 was mainly composed of HSCs, C6 was mainly composed of GMP cells, C7 was mainly461

CMP0 cells, C1 was composed of Mono cells, and the rest clusters were a combination of several cell462

types. C5 had too few RNA cells (22 cells) so we excluded it from further analysis. Since the composi-463

tion of C1 (73 cells) and C4 (37 cells) are very similar, mainly GMP and Mono cells, we combined these464

two clusters as C1. We inferred a cell lineage tree from the 8 cell clusters using a minimal spanning tree465

approach (python package scipy.sparse.csgraph).466

To derive the prior network for each cell cluster we created cluster-specific bam files from the467

scATAC-seq data using the LIGER clusters. We pooled these bam files to generate pseudo bulk accessi-468

bility coverage and applied MACS2 to identify scATAC-seq peaks for each cell cluster59. We obtained469

sequence-specific motifs from the Cis-BP database60 and used the script pwmmatch.exact.r avail-470

able from the PIQ toolkit61 to identify significant motif instances genome-wide using the human genome471

assembly of hg19. We mapped motifs to each scATAC-seq peak and mapped the peak to a gene if it was472

within±5000bp of the transcription start site (TSS) of a gene. In this case, we connect motifs to TSS that473

are mapped to the same scATAC-seq peak. We used the max motif score from pwmmatch.exact.r474

for each motif-TSS pair and took the maximum value among all TSSs of a gene as the value for each475
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motif-gene pair. The motif instance score is the log ratio of the PWM to a uniform background. Finally,476

to generate the edge weight for each TF-gene pair, we used the max score among all motifs mapped477

to the same TF. To normalize the edge weights across TFs, we converted these weights into percentile478

scores and selected the top 20% of edges as prior edges.479

Mouse reprogramming data480

We generated a novel scATAC-seq time course dataset for cellular reprogramming from mouse embry-481

onic fibroblast (MEF) reprogramming to induced pluripotent cells (iPSC). The dataset contains had a482

total of 6 time points corresponding to the starting MEF, the end pluripotent state (mESC), and four483

intermediate timepoints of day3, day6, day9 and day12. We downloaded scRNA-seq datasets (GEO:484

GSE108222) for the same time points from Tran et al62. The scATAC-seq data was first processed485

through CellRanger ATAC pipeline to provide the frags.txt file. We binned the genome at non-486

overlapping 1kb bin and computed the number of fragments mapped to each 1kb bin. Next, we mapped487

1kb bins to the nearest gene for all of the samples. For scRNA-seq data, we concatenated the expres-488

sion data from two replicates at each time point and normalized the concatenated matrix for depth and489

variance stabilization based on the pagoda pipeline58. Next, for each time point, we removed genes with490

expression in less than 5 cells. We took the union of genes among all time points and concatenated the491

expression data across all time points as our final scRNA-seq data matrix. The processed scATAC-seq492

data contains 25,824 genes and 30,344 cells. The processed scRNA-seq dataset contains 14,953 genes493

and 3,460 cells. We had a total of 11,926 genes in common between the two datasets, which were used494

for downstream analysis. We applied LIGER with k ∈ 8, 10, 12, 15, 20 and found k = 8 to provide495

the optimal clustering of the scRNA-seq and scATAC-seq data determined based on the clustering of the496

accessibility and transcriptome of the MEF and ESC time points. We used the mean expression profiles497

across samples of these cell clusters and computed the Euclidean distance between every cell clusters.498

Then, we inferred a minimal spanning tree using the distance matrix and used it as the cell lineage tree499

using scipy.sparse.csgraph in python. The prior motif was generated in the same way as for500

the hematopoeisis differentiation dataset using motifs for mouse from the CisBP database60. We used501

mouse genome mm10 for this analysis.502
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Application of network inference algorithms on simulated datasets503

We used the simulated datasets to perform extensive benchmarking of the different network inference504

algorithms. We also used this dataset to study the sensitivity of the algorithms to the different parameter505

settings. Below we describe each of the algorithms as well as the parameters used for each of the506

algorithms for the simulated datasets. For all three simulation datasets, we applied all algorithms other507

than SCENIC within a stability selection framework to estimate the confidence score for each edge in508

the predicted networks. For stability selection we subsampled each dataset 20 times randomly using509

half of the cells and all genes. SCENIC has its own internal sub-sampling and directly outputs the edge510

confidence.511

scMTNI. scMTNI has five hyper-parameters: pr, probability of having an edge in the starting cell512

type; p(d)g , probability of gaining an edge in a child cell type d; p(d)m the probability of maintaining513

an edge in d from its immediate predecessor cell type; a sparsity penalty β0, that controls penalty for514

adding edges; β1, that controls the strength of incorporating prior network. We tried different configu-515

rations of the hyper-parameters: pr ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}, and p(d)g ∈ {0.05,516

0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}, and p(d)m ∈ {0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9}, β0 ∈517

{-0.005, -0.01,-0.05, -0.1, -0.5}. β1 was set to 0 as there is no prior network in the simulations. If518

the size of the predicted network for a parameter setting was smaller than the size of the simulated net-519

work, we disregarded this parameter setting for comparison. We used the area under the precision-recall520

curve (AUPR) to compare the scMTNI inferred networks to simulated networks. We also computed521

F-score on top K edges ranked by the confidence score (where K is the number of edges in the simulated522

network, see Table 1). Overall performance of scMTNI was stable across different parameter configu-523

rations (Supplementary Figure 17, Supplementary Methods). To compare against methods, we used524

values from the best parameter settings for each dataset and cell type as well as all parameter settings525

(Supplementary Figure 1,2).526

MRTLE. Multi-species regulatory network learning (MRTLE)24 is a probabilistic graphical model-527

based algorithm that uses phylogenetic structure, transcriptomic data for multiple species, and sequence-528

specific motifs to infer the genome-scale regulatory networks across these species simultaneously. It was529

developed for bulk transcriptomic data. It uses a dependency network model to specify the directed rela-530

tionship among regulators to target genes. Sequence-specific motif instances can be incorporated as prior531

knowledge to favor edge supported with presence of motifs. The multi-task learning framework is em-532
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bedded in the phylogenetic prior, which captures the evolutionary dynamics of regulatory edge gain and533

loss guided by the phylogenetic structure. The MRTLE algorithm has four parameters: pg , the probabil-534

ity of gaining an edge in a child species s that is not in the ancestor species; pm, the probability of main-535

taining an edge in a species s given that is also in s’s immediate ancestor of s; β0, a sparsity penalty that536

controls penalty for adding edges, and a penalty β1 that controls the strength of motif prior. In the sim-537

ulation case, we examined different parameter configurations: pg ∈ {0.05,0.1,0.15,0.2,0.3,0.4}, pm ∈538

{0.5,0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85}, β0 ∈ {-0.005,-0.01, -0.05,- 0.1, -0.5, -1}. β1 was set to 0. The539

overall performance of MRTLE was stable across different parameter configurations (Supplementary540

Figure 18). Similar to scMTNI, we used the AUPR and F-score of top K edges to select the best param-541

eter setting. The best parameter setting and all parameter settings were used to compare against other542

algorithms.543

GNAT. The GNAT25 algorithm uses a hierarchy of tissues to share information between related tissue544

and infers tissue-specific gene co-expression networks. It was developed for bulk transcriptomic data.545

GNAT models each network using a Gaussian Markov Random Field (GMRF). It has two parameters:546

the L1 penalty λs that controls the sparsity of the network, and the L2 penalty λp that encourage the547

precision matrix of children to be similar to its parent precision matrix. It initially learns a co-expression548

network for each leaf tissue. Then it infers the networks in internal nodes using the networks in the leaf549

nodes and updates the networks in leaf nodes for several iterations until convergence. Since GNAT learns550

undirected networks, we transformed them to directed networks by adding edges from a regulator to a551

target. If the nodes of an edge are both candidate regulators, we output the edge in both directions. We552

tried different parameter configurations of λs and λp. For data 1 (n=2000), λs were set to {30, 31, 32,...,553

37}, and λp were set to {30, 31, 32,..., 40}. For data 2 (n=1000), λs were set to {18, 19,..., 22}, and λp554

were set to {18, 19,..., 25}. For data 3 (n=200), λs were set to {5, 6, 7, 8}, and λp were set to {5, 6, 7,555

8}. We found that λs dominates the performance and under the same λs, changing λp does not change556

the performance a lot (Supplementary Figure 19). If the size of the predicted network for a parameter557

setting is smaller than the size of the simulated network, we removed this parameter setting. In this case,558

the ranges of λs and λp are slightly different and varying across different datasets. We used AUPR and559

F-score of top K edges to select the best parameter settings. We compared the algorithms using these560

and all parameter settings.561
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Ontogenet. The Ontogenet26 algorithm was developed to reconstruct lineage-specific regulatory net-562

works using cell type-specific gene expression data across cell lineages. It was developed for bulk563

transcriptomic data. To infer the regulatory networks for each cell type, it uses a fused LASSO frame-564

work combined with an additional L2 penalty. The L1 penalty is introduced to control the sparsity of565

regulators, while the L2 penalty is used to select correlated predictors. The multi-task learning comes566

in the fused LASSO framework with additional L1 penalty on the difference of the regression weight of567

related cell types, which encourage the consistency of regulatory programs between related cell types.568

Ontogenet was applied on the same subsample of the three simulation datasets within a stability selec-569

tion framework to estimate the confidence score for each edge in the networks. The Ontogenet algorithm570

has three parameters: the L1 penalty λ that controls the sparsity of the network, the L2 penalty κ that571

handles correlated predictors, and γ that encourage the similarity of regulatory programs between related572

cell types. We tried different parameter configurations of λ, γ and κ. For data 1 (n=2000), λ were set to573

{1000,1250,1500,1750,2000,2250,2500}, and γ were set to {1000,1250,1500,1750,2000,2250,2500}.574

For data 2 (n=1000), λ were set to {500,1000,2000,3000}, and γ were set to {500,1000,2000,3000}.575

For data 3 (n=200), λ were set to {475,500,525}, and γ were set to {475,500,525}. κ was set to {1, 5,576

10} for each of the datasets. We found that λ and γ dominate the performance and while changing κ577

does not change the performance significantly (Supplementary Figure 20). If the size of the predicted578

network for a parameter setting is smaller than the size of the simulated network, we removed this pa-579

rameter setting. The ranges of λ and γ are slightly different and varying across different datasets in order580

to infer similarly sized networks for different datasets. We used AUPR and F-score of top K edges to581

select the best parameter settings. We compared the algorithms using these and all parameter settings.582

AMuSR. The Inferelator-AMuSR27 algorithm uses sparse block-sparse regression to estimates the583

activities of transcription factors and infer gene regulatory networks from expression datasets. The multi-584

task learning approach decomposes the model coefficients matrix into a dataset-specific component us-585

ing a sparse penalty and a conserved component using a block-sparse penalty to capture both conserved586

interactions and dataset-unique interactions. It is able to incorporate prior knowledge from multiple587

resources and robust to false interactions in the prior network. For our simulation setting, we applied588

AMuSR without TFA estimation by setting worker.set tfa(tfa driver=False) in the SingleCellWorkflow589

from Inferelator 3.0 package. To be comparable across different algorithms, AMuSR was applied on590

the same subsample of the three simulation datasets within a stability selection framework to estimate591

the confidence score for each edge in the AMuSR networks. The AMuSR algorithm has two sparsity592
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parameters: λs that controls the sparsity of the network for each dataset, the block-sparse penalty λb that593

controls the sparsity of the conserved network across all datasets. AMuSR has its own parameter se-594

lection framework (see27 for details) and uses extended Bayesian information criterion (EBIC) to select595

the optimal (λs, λb). We additionally externally tuned the parameters by setting c to {0.01, 0.02154435,596

0.04641589, 0.1,0.21544347,0.46415888,1., 2.15443469, 4.64158883,10 } and set λb = c ∗
√

d∗log(p)
n597

as suggested in the paper, where d is the number of cell types and n is the number of samples and p598

is the number of genes. However, by setting λb to 0 and λs to 0, we found that the inferred networks599

are too sparse with 7-100 edges for data 1, and 71-129 edges for data 2. We kept two settings for600

AMuSR, one using our criteria to select the best setting based on AUPR and F-scores among differ-601

ent c settings (AMuSR tuned) and another version using AMuSR’s default optimal parameter selection602

(AMuSR default). We computed AUPR and F-score of top K edges (where K is the number of edges in603

the simulated network) for AMuSR inferred networks with optimal parameter settings for comparison604

with other algorithms. We compared the algorithms using the optimal and all parameter settings.605

INDEP. The INDEP algorithm is the single-task framework of scMTNI which does not have the prior606

for sharing information across cell types and infers a regulatory network for each cell type independently.607

It also models each network using a dependency network as scMTNI. INDEP learns the graphs for each608

cell type using a greedy graph learning algorithm with a score-based search, where the score contains609

only the data likelihood. At each iteration, the algorithm computes the change in data likelihood score21610

for all candidate regulators for each target gene, selects the best regulator for the target gene and adds this611

(regulator, target) edge to the current graph. INDEP has two parameters in the model: a sparsity penalty612

β0 that controls penalty for adding edges, and a penalty β1 that controls the strength of motif prior. In613

the simulation case, β0 were set to {-0.005,-0.01, -0.05, -0.1, -0.5, -1}, and β1 were set to 0. AUPR and614

F-score of top K edges were used to select the best parameter settings (Supplementary Figure 21). If615

the size of the predicted network for a parameter setting is smaller than the size of the simulated network,616

we removed this parameter setting. As above, we compared INDEP to other algorithms using best and617

all parameter settings for a dataset.618

LASSO. The LASSO regression is linear regression with L1 regularization. For each gene, we use619

the expression profiles of candidate regulators to predict the expression profiles of this gene. The reg-620

ulators with non-zero coefficients are inferred as the regulators for this gene and these edges are added621

to the gene regulatory network. We used matlab implementation of the LASSO regression. Similarly to622
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scMTNI and MRTLE, LASSO was run on the same subsample of the three simulation datasets within623

a stability selection framework to estimate the confidence score for each edge in the networks. LASSO624

has only the L1 penalty λ that controls the sparsity of the network. In the simulation case, λ were set625

to {0.01, 0.02, 0.03, 0.04, 0.05, 0.06}. AUPR and F-score of top K edges were used to select the best626

parameter settings (Supplementary Figure 22). If the size of the predicted network for a parameter set-627

ting is smaller than the size of the simulated network, we removed this parameter setting. We compared628

LASSO to other algorithms using the best and all parameter settings.629

SCENIC. The SCENIC29 algorithm uses GENIE3 or GRNBoost2 to infer TF-target relationships630

available as part of the Arboreto framework63. We used the GRNBoost2 algorithm with default parame-631

ters for network inference. SCENIC is based on ensemble models with its own bootstrapping and hence632

was directly applied to each cell type-specific dataset in the simulation. SCENIC uses the feature impor-633

tance score of each edge to rank the edges in the inferred network. We computed AUPR and F-score of634

top K edges (where K is the number of edges in the simulated network) for SCENIC inferred networks635

for comparison with other algorithms.636

Application of network inference algorithms to cellular reprogramming data637

We applied scMTNI, scMTNI+prior, INDEP, INDEP+prior and SCENIC to this dataset. scMTNI and638

INDEP algorithms were applied within a stability selection framework to estimate edge confidence.639

SCENIC has its own subsampling framework which can estimate an edge importance. In the stability640

selection framework, we subsampled the data 50 times, each with 12,216 genes and 2
3 of the cells, ap-641

plied the algorithms to each subsample and used the inferred networks to estimate the confidence score642

for each TF-target edge in the predicted networks. In both scMTNI and scMTNI+prior, we used the fol-643

lowing hyper-parameter settings for the lineage structure prior pr = 0.2, p(d)g = 0.2 and p(d)m = 0.8. For644

the sparsity prior we set β0 = −0.9 for scMTNI, and β0 ∈ {−0.9,−2,−3,−4} for scMTNI+prior. To645

generate prior network, we used the matched scATAC-seq clusters to obtain TF-target prior interactions646

for each scRNA-seq cluster. For scMTNI+prior which uses the scATAC-seq prior, we set β1 ∈ {2, 4}.647

INDEP and INDEP+prior were applied on the same subsampled data followed by edge confidence esti-648

mation. We used the same settings for β0 and β1 for INDEP as scMTNI. Final results of scMTNI+prior649

are using β0 = −4 and β1 = 4, which was determined by the distribution of edges at different confi-650

dences. Final results for INDEP+prior are using β0 = −4 and β1 = −4. SCENIC was applied to the651

entire dataset with default parameter settings.652
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Application of network inference algorithms to human hematopoietic differentia-653

tion data654

We used a similar workflow for the human hematopoietic differentiation dataset as the reprogramming655

system. We subsampled the scRNA-seq data for each cell cluster 50 times, each with 11,994 genes and 2
3656

of the cells, and applied scMTNI, scMTNI+prior, INDEP, INDEP+prior on each subsample to estimate657

the edge confidence of the GRNs. For scMTNI and scMTNI+prior, the lineage structure prior parameters658

were set as follows: pr = 0.2, p(d)g = 0.2, p(d)m = 0.8. The sparsity prior β0 was set to−0.9 for scMTNI.659

For scMTNI+prior, the sparsity prior was set β0 ∈ {−0.9,−2,−3,−4} and β1 ∈ {2, 4}. For INDEP and660

INDEP+prior, we used the same settings for β0 and β1 for as scMTNI and scMTNI+prior respectively.661

Final results of scMTNI+prior are with β0 = −4 and β1 = 4 and final results for INDEP+prior are using662

β0 = −4 and β1 = −4. SCENIC was applied to the entire dataset with default parameter settings.663

Evaluation664

Gold standard datasets665

To evaluate the predicted networks of different inference algorithms on real data, we downloaded and666

processed several gold standard datasets (Tables 2, 3). For human hematopoietic cell types, we have five667

gold standard datasets. Two gold standard datasets were a ChIP-based (Cus ChIP) and a regulator knock668

down-based (Cus KO) gold standard dataset in GM12878 lymphoblastoid cell line downloaded from669

Cusanovich et al43. For the knockout dataset, we had TF-target relationships at two p-value thresholds,670

0.01 and 0.05. We used the one at 0.01 to have a more stringent gold standard. The third gold standard671

was from human hematopoietic cell types from the UniBind database (https://unibind.uio.672

no/)42, which has high confidence TF binding site predictions from ChIP-seq experiments. To obtain673

the TF-gene network, we mapped TF binding sites to the nearest gene if there is overlap between the674

TF binding sites and the promoter of the gene define by ±5000bp. If multiple ChIP-seq datasets were675

available for the same TF in a given cell type, we took the union of TF-gene edges for the same cell676

type. We took the union of these individual cell type-specific gold standards to create our Unibind677

gold standard (UniBind). Finally, we took the intersection of the ChIP-based gold standards with the678

knockdown based gold standards, Unibind+Cus KO and CusChIP+Cus KO to produce the fourth and679

fifth gold standards. The statistics of the gold standard datasets are provided in Table 3.680

For mouse reprogramming study we curated multiple experimentally derived networks of regulatory681

interactions from the literature and existing databases. The statistics of the gold standard datasets are682
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provided in Table 2. One of these experiments is ChIP based gold standard (referred to as “ChIP”) from683

ESCAPE or ENCODE databases31,32, which contains ChIP-chip or ChIP-seq experiments in mouse684

ESCs. Another is knock-down based gold standard (referred to as “Perturb”), which is derived from685

regulator perturbation followed by global transcriptome profiling31,33. We took a union of the networks686

from LOGOF (loss or gain of function) based gold standard networks from ESCAPE database31 and687

the networks from Nishiyama et al33 as the perturbation interactions. Finally, we took the intersection688

of the interactions between ChIP and knock-down based gold standard to create the third gold standard689

network referred to as “ChIP+Perturb”.690

Area Under the Precision Recall Curve691

To evaluate the performance of scMTNI and other algorithms, we compared the inferred networks to the692

simulated networks or interactions from the gold standard datasets based on Area under the precision693

recall curve (AUPR). Edge weights for all but the SCENIC algorithm were obtained using stability694

selection. In our stability selection framework, we generated N random subsamples of the data, inferred695

a network for each subsample, and calculated a confidence score for each edge as the fraction of how696

many times this edge was present in the inferred networks across all subsamples. Next, we ranked697

the edges by the confidence score and estimated precision and recall at different confidence thresholds698

ranging from 0 to 1. Precision P is defined as the fraction of the number of edges that are true positives699

among the total number of predicted edges. Recall R is defined as the fraction of the number of edges700

that are true positives among the total number of true edges. Then, we plotted the precision recall curve701

and estimated the area under this curve using the AUCCalculator package developed by Davis et al.64.702

The area under the precision recall curve is computed as an overall assessment of the inferred networks703

compared to “true“ networks. The higher AUPR, the better the performance is. For the real scRNA-seq704

datasets, we filtered the inferred networks to include TFs and targets that were in the gold standard.705

F-score706

While AUPR uses a ranking of the edges, F-score is a metric to compare a set of predicted edges to a set

of “true“ edges. F-score is defined as the harmonic mean of the precision (P) and recall (R),

F-score =
2*P*R
P + R
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F-score enables us to control for the number of edges across network inference algorithms as these707

can vary significantly across algorithms. To control for number of edges in the predicted networks, we708

ranked the predicted network by the confidence score or edge weight, selected top K edges and com-709

puted F-score compared to simulated networks or gold standard networks. K in the simulated datasets710

corresponded to the size of the simulated networks. For the real datasets, we considered top 500, 1000,711

2000 edges. We obtained the top K edges after filtering the inferred networks based on the TFs and712

targets in the gold standard networks.713

Examining network dynamics on cell lineages714

We used several global and subnetwork-level methods to examine how regulatory networks change on a715

cell lineage. These include F-score based comparison of all pairs of networks on the lineage, k-means716

based edge clustering and Latent Dirichlet Allocation (LDA).717

F-score based analysis of inferred network change along cell lineage tree718

To examine the overall conservation and divergence between the inferred cell type-specific networks719

along the cell lineage tree, we computed F-score on the predicted networks between each pair of cell720

types and applied hierarchical clustering on the inferred networks based on the F-score. To compute721

F-score, we selected top X edges ranked by confidence score to obtain a reliable network for each cell722

type, where X was close to the median of the number of 80% confident edges across all cell types. This723

was 4k in the mouse reprogramming dataset and 5k in the hematopoietic differentiation dataset. We724

visualized the dendrogram obtained from the hierarchical clustering and compared this to the original725

cell lineage tree.726

k-means based edge clustering727

For each cell cluster, we selected topK edges, whereK was close to the median number of edges with at728

least 80% confidence across all cell types. This corresponded to 4k edges for the mosue reprogramming729

dataset and 5k edges for the hematopoietic differentiation dataset. We merged the confidence score of730

each edge across all cell types as an edge by cell type matrix, each entry corresponding to the edge731

confidence and with as many edges as in the union of top K edges from any cell type. We applied732

k-means clustering on this matrix to find subnetworks with different patterns of conservation. We tried a733

range of number of clusters and selected the one that has the highest silhouette coefficient.734
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Latent Dirichlet Allocation (LDA) model for regulatory network rewiring735

We adopted Latent Dirichlet Allocation (LDA) to examine subnetwork level rewiring as shown in Top-736

icNet36. LDA was originally developed to cluster documents based on their word distributions. Each737

document, i is assumed to have a certain composition of topics, as captured by a θi parameter and each738

topic, k, is assumed to have a specific distribution of words as captured by a ϕk parameter. In the appli-739

cation of LDA to a regulatory network, we first concatenated the TF by target network across cell types740

to have as many rows as there are TFs times the number of cell types. Each TF in a cell type is treated as741

a document and its targets are treated as words in the document. The topic distribution for all documents742

constitutes a M ×K matrix for document-topic distribution, where M is the total number of TFs in any743

of the networks and K is the total number of topics. The distribution of words (genes) in each topic is744

captured by K × V matrix for V genes. Each gene can be assigned to a topic based on its maximum745

probability across topics. We applied LDA model to the 80% confidence networks of all cell clusters746

inferred from scMTNI with 10 or 15 topics and found 10 topics to be suitable for both datasets. We ex-747

tracted the subnetworks in each cell type associated with each topic by obtaining the induced graph for748

the genes and regulators associated with each topic and visualized the giant components of each network749

to identify change across cell clusters within the same topic.750

For the mouse reprogramming dataset, we used the results of LDA application with 10 topics on751

the 80% confidence networks of all cell clusters (Supplementary Figure 5, 6, 7). To interpret the752

topics in each cell type, we tested the genes in the cell type-specific subnetwork for each topic for en-753

richment of gene ontology (GO)65 processes using a hypergeometric test with FDR correction. We used754

an FDR <0.01 to determine significant enrichment (Supplementary Figure 8). For the hematopoiesis755

dataset, we also used LDA results with 10 topics on the 80% confidence networks of all cell clusters756

(Supplementary Figure 13, 14, 15) and used FDR <0.01 to determine significantly enriched terms757

(Supplementary Figure 16).758
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Data and code availability759

Pre-processed datasets are available at scMTNI Supplementary website at https://github.com/760

Roy-lab/scMTNI. The reprogramming scATAC-seq dataset has been deposited to Gene Expression761

Omnibus (GEO). The scMTNI code and associated MATLAB, python and R scripts to compute various762

validation metrics are available at https://github.com/Roy-lab/scMTNI.763
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Cell type Number of edges
C1 202
C2 217
C3 239

Table 1. Statistics of the edges in each cell type for simulated networks.
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Gold standards Number of TFs Number of targets
ChIP 54 31367
Perturb 179 21019
Perturb+ChIP 47 6109

Table 2. Statistics of the gold standard datasets in mouse ESC from ESCAPE31 and ENCODE32 databases
and Nishiyama et al33.
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Gold standard Number of tfs Number of targets
Hematopoietic stem cells (HSC) 6 9173
CD14 monocytes 1 6523
megakaryocytes 4 8733
erythroid progenitors 1 7955
R3R4 erythroid cells 1 8494
megakaryocytes 4 8733
CD34 hematopoietic stem cells-derived proerythroblasts 3 5847
T-cells 3 6189
B-cells 1 7036
GM B-cells 48 10597
UniBind 56 10621
Cus ChIP 149 6179
Cus KO 50 6108
Cus KO+Cus ChIP 26 2124
Cus KO+UniBind 12 2020

Table 3. The statistics of the gold standard datasets in human hematopoietic cell types from UniBind
database42 and Cusanovich et al43.
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[29] Sara Aibar, Carmen Bravo González-Blas, Thomas Moerman, Hana Imrichova, Gert Hulselmans,848

Florian Rambow, Jean-Christophe Marine, Pierre Geurts, Jan Aerts, Joost van den Oord, et al.849

Scenic: single-cell regulatory network inference and clustering. Nature methods, 14(11):1083–850

1086, 2017.851

[30] Rupa Sridharan and Kathrin Plath. Illuminating the black box of reprogramming. Cell Stem Cell,852

2(4):295–297, April 2008.853

[31] Huilei Xu, Caroline Baroukh, Ruth Dannenfelser, Edward Y Chen, Christopher M Tan, Yan Kou,854

Yujin E Kim, Ihor R Lemischka, and Avi Ma’ayan. Escape: database for integrating high-855

content published data collected from human and mouse embryonic stem cells. Database (Oxford),856

2013:bat045, 2013.857

[32] ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human858

genome. Nature, 489(7414):57–74, 2012.859

[33] Akira Nishiyama, Li Xin, Alexei A Sharov, Marshall Thomas, Gregory Mowrer, Emily Mey-860

ers, Yulan Piao, Samir Mehta, Sarah Yee, Yuhki Nakatake, et al. Uncovering early response of861

gene regulatory networks in escs by systematic induction of transcription factors. Cell stem cell,862

5(4):420–433, 2009.863

[34] Pei-Shan Hou, Ching-Yu Chuang, Cheng-Fu Kao, Shen-Ju Chou, Lee Stone, Hong-Nerng Ho,864

Chung-Liang Chien, and Hung-Chih Kuo. LHX2 regulates the neural differentiation of human865

embryonic stem cells via transcriptional modulation of PAX6 and CER1. Nucleic Acids Research,866

41(16):7753–7770, September 2013.867

[35] Aileen M. Smith, Fernando J. Calero-Nieto, Judith Schütte, Sarah Kinston, Richard T. Timms,868
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Figure 1. An overview of the scMTNI framework. A. scMTNI takes as input a cell lineage tree and cell
type-specific scRNA-seq data and cell type-specific prior networks derived from single cell ATAC-seq
datasets. If scATAC-seq data is not available, the same prior network can be used for all cell types. The
output of scMTNI is a set of cell type-specific gene regulatory networks for each cell type on the cell
lineage tree. B. The output networks of scMTNI are analyzed using two dynamic network analysis
methods: edge-based k-means clustering and Latent Dirichlet Allocation (LDA) based topic models to
identify key regulators and subnetworks associated with a particular cell cluster or a set of clusters on a
branch. C. Datasets used with scMTNI. The simulation data comprised a linear trajectory of three cell
types, while the two real datasets came from a reprogramming time-series process and immunophenotypic
cell types identified during human hematopoietic differentiation.
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Figure 2. Benchmarking algorithms on simulated data. A. Simulation framework for scMTNI. We first
simulate GRNs for cell types across a cell lineage tree. Next, we generate in silico single-cell gene
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simulation data. Then, we apply five multi-task learning algorithms for GRN inference to the simulated
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Figure 3. Inference of cell-type specific networks of mouse reprogramming data. A. UMAP of LIGER cell
clusters on the scATAC-seq data and scRNA-seq data. B. UMAP depicting the sample labels of the
scATAC-seq and scRNA-seq data. C. The distribution of LIGER clusters in each sample. D. The
distribution of samples for each LIGER cluster. E. Inferred lineage structure for scMTNI linking the 7 cell
clusters with scRNA-seq measurements. F. F-score of top 1k edges in predicted networks of scMTNI,
scMTNI+prior, INDEP, INDEP+prior, and SCENIC compared to three gold standard datasets: ChIP,
Perturb and Perturb+ChIP. The top boxplots show the F-scores, while the bottom heatmaps show FDR
corrected T-test comparing the F-scores of the row algorithm to that of the column algorithm. A FDR<0.05
was considered significantly better. The sign < or > specifies whether the row algorithm’s F-scores were
worse or better than the column algorithm’s F-scores. The color scale is specified for −log(FDR), with
the red color proportional to significance. G. Pairwise similarity of networks from each cell cluster using
F-score on the top 4k edges. Rows and columns are ordered based on the dendrogram created using the
F-score similarity.
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Figure 4. Network dynamics analysis of GRNs from cellular reprogramming. A. Kmeans clustering
analysis of inferred networks. Shown are the mean profiles of edge confidence of 20 edge clusters. Each
row corresponds to an edge cluster and each column corresponds to a cell cluster. The red intensity
corresponds to the average confidence of edges in that cluster. Shown also are the number of edges in the
edge cluster. B. Top regulators for each edge cluster. Shown are only regulators that have at least 10 targets
in any edge cluster. The size and brightness of the circle is proportional to the number of targets. C. LDA
topic 3 networks along the cell lineage. The layout of each network is the same, edges present in a
particular cell cluster are shown in red. Labeled nodes correspond to regulators with the largest number of
connections D. Cell cluster-specific regulators for each topic. The brighter and larger the circle, the greater
are the number of targets for the regulator.
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Figure 5. scMTNI networks on human hematopoietic differentiation data. A. UMAP of LIGER cell
clusters of the scATAC-seq and scRNA-seq data. B. UMAP depicting the original cell types (samples) with
scATAC-seq and scRNA-seq data. C. The distribution of samples for each LIGER cluster. D. The
distribution of cell clusters for each sample. E. Inferred lineage structure linking the eight cell clusters with
scRNA-seq and scATAC-seq data. F. Boxplots showing F-score of top 1k edges in predicted networks from
scMTNI, scMTNI+prior, INDEP, INDEP+prior, and SCENIC compared to gold standard datasets (top).
FDR-corrected T-test to compare the F-score of the row algorithm to the F-score of the column algorithm
(bottom). A FDR<0.05 was considered significantly better. The sign < or > specifies whether the row
algorithm’s F-scores were worse or better than the column algorithm’s F-scores. The color scale is
specified for −log(FDR), with the red color proportional to significance. G. Pairwise similarity of
networks from each cell cluster using F-score on the top 5k edges which corresponds to a confidence of
∼0.8. Rows and columns ordered by hierarchical clustering using F-score as the similarity measure.
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Figure 6. Network rewiring during hematopoietic differentiation. A. Kmeans-based edge clusters of the
top 5k edges (rows) across 8 cell clusters (columns). The edge confidence matrix was clustered into 19
clusters to identify common and divergent networks. The red intensity corresponds to the average
confidence of edges in that cluster. Shown also are the number of edges in the edge cluster. B. Top
regulators of each edge cluster. Shown are only regulators with at least 10 targets in a given edge cluster.
The size and brightness of the circle is proportional to the number of targets. C. Topic-specific networks
across each cell cluster for topic 4. The layout of each network is the same, edges present in a particular
cell cluster are shown in red. Labeled nodes correspond to regulators with the largest number of
connections. D. Regulators associated with each cell cluster’s network in each topic.The brighter and larger
the circle, the greater are the number of targets for the regulator.
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